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Abstract

An effective way to cope with classification problems, among others, is by using Fuzzy Rule-

Based Classification Systems (FRBCSs). These systems are composed by two main com-

ponents, the Knowledge Base (KB) and the Fuzzy Reasoning Method (FRM). The FRM is

responsible for performing the classification of new examples based on the information stored

in the KB. A key point in the FRM is the way in which the information given by the fired fuzzy

rules is aggregated. Precisely, the aggregation function is the component that differs the two

most widely used FRMs in the specialized literature. The first one, known as Winning Rule

(WR), applies the maximum as the aggregation function, which has an averaging behavior.

This function is limited by the maximum and the minimum of the values to be aggregated

and it uses the largest relationship between the new example to be classified and the fuzzy

rules. The second one, known as Additive Combination (AC), is used by the most accurate

algorithms nowadays and it applies the normalized sum to aggregate the information but, in

this case, this aggregation operator has a non-averaging behavior.

In this thesis, we intend to change the way that the information is aggregated in the FRM by

applying generalizations of the Choquet integral. To do so, we have developed new theoretical

concepts in the field of aggregation operators. These generalizations of the Choquet integral

present both averaging and non-averaging behaviors. We use them in the FRM of FARC-HD,

which is a state-of-the-art FRBCS. From the obtained results, we show that the new FRM can

be used in an efficient way to deal with classification problems, taking into account that the

results are statistically comparable, or even superior, to the state-of-the-art fuzzy classifiers.
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Resumen

Una manera eficiente de tratar problemas de clasificación, entre otras, es el uso de Sistemas

de Clasificación Basados en Reglas Difusas (SCBRDs). Estos sistemas están compuestos por

dos componentes principales, la Base de Conocimiento (BC) y el Método de Razonamiento

Difuso (MRD). El MRD es el método responsable de clasificar nuevos ejemplos utilizando la

información almacenada en la BC. Un punto clave del MRD es la forma en la que se agrega

la información proporcionada por las reglas difusas disparadas. Precisamente, la función de

agregación es lo que diferencia a los dos MRDs más utilizados de la literatura especializada.

El primero, llamado de Regla Ganadora (RG), tiene un comportamiento promedio, es decir,

el resultado de la agregación está en el rango delimitado por el mínimo y el máximo de los

valores a agregar y utiliza la mayor relación entre el nuevo ejemplo a clasificar y las reglas.

El segundo, conocido como Combinación Aditiva (CA), es ampliamente utilizado por los

algoritmos difusos más precisos de la actualidad y aplica una suma normalizada para agregar

toda la información relacionada con el ejemplo. Sin embargo, este método no presenta un

comportamiento promedio.

En este trabajo de tesis, proponemos modificar la manera en la que se agrega la información en

el MRD, aplicando generalizaciones de la integral Choquet. Para ello, desarrollamos nuevos

conceptos teóricos en el campo de los operadores de agregación. En concreto, definiremos

generalizaciones de la Choquet integral con y sin comportamientos promedio. Utilizamos

estas generalizaciones en el MRD del clasificador FARC-HD, que es un SCBRD del estado

del arte. A partir de los resultados obtenidos, demostramos que el nuevo MRD puede ser

utilizado, de manera eficiente, para afrontar problemas de clasificación. Además, mostramos

que los resultados son estadísticamente equivalentes, o incluso superiores, a los clasificadores

difusos considerados como estado del arte.

xi





Contents

Abstract ix

Resumen xi

I Introduction 1

1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

2 Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

3 Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

II PhD thesis report 5

1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.1 Aggregation Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.1.1 T-norms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.1.2 Overlap functions . . . . . . . . . . . . . . . . . . . . . . . . 7

1.1.3 Copulas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

1.1.4 Choquet integral . . . . . . . . . . . . . . . . . . . . . . . . . 9

1.2 Classification Problems . . . . . . . . . . . . . . . . . . . . . . . . . . 11

1.2.1 Fuzzy Rule-Based Classification Systems . . . . . . . . . . . 15

1.2.2 Fuzzy Reasoning Method . . . . . . . . . . . . . . . . . . . . 19

xiii



xiv Contents

1.2.2.1 Example of the behavior of different fuzzy reasoning

methods . . . . . . . . . . . . . . . . . . . . . . . . 20

1.2.3 Evolutionary Fuzzy Systems . . . . . . . . . . . . . . . . . . 22

1.2.4 The FARC-HD fuzzy classifier . . . . . . . . . . . . . . . . . 25

2 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

2.1 The concept of pre-aggregation functions . . . . . . . . . . . . . . . . 29

2.2 The generalization of the extended Choquet integral by copulas . . . 32

2.2.1 A proposal for tuning the alpha parameter in CαC-integrals 34

2.3 A generalization of the Choquet integral by left 0-absorbing fusion func-

tions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

2.4 Generalizations of the Choquet integral by pairs of functions F1–F2

under some constraints . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

2.5 The idea of generalized CF1F2-integrals . . . . . . . . . . . . . . . . . . 41

3 Summaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

3.1 Summary of the theoretical developments . . . . . . . . . . . . . . . . 43

3.2 Summary of the results of the generalizations of the Choquet integral

in the fuzzy reasoning method . . . . . . . . . . . . . . . . . . . . . . 45

4 Final Comments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

4.1 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

4.2 Future research lines . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

5 Introducción y Conclusión (Versión en español) . . . . . . . . . . . . . . . . . 54

5.1 Introducción . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

5.2 Conclusión . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

III Publications: published, accepted and submitted papers 59

1 Pre-aggregation Functions: Construction and an application . . . . . . . . . . 59

Aggregation and pre-aggregation functions in fuzzy rule-based classification systems



Contents xv

2 CC-integrals: Choquet-like Copula-based aggregation functions and its appli-

cation in fuzzy rule-based classification systems . . . . . . . . . . . . . . . . . 73

3 A proposal for tuning the alpha parameter in CαC-integrals for application in

fuzzy rule-based classification systems . . . . . . . . . . . . . . . . . . . . . . 86

4 CF -integrals: A new family of pre-aggregation functions with application to

fuzzy rule-based classification systems . . . . . . . . . . . . . . . . . . . . . . 99

5 Improving the performance of fuzzy rule-based classification systems based on

a new non averaging generalization of CC-integrals named CF1F2-integrals . . 117

6 Generalized CF1F2-integrals: from Choquet-like aggregation to ordered direc-

tionally monotone functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129

References 151

Giancarlo Lucca



xvi Contents

Aggregation and pre-aggregation functions in fuzzy rule-based classification systems



Chapter I

Introduction

Human beings perform classifications since the primordials. The distinction between edible

and non-edible fruits, seeds and roots that were collected is a simple example. These kind of

decisions are made based on available and acquired knowledge in the course of time.

Then, we can say that classification is a process in which the data is labeled (classified)

based on predetermined characteristics. Observe that there are different complexities in

classification problems, from the simplest, as the definition of a breed of a dog based on

the characteristics of this dog, to complex, as the classification of a cancer based on blood

information. An expert in a certain issue can deal with a determined classification problem,

however, he/she can be out of reach and his/her processes can be slow, expensive and even

inaccurate.

The usage of an automatic classification system is a good option in the classification process.

Notice that the system can not replace the knowledge of an expert, yet, the expert can use

this system as an important source of information in the decision making process.

In the literature, classification problems [Alp10, DHS00] are a research field in the area of

the so-called, data mining [TSK05]. Classification problems are tackled in two different ways.

The first one, which is the approach considered in this thesis, is known as supervised learning.

It generates a function (classifier) from the available and labeled data (classes). Then, when

a new example needs to be classified, the learned classifier is responsible to perform the

prediction. The second approach deals with unlabeled data (without knowing the classes of

the examples used to learn the system) trying to extract the relationships in the data. This

1



2 1. Motivation

method is known as unsupervised learning.

As we have mentioned, this thesis is focused on supervised learning with the objective of

tackling classification problems. In the literature we can find several methods that aim

to cope with these problems such as Support Vector Machines (SVM) [CV95], decisions

trees [Qui93, BFOS84] and neural networks [GPGOF07]. In this thesis we apply Fuzzy Rule-

Based Classification Systems (FRBCCs) [INN05], because they provide the user with inter-

pretable models by using linguistic labels (like high, medium or low) [Zad75] in their rules. An-

other reason is because of their accurate results and versatility, as shown in the many different

fields where they have been applied like health [Uno11, SH09], security [GSP+14, VRT+15],

economy [SBH+15], food [SFB+16, GS15] and many others.

1 Motivation

An important role in any FRBCS is played by the Fuzzy Reasoning Method (FRM) [CdJH98,

CdJH99]. This method is responsible to perform the classification of new examples. To do

so, it makes usage of the information available in the rule base and the database. Moreover,

in order to perform the classification, this mechanism uses an aggregation operator in order

to aggregate by classes the information provided by the fired fuzzy rules when classifying new

examples.

A widely used FRM considers the function maximum as aggregation method. By using this

aggregation operator, for each class, the FRM performs the selection of the best fired rule

since it has the highest compatibility with the example [CYP96a, GP98, INYT94]. The issue

of this inference method is that the information provided by the remainder fired fuzzy rules

is ignored. This aggregation operator is considered averaging, since the obtained result is

within the range between the minimum and the maximum of the aggregated values (in this

case, obviously, the result is always the maximum).

To avoid the problem of ignoring information, it was proposed a FRM that applies the nor-

malized sum [CdJH98, CdJH99] to perform the aggregation of the available information given

by the fired rules. In this way, for each class, all information is taken into account in the

aggregation step. This aggregation operator is considered as non-averaging since the result

of this function can leave the range minimum–maximum.

In [BBF+13] the authors introduced a FRM considering the usage of the Choquet inte-

Aggregation and pre-aggregation functions in fuzzy rule-based classification systems



2. Objectives 3

gral [Cho54], which is an averaging operator. In this way, this approach mixes the char-

acteristics of the previous FRMs considering an averaging operator that uses the information

provided by all the fired rules of the system.

Considering the previous analysis, in this thesis we propose a methodology that changes the

aggregation step performed in the FRM. Precisely, we consider the application of different

generalizations of the Choquet integral, which are supported by solid theoretical studies.

We start by generalizations having averaging characteristics and we end up producing non-

averaging ones, in order to produce results that are able to be competitive against state-of-

the-art FRBCSs.

2 Objectives

The general objective of this thesis is:

To develop a new methodology to aggregate the information of the fired rules in the fuzzy

reasoning method, which leads to an enhancement of the performance of the fuzzy classifier.

To accomplish this main goal, we have some particular objectives:

◦ To develop new theoretical concepts to aggregate information derived form the standard

Choquet integral based on

1. The replacement of the product operator in the Choquet integral by different t-

norms or fusion functions.

2. The usage of the extended form of the Choquet integral and the usage of well-

known functions like copulas or overlaps.

◦ To construct idempotent functions with averaging or non-averaging characteristics.

◦ To include the usage of the theoretical developments in the fuzzy reasoning method of

FARC-HD, since it is an state-of-the-art fuzzy classifier.

◦ To introduce a methodology considering the usage of an evolutionary fuzzy system to

learn the most appropriate fuzzy measure for each class of the classification problem.

◦ To compare the results of our methodology versus those of state-of-the-art fuzzy classi-

fiers.

Giancarlo Lucca



4 3. Structure

3 Structure

This thesis is dived in two main parts. The first one (Chapter II) contains the body of the

text where we start by introducing the background about the aggregation functions that are

used to develop this thesis, being them: t-norms, overlaps, copulas and the Choquet integral.

Then, we introduce the formal definition of classification problems, the concepts of fuzzy rule-

based classification systems, the fuzzy reasoning method, with an example of its behavior, the

evolutionary fuzzy systems and the description of the FARC-HD fuzzy classifier. Then, we

summarize the theoretical concepts developed in this thesis and their application and finally,

we present the conclusions of the thesis as well as some future research lines. Also, we present

for each publication associated with this thesis the description of the proposal besides its

novelty, the obtained results and the conclusions.

The final part (Chapter III) is composed by the papers that form the core of the thesis. They

are the result of the research done throughout this journey. For each publication we present

the journal where it was published or submitted as well as its impact factor, the current status

and the text of the paper. In the following we present the six publications associated with

this thesis, besides the associated publication (if the paper was already published):

◦ Pre-aggregation Functions: Construction and an Application [LSPD+16].

◦ CC-integrals: Choquet-like Copula-based aggregation functions and its application in

fuzzy rule-based classification systems [LSD+17b].

◦ A proposal for tuning the alpha parameter in CαC-integrals for application in fuzzy

rule-based classification systems.

◦ CF -integrals: A new family of pre-aggregation functions with application to fuzzy rule-

based classification systems [LSD+18a].

◦ Improving the performance of fuzzy rule-based classification systems based on a new

non averaging generalization of CC-integrals named CF1F2-integrals.

◦ Generalized CF1F2-integrals: from Choquet-like aggregation to ordered directionally

monotone functions.

Aggregation and pre-aggregation functions in fuzzy rule-based classification systems



Chapter II

PhD thesis report

In this chapter we present the concepts used in the development of the new methodology

created in this thesis. We start by introducing the background necessary for the developments

of the thesis, which involves notions about aggregation functions as well as classification

problems. Next, we present the core of the thesis where we provide a detailed discussion of

each paper that conforms it. Then we present a summary of the developed concepts with

their applications and finally, end we draw the conclusions and we mention some open research

lines.

1 Background

In this section we introduce the background related to both aggregation operators and clas-

sification problems. We start by introducing the concept of aggregation functions, triangular

norms, overlap functions, copulas and the Choquet integral.

