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ABSTRACT Tracking bacterial evolution during chronic infection provides insights into
how host selection pressures shape bacterial genomes. The human-restricted opportu-
nistic pathogen nontypeable Haemophilus influenzae (NTHi) infects the lower airways of
patients suffering chronic obstructive pulmonary disease (COPD) and contributes to dis-
ease progression. To identify bacterial genetic variation associated with bacterial adapta-
tion to the COPD lung, we sequenced the genomes of 92 isolates collected from the
sputum of 13 COPD patients over 1 to 9 years. Individuals were colonized by distinct
clonal types (CTs) over time, but the same CT was often reisolated at a later time or
found in different patients. Although genomes from the same CT were nearly identical,
intra-CT variation due to mutation and recombination occurred. Recurrent mutations in
several genes were likely involved in COPD lung adaptation. Notably, nearly a third of
CTs were polymorphic for null alleles of ompP1 (also called fadL), which encodes a bi-
functional membrane protein that both binds the human carcinoembryonic antigen-
related cell adhesion molecule 1 (hCEACAM1) receptor and imports long-chain fatty ac-
ids (LCFAs). Our computational studies provide plausible three-dimensional models for
FadL’s interaction with hCEACAM1 and LCFA binding. We show that recurrent fadL mu-
tations are likely a case of antagonistic pleiotropy, since loss of FadL reduces NTHi’s abil-
ity to infect epithelia but also increases its resistance to bactericidal LCFAs enriched
within the COPD lung. Supporting this interpretation, truncated fadL alleles are common
in publicly available NTHi genomes isolated from the lower airway tract but rare in oth-
ers. These results shed light on molecular mechanisms of bacterial pathoadaptation and
guide future research toward developing novel COPD therapeutics.

IMPORTANCE Nontypeable Haemophilus influenzae is an important pathogen in pa-
tients with chronic obstructive pulmonary disease (COPD). To elucidate the bacterial
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pathways undergoing in vivo evolutionary adaptation, we compared bacterial ge-
nomes collected over time from 13 COPD patients and identified recurrent genetic
changes arising in independent bacterial lineages colonizing different patients. Be-
sides finding changes in phase-variable genes, we found recurrent loss-of-function
mutations in the ompP1 (fadL) gene. We show that loss of OmpP1/FadL function re-
duces this bacterium’s ability to infect cells via the hCEACAM1 epithelial receptor
but also increases its resistance to bactericidal fatty acids enriched within the COPD
lung, suggesting a case of antagonistic pleiotropy that restricts ΔfadL strains’ niche.
These results show how H. influenzae adapts to host-generated inflammatory media-
tors in the COPD airways.

KEYWORDS CEACAM1, FadL/OmpP1, Haemophilus influenzae, adaptive evolution,
antagonistic pleiotropic, chronic obstructive pulmonary disease, comparative
genomics, convergent evolution, free fatty acids, in situ evolution

Bacterial pathogens evolve during long-term chronic infections (1), and identifying
the genetic changes that arise in bacteria over time within hosts is a powerful

means of deciphering host selective pressures acting on bacteria that colonize new
niches and the specific adaptations that allow bacteria to persist (2–4). Dissecting the
genetics of bacterial adaptation is also key to understanding and predicting the
emergence of antimicrobial resistance and immune evasion traits within bacterial
populations, as well as for identifying new interventional targets.

Colonization of the human lower airways by opportunistic pathogens of environ-
mental origin leads to the irreversible progression of major respiratory diseases, such as
cystic fibrosis (CF), and bacterial evolution during long-term lung infection has been
extensively analyzed in this context (2, 4, 5). In particular, genomic analyses of serially
collected isolates of Pseudomonas aeruginosa and Burkholderia species have provided in
vivo evidence of adaptation during long-term infection of CF lungs (3, 4, 6–13). In
contrast, we only scarcely understand how different members of the human micro-
biome adapt to new niches within the human body and become pathogens, and our
knowledge is limited largely to Staphylococcus aureus evolutionary dynamics during CF
lung infection and transitions from carriage to invasive disease (14–18).

Chronic obstructive pulmonary disease (COPD), the fourth leading cause of death
globally, whose primary risk factor is smoking, is an irreversible airflow obstruction
accompanied by emphysema, fibrosis, neutrophil airway infiltration, mucus hyperse-
cretion, inflammation, and long-term lower airway colonization by opportunistic patho-
gens (19). Though nontypeable Haemophilus influenzae (NTHi) is typically a benign
commensal of the human upper airways, it is also an opportunistic pathogen com-
monly isolated from the lower airways of COPD patients during both exacerbations and
clinically stable periods, and it is responsible for 20 to 30% of all acute COPD exacer-
bations. NTHi persists within COPD patient lungs for months to years, contributing to
chronic airway inflammation that results in worsening of symptoms and speeds disease
progression (19).

NTHi isolates are extremely diverse both phenotypically (20) and genomically
(21–23). Moreover, individuals are often colonized by multiple distinct strains (24),
distinguished by hundreds of gene possession differences and 10s of thousands of
single-nucleotide variants (SNVs) (22, 25–31). In addition, NTHi is naturally competent
(able to take up and recombine DNA from relatives into their chromosome) and
possesses numerous phase-variable genes (28, 32–35), traits that likely contribute to
NTHi’s ability to adapt and persist within COPD patient lungs. Indeed, the recent
whole-genome sequencing of a unique set of prospectively collected NTHi strains from
COPD patients revealed frequent genetic variation due to slipped-strand mispairing in
simple sequence repeats (SSRs) and diversifying selection in several candidate vaccine
antigens during NTHi persistence in the human airways (36).

In this study, we addressed molecular genetic changes underlying bacterial adap-
tation to the COPD airway by investigating the genetic variants arising from within-
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patient evolution of NTHi in an independent cohort of patients. We identify recurrent
polymorphisms in several genes and provide experimental evidence for the biological
significance of such convergent variation in the ompP1 (also called fadL) gene. Overall,
our results provide novel insights into the evolution of a human-restricted respiratory
commensal to be a persistent pathogen of the lower airway.

RESULTS
Longitudinal collection of NTHi genomes from COPD patients. To identify

natural genetic variation in bacterial genomes associated with adaptation to the COPD
lung, we serially collected NTHi isolates from a set of COPD patients over time and
sequenced and comparatively analyzed their genomes. Sputum samples were collected
from COPD patients during exacerbations requiring hospitalization or at primary health
care routine visits; NTHi colonies were phenotypically identified and isolated. Thirteen
patient series were selected on the basis of the presence of four or more longitudinally
sampled NTHi isolates, as well as the presence of more than one independent isolate
of the same pulsed-field gel electrophoresis (PFGE) type, suggesting persistent long-
term infection by that strain. Sampled subjects were Spanish male smokers or ex-
smokers; clinical information on each subject is summarized in Table 1. The bacterial
strain collection consists of 92 isolates, with 4 to 18 isolates per patient, collected over
a period ranging from 1 to 9 years (Fig. 1a). Details on each isolate are summarized in
Data Set S1a and b in the supplemental material.

The genomes of all isolates were subjected to Illumina-based shotgun whole-
genome sequencing, and a subset of 17 isolates were also sequenced using the
long-read Pacific Biosciences RSII technology (PacBio) to serve as complete reference
sequences. Genome assembly, gene annotation, taxonomic classification, and in silico
multilocus sequencing typing (MLST) were performed. Summary metrics are shown in
Data Set S1c; results of DNA modification motif analysis for 10 PacBio assemblies are
shown in Data Set S1d. Assemblies from the two sequencing methods showed high
overall agreement (Fig. S1; see also Materials and Methods).

Gene clustering and phylogenomic analysis. To provide context to these new
COPD genomes for comparative genomic analyses, we combined our genome collec-
tion with 391 publicly available H. influenzae assemblies (of which 210 were from a
recent large study of NTHi in COPD patients by Pettigrew et al. [36], 28 of which were
of strains collected from COPD patients or patients with other lower airway infections,
and the remaining 153 were non-COPD patient isolates), along with 35 representative
genomes from sister species H. haemolyticus and H. parainfluenzae. Pan-genome anal-
ysis was conducted by clustering together homologous protein-coding genes using the
pan-genome analysis pipeline Roary (3), resulting in 6,453 total homologous gene

TABLE 1 Information on subjects included in this studya

Patient Yr of birth
Age at first NTHi
isolation (yr)

No. of AE of
COPD/yr COPD status % FEV1 (mo and/or yrb) No. of packs/yr

1 1951 61 5 Gold IV 26.1 (July 2012) 40 (ex-smoker)
2 1935 77 3 Gold III 41 (August 2012) ND (ex-smoker)
3 1912 88 ND ND ND ND (ex-smoker)
4 1945 67 ND Gold II 53 (November 2012) 50 (ex-smoker)
5 1933 77 5 Gold II 52 (October 2012) 40 (ex-smoker)
6 1947 64 7 Gold IV 26 (October 2013) 30 (ex-smoker)
7 1963 47 3 Gold II 55 (November 2011) �20 (smoker)
8 1939 70 3 Gold II 65 (May 2009) ND (ex-smoker)
9 1921 90 2 Gold I 91 (2007) ND (ex-smoker)
10 1946 59 ND Gold III 40 (March 2008) ND (ex-smoker)
11 1946 66 �3 Gold IV 29 (November 2012) 100 (ex-smoker)
12 1937 73 3 Gold III 35 (March 2011) 67 (ex-smoker)
13 1926 84 7 Gold III 47 (2007) 20 (ex-smoker)
aAE, acute exacerbations; FEV1, forced expiratory volume in the 1st second; ND, not determined.
bDate of spirometry test used to assign COPD Gold stage.
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clusters among H. influenzae assemblies, of which 1,305 were present in �95% of
assemblies and 4,505 were present only in �15% of assemblies (Fig. S2; Data Set S2).

For molecular typing and clustering of closely related isolates into clonal types (CTs),
besides performing PFGE and MLST analyses, we applied the goeBurst algorithm in
PHYLOViZ to allele assignments that we made from 309 core protein-coding genes
shared by all genomes, including the sister species. For each single-copy core gene,
unique nucleotide sequences were defined as distinct alleles, and strings of allele
identities (IDs) for each isolate were used as an MLST-like input. Strains with fewer than
15 allelic differences across all core genes were clustered together, and each resulting
connected component was assigned an arbitrary CT number (Materials and Methods;

FIG 1 (a) Overview of longitudinal sampling of NTHi isolates from COPD patients; the strains consisted of 92
isolates collected over 1 to 9 years from 13 COPD patients (4 to 18 isolates per patient; strains were collected
between the years 2000 and 2014) (Table 1; see also Data Set S1a and b in the supplemental material). Axes indicate
patient identifier (ID) numbers and the time of sampling for each isolate. Symbols indicate whether the isolate was
collected outside an acute exacerbation (triangles) or not (circles). Colors indicate clonal type (CT) based on 309
single-copy core protein-coding genes. Black is reserved for CTs collected only once. Filled symbols indicate
full-length fadL; open symbols indicate a truncated fadL allele. (b) Minimum-spanning tree (MST) of CTs across all
genomes in the study. Nodes represent individual CTs (collapsed from the genotype-based nodes seen in Fig. S3),
and edges indicate links between closely related CTs. Node size indicates the number of strains across the data set
belonging to that CT, and node color indicates to which data set strains in each CT belong. Primary colors indicate
that CTs contain a strain only from this work (red), from the work of Pettigrew et al. (36) (blue), or from other works
(yellow). Mixtures of the primary colors indicate �1 strain from two data sets, with black indicating CTs containing
strains from all three sets of strains.
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Fig. S3). So, CTs are defined as closely related groups of strains but allow some
recombination. A clear-cut correlation between CTs and MLSTs was observed, since
strains grouped by CT the same way as they grouped by MLST (Data Set S1b), but the
former offers higher resolution for distinguishing relationships among CTs.

Overall, 205 CTs were detected. H. influenzae accounted for 175 of the CTs, including
40 of which appeared in our COPD collection. Twenty of the COPD CTs contained more
than one isolate from within our collection, and so the 72 COPD isolates belonging to
these 20 CTs formed the basis for the search for recurrent genomic changes (described
below). Figure 1b shows a minimum-spanning tree (MST) of all CTs, indicating whether
strains belonging to that CT were from this study, the Pettigrew et al. study (36),
another study, or some combination. These results indicate that many CTs can be found
in both Spanish and American COPD patients, as well as in altogether distinct subjects.
Nearly half of the H. influenzae CTs across the data set had only a single isolate (n � 87),
suggesting that many CTs remain unobserved.

Consistently with results from clonal typing, the species-level phylogenetic tree
(built from alignments of all protein-coding homologs with at most one copy per strain)
illustrated several findings (Fig. 2; unrooted version with outgroups in Fig. S4a; fully
labeled rectangular version in Fig. S4b). (i) Individual patients were colonized by
numerous genetically diverse strains over time, though diversity at any given time point
remains unclear (24, 32, 37–40). High polyclonality and a high average degree of
divergence among CTs contrasts with studies of environmentally acquired opportunis-
tic pathogens, which have typically supported colonization by single CTs followed by
subsequent diversification (3, 6, 41). (ii) Groups of closely related isolates were collected
both within and among patient series, and they sometimes included isolates from
public databases with diverse clinical and geographical origins. (iii) Several instances of
probable interpatient transmission were observed (CT14, -44, -48, -73, -95, and -137).

Most notably, for CT48, 17 isolates were found across four patients, all of whom live
within a 400-m radius, effectively neighbors. Furthermore, patients 4 and 6 were
hospitalized on the same floor of the hospital in April 2011, patients 4 and 7 were
hospitalized on the same floor in December 2012 and November 2013, and patients 6
and 7 were in the emergency unit at the same time in December 2012. No such
relationship was found for patients 7 and 8 or 6 and 8. These observations, along with
SNV differences among this subset of strains, suggest likely transmission links among
these patients, as shown in the time course in Fig. 3 (Data Set S1a and b), though we
cannot exclude the possibility that there may be indirect links through medical
professionals, mutual friends, or relatives. Alternatively, since the relative abundance of
CTs circulating in the population remains unknown, CT48 may simply be common in
the local population.

Recurrent genetic changes among clonal types, especially in genes encoding
membrane-associated functions. Polymorphisms among isolates of the same CT,
especially when collected from the same patient, point to recent mutations or recom-
bination events that may contribute to the bacterium’s adapting to the COPD lung
environment. Because a single isolate was collected at each sampling time point from
what may be polyclonal populations, we did not treat earlier isolates as having parental
genotypes and later ones as having derived genotypes (41, 42). Nevertheless, indepen-
dent polymorphisms at the same locus in different CTs and different patients might be
indicative of adaptive evolution (or, alternatively, hotspots of mutation or recombina-
tion).