1.1 Aggregation Functions

We consider that aggregation functions [BPC07, GMMP09] are a special case of functions

that combine several values in a determined interval in order to produce a new one, which

represents the aggregated information. We must point out that we consider the interval [0,

1] for both the values to be aggregated and the generated one. The mode, the mean and

the Ordered Weighted Mean (OWA) [YK97, YKB11] are examples of aggregation functions.

Mathematically speaking, we define an aggregation function as:

5



6 1. Background

Definition 1. A function A : [0, 1]n → [0, 1] is an aggregation function if the following

conditions hold:

(A1) A is increasing1 in each argument:

for each i ∈ {1, . . . , n}, if xi ≤ y, then A(x1, . . . , xn) ≤ A(x1, . . . , xi−1, y, xi+1, . . . , xn);

(A2) A satisfies the boundary conditions:

(i) A(0, . . . , 0) = 0 and

(ii) A(1, . . . , 1) = 1.

We say that an aggregation function is averaging [BPC07] if the result of this function is

bounded by the minimum and the maximum of the aggregated values.

Definition 2. An aggregation function A : [0, 1]n → [0, 1] is averaging if:

min(x1, ..., xn) ≤ A(x1, ..., xn) ≤ max(x1, ..., xn)

Obviously, we consider that an aggregation function is non-averaging when the result of the

aggregation function A is not within the range delimited by the minimum and the maximum

of the aggregated values.

Definition 3. An aggregation function A : [0, 1]n → [0, 1] is said to be idempotent if and only

if: ∀x ∈ [0, 1] : A(x, . . . , x) = x.

Since aggregation functions are increasing, the idempotent and averaging behaviors are equiv-

alent.

Proof. [BPC07] Take any x ∈ [0, 1], and denote by p = min(x), q = max(x). By monotonicity,

p = f(p, p, . . . , p) ≤ f(x) ≤ f(q, q, . . . , q) = q. Hence min(x) ≤ f(x) ≤ max(x). The converse:

let min(x) ≤ f(x) ≤ max(x). By taking x = (t, t, . . . , t), min(x) = max(x) = f(x) = t, hence

idempotency.

In the remainder of this section we show the different aggregation functions that are considered

in this study. Precisely, in subsection 1.1.1 we present t-norms, in 1.1.2 overlaps functions, in

1.1.3 copulas and finally, in the subsection 1.1.4 the Choquet integral.
1For an increasing (decreasing) function we do not mean a strictly increasing (decreasing) function.

Aggregation and pre-aggregation functions in fuzzy rule-based classification systems



1. Background 7

1.1.1 T-norms

An important class of aggregation functions are the so-called triangular norms (t-norms for

short) [Men42, KMP00, SS11].

Definition 4. An aggregation function, T : [0, 1]2 → [0, 1] is a t-norm if, for all x, y, z ∈ [0, 1],

it satisfies the following properties:

(T1) Commutativity: T (x, y) = T (y, x);

(T2) Associativity: T (x, T (y, z)) = T (T (x, y), z);

(T4) Neutral Element: T (x, 1) = x.

We present in Table II.1 the t-norms that are considered in this thesis.

Table II.1: T-norms used in this thesis.

Name Definition Reference

Minimum TM (x, y) = min{x, y} [KMP00]

Algebraic Product TP (x, y) = xy [KMP00]

Łukasiewicz TŁ(x, y) = max{0, x+ y − 1} [KMP00]

Drastic Product TDP (x, y) =


x if y = 1

y if x = 1

0 otherwise

[KMP00]

Nilpotent Minimum TNM (x, y) =

 min{x, y} if x+ y > 1

0 otherwise
[KMP00]

Hamacher Product THP (x, y) =

 0 if x = y = 0
xy

x+y−xy otherwise
[KMP00]

1.1.2 Overlap functions

Overlap functions [BFM+10, BDBB13, DB15]) are special aggregation functions. They can

be used in cases were the associativity property is not strongly required, as in image process-

ing [JBP+13] or in decision making based on fuzzy preference relations [BPM+12]. More-

Giancarlo Lucca



8 1. Background

over, observe that this kind of function also plays an important role in classification prob-

lems [EGSB16, EGS+15].

Definition 5. An aggregation function, O : [0, 1]2 → [0, 1] is an overlap function if, for all

x, y ∈ [0, 1], the following conditions hold:

(O1) O is commutative;

(O2) O(x, y) = 0 if and only if x = 0 or y = 0;

(O3) O(x, y) = 1 if and only if x = y = 1;

(O4) O is continuous.

The overlap functions considered in this thesis are available in Table II.2.

Table II.2: Overlap functions used in this thesis.

Name Definition Reference

OB OB(x, y) = min{x√y, y
√
x} [BFM+10, Nel99]

OmM OmM (x, y) = min{x, y}max{x2, y2} [DB14, DB13, DBB+16b]

Geometric Mean GM(x, y) = √xy [EGS+15]

Harmonic Mean HM(x, y) =


0 if x = 0 or y = 0

2
1
x

+ 1
y

otherwise
[EGS+15]

Sine S(x, y) = sin
(
π
2 (xy)

1
4
)

[EGS+15]

1.1.3 Copulas

Copulas are aggregation functions that link (two-dimensional) probability distribution func-

tions to their one-dimensional margins, playing an important role in the theory of probabilistic

metric spaces and statistics [AFS06].

Definition 6. A bivariate function C : [0, 1]2 → [0, 1] is said to be a copula if, for all

x, x′, y, y′ ∈ [0, 1] with x ≤ x′ and y ≤ y′, the following conditions hold:

(C1) C(x, y) + C(x′, y′) ≥ C(x, y′) + C(x′, y);

Aggregation and pre-aggregation functions in fuzzy rule-based classification systems



1. Background 9

(C2) C(x, 0) = C(0, x) = 0;

(C3) C(x, 1) = C(1, x) = x .

We have to point out that t-norms are copulas as stated in the following theorem.

Theorem 1. [GMMP09, Theorem 9.10] Let T : [0, 1]2 → [0, 1] be a t-norm. Then, the

following statements are equivalent:

(i) T is copula.

(ii) T satisfies the Lipschitz property with constant 1. That is, for each x1, x2, y1, y2 ∈ [0, 1],

|T (x1, y1)− T (x2, y2)| ≤ |x1 − x2|+ |y1 − y2|

We present in Table II.3 the copulas functions that are used in this thesis.

Table II.3: Copula functions considered in this thesis.

Name Definition Reference

CF CF (x, y) = xy + x2y(1− x)(1− y) [KMP00]

CL CL(x, y) = max{min{x, y2}, x+ y − 1} [AFS06]

Cα Cα(x, y) = xy(1 + α(1− x)(1− y)), [AFS06, LDM+15]

α ∈ [−1, 0[ ∪ ]0, 1]

CDiv CDiv(x, y) = xy+min{x,y}
2 [AFS06, LSD+17b]

Observe that the t-norms TM , TP , TL and THP (See Table II.1) are also copulas. The same

happens with some overlaps e.g OB, OmM . On the other hand, we have some copulas that

are also overlaps, as CDiv and Cα.

1.1.4 Choquet integral

The Choquet integral is a type of aggregation function which considers the importance of

groups of criteria, offering flexibility for modeling aggregations [BPC07]. The Choquet inte-

gral, is defined with respect to a fuzzy measure [Cho54, MSM94], providing the relevance of

a coalition.

In what follows, denote N = {1, . . . , n}, for n > 0 and A ⊆ N .
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Definition 7. A function m : 2N → [0, 1] is said to be a fuzzy measure if, for all X,Y ⊆ N ,

the following conditions hold:

(m1) Increasingness: if X ⊆ Y , then m(X) ≤ m(Y );

(m2) Boundary conditions: m(∅) = 0 and m(N) = 1.

In the following we provide some examples of fuzzy measures:

1. Cardinality of uniform measure:

m(A) = |A|
n

(II.1)

2. Dirac’s measure: For a previously fixed i ∈ N ,

m(A) =

 1 if i ∈ A

0 if i 6∈ A.
(II.2)

Take an arbitrary vector of weights (w1, . . . , wn) ∈ [0, 1]n such that
∑n
i=1wi = 1.

3. Weighted mean (Wmean): Consider the following values for the fuzzy measure: m({1}) =

w1, . . . ,m({n}) = wn. For |A| > 1 the fuzzy measure is,

m(A) =
∑
i∈A

m({i}) (II.3)

4. Ordered Weighted Averaging (OWA): We assign the following values for the fuzzy mea-

sure. m({i}) = wj , with i being the j-th largest component to be aggregated, that is,

it consider an OWA operator. For |A| > 1 the fuzzy measure is,

m(A) =
∑
i∈A

m({i}) (II.4)

5. Power Measure:

m(A) =
( |A|
n

)q
, with q > 0. (II.5)

Aggregation and pre-aggregation functions in fuzzy rule-based classification systems
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Then, the discrete Choquet integral is defined as:

Definition 8. Let m : 2N → [0, 1] be a fuzzy measure. The discrete Choquet integral is the

function Cm : [0, 1]n → [0, 1],

Cm(~x) =
n∑
i=1

(
x(i) − x(i−1)

)
·m
(
A(i)

)
, (II.6)

where
(
x(1), . . . , x(n)

)
is an increasing permutation on the input ~x, that is, 0 ≤ x(1) ≤ . . . ≤

x(n), where x(0) = 0 and A(i) = {(i), . . . , (n)} is the subset of indices corresponding to the

n− i+ 1 largest components of ~x.

Observe that using the distributivity property of the product, Eq. (II.6) can be also written

as:
Cm(~x) =

n∑
i=1

(
x(i) ·m

(
A(i)

)
− x(i−1) ·m

(
A(i)

))
. (II.7)

We call Eq. II.7 as Choquet Integral in its expanded form.

In the following, we define the basic notions about classification problems, fuzzy rule-based

classification systems, evolutionary fuzzy systems and the fuzzy classifier used as base for our

generalizations, that is, FARC-HD [AFAH11].

1.2 Classification Problems

A classification problem is a situation in which, based on the measured information of a certain

object, it is necessary to predict the value of another categorical variable of that object. For

example, consider the classification problem of the Iris flowers [FIS36]. In this problem, based

on the length and width of the petal and the length and width of the sepal it is necessary

to classify the type of the object (type of flower) in one of the tree possible classes namely

Setosa, Virginica and Versicolour.

To tackle a classification problem, under a supervised point of view, it is necessary to establish

a decision criteria, called model or classifier. To do so, the learning algorithm makes usage

of correctly classified examples, known as training set. In this set, each example e ∈ E

is described by the values of N features (also called variables, characteristics or attributes)

X(e) = (e1, . . . , eN ). The inductive learning process extracts the model from the information

of this training set, in order to be able to classify new examples into the known and predefined

classes, Cj ∈ C = (C1, . . . , CM ), where M is the number of classes of the problem.
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We can say that the objective is to build a model, D : X(e) → C, that should be able to

predict the class of the examples having an error rate as small as possible. Once the model

is obtained from the training data, it is necessary to measure the quality of the generated

classifier. To do so, it is used to classify data that is not considered in the training phase,

known as test data. Thus, the prediction of the test data is performed by the learned classifier,

which can be also used to classify the training data in order to check if the model presents a

good generalization capability. We show the steps of the supervised classification problem in

Figure 1.

 

 

 

 

 

Training 

dataset 
Learning Process 

Test 

dataset 
Model Final Classification 

(Accuracy) 

Training Phase 

Test Phase 

Figure 1: The supervised learning method.

There are many metrics to measure the quality of the generated classifier. They are mainly

based on the usage of a confusion matrix. Given a classification problem with M classes,

a confusion matrix summarizes the performance of the classification algorithm. We show in

Figure 2 a confusion matrix for a binary problem, that is, having two classes. The rows of this

matrix correspond with the actual class of the examples to be classified whereas the columns

Aggregation and pre-aggregation functions in fuzzy rule-based classification systems
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are their predictions. Therefore, the diagonal of the matrix represents the number of correctly

classified examples of each class. Furthermore, from a confusion matrix we can obtain some

measures of quality, such as:

(TPR) True Positive Rate: Percentage of correctly classified positive instances

TPR = TP

TP + FN

(TNR) True Negative Rate: Percentage of correctly classified negative instances

TNR = TN

TN + FP

(FPR) False Positive Rate: Percentage of misclassified negative instances

FPR = FP

FP + TN

(FNR) False Negative Rate: Percentage of misclassified positive instances

FNR = FN

FN + TP

 

Figure 2: Confusion matrix for binary classification problems.

Using the confusion matrix and the above defined metrics it is possible to define a set of

widely used performance metrics like accuracy [DHS00], the Geometric Mean [BSGR03] and

Cohen’s kappa [Coh60]. In what follows we describe each metric:
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14 1. Background

◦ Accuracy:
TP + TN

TP + TN + FP + FN

◦ Geometric Mean: √
TPR · TNR

◦ Cohen’s Kappa:

Accuracy−Ae
1−Ae ,

Where Ae is defined as:

Ae = TP+FN
TP+TN+FP+FN ·

TP+FP
TP+TN+FP+FN + FP+TN

TP+TN+FP+FN ·
FN+TN

TP+TN+FP+FN

Another way to verify the performance of the generated classifier is by using a Receiver

Operating Characteristic (ROC) curve. The ROC curve is a graph that plots the false positive

rate, FPR, on the X axis and the true positive rate, TPR, on the Y axis. We provide, in

Figure 3, an example of a ROC curve for a generic method2.

1-Specificity

S
en
si
ti
vi
ty

Figure 3: A ROC curve from a determined method.

Observe that the point (0,1), top left, is the perfect classifier since it classifies all positive and

negative cases perfectly. The Area Under the ROC Curve (AUC) [HL05] is another measure
2The image used as base of this graphic is available at –

https://commons.wikimedia.org/wiki/File:Threshold_roc.stack_overflow_answers.svg
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of the quality of the classifier, where the larger area (close to the point (0,1)) the better the

classifier is.