To rank genes by evidence of recurrent changes in distinct CTs, we first identified
genetic variants (SNVs, short indels, and gene possession differences) that occurred
within each of the 20 multi-isolate CTs. This showed that intraclonal genetic variation
was characterized by relatively few genetic differences affecting a small number of loci,
either as isolated point mutations or clusters of closely spaced genetic variants,
characteristic of natural-transformation events (1, 34, 43, 44) (Fig. 3; Data Set S3). We
next classified variants based on their impact on protein coding and ranked homolo-
gous protein-coding gene clusters by the number of CTs affected by intra-CT polymor-
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phisms. Of 6,453 total gene clusters, 299 were polymorphic for short variants in one or
more of the 20 multi-isolate CTs. Of these, only 15 gene clusters had intra-CT polymor-
phisms in three or more CTs (Table 2) and only 5 clusters had high-impact (frameshift,
nonsense, or nonconservative missense) short variants in three or more CTs. The top
hits in Table 2 affected by high-impact variants encoded membrane proteins, enzymes
determining lipooligosaccharide (LOS) structure, and a DNA methyltransferase subunit.
Several of these are known to be phase variable due to SSRs, whose number deter-
mines if the reading frame is open (lic2A, oafA, losA, hsdM3) (45–47). The frequent
frameshift variants arising within CTs in these genes are due to copy number changes
in these repeats due to slip-strand mispairing during replication (Data Set S3). This
observation nicely corroborates the recent one by Pettigrew et al. with regard to an
independent set of COPD isolates (36). Several hits in Table 2 were also found in the
Pettigrew et al. COPD study (36), including DNA methylase, LOS-related glycosyltrans-

FIG 2 Species-level phylogenetic tree, based on a concatenation of 309 core gene alignments. This tree contains 483 H. influenzae genomes, including 210
of the genomes from the study of Pettigrew et al. (36), 181 publicly available genomes, and 92 genomes from this study. The patient ID is indicated by node
color, whereas CT is indicated by the color in the outer ring, as in Fig. 1a. Only COPD isolates sequenced for this study are labeled; Fig. S4a and b, respectively,
show an unrooted phylogeny, including H. haemolyticus and H. parainfluenzae outgroups, and a fully labeled rectangular tree that includes bootstrap results.
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FIG 3 Genetic variation within clonal type 48 (CT48). (a) Whole-genome view of all short variants detected for the 17 isolates in CT48, collected from
4 patients, against the PacBio reference assembly for isolate P621 (the x axis shows the P621 genome coordinate; the left-hand side of the y axis shows
results for patients 4, 6, 7, and 8; blue hatch marks indicate SNVs and short indels). Blocks are due to numerous closely spaced variants, which resemble
natural transformation events seen in the laboratory. (b) Zoomed-in view at 920 to 940 kb, showing that recombination tracts in this region likely had
independent donor sources. (c) Heatmap of pairwise variant counts among CT48 isolates, showing 4 distinct haplotypes, mostly due to recombination
tracts distinguishing the isolates. P618 in haplotype A is more similar to haplotypes B and C than they are to each other and, as seen above, appears
to be a hybrid of the two. (d) Time course of all isolates belonging to CT48, encompassing strains collected from four patients.
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ferase, acetyltransferase, and a TonB-dependent receptor. Also among top hits were
several genes affected by dozens of low-impact intra-CT variants (conservative mis-
sense and synonymous variants) affecting the same contiguous gene cluster (e.g., hgpB,
hgpC, and tbp2), which were due to overlapping recombination tracts in different CTs
(Fig. 3) and potentially indicate loci under diversifying selection (48, 49).

Independent loss-of-function mutations in ompP1 or fadL arise within multiple
lineages and patients. Aside from changes in phase-variable genes, the most striking
observation of the parallel evolution analysis above was that of independent predicted
loss-of-function changes in the ompP1, or fadL, gene (Fig. 1a; Fig. 4; Table 2; Data Set
S2; Data Set S3). Seven of the 20 multi-isolate CTs were affected by polymorphisms in
fadL, and this included nine independent null alleles induced by frameshift or nonsense
mutations. Since only intra-CT polymorphisms were considered above and this was
sometimes affected by annotation problems at truncated alleles, we extended the
analysis by extracting the fadL allele from each of our new genome assemblies using
tblastx (50). Multiple alignment of the resulting 92 amino acid sequences identified 34
distinct fadL alleles encoding a full-length protein, as well as 16 distinct alleles with
mutations predicted to encode truncated proteins (Data Set S1b and e). Amino acid
variation among the 34 full-length FadL protein variants is represented in Fig. 4a and
shows high variability in predicted surface-exposed loops. Predicted full-length and
truncated variants are illustrated in Fig. 4b and show clear evidence for multiple
independent null mutations at different positions in the gene, including both frame-
shift and nonsense mutations. Truncation alleles were found in 24 isolates collected
from 11 out of the 13 patients and spanning 14 CTs. Where possible, we identified

TABLE 2 Ranked list of gene clusters with intraclonal polymorphism, ranked by number of CTs affected by SNVs, short indels, or the
presence or absence of gene polymorphisms within the CT

Cluster
ID

Gene
name(s) Annotation

No. of CTs witha:

Intra-CT
variation

Intra-CT gene
presence
variation

Short
variants

Frame-
shifts

Nonsense
mutations

In-frame
indels

Missense
mutations

Synonymous
mutations

1164 lic2A UDP-Gal–lipooligosaccharide
galactosyltransferase

8 0 11 8 0 2 1 0

1473 hgpB Hemoglobin-haptoglobin
binding protein b

8 0 161 5 0 3 68 85

1582 hgpC Hemoglobin-haptoglobin
binding protein C

7 4 118 0 0 2 54 62

0949 ompP2 Outer membrane protein
P2 precursor

6 0 25 0 0 8 16 1

1544 ompP1 (fadL) Long-chain fatty acid
outer membrane
transporter

6 1 40 4 3 0 20 13

1182 tbp2 Transferrin-binding
protein 2 precursor

5 0 107 8 0 3 73 23

1488 tuf Elongation factor Tu 4 6 7 0 0 0 2 5
1172 spoT Guanosine-3’,5’-bis-3’-

pyrophosphohydrolase
4 0 5 0 0 0 4 1

1487 group_1297 Glycosyl transferase
family 8 protein

3 1 3 2 0 1 0 0

1211 hup Heme utilization protein
Hup

3 0 76 0 0 1 31 44

1733 group_438 Putative uncharacterized
protein

3 4 20 2 0 0 13 5

1441 hsdM3 Type I restriction enzyme
HindVIIP M protein

3 0 77 2 0 2 11 62

1736 hmw1C, hmw2C Putative glycosyltransferase
involved in glycosylation of
HMW1A and HMW2A

3 0 3 0 0 0 0 3

1031 oafA O-antigen acetylase 3 0 3 3 0 0 0 0
1612 hmw1A, hmw2A High-molecular-weight

adhesin 1 or 2
3 1 5 0 0 0 5 0

aVariants occurring in different CTs were counted independently. Data are based on Data Sets S2 and S3. Boldface indicates clusters with high-impact short variants in
three or more CTs.
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full-length alleles that were the likely ancestors of specific truncated variants, when
present in sets of isolates from the same patient and CT with no fadL variation outside
the putative null mutation (groupings in Fig. 4b and Data Set S1e).

We further provide direct evidence that the FadL protein is not expressed in strains
carrying predicted null alleles by SDS-PAGE of bacterial whole-cell lysates from repre-
sentative isolates. A protein band whose weight was consistent with the FadL predicted
molecular weight was present in strains P589, P631, and P608 but absent from P590,
P595, P662, P614, P622, and P607 (Fig. 4c). Band identity as FadL was confirmed for
strain P589 by peptide mass fingerprinting matrix-assisted laser desorption–ionization
tandem time of flight (MALDI-TOF/TOF) mass spectrometry. Collectively, these results

FIG 4 FadL amino acid variation and loss of alleles in COPD isolates. (a) Count of distinct amino acid variants at each position
in an alignment of 34 full-length FadL proteins distributed among 68 isolates. Red positions correspond to residues in the
seven predicted extracellular loops (L1 to L7). Nineteen unique full-length alleles were found in only one isolate; 15 were found
in �1 isolate (with variant 5 being the most frequent). Thirteen CTs had only one full-length allele (CT3, -7, -16, -17, -18, -38,
-45, -48, -54, -72, -73, -95, -137), and two had more than one (CT44 had -100). (b) Multiple independent fadL truncation alleles
were observed and are schematically shown to indicate surface-exposed loops (in gray); they are paired with full-length alleles,
when possible. (c) Putative null alleles do not express FadL protein. Whole-protein extracts from cultures were analyzed by
SDS-PAGE and Coomassie brilliant blue staining. A protein band at FadL’s predicted molecular weight (arrows) was present in
strains containing full-length fadL alleles (P589, P631, and P608; variants 2, 3, and 8, respectively) but absent in strains
containing truncated alleles (P590, P595, P662, P614, P622, and P607; variants T1, T4, T6, T7, T8, and T10, respectively).
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strongly suggest that fadL loss-of-function mutations are selected for during NTHi’s
adaptation to the COPD lung.

FadL variation affects hCEACAM1-dependent NTHi interactions with host cells.
FadL in NTHi (FadLNTHi) strains has been reported to be a bacterial ligand for the human
carcinoembryonic antigen-related cell adhesion molecule 1 (hCEACAM1), facilitating
NTHi entry into epithelial cells (51, 52). Therefore, we assessed the impact of naturally
occurring variation in fadL genes on the interplay between NTHi and host cells. By
comparing bacterial invasion of HeLa cells (which do not normally express hCEACAM1)
to that of a stably transfected HeLa derivative cell line expressing hCEACAM1 (HeLa-
BGP cells) (53), we first tested whether bacterial cell entry depends upon the interaction
between FadL and hCEACAM1. With isogenic fadL knockout mutations in reference
strains NTHi375 and RdKW20 (54, 55), gentamicin protection assays showed strong
defects in bacterial entry into HeLa cells in the absence of either FadL or hCEACAM1 in
both strain backgrounds (Fig. 5a). As expected, COPD clinical isolates also showed
FadL-dependent invasion of hCEACAM1-expressing cells. Pairs of clonal isolates carry-
ing ancestral full-length and derived null alleles of FadL (Data Set S1e) were also tested.
In all cases, invasion of hCEACAM1-expressing cells was substantially decreased in the
absence of full-length FadL (Fig. 5b). Differences in hCEACAM1-dependent invasion
rates were observed among isolates carrying distinct full-length FadL alleles, which
could not be explained solely by differences in fadL gene expression levels; for example,
isolate P608 showed the highest invasion rate, but its fadL gene expression was
comparable to those of the other strains tested (Fig. 5c).

We next examined the interaction of FadLNTHi with hCEACAM1 by using computa-
tional molecular modeling, since a three-dimensional (3D) perspective of the molecular
recognition events is lacking. To evaluate the potential effect of the natural variation
present among the FadL surface-exposed loops, homology models of FadL variants
from RdKW20, NTHi375, and P608 (selected as a representative COPD isolate with
high rates of HeLa-BGP cell invasion) were computed using FadL in Escherichia coli
(FadLE. coli) and refined by molecular dynamics (MD) simulations. All three computed 3D
structures were similar to each other and to that of FadLE. coli, though the mobile
variable surface-exposed loops had distinct conformations among structures, and some
differences were seen within the �-barrel (Fig. 6a, Fig. S5a to c, and Text S1). Docking
calculations (56) between the three FadLNTHi models and hCEACAM1 were also per-
formed and the resulting protein-protein complexes submitted to MD simulations,
rendering high stability along the simulation. Protein-protein interaction analyses of
the three FadLNTHi-hCEACAM1 complexes identified several relevant polar, hydropho-
bic, and CH-� interactions that remained stable along the MD simulation, which varied
depending on the allele used (Fig. 6b, Fig. S5d, and Text S1). Among the residues
involved in the interactions, we found several hCEACAM1 residues (Ser32, Tyr34, Val39,
Gln44, Gln89, and Ile91) that were previously reported as necessary for the interaction
with NTHi by site-directed mutational analyses (57, 58). Our structural modeling clearly
identifies these residues as directly involved in the interaction with FadL, thereby
accounting for the interaction between FadLNTHi and hCEACAM1 and further suggest-
ing that natural variation in FadL surface-exposed loops may affect NTHi’s ability to
interact with epithelial cell surfaces. Our molecular modeling calculations also allowed
us to identify several FadL residues located in loops 3, 4, and 5 as likely to be involved
in hCEACAM1 binding. High conservation among FadL full-length allelic variants pos-
sibly excludes many of these from an association with variability in epithelial invasion.
In particular, Gly193P608 in L3, Ile286RdKW20 and Lys290RdKW20 in L4, and Asp332P608,
Ala334NTHi375, and Lys339RdKW20 in L5 are highly conserved. However, other identified
residues are polymorphic, in particular, Val196P608, Asn200P608, Lys213NTHi375,
Leu214P608, Lys216P608, Lys217P608, Trp220P608, Phe222RdKW20, Lys225RdKW20, Ser276NTHi375, and
Gly279P608. These variants may account for the observed variation in terms of epithelial
invasion by the tested strains.

FadL loss-of-function confers resistance to the bactericidal effect of arachi-
donic acid. FadLNTHi is also a predicted transporter of exogenous long-chain fatty acids
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FIG 5 FadLNTHi is a bacterial ligand of the hCEACAM1 receptor. (a) HeLa (nonexpressing hCEACAM1) and
HeLa-BGP (a stably transfected derivative expressing hCEACAM1) cells were used to quantify epithelial
invasion by WT and ΔfadL derivative NTHi375 and RdKW20. WT strains invaded HeLa-BGP cells at
significantly higher rates than they invaded HeLa cells (for NTHi375 and RdKW20, P was �0.0001), in
contrast to their respective ΔfadL mutants. Inactivation of fadL decreased the invasion of HeLa-BGP cells
compared to that of their respective isogenic WT strains (P � 0.0001). (b) HeLa and HeLa-BGP cells were
also used to quantify invasion by COPD patient isolates with the putative full-length FadL ancestor and
derived truncated allele pairs (strains belonging to CT9, -48, -40, -44, and -76; FadL full-length variants 2,
5, 8, 13, and 24; FadL truncated variants T1, T7, T8, T10, T11, T14, and T15). Strains with full-length alleles
invaded HeLa-BGP cells at significantly higher rates than they invaded HeLa cells (for P589, P600, P608,
and P666, P was �0.0005; for P634, P was �0.005), in contrast to strains with truncated alleles. Moreover,
fadL truncation alleles significantly decreased bacterial entry into HeLa-BGP cells compared to that of
their full-length ancestors (P was �0.0005 when P590 was compared to P589; the P value was the same
for comparisons of P614 and P600, P622 and P600, P607 and P608, P617 and P634, P664 and P666, and
P665 and P666). (c) Expression of the fadL gene during exponential growth in sBHI as measured by
quantitative reverse transcription-PCR. Data are shown for strains containing full-length FadL variants
assayed in panels a and b, namely, NTHi375, RdKW20, P589, P600, P608, P634, and P666. In all cases,
means � standard deviations (SD) are shown. ΔCt, change in threshold cycle.
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(LCFAs). In E. coli and Sinorhizobium meliloti, the fadL gene products are required for the
ability to use free fatty acids as a sole carbon source (59–61), and key amino acid
residues required for fatty acid binding and lateral diffusion have been elucidated for
FadLE. coli (59, 61). To investigate the ability of FadLNTHi to bind LCFAs, we performed