◦ AUC = 1+TPR−FPR
2

In the literature, there can be found several methods to deal with classification problems

like Support Vector Machines (SVM) [CV95], decisions trees [Qui93, BFOS84] and neural

networks [GPGOF07], among many others. These methods have been applied in different

fields of knowledge to help in decision making. For example, to automatically identify chest X-

ray reports that support acute bacterial pneumonia [CFCH01], to categorize organic solvents

with respect to their dispersibility [Sal15], to detect illegal discharges from ships [Top08] and

credit scoring, using models to differentiate good applicants from bad applicants [BVGV+03].

In the next section, we describe the technique applied in this thesis to cope with classification

problems.

1.2.1 Fuzzy Rule-Based Classification Systems

A rule-based system [Tun09] is composed by a set of rules in the form IF-THEN for tackling

a classification problem. This rules can be expressed in the following form:

IF condition THEN decision .

Where the IF part is known as rule antecedent and it consists in one or more attributes

(with conditions) that are linked by connectives, also called logical operators. The most used

connectives are AND (denoted by ∧) and OR (denoted by ∨). The THEN part, is known as

rule consequent and it consists in the class label used to perform the prediction.

The antecedents of the rules in a rule-based system are usually categorical or numerical.

Having as result only True of False. On other words, using boolean logic. This rigidity in

some cases can not be the best option. For example, consider the classification of a person

to fit or not fit to receive some benefit, according to its age. The considered rule can be "IF

age ≥ 70 THEN Benefit granted". Having this benefit granted only for persons with an age

≥ 70. It is observed, then, that in this case a person with sixty-nine years is not classified as

beneficiary of this grant, which can not be appropriated in some cases. We demonstrate this

situation in Figure 4, where it is noticeable the sharp leap that the system produces when

the condition is fulfilled.
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Figure 4: A rule-based system based on boolean logic.

In order to make a smoother system, the fuzzy logic is used. It was introduced by Lofti Asker

Zadeh in 1965 [Zad65] in order to address issues related to uncertain, vague or inaccurate

information. This theory extended the classical set theory (boolean logic) by introducing

the concept of membership degrees. That is, instead of just including (True) or not (False)

an element in a set, we can say that this element has a certain membership degree to the

considered set.

Let U be an universe of discourse, a fuzzy set F in U is characterized by a prefixed function,

called membership function, where each element of the universe U, has a membership degree

to the fuzzy set F, µF : U → [0, 1]. The value of µF (x) shows the degree in which the element

x, belongs to the fuzzy set F. µF (x) = 0 represents that the element do not has pertinence to

the fuzzy set, meanwhile, µF (x) = 1 means that the element has the total pertinence and the

values between 0 and 1 represents different membership degrees. In what follows we present

the most common fuzzy sets used in the literature along with their graphical representation.

◦ A fuzzy set has a triangular shape if the membership function is defined in the form:

µF (x) =



0 if x ≤ a
x−a
b−a , if a ≤ x ≤ b
c−x
c−b , if b ≤ x ≤ c

0 if x ≥ c
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Figure 5: A traingular-shaped member-

ship function.

◦ A trapezoidal membership function has the trapezoidal form if the membership func-
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tion is defined as:

µF (x) =



x−a
b−a , if a ≤ x ≤ b

1 if b ≤ x ≤ c
d−x
d−c , if c ≤ x ≤ d

0 ottherwise
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Figure 6: A trapezoidal-shaped member-

ship function.

◦ A gaussian membership function is defined by a central value, µ, and a standard

deviation sigma, σ > 0. Where the σ parameter defines the thickness of the function,

being a small σ the responsible for a narrower "bell".

µF (x) = e−
(x−µ)2

2σ2

1 
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Figure 7: A gaussian-shaped membership

function.

An important concept used in the fuzzy logic is the linguistic variable. It is a variable whose

values are terms of a language. Take, for example, the age of a person. This variable is

linguistic if its values are words, i.e young, adult or elderly. These words are known as

linguistic labels and they can be modeled by fuzzy sets, which is a powerful advantage of the

fuzzy logic, because the results can be easily interpreted by human beings.

Fuzzy Rule-Based Classification Systems (FRBCSs) [INN05] are an extension of the rule-

based system by using fuzzy sets in the antecedents of the rules. Consider the rule, "IF age

is elderly THEN Benefit Granted". Observe that the linguistic variable "elderly" can modeled

by a fuzzy set. For example, a semi-trapezium, that is, only the left increasing part and the

top of the trapezium as shown in Figure 8. As a result the system can also grant persons with

ages between sixty and seventy, since they have a positive membership degree to the elderly

set. Obviously, as in the boolean system, any person with an age superior to seventy has this

benefit granted.
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Figure 8: Example of a fuzzy set: variable elderly modeled by a semi-trapezium.

The best-known FRBCSs are the ones defined by Takagi-Sugeno-Kang (TSK) [TS85] and

Mamdani [Mam74], which is the one used in this thesis. The standard architecture of the

Mamdani method is presented in Figure 9.

  Input 

(Pattern) 

Fuzzy Rule-Based Classification Systems 

Inference 

Process 

Fuzzyfication 

Interface 
 Output 

(Class) 

Knowledge Base 

Rule Base Data Base 

Figure 9: A structure of FRBCS of the type Mamdani.

The Knowledge Base (KB) contains the information in two different parts:

◦ Data Base (DB) – Stores the definition of the membership functions associated with

the linguistic labels considered in the fuzzy rules.

◦ Rule Base (RB) – Is composed by a collection of linguistic fuzzy rules that are joined

by a connective (operator and). In this thesis we consider the usage of rules having the

following structure:

Rule Rj : If xp1 is Aj1 and . . . and xpn is Ajn then Class is Cj with RWj , (II.8)

where Rj is the label of the j-th rule, Aji is a fuzzy set modeling a linguistic term,
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modeled by a triangular shaped function. Cj is the class label and RWj ∈ [0, 1] is

the rule weight [IN01]. Moreover, the rule weight for a class, j, is calculated by the

confidence, also known as Certainty Factor [CdJH99], that is:

RWj = CFj =
∑
xp∈ Class Cj µAj (xp)∑N

p=1 µAj (xp)
, (II.9)

where N is the number of training patterns xp = (xp1, . . . , xpm), p = 1, 2, . . . , N.

The fuzzyfication interface converts the inputs (numerical values) into fuzzy values. In case of

categorical variables, each value is modeled by a singleton and, consequently, its membership

value is either 1 or 0. Once the input is fuzzified, the inference process is the mechanism

responsible for the use of the information stored in the KB to determine the class in which

the example will be classified. The generalizations developed in this thesis are applied at

this point and, for this reason, in the next subsection we present the steps of this inference

process.

1.2.2 Fuzzy Reasoning Method

Once the knowledge has been learnt and a new example, xp = xp1, . . . , xpn, has to be classified,

we apply the FRM [CdJH99] to perform this task, where M is the number of classes of the

problem and L is the number of rules that compose the RB. The stages of the FRM are:

1. Matching degree: It represents the importance of the activation of the if-part of the

rules for the example to be classified xp, using a t-norm as conjunction operator.

µAj (x) = T (µAj1(x1), . . . , µAjn(xn)). (II.10)

with j = 1, . . . , L.

2. Association degree: For each rule, the matching degree is weighted by its rule weight:

bkj (x) = µAj (x) ·RW k
j , (II.11)

with k = Class(Rj) and j = 1, . . . , L.

3. Example classification soundness degree for all classes: At this point, for each class, k,

the positive information, bkj (x) > 0, given by the fired fuzzy rules of the previous step

is aggregated by an aggregation function, A.

Sk(x) = Ak
(
bk1(x), . . . , bkL(x)

)
, (II.12)
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with k = 1, . . . ,M.

We present in the following three different well-known FRMs, whose difference is in the

use of a different aggregation function to perform the aggregation of the information

provided by the rules:

(a) Winning Rule (WR) – For each class, it only considers the rule having the maxi-

mum compatibility with the example.

Sk(x) = max
Rjk∈RB;

bj(x) (II.13)

(b) Additive combination (AC)– It aggregates all the fired rules, for each class, k, by

using the normalized sum.

Sk(x) =
∑Rjk∈RB
j=1 bj(x)
f1max

, (II.14)

where f1max = maxk=1,...,M
∑Rjk∈RB
j=1 bj(x)

(c) Recently, it was proposed the usage of the Choquet integral (See Eq. II.6) to

perform this aggregation.

Sk(x) =
Rjk∈RB∑
j=1

Cm(bj(x)), (II.15)

where C is the standard Choquet integral and m the fuzzy measure.

4. Classification: The final decision is made in this step. To do so, a function F : [0, 1]M →

{1, . . . ,M} is applied over the results obtained by example classification soundness

degrees of all classes:

F ((S1, . . . , SM ) = arg max
k=1,...,M

(Sk). (II.16)

In order to demonstrate how these FRMs work, in the next subsection we present a short

example of how this aggregation process is performed.

1.2.2.1 Example of the behavior of different fuzzy reasoning methods In this

subsection we perform the third step of the FRM where the local information, given by the

fired rules and obtained after the second step, is aggregated for each class. To do so, we
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compare the FRM that uses the maximum as aggregation (WR – Eq. II.13), the additive

combination (AC – Eq. II.14) and the standard Choquet integral (Eq. II.15).

Example 1. In this example, a classification problem composed by 3 classes (C1, C2 and C3)

is studied. For each class, 3 generic fuzzy rules, Ra, Rb and Rc are fired when classifying a

new example (they can be different for each class). We introduce the information about this

problem in Table II.4. Notice that the numbers in this table represent the positive association

degree (Step 2 of the FRM) obtained for each fired rule. Having into account that three fuzzy

rules are fired for each class (columns of Table 3) three aggregations have to be computed (one

for each class).

Table II.4: Association degrees for each class.

C1 C2 C3

Ra 0.94 0.15 0.89

Rb 0.1 0.4 0.88

Rc 0.25 0.1 0.85

Since the Choquet integral is defined with respect to a fuzzy measure, in this example we

consider as fuzzy measure the standard cardinality (See Equation II.1). The values computed

for each class using these three FRMs are the following ones:

◦ C1

– WR = 0.94

– AC = 0.94+0.1+0.25
2.62 = 0.49

– Choquet = ((0.1 - 0) * 3
3) + ((0.25 - 0.1) * 2

3) + ((0.94 - 0.25) * 1
3) = 0.43

◦ C2

– WR = 0.4

– AC = 0.15+0.4+0.1
2.62 = 0.24

– Choquet = ((0.1 - 0) * 3
3) + ((0.15 - 0.1) * 2

3) + ((0.4 - 0.15) * 1
3) = 0.21

◦ C3

– WR = 0.89

– AC = 0.89+0.88+0.85
2.62 = 1.0

– Choquet = ((0.85 - 0) * 3
3) + ((0.88 - 0.85) * 2

3) + ((0.89 - 0.88) * 1
3) = 0.87

Once the example classification soundness degree for each class has been computed, the

predicted class is the one associated with the largest value (step 4 of the FRM):
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◦ WR = arg max[0.94, 0.4, 0.89] = C1

◦ AC = arg max[0.49, 0.24, 1.0] = C3

◦ Choquet = arg max[0.43, 0.21, 0.87] = C3

We can observe that the usage of the maximum as an aggregation operator predicts class

1, since it only considers the information provided by one fuzzy rule (having the maximum

compatibility). However, if we look in detail at the association degrees presented in Table II.4,

this prediction may not be ideal, since that class 1 has one rule having a high compatibility

whereas class 3 has three rules having high compatibilities (slightly less than that of class 1).

Then, class 3 seems to be a most appropriated option. This fact is taken into account by the

Choquet integral and the AC, since the information given by all the fuzzy rules and not only

by the best one is considered and, consequently, the prediction assigns class 3.

In this example we can easily notice the reason why AC is non-averaging. Observe that the

result of this function for class C3 is superior than the maximum value considered in the class.

This fact does not occur for averaging functions. In the case of WR, the result is always the

maximum, meanwhile for the Choquet integral the result is a value between the minimum

and the maximum.

1.2.3 Evolutionary Fuzzy Systems

Among the different techniques of the Computational Intelligence, the usage of hybrid tech-

niques has been extended notably in recent years. One of the most common hybridizations

is obtained whit the combination of Fuzzy Systems with the Genetic Algorithms (GA), in-

troducing the Evolutionary Fuzzy Sets (EFS) [Her08, CH01, CCJH01]. Basically, an EFS is

a fuzzy system improved by a learning process. Having this process based on evolutionary

computation e.g. GAs, genetic programming or evolutionary strategies, among others.

The design process of a FRBCS can be seen as an optimization or search problem. Due to this

reason, the AGs are a satisfactory mechanism to deal with this issue. Considering that they

are a global search technique with the ability to explore large search spaces requiring only

a measure of performance. Thus, we can say that AGs are adequate to find almost optimal

solutions in complex search spaces. Furthermore, due to its generic coding structure is easy

to incorporate prior knowledge. For example, the parameters of the membership functions

or the number of rules of the system. We present in Figure 10 an scheme of an evolutionary
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fuzzy system.
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Figure 10: The scheme of an evolutionary fuzzy system [HL09].

In FRBCSs, from a point of view of the optimization, find a good KB is equivalent to codify

it as a structure of parameters and find the values of these parameters that give us the optima

for a determined measure of performance. The parameters of the KB define the search space

and they are adapted according to a genetic representation.