FIG 6 Structural modeling of the FadL interaction with hCEACAM1. (a) Computed homology models for H. influenzae FadLNTHi375 (in blue), FadLRdKW20 (in cyan),
and FadLP608 (in lime green). The FadLE. coli crystal structure is shown on the left (purple). The modeled structures correspond to a 14-stranded �-barrel with
seven extracellular loops (L1 to L7), of which L1, L3, L4, and L7 are mobile and exposed to the outside. (b) Protein-protein docking between the amino-terminal
domain of hCEACAM1 (green) and the modeled structures of FadLNTHi375 (blue), FadLRdKW20 (cyan), and FadLP608 (lime green). These interactions remained stable
along molecular dynamics (MD) simulations of each hCEACAM1-FadL complex (Text S1).
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docking calculations of three LCFAs in the FadLNTHi375, FadLRdKW20, and FadLP608

homology models. To take into account the flexibility of FadL, additional normal mode
analysis (NMA) of the three FadLNTHi 3D models provided distinct conformations
representing motions and conformational changes. Tested LCFAs included arachidonic
acid (AA), oleic acid (OA), and lauryl dimethylamine-N-oxide (LDA) as a control (since it
was previously crystallized with FadLE. coli). All the calculations predicted several bind-
ing poses for the three fatty acids at the entrance to and within the FadLNTHi �-barrel
(Fig. 7 and Fig. S6). All three fatty acids were predicted to interact with FadLNTHi at sites
equivalent to those for LDA in FadLE. coli, but other distinct binding sites were also
identified inside the �-barrel (Text S1). The docking calculations provide reasonable
binding poses to FadLNTHi for the studied LCFAs and support its role as a fatty acid
transporter. However, further use of LCFAs by NTHi as a sole carbon source was deemed
unlikely due to the absence of a complete �-oxidation pathway in NTHi (26, 54). Thus,
as expected, no bacterial growth was observed in a defined minimal medium free of
fatty acids when supplemented with AA as a carbon source (62).

FIG 7 Docked binding poses of arachidonic acid (AA) in FadLNTHi. Docked binding poses of AA are shown for FadLNTHi375 (blue) (a), FadLRdKW20 (cyan) (b), and
FadLP608 (lime green) (c). The details of the interactions are depicted as sticks. Calculations predicted two favorable binding modes of AA in both structures
(FadLNTHi375 and FadLRdKW20); the first one was at the entrance of the �-barrel (site A) in a hydrophobic groove located between L3 and L4. Interactions with
polar residues, specifically with Lys at L5 (Lys336 in FadLNTHi375 and Lys426 in FadLRdKW20), lipophilic interactions, and CH-� interactions with aliphatic and
aromatic residues were identified; and a second binding mode at the depth of the �-barrel (site B), establishing polar contact with Lys142 present in L2. These
binding poses were also found for FadLP608 together with an additional binding site (Text S1). Details of the interactions are represented as sticks.
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Free fatty acids act as natural detergents, and a bactericidal effect on H. influenzae
has been described for AA (63). We next examined the viability of wild-type (WT) and
isogenic fadL mutant strains when they were incubated in defined minimal medium
with AA. WT strains had reduced viability in a dose-dependent manner; by contrast,
both fadL knockout mutants were more resistant to AA than their respective WT strains
(Fig. 8a). The same effect was seen for OA, though only at higher concentrations (data
not shown). Resistance to AA was also assayed for two representative pairs of COPD
isolates with predicted ancestral full-length and derived null alleles of FadL (Data Set
S1e). In both cases, loss of FadL function was associated with increased bacterial
resistance to AA (Fig. 8b). Although one or more of the few additional genetic variants
that distinguish the two pairs of isolates may instead be responsible for this increased
AA resistance, fadL loss of function was the only common one in both isolate pairs
(Table 3). Given that AA metabolites are key players in COPD-related airway inflamma-
tion (64), these molecules may in turn provide a selective pressure within COPD patient
lungs such that NTHi fadL loss-of-function mutations are adaptive within this niche.

FadL inactivation has no effect in a murine model of acute lung infection.
Human-restricted bacterial pathogens are known to selectively interact with hCEACAM1
(65). NTHi murine pulmonary infection may uncouple FadL functional analysis as an LCFA

FIG 8 FadL loss of function confers resistance to arachidonic acid. (a) A dose-dependent bactericidal
effect of AA was observed for both WT NTHi375 and WT RdKW20. Both fadL mutants were more resistant
to AA than their respective parental strains (NTHi375 with AA at 25 �M, P � 0.01; AA at 50 �M,
P � 0.005; RdKW20 with AA at 25 �M, P � 0.005). EtOH, ethyl alcohol. (b) FadL natural loss of function
increases NTHi resistance to AA. Fatty acid resistance was assayed for representative clonal isolate pairs
containing two predicted FadL full-length ancestor and derived truncated allele pairs. Strains with FadL
truncations (P590 and P665) were more resistant to AA than their respective clonal counterparts (P589
and P666, P � 0.05 for both pairs at 25 and 50 �M). (a and b) Results are expressed as percentages of
bacterial survival (means � standard errors) compared to survival with the use of a vehicle solution. (c
and d) Inactivation of the fadL gene has little effect in a murine lung acute-infection model. CD1 mice
were intranasally infected with WT (circles) or ΔfadL (squares) strains. Mice were euthanized, and bacterial
loads in lungs (left) and bronchoalveolar lavage fluid (BALF) (right) samples (log10 numbers of CFU/
sample) were quantified. Data are shown as means � SD for the NTHi375 (c) and RdKW20 (d)
backgrounds. No differences among strains were observed at 24 hpi. At 48 hpi, no significant changes
were observed for the RdKW20 strain; in NTHi375, fadL inactivation weakly reduced bacterial loads
(P � 0.005 in lung; P � 0.01 in BALF).
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transporter and a hCEACAM1 ligand, since the latter is absent from mice. So, CD1 mice were
infected with WT and fadL mutant NTHi375 and RdKW20 strains, and bacterial loads were
quantified in lung and bronchoalveolar lavage fluid (BALF) samples. At 24 h postinfection
(hpi), bacterial counts were comparable for both WT and mutant strain pairs. At 48 hpi, no
differences were observed for WT and mutant RdKW20 strains; in contrast, NTHi375ΔfadL
rendered lower bacterial counts than its isogenic WT strain (P � 0.005 in lung, P � 0.01 in
BALF) (Fig. 8c and d). Together, these results showed that fadL gene inactivation gives no
substantial benefit in this infection model. We acknowledge that this model system may be
suboptimal in this case, since NTHi fails to establish a long-term infection, showing only
variation in times to clearance, which occurs in �3 days for the WT strains.

Truncated fadL alleles appear to arise in NTHi within COPD patient lower
airways and are rare in isolates from other body sites. Because all the subjects in

TABLE 3 Coding region SNVs in CT9 strains P590 and P589 and CT76 strains P665 and P666a

CT Ref nt Alt nt Mutation type Impact Gene name Ref aa Alt aa
aa
position

Protein
length Function

CT9 A C Missense Moderate L_00407 Ser Arg 22 470 Putative ATPase, hypothetical
protein

A C Missense Moderate L_00407 Asn Thr 282 470 Putative ATPase, hypothetical
protein

G T Missense Moderate L_00640 Pro Thr 513 844 Translation initiation factor
IF-2

A C Stop lost High L_00728 Ter Ser 229 228 Outer membrane protein
P1, long-chain fatty acid
outer membrane transporter

T C Missense Moderate L_01000 Asn Asp 59 137 Phage GP46 family protein,
hypothetical protein

A G Missense Moderate L_01011 Ser Pro 91 101 Putative uncharacterized protein,
putative protein

C A Missense Moderate L_01014 Glu Asp 131 161 Phage virion morphogenesis
protein

T C Missense Moderate L_01016 Asn Asp 521 546 Putative uncharacterized protein,
hypothetical protein

TG CA Missense Moderate L_01016 Lys Glu 514 546 Putative uncharacterized protein,
hypothetical protein

CT76 AGGA AA Frameshift High L_00010 Gly FS 140 258 Hypothetical protein
A C Missense Moderate L_00404 Lys Thr 413 1046 Outer membrane receptor protein,

putative Fe
transport, hemoglobin/
hemoglobin-haptoglobin
binding protein B

CT CTCGAT Frameshift and
stop lost

High L_00626 Ter FS 168 167 Outer membrane protein
P1, long-chain fatty acid
outer membrane transporter

T C Noncoding
transcript

Modifier L_00890 rRNA

A C Missense Moderate L_00973 Tyr Asp 345 366 Outer membrane protein
P2 precursor

C T Missense Moderate L_00973 Gly Ser 93 366 Outer membrane protein
P2 precursor

A C Missense Moderate L_01164 Gln Pro 288 704 Guanosine-3’,5’-bis 3’-
pyrophosphohydrolase

C T Missense Moderate L_01164 Pro Leu 402 704 Guanosine-3’,5’-bis 3’-
pyrophosphohydrolase

T A Noncoding
transcript

Modifier L_01171 rRNA

A T Noncoding
transcript

Modifier L_01171 rRNA

T G Missense Moderate L_01757 Ser Ala 322 366 Histidinol-phosphate
aminotransferase 2

ant, nucleotide; Ref, reference; Alt, alternative; aa, amino acid; FS, frameshift. The CT9 strain P589 contained each SNV; P590 contained none of them, it was used as
reference. CT76 strain P666 contained each SNV; P665 contained none of them, it was used as reference.
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this study had COPD for years prior to being sampled for NTHi, we could not conclude
that null alleles of fadL arose within COPD patient lungs, despite 6 of 20 multi-isolate
CTs being polymorphic for null alleles, since these might also arise in the normal
commensal population of NTHi in the nasopharynx. To test whether loss of fadL
function was specifically associated with lower airway infections, we first examined the
distribution of full-length and truncated fadL alleles across 181 publicly available
genomes (excluding those from the Pettigrew et al. study [36]) derived from isolates
with diverse clinical origins (26, 66, 67) (Fig. S4). Of 153 isolates collected outside the
context of lower respiratory tract infection (including nasopharyngeal carriage, middle
ear carriage in pediatric patients with otitis media, invasive bacteremia, and meningitis
isolates), only three non-lung isolates’ genomes lacked a single full-length fadL anno-
tation (1.9%, one from a patient with otitis media, one from a patient with bacteremia,
and one other). In contrast, out of 28 isolates from the lower airways (isolates from
COPD patient sputum or other pulmonary infections), 9 had truncated fadL genes
(33.3%). This demonstrates that an intact fadL gene is the norm among NTHi strains as
a whole, but loss-of-function mutations are significantly enriched in lung isolates
(Fisher’s exact test P value � 1.3 � 10�6).

As we were completing this study, 269 new NTHi genomes collected from American
COPD patients were published by Pettigrew et al. (36), providing us with a second
independent test of the hypothesis that fadL null mutations are selected for during
long-term COPD-associated infections. Indeed, 43 of all 269 genomes (16.0%) had
truncated/absent fadL genes, as determined by Roary gene clustering analysis. Aggre-
gating across assemblies gave consistent results: only 3 of 159 nonlung isolates lacked
a predicted full-length fadL gene, whereas 69 of 399 lung/sputum isolates lacked it
(1.9% versus 17.3%, Fisher’s exact test P value � 4.2 � 10�8).

A comparison of the frequencies of truncated fadL between the persistent and
cleared isolates in the Pettigrew et al. data set found a weak (but not significant) trend
toward higher rates of truncated fadL alleles in persistent isolates than in cleared
isolates (37 of 202 persistent strains versus 6 of 67 cleared strains; odds ratio, 2.2;
Fisher’s exact test P value � 0.084). Finally, because persistent isolates had been
carefully chosen to pair the first and last isolates with matched MLSTs from the same
patient, we also asked whether paired isolates tended to show loss or gain of fadL
function over time. Of 101 MLST-matched pairs, 11 were polymorphic for fadL between
the first and last isolation dates, and all 11 had a full-length allele at the first visit and
a truncated allele at the last visit (binomial test P value � 0.0001), providing strong
evidence that fadL truncation mutations arise mostly in situ in the COPD lung.

Taken together, our results strongly suggest that intact fadL function is normally
beneficial for H. influenzae but becomes deleterious in the context of lower respiratory
tract infections, likely due to the fadL-dependent bactericidal effect of LCFAs being
upregulated in COPD patient lungs.

DISCUSSION

Our comparative genomic analyses of longitudinally collected NTHi isolates from
COPD patients provides novel insights into the evolutionary dynamics of a bacterium
as it adapts to becoming a chronically infecting lung pathogen. This work and that of
Pettigrew et al. (36) present data from two independent cohorts (Spanish and U.S.
patients, respectively), and both identify an overlapping set of NTHi genes that change
during long-term COPD infection. COPD strains show no phylogenetic clustering based
on clinical source, geography, duration of persistence, or year of isolation, and phase-
variable genes were a frequent source of genetic variation among clonally related
isolates. Beyond the major findings in the work of Pettigrew et al. (36), we identified
probable recombination and interpatient transmission events, as well as provided
experimental evidence of the molecular mechanism behind selection for COPD-specific
recurrent loss-of-function mutations in the NTHi gene ompP1, or fadL.

This study was motivated by an earlier one in which we conducted a limited
genomic analysis of three serially collected NTHi isolates belonging to a single CT
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recovered from a single bronchiectasis patient, which showed increasing resistance to
antimicrobial peptides and also carried amino acid substitutions in the SapABCDFZ
system, which confers antimicrobial peptide resistance (68). Here, we expanded to a
larger set of longitudinally collected COPD isolates. Notably, we identified intraclonal
polymorphisms from 20 multi-isolate CTs collected over time, rather than in only the
first and last in each patient series (36). We found evidence for parallel evolution in
several NTHi genes, in which multiple CTs carried coding polymorphisms in the same
genes, suggestive of in situ natural selection. In particular, the ompP1or fadL locus stood
out because of the high frequency of independent loss-of-function alleles seen in
different CTs and in different patients. Our observations are consistent with those of
other studies that have identified amino acid variation in the FadL protein among H.
influenzae and Neisseria meningitidis strains (51, 69, 70) and are congruent with reports
on the key role of outer membrane proteins for within-host adaptive strategies (71, 72).