The proposals of EFSs can by divided in two ways: tuning, related to the adjustment of the

components of the fuzzy system and, learning, corresponding to the learning of the fuzzy

system directly. In the following, we briefly describe them:

1. Genetic Adjustment – If exists a Knowledge Base (KB), this method apply a genetic

adjustment process to improve the quality of the FRBCSs without modifying the learned

RB. There are different groups of techniques within this paradigm:

◦ Genetic adjustment of the parameters of the KB. This task is performed by a
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posteriori adjustment of the parameters of the membership functions. In this way,

the RB never changes, that is, it learns a FRBCS with an initial configuration in

terms of the number of labels per variable and their shape. Once the fuzzy rules

are learned, the parameters that define the membership functions are optimized in

order to make the fuzzy rules work better. For more information see [Kar91].

◦ Genetic adaptive inference systems. The main objective of this proposal is to

use parametric expressions in the inference system to obtain a better coopera-

tion among the fuzzy rules and more precise fuzzy models, without losing the

interpretability inherent in linguistic rules. This method is often called Adaptive

Inference Systems. In [AFHHP07, CABFO06, CBM07] we can find proposals in

this area which are focused in classification and regression.

2. Genetic Learning – In this process we can learn the components of the knowledge base

(even including an adaptive FRM). In what follows, we describe the four groups that

can be found in the genetic learning:

◦ Genetic learning of the fuzzy rules. The majority of the approaches that have

been proposed to automatically learn the KB, from numerical information, have

focused on the rule base (RB) learning, using a predefined data base (DB). The

usual way to define the DB demands to pick a number of linguistic terms for each

linguistic variable and give it the value of the system parameters by means of an

uniform distribution of the linguistic terms considering the universe of discourse

of the variables. In [Thr91], it was proposed the first proposal in this area.

◦ Genetic selection of the fuzzy rules. Once a RB has been learned, this process can

be used to select fuzzy rules, in order to avoid including irrelevant, redundant and

noisy fuzzy rules. In [AAFH07, CCdJH05], the authors present a methodology for

combining the selection of the rules with the genetic adjustment of the parameters.

◦ Genetic learning of the Data Base. There is another way to generate all the KB,

that is, the DB and the RB. The DB generating process allows us to learn the

form of membership functions and other components of the DB such as scaling

functions or granularity of the diffuse partitions, among others. This process of

generating the DB can use a measure to evaluate the quality of the DB, which is

called apriori genetic learning of the DB. The second possibility is to consider an

embedded genetic learning process where the process of generating the DB is done

together with the learning of the RB. In this manner a partitioning of the learning
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problem of the KB is required. In [CHV01], we can find a proposal related to the

embedded genetic learning of the DB.

◦ Simultaneous genetic learning of the components of the knowledge base. This

method intends to learn both components of the KB at the same time. In this

way, the obtained KB could be of superior quality. However, the process is slower

and hard. See [HM95] for more information.

1.2.4 The FARC-HD fuzzy classifier

In this thesis, we consider the usage of one of the most accurate and interpretable FRBCSs

available in the literature, which is the Fuzzy Association Rule-based Classification model

for High Dimensional problems (FARC-HD) [AFAH11]. Furthermore, this fuzzy classifier

is also an evolutionary fuzzy system. It considers a genetic adjustment process that uses

an evolutionary computation to select and to tune fuzzy association rules that have a good

classification accuracy in the rule base. In what follows, we describe the learning process of

the rules, which is composed by three parts:

1. Fuzzy association rule extraction for classification: In this step, an initial fuzzy rule

base is obtained. To accomplish it, for each class, a search tree is constructed [AS94]

and its depth is limited by a parameter (parameter depthmax). It lists all the possible

itemsets (set of linguistic labels – items) of a class. This classifier considers five different

linguistic labels to model the problem, we show an example in Figure 11.
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Figure 11: Membership functions used in FARC-HD.

The extraction of the rules is performed by measuring the interest of an association

rule. The most common measures are the support and the confidence, being defined for
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fuzzy association rules as:

Support(A→ B) =
∑
xp∈T µAB(xp)
|N |

(II.17)

Confidence(A→ B) =
∑
xp∈T µAB(xp)∑
xp∈T µA(xp)

(II.18)

where |N | is the number of transactions in T , µA(xp) is the matching degree of the

transaction xp with the antecedent part of the rule and µAB(xp) is the matching degree

of the transaction xp with the antecedent and consequent of the rule.

An itemset with a support higher than the minimum support is a frequent itemset.

The three is not expanded if the support of a node is inferior to the minimum support

(the subsequent nodes will produce supports also smaller than the minimum support).

Likewise, if a candidate itemset generates a classification rule with confidence higher

than a predefined confidence, this rule has reached the quality level demanded by the

user and it is, again, unnecessary to expand the tree further.

To construct the tree, in first place a tree of a single level is constructed. That is,

there are as many branches (nodes) as variables times the number of labels used in each

variable. The support and the confidence are measured for each node. If they need to

be further expanded, the surviving branches are combined. This process is repeated

until an stopping criteria is fulfilled.

The number of frequent itemsets generated, and thus the size of the tree, depends on the

minimum support (Eq. II.19). The minimum support is generally calculated considering

the total number of patterns in the dataset, although the number of patterns for each

class (Cj) in a dataset can be different. For this reason, the algorithm determines the

minimum support per each class by the distributions of the classes over the dataset.

MinimumSupportCj = minSup · fCj (II.19)

whereminSup is the minimum support determined by the expert and fCj , is the pattern

ratio of the class Cj .

2. Candidate rule prescreening: The number of candidate fuzzy rules generated in the

previous step can be large. In order to reduce the computational cost of the last step,

the algorithm considers the usage of subgroup discovery to preselect the most interesting
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rules from the RB that were generated in the previous stage. To do so, it applies a

pattern weighting scheme [KLJ03] and assigns a counter, i, for each example that counts

the number of times each example has been covered (for the selected fuzzy rules).

Weights of positive patterns covered by the rules decrease according to the following

formula:

w(ej , i) = 1
i+ 1 (II.20)

In the first iteration, all patterns are assigned with the same weight, that is, w(ej , 0) = 1.

Then, the patterns covered by one or more selected rules decrease their weights in each

iteration. In this way, patterns with weights that have not been decreased will have

a greater chance of being covered. Covered patterns are eliminated when they have

been covered more than kt times. In each iteration of the process, the rules are sorted

from the best to the worst, by a rule evaluation criteria. The best rule is selected, the

covered patterns are re-weighted and this process is repeated until all patterns have

been covered more than kt times, or until there are no rules in the RB.

In order to evaluate the quality of the considered rules, the following measure is consid-

ered:

wWRAcc′′(A→ Cj) = n′′(A · Cj)
n′(Cj)

· (n
′′(A · Cj)
n′′(A) − n(Cj)

N
) (II.21)

where n′′ is the sum of the products of the weights of all patterns covered by their

matching degrees with the antecedent part of the rule, n′′(A · Cj) is the sum of the

products of the weights of all correctly covered patterns by their matching degrees with

the antecedent part of the rules, and n(Cj) is the sum of the weights patterns of class

Cj .

3. Genetic rule selection and lateral tuning: At this point, the previously generated fuzzy

rules are optimized so as to enhance as much as possible the system’s performance. To

do so, it is considered the usage of an evolutionary model (CHC [Esh91]) to select and

tune a compact set of fuzzy association rules from the RB obtained in the previous

stage. This approach combines the rule selection and the lateral tuning [AAFH07]. In

the following, we present the main specific features of this approach that are used by

the classifier:

(a) Coding Scheme: In order to combine the rule selection with the lateral tuning of

the position of the membership functions, it is considered a double coding scheme:
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◦ The first one considers a real coding scheme, since it is related to the the tuning

of lateral position of the membership functions and it has as many genes as

the number of linguistic labels considered in the dataset, having a range in

[-0.5,0.5] (for more details see [AAFH07]).

◦ The second part of the chromosome uses a binary coding scheme and is related

to the rule selection. It has as many genes as rules, and each gene determines if

the corresponding rule is used in the FRM or not, by setting it to 1 (selected)

or to 0 (not selected).

(b) Chromosome Evaluation: to evaluate the quality of the chromosome it is used a

fitness function that computes the accuracy rate of the system and it penalizes it

by the number of fuzzy rules:

Fitness(C) = #Hits
N

− δ · NRinitial
NRinitial −NR+ 1.0 , (II.22)

where #Hits represents the number of examples correctly classified; NRinitial is

the number of candidate rules; NR is the number of selected rules and δ is a

weighting percentage, given by the system expert that determines the trade-off

between the accuracy and the complexity.

(c) Initial Gene Pool: The population is composed by 50 individuals. The first indi-

vidual has his first part of the chromosome initialized by setting to 0 the value of

all the genes, to perform the lateral tuning. The second part of the chromosome

has the genes initialized by setting them to 1, to perform the rule selection. The

remainder chromosomes are randomly generated in the corresponding ranges of

the genes.

(d) Crossover Operator : The crossover operator will depend on the chromosome part

considered (lateral tuning (i) or rule selection (ii)).

(i) The crossover is performed considering the Parent Centric BLX (PCBLX)

operator [HLS03]. This operator uses the concept of neighborhood, allowing

the offspring genes to be around the genes of one parent or around a zone

determined by both parents.

(ii) The half uniform crossover scheme (HUX) [ES93] is applied. This operator

crossover interchanges the mid of the alleles that are different in theirs parents

(the genes to be crossed are randomly selected among those that are dissimilar

in the parents), ensuring the maximum distance of the offspring.
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The CHC approach makes usage of an incest prevention mechanism. That is,

in order to avoid that similar individuals perform the crossover, two parents are

crossed only if their hamming distance divided by 2 is superior to the threshold

Th, which is initialized as:

Th = (#Genes ·BITSGENE)
4.0 (II.23)

The Gray code is used to convert each real coded gene to binary coding with a

fixed number of bits for each gene (BITSGENE).

(e) Restarting Approach: To increase the convergence of the algorithm, the threshold is

decreased by BITSGENE if new individuals are not included in the new population.

When the threshold is smaller than 0 the best chromosome is picked (elitist scheme)

and all the population is reseted with random values.

(f) Stopping Criteria: The search process is stopped when:

(i) The maximum number of trials is reached.

(ii) A 100% is obtained as the fitness of the best individual.

2 Discussion

In this section we present a description of the different generalizations of the Choquet integral

that were proposed and submitted to journals during the development of this thesis. For each

contribution, we present the main acquired knowledge in two ways. The first one is related

to the theoretical concepts that were developed, which are used as base for the considered

generalization. The second is associated with the application of the generalization to cope

with classification problems. Finally, we reinforce that all generalizations were applied in the

FRM of the FARC-HD [AFAH11] fuzzy classifier (See subsection 1.2.4).

2.1 The concept of pre-aggregation functions

In this paper, we proposed the first generalization of the Choquet integral. This study was

originally based on the paper presented in [BBF+13]. In this paper, the authors modified the

FRM of the Chi [CYP96b] et al. algorithm by applying the Choquet integral to aggregate all

available information for each class. Furthermore, considering that the Choquet integral is

related to a fuzzy measure, they introduced a learning method by means of a genetic algorithm

in which the most suitable fuzzy measure for each class was computed.
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As the Chi algorithm it is not an state-of-the-art fuzzy classifier, in this first contribution we

intended to apply this methodology in the FRM of a powerful fuzzy classifier like FARC-HD.

Our goal was to improve the performance of the system by using the methodology proposed

in [BBF+13]. But we wanted to go an step further, since the standard Choquet integral (See

Eq. II.6) is based on the product, which is a t-norm. So, we also proposed a generalization of

the Choquet integral. To do so, we replaced the product operator of the standard Choquet

integral by different aggregation functions, precisely, another t-norms. In this way, the manner

how the information was aggregated would be different, consequently leading into different

FRMs that could present performances even more accurate.

The Choquet integral generalized by an aggregation function, T , is defined as:

Definition 9. Let m : 2N → [0, 1] be a fuzzy measure and T, : [0, 1]2 → [0, 1] be an t-norm.

Taking as basis the Choquet integral, we define the function CT
m : [0, 1]n → [0, n] by

CTm(x) =
n∑
i=1

T
(
x(i) − x(i−1),m

(
A(i)

))
, (II.24)

where N = {1, . . . , n}, (x(1), . . . , x(n)) is an increasing permutation on the input x, that is,

0 ≤ x(1) ≤ . . . ≤ x(n), with the convention that x(0) = 0, and A(i) = {(i), . . . , (n)} is the

subset of indices of n− i+ 1 largest components of x.

The first issue arrived when we realized that the simple exchange of one t-norm for another

aggregation did not generate an aggregation function. For example, take as aggregation

function , the minimum t-norm, TM (x, y) = min(x, y) and the cardinality measure (Eq. II.1).

We want to aggregate the following two set of values: x1 = (0.05, 0.2, 0.7, 0.9) and x2 =

(0.05, 0.1, 0.7, 0.9). It is easily noticed that x1 > x2. However, CTMm (x1) = 0.7 and CTMm (x2) =

0.8. Therefore, the primordial condition of increasingness (monotonicity) of any aggregation

function is not fulfilled by CTMm .

Yet, we noticed that the monotonicity property is not crucial for aggregation functions. Take

for example a well-known statistical tool, the mode. It is not considered as an aggregation

since the monotonicity of this function is not fulfilled, although it is useful. In [BFKM15],

Bustince et al. introduced the notion of directional monotonicity, which allows monotonicity

to be fulfilled along (some) fixed ray. So, with this in mind, we have introduced the concept of

pre-aggregation functions. These functions respect the boundary condition as any aggregation

function, however, they are directional increasing. In what follows, we provide the definition

of functions that are directionally increasing and pre-aggregation functions:
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Definition 10. Let ~r = (r1, . . . , rn) be a real n-dimensional vector, ~r 6= ~0. A function

F : [0, 1]n → [0, 1] is directionally increasing [BFKM15] with respect to ~r (~r-increasing, for

short) if for all (x1, . . . , xn) ∈ [0, 1]n and c > 0 such that (x1 + cr1, . . . , xn + crn) ∈ [0, 1]n it

holds that

F (x1 + cr1, . . . , xn + crn) ≥ F (x1, . . . , xn). (II.25)

Similarly, one defines an ~r-decreasing function.