The recurrent null mutations seen in fadL within NTHi CTs isolated from COPD
patient sputum samples suggest a strong selective pressure to lose this gene function
during adaptation to the COPD lung, consistent with NTHi’s reductive evolution toward
becoming a long-term resident of the lower airways (73). In support of this, our survey
of �450 NTHi genomes found that null mutations in fadL were extremely rare except
in isolates from lung infections. Given that the FadLNTHi-hCEACAM1 interaction was
known (51) and strongly supported by our computational 3D models, we were initially
puzzled how losing this interaction could be beneficial, but finding that loss of FadL
also confers resistance to microbicidal fatty acids suggests antagonistic pleiotropy,
wherein a single gene affects multiple phenotypes, each of which may be beneficial or
deleterious depending on conditions. Antagonistic pleiotropy can be modulated by
gene inactivation, such that loss-of-function mutants can outcompete the WT parental
strains once a trait becomes deleterious (74). This may be the case for FadL: loss of the
functional gene avoids triggering bacterial cell death by the combined fatty acid
detergent effect and NTHi’s inability to metabolize these types of molecules. The
molecular basis for the fatty acid detergent effect on NTHi viability is unknown. Of note,
Helicobacter pylori has features common to NTHi’s susceptibility to free fatty acids, the
lack of a �-oxidation pathway, and the presence of an active natural competence
pathway (75–78). Despite occupying separate niches of the human body, both patho-
gens might have common adaptive strategies contributing to colonization linked to
chronic disease conditions. Other explanations for recurrent fadL loss-of-function mu-
tations are plausible given that, as a surface protein, FadL may be subject to immune
pressure and so bacteria may benefit from its loss.

Several lipids are molecular mediators of respiratory diseases (79). In particular, AA
metabolites are key players in COPD airway inflammation (64). Phospholipase A2

(PLA2)-catalyzed hydrolysis of membrane phospholipids results in production of free
fatty acids, most importantly AA, which serves as a precursor for inflammatory medi-
ators, such as platelet-activating factor (PAF) (80). In turn, lipoprotein-associated PLA2

mediates PAF hydrolysis and dampens PAF-mediated inflammation (81). H. influenzae
exploits molecular mimicry to evade host inflammation through GlpQ, an enzyme that
hydrolyzes phosphorylcholine (ChoP) moieties shared by both PAF and the bacterial
LOS molecule, therefore removing PAF from the airways and suppressing inflammation.
Such bacterially driven regulation of PAF signaling might be overcome by a therapeutic
increase of PAF levels at the site of infection through PLA2 targeting (82), which in turn,
might also dampen free AA release in COPD patient lungs, therefore limiting selection
against FadL function during NTHi pathoadaptation (for a model, see Fig. 9).

Finally, we acknowledge that our strain collection presented some limitations. First,
we are unlikely to have sampled the initial colonizing bacterial isolates; therefore, we
did not order the observed genetic variations or determine the most recent common
ancestor (13). Second, we analyzed single isolates from each sampling point, yet we
know that NTHi colonization and infection are often polyclonal (24, 32, 37–40). Despite
these considerations, our results show the utility of comparing the genomes of bacterial
isolates collected over time from long-term chronic infections, showing that genetic

NTHi Genomic Adaptation to COPD Chronic Lung Infection ®

September/October 2018 Volume 9 Issue 5 e01176-18 mbio.asm.org 17

 on June 26, 2019 by guest
http://m

bio.asm
.org/

D
ow

nloaded from
 

https://mbio.asm.org
http://mbio.asm.org/


polymorphisms within clonally related NTHi isolates can help tease apart transmission
of strains between subjects and the genetic changes that result in changes in patho-
genic traits. Here, only a small number of genes showed recurrent mutations in
different bacterial CTs, and our follow-up studies support a bifunctional role for FadL in
both interactions with host epithelia and interactions with free fatty acids.

We conclude that the environment of the COPD patient lung exerts a specific
selective pressure to lose functional fadL, and this is likely by providing resistance to
bactericidal fatty acids, in spite of gene truncation also compromising the ability of
NTHi to invade epithelial surfaces. We speculate that FadL-hCEACAM1 binding may be
essential for infection establishment but that, once established, persistence may favor
the loss of FadL to overcome free fatty acids pressure. This hypothesis aligns with the
observed low hCEACAM1 expression in lung tissue (83). Lastly, we highlight PLA2 as a
potential target for host-directed therapeutics against NTHi chronicity in the setting of
COPD.

MATERIALS AND METHODS
COPD strain isolation and PFGE typing. H. influenzae was identified by culture methods (84) and

with MALDI-TOF Biotyper, version 3.0 (Bruker). NTHi isolates were genotyped using PFGE (85).
Bacterial growth conditions and genetic manipulations. H. influenzae COPD isolates (Data Set S1a)

and reference strains RdKW20 and NTHi375 were grown at 37°C with 5% CO2 on chocolate agar
(bioMérieux) or supplemented brain heart infusion (sBHI), made from BHI supplemented with 10 �g/ml
hemin and 10 �g/ml NAD, with or without agar for solid and liquid culture, respectively. Spectinomycin
30 �g/ml (Spec30) was used when needed. E. coli was grown on Luria Bertani (LB) broth, with or without
agar, at 30°C or 37°C and supplemented with ampicillin at 100 �g/ml (Amp100) or Spec50, as needed. The
fadL gene was knocked out by replacement of the coding sequence with a spectinomycin-resistant
(Specr) cassette as described previously (86) (see Text S1 in the supplemental material and Table 4).

Genome sequencing, assembly, annotation, and data deposition. DNA was extracted from each
isolate and sequenced using standard procedures (Text S1). All 92 genomic DNAs were subjected to
Illumina paired-end short-read sequencing, and a subset of 17 DNAs were also subjected to Pacific
Biosciences RSII long-read sequencing to generate covalently closed circular genomes. Genome assem-
bly was platform specific (Text S1). Assemblies were taxonomically classified with Taxator-tk v1.2 (87). For
MLST strain identification, the adk, atpG, frdB, fucK, mdh, pgi, and recA genes were extracted from
assemblies and assigned STs (https://github.com/tseemann/mlst). New alleles and STs were submitted as
needed (Data Set S1b; https://pubmlst.org/hinfluenzae). To compare PacBio and Illumina assemblies of

FIG 9 Model illustrating FadL, or OmpP1, antagonistic pleiotropy during H. influenzae adaptation in COPD
patient lungs. FadL, or OmpP1, is a bifunctional outer membrane protein that binds both the hCEACAM1
receptor (left panel, green) and free long-chain fatty acids (LCFAs) (right panel, red). This study provides
evidence for recurrent fadL mutations being a likely case of antagonistic pleiotropy associated with
bacterial pathoadaptation in COPD patient lungs. In particular, loss of FadL function reduces NTHi’s ability
to infect epithelia but also increases its survival in the presence of bactericidal LCFAs, which are inflam-
matory markers enriched within the COPD lung. FadL-hCEACAM1 binding may be essential for virulence,
but its persistence in the lower airways may indeed be favored by the inability of FadL to, thus, overcome
free-LCFA selective pressure. OM, outer membrane; IM, inner membrane; CoASH, coenzyme A.
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the same isolates’ genomes, progressiveMauve (snapshot_2015-02-25) (88) was used to reorder Illumina
contigs against the complete PacBio assembly, and perfect agreement was found in all cases. To
annotate strains with consistent gene names, a database of annotated Pasteurellaceae genomes from the
NCBI database was created (https://github.com/rehrlich/prokka_database_maker). Assemblies were an-
notated using this database and Prokka (v1.11) (89). All raw reads and assemblies were deposited in NCBI
under BioProject number PRJ282520; BioSample accession numbers for each strain are included in Data
Set S1b and c. Publicly available genome assemblies at the NCBI and the Sanger Centre were down-
loaded (n � 572) and reannotated with Prokka to maintain consistency. Assemblies were used only if
they had �50 contigs, except for the Pettigrew et al. genomes (BioProject accession number
PRJNA358390), where assemblies with �100 contigs were retained (except that all 269 assemblies were
used in the fadL truncation analysis). This combined data set of 391 publicly available assemblies and 92
assemblies sequenced for this study were used for gene clustering, phylogenetic analysis, and clonal
typing.