Definition 11. [LSPD+16] Let ~r = (r1, . . . , rn) be a real n-dimensional vector, ~r 6= ~0. A

function F : [0, 1]n → [0, 1] is said to be an n-ary ~r-pre-aggregation function if the following

conditions hold:

(PA1) F is ~r-increasing;

(PA2) F satisfies the boundary conditions:

F (0, . . . , 0) = 0 and

F (1, . . . , 1) = 1.

In this contribution we presented three different methods to construct pre-aggregation func-

tions, one of them is by generalizing the standard Choquet integral by t-norms. Furthermore,

we have developed an important demonstration that these generalizations, are idempotent

and averaging.

Then, to cope with classification problems, we considered the Choquet integral generalized

by five different t-norms, namely Minimum (TM ), Łukasiewicz (TŁ), Drastic product (TDP ),

Nilpotent minimum (TNP ) and Hamacher Product (THP ). These functions are available at

Table II.1.

Observe that the standard Choquet integral is defined with respect to a fuzzy measure,

m. As consequence, the generalizations of the Choquet integral also need a fuzzy measure.

Therefore, for each generalization, we considered the same fuzzy measures as [BBF+13].

That is, Cardinality (Uniform), Dirac, Ordered Weighted Average (OWA), Weighted mean

(Wmean) and the Power measure. This last measure was the one that achieved the best

performance in [BBF+13]. It is the cardinality measure but raised to the power q. In [BBF+13]

this exponent q is adapted for each class of the problem by using a genetic algorithm. Thus, in

order to also consider this measure in the study, the CHC evolutionary model used by FARC-

HD was adapted. To do so, for this parameter, one gene per class in the coding scheme was
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added. Additionally, the genes related to this parameter were set to 1.0, in the initial gene

pool. In this way, at least the standard cardinality is obtained. The power measure, for class

k, in this paper was defined as:

mk(X) =
( |A|
N

)qk
, with qk > 0, (II.26)

where |A| is the number of elements to be aggregated, N the total number of elements

and qk is the exponent genetically learnt to obtain the most suitable value for each class k.

Consequently, this measure uses a different value for q, for each class.

The quality of the proposal was analyzed by applying these generalizations to cope with 27

classification problems. The considered datasets are available in KEEL [AFSG+09] dataset

repository3. When comparing the different generalizations among themselves, we noticed

that the one based on Hamacher t-norm was superior to the remaining ones. This fact

occurred with four out the five considered fuzzy measures (the Dirac measure achieved a bigger

result with the product t-norm). Finally, the best accuracy was obtained when combining

the Hamacher product with the power measure, which is similar to the results obtained

in [BBF+13].

In order to evaluate the quality of this best generalization, we compared it against the classical

FRM of WR, since both FRMs apply averaging aggregation functions. In this comparison it

was empirically demonstrated that this generalization is statistically superior to WR and the

standard Choquet integral.

The associated publication is available in Chapter III.1, and it is the following:

◦ G. Lucca, J. Sanz, G. Pereira Dimuro, B. Bedregal, R. Mesiar, A. Kolesárová and

H. Bustince Sola, "Pre-aggregation functions: construction and an application", IEEE

Transactions on Fuzzy Systems 24 (2) (2016) 260 – 272.

2.2 The generalization of the extended Choquet integral by copulas

The usage of the generalizations of the Choquet integral in a powerful fuzzy classifier has pro-

duced satisfactory results to cope with classification problems. However, these generalizations

were pre-aggregation functions, that is, the monotonicity is not satisfied. Then, with this in

mind, in this contribution we aimed to develop generalizations that were aggregation func-
3http://keel.es/
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tions (satisfying the monotonicity). To do so, we considered the same methodology used in

the previous study, however, in this paper we considered the Choquet integral in its expanded

form, which is defined as:

Cm(~x) =
n∑
i=1

(
x(i) ·m

(
A(i)

)
− x(i−1) ·m

(
A(i)

))
.

Then, in order to produce generalizations that are aggregation functions, we replaced the

product operator by copulas. This generalization introduced the concept of Choquet-like

Copula-based aggregation functions (CC-integral for short).

Definition 12. Let m : 2N → [0, 1] be a fuzzy measure and C : [0, 1]2 → [0, 1] be a bivariate

copula. The Choquet-like copula-based integral with respect to m is defined as a function

CCm : [0, 1]n → [0, 1], given, for all x ∈ [0, 1]n, by

CCm(~x) =
n∑
i=1

C
(
x(i),m

(
A(i)

))
− C

(
x(i−1),m

(
A(i)

))
, (II.27)

where (x(1), . . . , x(n)) is an increasing permutation on the input x, that is, 0 ≤ x(1) ≤ . . . ≤

x(n), with the convention that x(0) = 0, and A(i) = {(i), . . . , (n)} is the subset of indices of

n− i+ 1 largest components of ~x.

We demonstrated that CC-integrals are increasing functions and that they respect the bound-

ary conditions. These are the conditions necessary for a function to be an aggregation func-

tion. Furthermore, we shown that this generalization is idempotent and averaging.

We conducted a study considering nine different functions: three t-norms (TM , TŁ and THP ),

three Overlap functions (Ob, OmM and Oα) and three copulas that are neither t-norms nor

overlap functions (CF , CL and CDiv). All these generalizations were applied considering the

power measure (Eq. II.26), since it was the measure that achieved the best results in [BBF+13]

and in our previous study.

To demonstrate the efficiency of the CC-integrals to tackle classification problems, we devel-

oped an experimental study considering 30 numerical datasets. This study was conducted

in two different ways. The first one was focused on comparisons per family of copulas (t-

norms, overlaps and specific copulas), in order to find the function that presented the best

generalization. Then, we compared this best generalization with 1) the classical FRM of WR

(considering that both functions are averaging); 2) to the standard Choquet integral and
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3) the best pre-aggregation function achieved in the previous study, the one based on the

Hamacher t-norm.

Analyzing the families of copulas we noticed that:

1. The minimum, TM , is the generalization that best represents the family of t-norms.

2. The function Oα was the one that best represented the group of overlap functions.

3. For the specific copulas, the function CF was chosen to represent this family.

Comparing these three functions (TM , Oα and CF ) among themselves, we have noticed that

there were no statistical difference among them. However, we selected the generalization by

the minimum t-norm as the best CC-integral. This was due to the fact that this generalization

was considered as control variable in the statistical test and also, it is the function that

achieved the the biggest accuracy mean in the study.

The final comparison that aimed at showing the quality of the generalization, demonstrated

that the best CC-integral was the function that achieved the biggest accuracy mean, closely

followed by the best pre-aggregation and that both are superior than the standard Choquet

integral and the WR. The statistical comparisons between these methods showed that there

are no differences when comparing best CC-integral versus the Hamacher or the product

(Choquet integral) t-norms. However, this CC-integral is statistically superior when compared

to the WR method.

The associated publication is available in Chapter III.2 and it is the following one:

◦ G. Lucca, J. A. Sanz, G. P. Dimuro, B. Bedregal, M. J. Asiain, M. Elkano and H.

Bustince, "CC-integrals: Choquet-like copula-based aggregation functions and its appli-

cation in fuzzy rule-based classification systems", Knowledge-Based Systems 119 (2017)

32 – 43.

2.2.1 A proposal for tuning the alpha parameter in CαC-integrals

As can be observed in our previous paper, we considered a generalization of the Choquet by

a copula function, Cα (Eq. II.28). This function was also considered the best overlap-based

generalization (Oα). Observe that it takes into consideration a parameter α in its definition.

So, we presented in [LDM+15] a study considering different fixed values for this function,
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showing that the chosen value affects the performance of the system.

Cα(x, y) = xy(1 + α(1− x)(1− y)), α ∈ [1, 0[∪]0, 1]. (II.28)

Then, after that, we published a contribution in the Brazilian Conference on Intelligent Sys-

tems (BRACIS) [LDB+16] in which we presented a method to assign a value to this α pa-

rameter using a genetic algorithm in order to find the value that best fits for each class.

Specifically, we adapted the genetic part of the FARC-HD fuzzy classifier to also optimize the

α variable used in the functions for each class of the problem. The tuning of the α parameter

has as many genes as classes. These genes are encoded in different ranges according to the

copula considered (the range of the parameter α can vary in each function). If the value is 0

(these functions are not defined for this value), we assign 0.1 to the parameter, since it is the

best solution achieved in [LDM+15].

Meanwhile we were developing the method, it was published in the literature a fuzzy measure

that was based on fuzzy sets derived from FRBCSs [PBP+16]. This method generates the

fuzzy sets using the rule weights and then it applies overlap functions over them to build the

fuzzy measure. Precisely, it considers, for each class the fuzzy measure constructed using the

rule weights of the fuzzy rules of each class that are fired when classifying a new example.

The authors of [PBP+16] demonstrated empirically that the overlap function GAOV was the

best one. So, we also picked this function in our study. This fuzzy measure was applied in

four different CC-integrals, that are defined by functions that make usage of the α parameter.

The experimental study was performed considering 30 different numerical datasets. For each

CC-integral based on a different Cα we considered a fixed (setting 0.1 to the α variable) and

a genetic approach (adapting the α for each class). Then, we showed that, in general, the

genetic approach presents superior accuracy mean.

To test the quality of this generalization, we picked the function that achieved the highest

accuracy results and we compared it to the classical averaging FRM of WR, to the best CC-

integral, to the best pre-aggregation function and to the standard Choquet integral. In this

comparison we showed that this generalization presented the best performance. However, no

statistical differences were found comparing these approaches among themselves.

Finally, we presented a study of the variation of this α parameter for each class, considering

the function that achieved the best results. We noticed that the values are close to 0.1, which

reinforces that this was a good starting value as we concluded in [LDM+15].
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The associated publication is available in Chapter III.3 and it is the following one:

◦ G. Lucca, J. A. Sanz, G. P. Dimuro, B. Bedregal, and H. Bustince, "A proposal for tuning

the alpha parameter in CαC-integrals for application in fuzzy rule-based classification

systems", Natural Computing (special issue BRACIS – 2016) (Accepted).

2.3 A generalization of the Choquet integral by left 0-absorbing fusion
functions

The acquired knowledge from our previous studies led us to realize that the function responsi-

ble to generalize the Choquet integral is very important. At this point we have only produced

generalizations with averaging characteristics. Having this in mind, we intended to generalize

the standard Choquet integral by special aggregation functions, in order to produce more

competitive generalizations of the Choquet integral without being limited by the maximum

(non-averaging).

To achieve it, we introduced the family of left 0-absorbing aggregation functions F , which

was defined as:

Definition 13. A bivariate function F : [0, 1]2 → [0, 1] with 0 as left annihilator element,

that is, satisfying:

(LAE) ∀y ∈ [0, 1] : F (0, y) = 0,

is said to be left 0-absorbent.

Moreover, the following two basic properties are also important:

(RNE) Right Neutral Element: ∀x ∈ [0, 1] : F (x, 1) = x;

(LC) Left Conjunctive Property: ∀x, y ∈ [0, 1] : F (x, y) ≤ x;

Any bivariate function F : [0, 1]2 → [0, 1] satisfying both (LAE) and (RNE) is called left

0-absorbent (RNE)-function.

So, in this paper we replaced the product operator of the standard Choquet integral in the

same way as a pre-aggregation function. However, instead of applying as aggregation, a t-

norm, we applied a function, F . As consequence, we introduced the so-called CF -integral,

which is defined as:
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Definition 14. Let F : [0, 1]2 → [0, 1] be a bivariate function and m : 2N → [0, 1] be a fuzzy

measure. The Choquet-like integral based on F with respect to m, called CF -integral, is the

function CFm : [0, 1]n → [0, 1], defined, for all x ∈ [0, 1]n, by

CFm(~x) = min
{

1,
n∑
i=1

F
(
x(i) − x(i−1),m

(
A(i)

))}
, (II.29)

where (x(1), . . . , x(n)) is an increasing permutation on the input ~x, that is, 0 ≤ x(1) ≤ . . . ≤

x(n), with the convention that x(0) = 0, and A(i) = {(i), . . . , (n)} is the subset of indices of

n− i+ 1 largest components of ~x.

Observe that a CF -integral is limited by the minimum between 1 and the aggregated value.

This, is due to the fact that the function F can produce values superior to the maximum (it

is non-averaging) and even to 1. Then, in order to respect the maximal boundary of the unit

interval, we bound this function if the result is superior to 1. We demonstrated the conditions

that the F function must fulfill for the CF -integral to be a pre-aggregation function and to

present averaging or non-averaging characteristics.

The quality of the CF -integrals to cope with classification problems was tested considering 33

different datasets. Then, the experimental study was conducted considering generalizations

with and without averaging characteristics. Furthermore, the fuzzy measure used in this

study was the power measure.

Taking into account the averaging generalizations, we studied nine different CF -integrals,

based on distinct functions, namely Oα, OB, OmM , ODiv, CF , CL, FFBPC , FBD1 and FNA.

This last function produced the best generalization, having the highest accuracy among the

averaging ones and, also, it was adopted as control variable by the statistical method. Yet, the

statistical test did not present differences between this approach and the remainder methods.

But, we used this generalization, FNA, as representative of the averaging CF -integrals. After

that, we compared it against FRMs with averaging operators as the WR, the standard Cho-

quet integral, the best CC-integral and the best pre-aggregation function. The results showed

that the pre-aggregation was the function that achieved the best global accuracy mean, fol-

lowed closely by our CF -integral and by the CC-min. On the other side the standard Choquet

integral and the WR achieved the smallest accuracy mean.

Considering the non-averaging functions, we conducted a study using six CF -integrals. Pre-

cisely, we applied the following six F functions: GM , HM , Sin, OR, FGL and FNA2. The
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first observation was that any non-averaging CF -integral had an accuracy mean superior to all

averaging ones. However, we picked FNA2 as the function representative for the non-averaging

CF -integrals. This was done because this function achieved the biggest accuracy mean in the

non-averaging study and, additionally, it was considered as control variable in the statistical

test. In order to support the quality of this approach, we compared the best non-averaging

CF -integral with both the FRM of AC and a FRM considering the probabilistic sum, P ∗

(since it is another known operator with non-averaging characteristics). The results showed

that the function FNA2 presented a superior accuracy mean when compared against these

two methods, although without statistical differences. We finished the study comparing the

best non-averaging CF -integral against all the averaging ones. We showed that the former

statistically overcame all the averaging methods. Therefore, it reinforced the idea that not

being limited by the maximum is a good approach, remembering that the state-of-the-art

fuzzy classifier apply non averaging aggregation operators.

The associated publication is available in Chapter III.4 and it is the following:

◦ G. Lucca, J. A. Sanz, G. P. Dimuro, B. Bedregal, H. Bustince and R. Mesiar, "Cf -

integrals: A new family of pre-aggregation functions with application to fuzzy rule-based

classification systems", Information Sciences 435 (2018) 94 – 110.

2.4 Generalizations of the Choquet integral by pairs of functions F1–F2

under some constraints

In the previous work we have seen that not being limited by the maximum is a good approach

to deal with classification problems. In addition, we have shown that the generalization of the

standard Choquet integral by F functions resulted in satisfactory results. So, we wanted to

improve the results obtained by that methodology. To do so, we used the concept of expanded

integral Choquet, where we generalized it by two F functions (F1 and F2). We name this

generalization CF1F2-integrals and its definition is:

Definition 15. Let m : 2N → [0, 1] be a symmetric fuzzy measure and F1, F2 : [0, 1]2 → [0, 1]

be two fusion functions fulfilling:

(i) F1-dominance

(ii) F1 is (1, 0)-increasing,
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A CF1F2-integral is defined as a function C
(F1,F2)
m : [0, 1]n → [0, 1], given, for all x ∈ [0, 1]n, by

C
(F1,F2)
m (~x) = min

{
1, x(1)+

n∑
i=2

F1
(
x(i),m

(
A(i)

))
−F2

(
x(i−1),m

(
A(i)

))}
, (II.30)

where (x(1), . . . , x(n)) is an increasing permutation on the input ~x, that is, 0 ≤ x(1) ≤ . . . ≤

x(n), with the convention that x(0) = 0, and A(i) = {(i), . . . , (n)} is the subset of indices of

n− i+ 1 largest components of ~x.

An important question that could appear is related to the choice of the function to be se-

lected as F1 and the one to act as F2. To answer it, we used the concept of dominance and

subordination, that is:

(DM) F1-Dominance (or, equivalently, F2-Subordination): F1 ≥ F2, that is: ∀ x,y ∈ [0,1]:

F1 (x,y) ≥ F2(x,y)

In this paper, twenty-three different functions, F , were considered. As consequence, we

could combine 201 different pairs of functions that could be used as F1 and F2, respecting

the dominance property. Therefore, we proposed a methodology to reduce the scope of the

study by using the concept of Dominance and Subordination Strength degree, DSt and SSt

respectively.

Definition 16. Let F = {F1, . . . , Fm} be a set of m fusion functions. The dominance and

subordination strength degrees, DSt and SSt, of a fusion function Fi ∈ F are defined, respec-

tively, for j ∈ {1, . . . ,m}, by as follows:

DSt(Fi) = 1
m

m∑
j=1

 1 if Fi ≥ Fj ,

0 otherwise
· 100%

SSt(Fi) = 1
m

m∑
j=1

 1 if Fi < Fj ,

0 otherwise.
· 100%

To reduce the number of combinations, we categorized each function according to their as-

sociated DSt and SSt, as Low, Medium and High. We picked tree functions per considered

category, as shown in table II.5. In this way, we reduced the scope of the functions to 81

different combinations.

We demonstrated that the selected functions considered as CF1F2-integrals are non averaging.

Moreover, they satisfy the boundary conditions of any (pre) aggregation function. How-

ever, considering the monotonicity, we observed that these functions are neither increasing
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Table II.5: The selected functions according to dominance/subordination strength degrees.

Strength degree Dominance (F1) Subordination (F2)

Low

TDP S

FNA GM

OB Fα

Medium

THP TM

TM FNA

FIM TP

High

GM TŁ

FGL FBPC

S TDP

nor directional increasing. In fact, they are Ordered Directionally (OD) monotone func-

tions [BBSS+17]. These functions are monotonic along different directions according to the

ordinal size of the coordinates of each input.

We used the CF1F2-integrals to cope with classification problems in 33 different datasets.

Furthermore, we must point out that we applied these generalizations with the power measure.

When analyzing the results that were obtained by the usage of these generalizations, we

noticed that the combination of a function having a high dominance as F1 combined with

a function with high subordination as F2 presented the best results of this study (from the

top ten of the best global accuracies from the 81 pairs, eight have this characteristic). We

also observed that the opposite, for each function F2, is also true and that its best results are

achieved when using a F1 with a high dominance.

We analyzed the performance of this proposal by comparing them against distinct state-of-the-

art FRBCSs, namely: FARC-HD (See subsection 1.2.4), FURIA [HH09], IVTURS [SFBH13],

a classical non-averaging aggregation operator like the probabilistic sum, P ∗, and, the best

CF -integral that was selected from the previous study, FNA2. In this comparison FURIA

was the fuzzy classifier that achieved the biggest accuracy mean, however, our new approach

achieved a close classification rate. Furthermore, the number of specific datasets where the

performance of our generalization is the worst among all the methods in the comparison

is less than that of FURIA. The function representing the CF -integrals also achieved good

results, meanwhile the remainder cases (IVTURS, P ∗ and FARC-HD) where inferior and
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similar among themselves.

We compared the 81 pairs of combinations considered to construct CF1F2-integrals against

IVTURS, P ∗, FARC-HD and FNA2. The results highlighted the quality of our new method

because an equal or greater average result was obtained by 39, 36, 34 and 12 different com-

binations in these comparisons.

Finally, from the considered pairs we also observed that five different CF1F2-integrals were con-

sidered as control variable in the statistical test in which we compared all methods, including

FURIA. These functions are based on the pairs: GM–FBPC , GM–TŁ, FGL–TM , FGL–FBPC
and GM–Fα. We must point out that the last generalization only presented statistical differ-

ences with respect to FARC-HD. However, for any remaining pair, it is statistically equivalent

when compared to FURIA and to FNA2 and superior to IVTURS, P ∗ and FARC-HD.

The associated publication is available in Chapter III.5 and it is the following one:

◦ G. Lucca, J. A. Sanz, G. P. Dimuro, B. Bedregal, H. Bustince and R. Mesiar, "Improving

the performance of fuzzy rule-based classification systems based on a new non averaging

generalization of CC-integrals named CF1F2-integrals", IEEE Transactions on Fuzzy

Systems (submitted).

2.5 The idea of generalized CF1F2-integrals

In the previous study we have introduced the concept of CF1F2-integrals, where we generalized

the Choquet integral by two different F functions. Then, in this paper we generalized this

concept by pseudo pre-aggregation pairs, introducing the so-called gCF1F2-integrals. These

functions are based on a solid theoretical framework. To understand it we first introduced

the concept of pseudo pre-aggregation pairs (F1, F2).

Definition 17. Consider two bivariate functions F1, F2 : [0, 1]2 → [0, 1]. The pair (F1, F2) is

said to be a pseudo pre-aggregation function pair whenever the following conditions hold, for

all y ∈ [0, 1]:

(DI) Directional Increasingness: F1 is (1, 0)-increasing;

(BC0) Boundary Conditions for 0:

(i) F1(0, y) = F2(0, y) and

(ii) F1(0, 1) = 0;
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(BC1) Boundary Condition for 1: F1(1, 1) = 1;

(DM) F1-Dominance (or, equivalently, F2-Subordination): F1 ≥ F2.

Then, we need the concept of dimension reduction, since the gCF1F2-integrals are functions

well defined to aggregate elements without repetition.

Definition 18. A (n 7→ k)-dimension reduction function is a function Rn7→k : [0, 1]n →

[0, 1]k, with k ≤ n, defined, for all (x1, . . . , xn) ∈ [0, 1]n, by:

Rn7→k(x1, . . . , xn) = (y1, . . . , yk), (II.31)

such that:

(R1) {x1, . . . , xn} = {y1, . . . , yk} and

(R2) y1 < . . . < yk.

Note that the function Rn7→k is well defined and, in case some components of the input ~x are

repeated, they collapse into one single value. With this definition at hand, we denote, for

each j ∈ K:

BR
j (~x) = {i ∈ N | xi = yj}. (II.32)

Thus, the gCF1F2-integrals considering the pseudo pre-aggregation pair is defined as:

Definition 19. Let F1, F2 : [0, 1]2 → [0, 1] be a pair of functions such that F1 ≥ F2 (i.e.,

F1 dominates F2) and F1 is (1, 0)-increasing, and consider a fuzzy measure m : 2N → [0, 1].

Let Rn7→k : [0, 1]n → [0, 1]k be a (n 7→ k)-dimension reduction function given in Definition

18. The generalized CF1F2-integral based on (F1, F2) with respect to m is defined as a function

gC
(F1,F2)
m : [0, 1]n → [0, 1], given, for all ~x ∈ [0, 1]n, by

gC
(F1,F2)
m (~x) = min

1,
k∑
j=1

F1
(
yj ,m

(
∪kp=jB

R
p (~x)

))
− F2

(
yj−1,m

(
∪kp=jB

R
p (~x)

)) , (II.33)

with the convention that y0 = 0 and BR
j is as defined in Equation (II.32).

Another concept used in this paper, is related to the pairwise increasingness, which is defined

as:
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Definition 20. A pseudo pre-aggregation function pair (F1, F2) is pairwise increasing if, for

all x, y1, y2 ∈ [0, 1] and h > 0 such that x+ h ∈ [0, 1], the following condition holds:

(PI) If y2 ≤ y1 then F1(x, y1)− F2(x, y2) ≤ F1(x+ h, y1)− F2(x+ h, y2).

Using the previous concepts, we demonstrated that for any fuzzy measure m : 2N → [0, 1]

and pseudo pre-aggregation function pair (F, F ) satisfying (PI), gC(F,F )
m is an aggregation

function. Moreover, it is an averaging aggregation function if and only if F (x, 1) = x, for all

x ∈ [0, 1], which is a generalization of the CC-integrals.

The associated publication is available in Chapter III.6 and it is the following one:

◦ G. Lucca, J. A. Sanz, G. P. Dimuro, B. Bedregal, H. Bustince and R. Mesiar, "General-

ized CF1F2-integrals: from Choquet-like aggregation to ordered directionally monotone

functions", Fuzzy Sets and Systems (submitted).

3 Summaries

In this section we summarize the concepts that were developed and used in this thesis. We

start by introducing the summary of the theoretical developments. After that, we present a

summary of the application of the generalizations to cope with classification problems.

3.1 Summary of the theoretical developments

All contributions presented in this thesis are based in solid theoretical studies. Therefore, in

this subsection we summarize them in order to ease their comprehension.

To do so, we start presenting in Figure 12, a scheme of these concepts. Then, based on this

scheme, we describe in the following all developed generalizations. This generalizations are

divided in two groups. The first group contains Pre-Aggregation Functions (PAF), which

also include Aggregation Functions (AF). The second group contains the ordered directional-

monotone functions (OD-MF). Observe that OD-MF functions in a certain direction (k, ...,

k) are also pre-aggregation functions, consequently, both groups have an intersection. Fur-

thermore, it is also observable that all pre-aggregation functions are aggregation functions,

however, the opposite is not true.

We started our generalizations by replacing the product t-norm of the standard Choquet

integral by t-norms. Introducing the CT -integrals [LSPD+16, BSL+16, DBB+16a, LSD+15].
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Figure 12: The scheme of the theoretical concepts provided by this thesis.

We realized that these functions are directional increasing, that is, along a specific direction,

resulting in the concept of pre-aggregation functions. These functions are located in the

intersection between PAF and OD-MF.

CT -integrals were generalized by the CF -integrals, which are based on the usage of left 0-

absorbing functions F . These functions are located in the same "place" than CT integrals

but are more general since they can be averaging (Av. CF -integrals) o nor averaging (simply

CF -integrals).

Another set of functions were created when using the expanded Choquet integral, which con-

siders the distributivity property of the product in the Choquet integral. When this expanded

function was generalized by copulas, we obtained the so-called CC-integrals [LSD+17b], which

are aggregation functions with averaging characteristics [LSD+17a]. We have constructed

CC-integrals using different copulas, as: minimum (CMin-integral) [DLS+18] or by functions
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considering α parameters (CαC-integrals) [LDM+15, LDB+16]. We must point out that

CαC-integrals are a specific case of CC-integrals.

Our two last new theoretical concepts are based on the expanded form of the Choquet integral

and the usage of two fusion functions F1 and F2. The so-called CF1F2-integrals, are Ordered

Directional increasing functions (OD increasing) [BBSS+17], that is, increasing along different

directions according to the ordinal size of the coordinates of each input. When we generalize

CF1F2-integrals by a pseudo pre-aggregation function pair, we obtained the gCF1F2-integrals

that, according to the properties of F1 and F2, may be either aggregation functions (Case I)

with averaging properties or OD-MF functions (Case II) with non-averaging characteristics.