Gene clustering, phylogenetic analysis, and clonal typing. Homologous protein-coding genes
among all genomes were clustered together using Roary at a BLASTp threshold of 75% (90).
Phylogenetic tree reconstruction used the hybrid MPI/Pthreads version of RAxML (8.2.4, 10 pro-
cesses, 16 central processing units [cpu] per process, -f a -x 1234 -m GTRGAMMA -p 7 -N autoMRE
-j set thread affinity) on a concatenation of all codon-aware alignments of protein-coding genes with
at most one copy per strain (91). PFGE and MLST are low-resolution strain typing methods, so we
applied goeBurst via PHYLOViZ 2.0 (92) to cluster isolates into CTs, based on their allelic identity
across 309 core protein-coding genes shared by all H. influenzae isolates studied here, as well as
several H. haemolyticus and H. parainfluenzae strains. CTs were defined as sets of strains differing by
no more than 15 allelic differences in the core gene set.

Detecting intraclonal genetic variation in protein-coding genes. Because methods to call genetic
variants by short-read alignment to reference assemblies are relatively mature compared to methods
that use whole-genome alignment, we chose a reference sequence from each CT (based on assembly
quality, a Pacific Biosciences assembly when available) and then aligned short-read pairs from all isolates
belonging to that CT to this reference (Burrows-Wheeler Aligner [bwa] mem version 0.7.5a-r405).
Single-nucleotide and short-insertion/deletion variants (SNVs and indels, respectively) were extracted
using freebayes (v1.1.0) (filtering out variants with a quality score of �1), and the impact of coding
variants was evaluated using SnpEff (v4.3k) (93). To identify homologs across CTs, the LiftOver tool was
used on the Roary gene possession table described above to determine gene identities between the CT
reference genomes. Artifacts of gene annotation failure (for example, due to frameshift and nonsense
mutations), particularly for the CT references, were reconciled by considering intraclonal variation in
gene possession as a high-impact variant.

FadL allelic identities for whole collection. To extract the fadL gene sequence from each of the
new NTHi genomes independently of the Prokka annotation, a local database containing the 92
whole-genome sequences was created and the local BLAST tool was employed (94). Best hits to fadL
were extracted from each genome using bedtools (95), followed by translation and alignment using
Clustal Omega.

Protein and gene expression analysis. Whole-protein extracts from bacterial cultures were ana-
lyzed on 12% SDS-PAGE 20- by 20-cm gels designed for long-range protein separation with maximum
resolution under reducing conditions (Bio-Rad, PROTEAN II xi Cell), followed by Coomassie brilliant blue
staining. Reverse transcriptase real-time quantitative PCR used total RNA extractions from exponentially
grown bacterial cultures (optical density at 600 nm [OD600] � 0.6), with primers for fadL and primers for
gyrA as endogenous controls (Table 4).

Cell culture and bacterial infection. HeLa (ATCC CCL-2) and HeLa-BGP (kindly provided by Alain
Servin, Université Paris-Sud, France) (53) cells were seeded (4 � 105 cells/well 24 h before infection) and
invasion assays performed as described previously (96).

Free fatty acid susceptibility testing. Bacterial suspensions were incubated with various con-
centrations of free fatty acids or vehicle solution (ethanol), serially diluted, and plated on sBHI agar.
Results are expressed as percentages of bacterial survival ([CFU ml�1 of LCFA/CFU ml�1 of the
vehicle solution] � 100).

NTHi mouse lung infection. A CD1 mouse model of NTHi pulmonary infection was used (97). At
least five mice per treatment (genotype by time point) were intranasally inoculated with �2 � 108

TABLE 4 Primers used in and generated by this study

Primer Sequence (5=–3=)
fadL-qPCR-F1/1605 CTACTTCTGGGCTTGGTCGT
fadL-qPCR-F2/1606 CTACTTCTGGGCTTGGCCGT
fadL-qPCR-F3/1658 CTACTTCAGGGCTTGGTCGT
fadL-qPCR-R1/1607 GCAACTAACCCAGCTTTGATGA
fadL-qPCR-R2/1608 GCAACAAACCCGGCTTTAATGA
fadL-F1/1302 GTTTTCAACTGCCACGATTTCGCT
fadL-R1/1303 CCCACGGCACGAACAGCTTTAGGA
fadL-F2/1358 TGTCGTGGCAACTAACCCAGCTTTGATGAGTTTATTTAAAACGGCACAGTATTCCGGGGATCCGTCGACC
fadL-R2/1359 TCAAGATTATAACTTGCCCCTAATGCAACACGAGAGTTATTACTGTATTGTGTAGGCTGGAGCTGCTTCG
gyrA-qPCR-F/1078 ATATGTTGGTTGATGGGCAAGG
gyrA-qPCR-R/1079 GGCGAGAAATTGACGGTTTCT
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CFU/mouse. Mice were euthanized at 24 or 48 hpi. Total log10 numbers of CFU in lung and BALF samples
per mouse were determined.

Computational modeling. Homology modeling structures of the three FadLNTHi amino acid se-
quences were obtained from SWISS-MODEL using FadLE. coli (PDB accession number 1T16) (98), and
subsequent MD simulations were performed with AMBER14 (98). Structure refinement of hCEACAM1
(PDB accession number 4QXW) was performed by means of MD simulations. Protein-protein docking of
the three FadLNTHi structures with hCEACAM1 was performed with ZDOCK (56). LCFA docking calcula-
tions were performed with AutoDock 4.2.2 (99). Detailed protocols for the calculations can be found in
Text S1.

Ethics approval and consent to participate. NTHi isolates were collected at the Hospital Univer-
sitari Bellvitge (HUB), a tertiary-care hospital in Barcelona, Spain. NTHi strains were isolated from
good-quality sputum samples of 13 COPD patients over a 14-year period (2000 to 2014) at regular
check-ups or during visits requiring hospitalization due to an exacerbation of the disease. Informed
consent was not required, as sputum sampling and the microbial isolation process are part of the
standard microbiological routine. Patient confidentiality was protected in all cases. For animal experi-
ments, CD1 female mice aged 4 to 5 weeks were purchased from Charles River Laboratories (France) and
housed under pathogen-free conditions at the Institute of Agrobiotechnology facilities (registration
number ES/31-2016-000002-CR-SU-US). Animal handling and procedures were in accordance with the
current European (Directive 86/609/EEC) and National (Real Decreto 53/2013) legislations, according to
the FELASA and ARRIVE guidelines, and with the approval of the Universidad Pública de Navarra (UPNa)
Animal Experimentation Committee (Comité de Ética, Experimentación Animal y Bioseguridad) and the
local government authorization (approval with reference number PI-022/15).

Availability of data. All raw reads and assemblies were deposited in the NCBI database under
BioProject number PRJ282520; BioSample accession numbers for each strain are included in Data Set S1B
and C.
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