Observe that CF1F2-integrals are a subfamily of gCF1F2-integrals, in two senses. First, when

F1 and F2 are both equal to a copula C, we have the subfamily of CC-integrals, which

are aggregation functions. On the other hand, when F1 and F2 are different functions, the

generated CF1F2-integrals are a subfamily of gCF1F2-integrals that are OD-MF.

3.2 Summary of the results of the generalizations of the Choquet integral
in the fuzzy reasoning method

In this section, we present a summary of the results obtained in this thesis by the application

of the generalizations of the Choquet integral to deal with classification problems. We must

recall that the developed generalizations of the Choquet integral were applied in the FRM of

the fuzzy classifier FARC-HD to cope with classification problems.

We present, in Figure 13, a summary of the obtained accuracy mean in testing by our different

generalizations, according to each publication considered in this thesis in the x axis. The

numbers in the x axis represent a different paper as follows:

1. CT -integrals

2. CC-integrals

3. CαC-integrals

4. CF -integrals

5. CF1F2-integrals

For each paper, we present the methods used to support the quality of the proposal made in
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the paper. Moreover, to facilitate the visualization of the quality of each generalization, we

put a horizontal line in the results obtained by the classical FRMs, where the orange line is

related to the FRM of the WR and the green line is related to the FRM of the AC (labeled

as FARC-HD, since this method uses it). Finally, it can be observed that the results from a

same aggregation can vary from study to study. This is due to the fact that we have added

more datasets in the course of this thesis, in order to perform a more complete study.
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Figure 13: Results obtained in testing by different generalizations provided by this thesis.

Considering the results presented in Figure 13, in the following we summarize the results for

each paper:

1) In this paper we presented the concept of CT -integrals [LSPD+16]. The largest accuracy

mean was obtained by the Hamacher t-norm, considering the power measure (See Eq.

II.26) – CTHPpm . The quality of this approach was observed by comparing it versus two

other averaging operators: 1) to the standard Choquet integral, CTPpm , and 2) the WR

(See 1.2.2). In the statistical study we showed that our proposal was better than WR.

2) In this paper we introduced the concept of CC-integrals [LSD+17b]. The largest accuracy

mean was obtained by the CC-integral using the minimum t-norm (which is also a

copula). This CC-integral, when compared versus the classical FRM of the WR is

statistically superior. However, no statistical differences were found with respect to the

standard Choquet integral (CTPpm ) and the best pre-aggregation, CTHPpm .

3) In this paper we presented the CαC-integrals and it uses a fuzzy measure adapted to the

data to be aggregated [PBP+16]. From the obtained results we have observed that

the genetic tuning of the α parameter has a beneficial effect and when we compare
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the best CαC-integral against the remaining methods, despite of the achieved superior

classification rate, no statistical evidence was found.

4) In this paper we presented the concept of CF -integrals. These functions can be averaging

or non averaging.

4.a) We discovered that the best averaging generalization was achieved by the function

FNA. From the obtained results, we can observe that it is statistically superior

than WR but there are not statistical differences versus the best pre-aggregation,

CTHPpm .

4.b) The best non-averaging generalization was obtained by the function FNA2. We

showed that this generalization, CFNA2
pm , achieved the largest accuracy mean in

the study. We showed that there are differences when comparing this method

against any averaging approach. This differences can be easily observed in Fig. 13.

However, when comparing it against the FARC-HD fuzzy classifier or against the

non-averaging operator P ∗, there are no statistical difference among the methods.

5) In this paper we introduced the concept of CF1F2-integrals. This generalization achieved

the highest classification rate in this thesis. In order to support the quality of the

method, we compared it against the state-of-the-art fuzzy classifiers. Our generaliza-

tion is statistically better than IVTURS, FARC-HD and P ∗. On the other hand it is

equivalent to FURIA and the CF -integrals. Furthermore, we have to stress that this

methodology present five combinations statistically equivalent to FURIA.

4 Final Comments

In this section we discuss the main contributions that we have reached after each study of

this thesis, the general conclusions and, finally, some open research lines.

4.1 Conclusions

The research carried out in this thesis aims to improve the quality of FRBCSs. To do so, we

have developed both a theoretical and a practical part.

The generalization of the FRM of the Chi et al. algorithm by the Choquet integral led to an

increase of the system’s performance. In this thesis, we intended to apply this methodology
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in the FRM of the FARC-HD fuzzy classifier. This classifier is considered as one of the most

interpretable and accurate fuzzy classifiers nowadays and we tried to enhance its performance.

We have followed an incremental research methodology. Which means that we started from

generalizations with averaging characteristics (delimited by the maximum of the elements to

be aggregated) and went to generalizations with non-averaging characteristics (not limited by

their maximum). The mentioned incremental line, as will be seen in the next paragraphs.

To start, a first generalization was constructed by the replacement of the product of the

standard Choquet integral by different t-norms. This generalization was supported by an

important theoretical concept that we introduced: the pre-aggregation functions. Differently

of a standard aggregation function, pre-aggregation functions are monotone along some di-

rection, being an important contribution in the field of aggregation operators. We noticed

that this first generalization, produced averaging functions and, when used to cope with clas-

sification problems, enhanced the performance of the classifier. Thus, we continued this line

of work.

At this point, we were aiming at producing a generalization of the Choquet integral that

resulted in aggregation functions. To do so, we used the distributivity property of the product

used in the Choquet integral, which was called, the Choquet integral in its expanded form.

Then, we generalized this expanded form by copulas, introducing the concept of Choquet-

like Copula-Based aggregation functions (CC-integral for short). These CC-integrals are

averaging generalizations of the expanded Choquet integral. However, we demonstrated that

they could produce results that could compete with the pre-aggregations and could be even

more accurate than the standard Choquet integral or than the classical FRM of the Winning

Rule.

In the previous step, we introduced the CC-integrals. One of them was based on a copula that

uses an α parameter, CαC-integral. Then, at this point, we also introduced a methodology

to tune this parameter by adapting the evolutionary part of the FARC-HD algorithm. The

CαC-integral is a CC-integral, consequently, is also an averaging operator. We showed in the

experimental, that this approach is also able to increase the performance of the classifier.

Up to this point, we have only presented generalizations of the Choquet integral with av-

eraging characteristics. However, the state-of-the-art fuzzy classifiers use a non-averaging

approach. Thus, in order to produce even more competitive generalizations, we introduced

Aggregation and pre-aggregation functions in fuzzy rule-based classification systems



4. Final Comments 49

the family of left 0-absorbing fusion functions F . Additionally, the generalization of the

standard Choquet integral by a function F introduced the concept of CF -integrals. These

functions are averaging or non-averaging, it depends on the considered function F that gener-

alizes the Choquet integral. We demonstrated that the averaging CF -integrals present good

results when compared with another averaging operators. Furthermore, the non-averaging

CF -integrals were comparable with classical non-averaging operators. Finally, we showed

that the non-averaging CF -integrals statistically overcame the averaging ones, reinforcing the

idea that not being limited by the maximum is a good option to tackle classification problems.

The summit of our generalizations was reached when we generalized the extended Choquet

integral by two functions F1 and F2. The result of this generalization was named CF1F2-

integrals. These functions are Ordered Directional increasing functions (OD increasing) and,

therefore, represent a different level of aggregation operators. We showed a methodology

to select different functions as F1 and F2, based on the concept of dominance and strength

degrees. Then, for the considered CF1F2-integrals we demonstrated that in five different

combinations of F1 and F2 we produced generalizations that are equivalent, or even superior,

than classical fuzzy classifiers like FARC-HD, IVTURS and FURIA.

Finally, we draw the main conclusions of the thesis related to our initial objectives:

◦ We have applied the developed generalizations of the Choquet integral in the FRM of

the FARC-HD fuzzy classifier, which is one of the most accurate and interpretable fuzzy

classifier nowadays, and we enhanced its performance. We must point out, that this

was the main objective of this thesis.

◦ The generalizations were constructed by replacing the product operator of the original

Choquet integral and its extended form by different aggregation functions. This allowed

us to define important concepts in the field of aggregation operators, like:

CT -integrals: Generalizations of the original Choquet integral by t-norms.

CC-integrals: Generalizations of the extended Choquet integral by copulas.

CF -integrals: Generalizations of the standard Choquet integral by functions F . Where

F , is a family of fusion functions that we have introduced.

CF1F2-integrals: Generalizations of the extended Choquet integral by two functions,

F1 and F2.

◦ We have introduced a methodology to adapt the evolutionary part of the FARC-HD to

learn a fuzzy measure which is adapted for each class of the problem. In this way we

Giancarlo Lucca



50 4. Final Comments

increased the performance of the system.

◦ The developed generalizations presented both averaging and non-averaging behavior.

In this way, we compared them against classical FRMs presented in the literature and

state-of-the-art fuzzy classifiers.

– When comparing our averaging methods against the classical averaging FRM of

WR we have that most of the developed generalizations are superior in terms of

performance.

– Comparing the generalizations having non-averaging characteristics versus state-

of-the-art fuzzy classifiers, we have that the generalizations are equivalent, or even

superior, than the considered methods.

4.2 Future research lines

In this subsection we describe some open research lines based on the methodologies that have

proposed in this thesis.

Generalizations of the Choquet integral using different fuzzy measures

The usage of the Choquet integral to deal with classification problems was firstly introduced

in [BBF+13]. Furthermore, in this study, the authors have introduced a fuzzy measure that

adapts itself for each class of the problem. In our first study [LSPD+16] we considered

generalizations that were combined with the same measures used in [BBF+13]. The achieved

results confirmed that the proposed fuzzy measure was superior to the remainder, for this

reason in this thesis we basically consider the same fuzzy measure in all papers.

We have used a different fuzzy measure only in the paper related to the tunning of the α

parameter. In that study we have considered as a measure a method that is built based on an

overlap index, which achieved satisfactory results. However, when the different generalizations

of the Choquet integral proposed in this thesis were combined with this method, poorer results

were obtained when compared against the generalizations of the Choquet integral using the

power measure.

Both fuzzy measures are calculated in execution time, then, it is possible to explore even more

the potency of the fired fuzzy rules if we had a fuzzy measure that is able to represent in a

better way the relationship among all the rules of each class. Therefore, having a different
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fuzzy measure per class as in this thesis. The open problem is how to learn these fuzzy

measures in order to use them when classifying new examples. A possible solution could be

the usage of the Sugeno fuzzy measure [Sug74], which is a fuzzy measure that only needs to

define the values for the sets having an unique element and the remainder are automatically

obtained. Therefore, we could use an evolutionary algorithm to learn these values in order to

obtain the best possible fuzzy measures for the faced problem.

Analyzing the behavior of the generalizations of the Choquet integral

As can be noticed in the published papers, we have applied different generalizations of the

Choquet integral in the FRM of the FARC-HD fuzzy classifier. This generalizations were

used to tackle different classification problems by aggregating the information provided by all

fired rules in the FRM.

From the obtained results, it is noticeable that some generalizations achieved a better perfor-

mance than others in determined datasets. Thus, an important open research line is related

to a pre-definition of the characteristics of the dataset that allows one to determine in ad-

vance the most appropriate generalization to face it. We have made preliminary studies in

this field in [LSD+17a, LSD+18b] by analyzing the behavior of a CC-integral in the FRM and

by using data complexity measures, respectively. However, despite the interesting results in

both cases, we must dig deeper in this subject.

Applying the generalizations with different classifiers

The generalizations of the Choquet integral developed in this thesis were always applied in

the FRM of the FARC-HD [AFAH11] fuzzy classifier. However, observe that the first proposal

of the usage of the standard Choquet integral in a FRM [BBF+13] was applied in the fuzzy

classifier of Chi et al [CYP96b], and, also enhanced the performance of the algorithm.

Then, we could select the different approaches developed in this thesis and apply them in

different fuzzy classifiers. In this way, we would research if these generalizations can also

improve their performance, which could support the hypothesis that the Choquet integrals

and their generalizations are a good option to improve the quality of all the FRBCSs.
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The construction of a model based on ensemble methods

There are different techniques to improve the performance of the classification systems. For ex-

ample, Evolutionary Fuzzy Systems (See subsection 1.2.3) and Ensembles [OM99]. Ensembles

of classifiers usually enhance the performance of single classifiers by inducing several classifiers

and combining them so that they outperform all the models conforming it [GFB+12].

Therefore, the basic idea of an ensemble method is to construct several classifiers from the

original data and, then, aggregate their predictions when unknown instances are presented. It

is observable that different generalizations of the Choquet integral achieved different perfor-

mances in the same dataset. Thus, another open research line is related to the construction

of an ensemble that considers different FRMs, that is, different generalizations of the Cho-

quet integral. Then we could made the final decision based on the outputs of the different

generalizations. The open problem is to know if this methodology offers diversity enough as

it is a key factor when constructing ensembles of classifiers [Kun05]. If this combination is

successful we could improve even more the behavior of FRBCSs to deal with classification

problems.

The problem of imbalanced datasets

In a classification problem, whenever the classes are not represented equally, we have the

so-called, imbalanced data problem [FGH11]. That is, when the number of instances which

represent one class is smaller than the ones from the remainder class.

To ease the explanation of why the usage of generalizations of the Choquet integral could be an

interesting research line to cope with this kind of problem, consider the following situation:

let the elements to be aggregated for class 1, C1 = [0.75, 0.8] and the elements of class 2,

C2 = [0.3, 0.4, 0.5, 0.6, 0.7]. We highlight that class 1 has less examples (positive class) than

class 2 (negative class). As more rules of the negative class are built in runtime it is easier to

have many rules fired for class 2 which can alter the classification of the positive class.

For instance, if we aggregated these values using AC the result would be C1 = 0.75+0.8
2.5 = 0.62,

and, C2 = 0.3+0.4+0.5+0.6+0.7
2.5 = 1. Although the values for C1 are better, when performing the

aggregation, C2 becomes the chosen one, for the simple reason that it has more fired rules.

However, considering the averaging generalizations of the Choquet integral presented in this
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thesis. The result for C1 would be a value between [0.75, 0.8], and for C2 a value between

[0.3, 0.7]. It could result in a fairness representation for the problem of imbalanced data. For

this reason, we consider it an interesting future research line as it may enhance the results of

FRBCSs in imbalanced classification problems.

Extension to interval-valued fuzzy sets

Interval-Valued Fuzzy Sets (IVFSs) [Sam75] have proved to be a suitable tool to represent the

system uncertainties and the ignorance in the definition of the linguistic fuzzy terms. An IVFS

provides an interval, instead of a single number, as the membership degree of each element

to this set. To ease this comprehension, we present in Figure 14, an example of a triangular

shaped interval-valued fuzzy set4. Where A(ui) = [A(ui), A(ui)], is the membership degree

of the element ui ∈ U to the set inferior (A(ui)) and superior (A(ui)).

Figure 14: An example of an interval-valued fuzzy set.

The Interval-Valued fuzzy reasoning method (IV-FRM) with TUning and Rule Selection

(IVTURS) [SFBH13] is an state-of-the-art FRBCS that works with IVFSs. It achieves good

results dealing with classification problems. Therefore, a natural step of this thesis, and an

open research line, is the adaption of the presented generalizations to the context of IVFSs,

to take into account aggregations on intervals. In this way, we will be able to analyze if the

improvement produced when working with fuzzy sets is also materialized in the interval-valued

context.
4Image available at [SD11].
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5 Introducción y Conclusión (Versión en español)

5.1 Introducción

Los seres humanos afrontan problemas de clasificación desde el principio. La distinción sobre

si las frutas, semillas y raíces son comestibles o no, es un ejemplo simple. Este tipo de decisión

se realiza en base al conocimiento adquirido en el transcurso del tiempo.

Se puede decir que un problema de clasificación es un proceso en que un dato se etiqueta (clasi-

fica) en base a sus características. Existen distintos niveles de complejidad en los problemas

de clasificación, desde los más sencillos, como la definición de la raza de un perro basada en las

características del perro. Hasta complejas, como la clasificación de si un paciente tiene cáncer

utilizando la información de los test sanguíneos. Una persona especialista en el problema

podría abordar determinados problemas de clasificación, sin embargo, esta persona puede ser

difícil de encontrar y su proceso puede ser lento, caro y hasta impreciso.

La utilización de un sistema de clasificación automático puede ser una buena opción en el

proceso de clasificación. Nótese que el sistema no puede reemplazar el conocimiento de un

experto, pero el experto puede usar este sistema como una importante fuente de información

en el proceso de la toma de decisión.

En la literatura, los problemas de clasificación [Alp10, DHS00] son un campo de investi-

gación de la minería de datos [TSK05]. Los problemas de clasificación son abordados de dos

maneras distintas. La primera se conoce como aprendizaje supervisado. Este paradigma de

aprendizaje genera una función (clasificador) a partir de los datos etiquetados (clases) que

están disponibles y son conocidos. Por tanto, cuando se necesita clasificar un nuevo ejem-

plo, esta función es la responsable de hacer la predicción. El segundo método utiliza datos

sin etiquetar (sin clases conocidas), intentando extraer las relaciones de dichos datos. Este

paradigma de aprendizaje es conocido como aprendizaje no supervisado.

En esta tesis nos centramos en aprendizaje supervisado para tratar problemas de clasificación.

En la literatura se pueden encontrar diferentes maneras de tratar con estos problemas como

las máquinas de soporte vectorial [CV95], los árboles de decisión [Qui93, BFOS84] y las redes

neuronales [GPGOF07], entre otras muchas. En esta tesis vamos a trabajar con Sistemas de

Clasificación Basados en Reglas Difusas (SCBRDs) [INN05]. Éstos sistemas proporcionan al

usuario modelos interpretables mediante el uso de etiquetas lingüísticas (como alto, medio
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o bajo) [Zad75] en sus reglas. Además obtienen resultados precisos y por ello los SCBRDs

han sido utilizado en numerosos problemas como salud [Uno11, SH09], seguridad [GSP+14,

VRT+15], economía [SBH+15] o alimentación [SFB+16, GS15], entre otros.

Motivación

Un papel importante en cualquier SCBRDs es el que juega el Método de Razonamiento Difuso

(MRD) [CdJH98, CdJH99]. Este método es el responsable de clasificar nuevos ejemplos. Para

ello, utiliza la información disponible en la base de reglas y en la base de datos. Para deter-

minar la clase del ejemplo a clasificar, el MRD usa una función para agregar la información

de cada clase dada por las reglas difusas compatibles con el ejemplo.

Un MRD muy utilizado considera como método de agregación la función máximo. Utilizando

este operador de agregación el MRD selecciona la mejor regla difusa disparada para cada clase,

ya que esa regla tiene la mayor compatibilidad con el ejemplo [CYP96a, GP98, INYT94]. El

problema de este método de razonamiento es que la información proporcionada por el resto de

las reglas es ignorada. Además, el operador de agregación es promedio, es decir, el resultado

obtenido esta en el rango delimitado por el mínimo y el máximo de los valores a agregar.

Para evitar este problema, se utiliza el MRD que aplica la suma normalizada [CdJH98,

CdJH99] para agregar de la información dada por las reglas disparadas. De esta manera,

se utiliza toda la información disponible para cada clase. Sin embargo, esta función se sale

del rango mínimo–máximo, y por lo tanto, es considerada como no promedio.

En [BBF+13] los autores introdujeron un MRD que considera la utilización de la integral

Choquet [Cho54], que es un operador promedio. Este método combina las características

buenas de los dos MRDs anteriores porque considera un operador promedio sin ignorar la

información ofrecida por todas las reglas disparadas del sistema.

Teniendo en cuenta las consideraciones anteriores, en este trabajo de tesis proponemos una

metodología que cambia la fase de agregación del MRD. Específicamente, consideramos la

aplicación de diferentes generalizaciones de la integral Choquet, soportadas por un estudio

teórico sólido. Comenzamos por generalizaciones con características promedio e iremos hasta

generalizaciones sin esa característica para producir funciones que sean capaces de ser com-

petitivas contra SCBRDs del estado del arte.
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5.2 Conclusión

La investigación realizada en esta memoria tiene como objetivo aumentar la calidad de los

SCDBRs. Para conseguirlo, hemos desarrollado una parte teórica y una aplicada.

La adaptación del MRD del algoritmo de Chi et al. en la que se utiliza la integral Choquet per-

mitió mejorar el rendimiento del sistema. En esta tesis, intentamos aplicar esta metodología

en el MRD del clasificador difuso FARC-HD. Este clasificador es considerado como uno de

los más interpretables y precisos de la actualidad y hemos intentando mejorar su calidad.

Hemos seguido una metodología de investigación incremental. Lo que significa que empezamos

con generalizaciones con características promedio (delimitadas por el máximo de los elementos

a agregar) y acabamos con generalizaciones sin esa característica.

La primera generalización fue construida reemplazando el producto de la integral Choquet

original por diferentes t-normas. Estas generalizaciones fueron soportadas por un importante

concepto teórico que definimos: las funciones de pre-agregación. A diferencia de una agre-

gación normal, las pre-agregaciones son monótonas en una determinada dirección, siendo una

contribución importante en el campo de los operadores de agregación. Esta primera general-

ización genera funciones promedio y, cuando son usadas para tratar problemas de clasificación,

aumentan el rendimiento del clasificador.

En este punto, queríamos obtener una generalización de la Choquet integral que fuera una

agregación. Para ello, utilizamos la propriedad de la distributividad del producto, usado por

la integral Choquet (integral Choquet en su forma expandida). Reemplazamos el producto

de la integral Choquet en su forma expandida por cópulas, introduciendo el concepto de CC-

integrales. Las CC-integrales son generalizaciones promedio de la integral Choquet extendida.

Mostramos que las CC-integrales pueden producir resultados competitivos con respecto a las

pre-agregaciones e incluso más precisos que la integral Choquet original y el MRD clásico de

la regla ganadora.

En el paso anterior introdujimos las CC-integrales. Una de ellas estaba basada en una cópula

que hacia uso de un parámetro α, CαC-integral. Para intentar mejorar el rendimiento de

este nuevo concepto creamos una metodología para ajustar el valor de dicho parámetro.

Para ello adaptamos el algoritmo evolutivo de FARC-HD. Debemos destacar que una CαC-

integral es una CC-integral y, como consecuencia, también es un operador promedio. En el

estudio experimental mostramos que este método también permite mejorar el rendimiento del
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SCBRDs.

Hasta este punto, solo habíamos presentado generalizaciones de la integral Choquet con car-

acterísticas promedio. Sin embargo, los clasificadores difusos del estado del arte usan agre-

gaciones sin características promedio. Por lo tanto, para producir generalizaciones aún mas

competitivas, definimos la familia de funciones de fusión 0-absorventes por la izquierda, F.

Además, la generalización de la integral Choquet por una función F permite definir el concepto

de CF -integrales. Estas funciones son promedio o no, en función de la función F que generaliza

la integral Choquet. Demostramos que las CF -integrales promedio presentan buenos resulta-

dos cuando las comparamos contra otros operadores promedio. Además, las CF -integrales no

promedio son comparables con operadores de agregación clásicos no promedio. Finalmente,

mostramos que las CF -integrales no promedio superan estadisticamente todas las promedio,

reforzando la idea de que no obtener un resultado limitado por el máximo es una buena opción

para abordar problemas de clasificación.

El culmen de nuestras generalizaciones lo alcanzamos cuando generalizamos la Choquet in-

tegral extendida por dos funciones, F1 y F2. El resultado de esta generalización lo hemos

llamado CF1F2-integrales. Estas funciones tienen un crecimiento ordenado en una dirección

(OD-crecimiento) y, por lo tanto, representan un nivel diferente de operadores de agregación.

Hemos creado una metodología para seleccionar la función que actúe como F1 y la que lo

haga como F2, utilizando el concepto de grados de fuerza y de dominancia. Para las CF1F2-

integrales consideradas en el estudio experimental, hemos mostrado que cinco combinaciones

diferentes de F1 y F2 producen generalizaciones que son equivalentes, o incluso mejores, que

clasificadores difusos del estado del arte como FARC-HD, IVTURS o FURIA.

Finalmente vamos a realizar las conclusiones generales de la tesis en relación a los objetivos

que nos habíamos marcado al comienzo de la misma:

◦ Hemos aplicado el desarrollo de las generalizaciones de la integral Choquet en el MRD

del clasificador difuso FARC-HD, que es uno de los clasificadores difusos más precisos e

interpretables de la actualidad, y hemos mejorado su calidad. Destacamos que éste era

el objetivo principal de la tesis.

◦ Hemos construido las generalizaciones cambiando el operador producto en la Choquet

integral original, y en su forma expandida, por diferentes funciones de agregación. Esto

nos permitió definir importantes conceptos en el campo de los operadores de agregación

como:
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CT -integrales: Generalizaciones de la integral Choquet por t-normas.

CC-integrales: Generalizaciones de la integral Choquet expandida por cópulas.

CF -integrales: Generalizaciones de la integral Choquet estándar por funciones F.

Donde F, es una familia de funciones de fusión que hemos creado en la tesis.

CF1F2-integrales: Generalizaciones de la integral Choquet expandida por dos fun-

ciones, F1 and F2.

◦ Hemos introducido una metodología para adaptar el modelo evolutivo de FARC-HD

para aprender una medida difusa, de forma que se adapta a cada clase del problema.

De esta manera, hemos aumentado el rendimiento del sistema.

◦ Las generalizaciones desarrolladas presentan comportamientos promedio y no promedio.

De esta forma, las hemos comparado contra MRDs clásicos publicados en la literatura

y clasificadores difusos estados del arte.

– Al comparar nuestros métodos promedio contra el MRD clásico de la regla ganadora,

en la mayoría de las ocasiones nuestras propuestas dan un rendimiento superior

– Comparando las generalizaciones con características no promedio contra clasifi-

cadores difusos estado del arte, tenemos que nuestros métodos son equivalentes, o

incluso mejores, a los métodos considerados.
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a b s t r a c t 

This paper introduces the concept of Choquet-like Copula-based aggregation function (CC-integral) and 

its application in fuzzy rule-based classification systems. The standard Choquet integral is expanded by 

distributing the product operation. Then, the product operation is generalized by a copula. Unlike the 

generalization of the Choquet integral by t-norms using its standard form (i.e., without distributing the 

product operator), which results in a pre-aggregation function, the CC-integral satisfies all the conditions 

required for an aggregation function. We build some examples of CC-integrals considering different ex- 

amples of copulas, including t-norms, overlap functions and copulas that are neither t-norms nor overlap 

functions. We show that the CC-integral based on the minimum t-norm, when applied in fuzzy rule- 

based classification systems, obtains a performance that is, with a high level of confidence, better than 

that which adopts the winning rule (maximum). We concluded that the behavior of CC-integral is sim- 

ilar to the best Choquet-like pre-aggregation function. Consequently, the CC-integrals introduced in this 

paper can enlarge the scope of the applications by offering new possibilities for defining fuzzy reasoning 

methods with a similar gain in performance. 

© 2016 Elsevier B.V. All rights reserved. 

1. Introduction 

Whenever we face the task of organizing instances in various 

predefined categories according to their different features, we have 

the so-called classification problem [1] . In general, one applies a 

learning algorithm, which, using the available information about 

the instances, is able to learn a decision function, called classifier, 

which is used to perform the classification for future instances. 

Classification problems are present in many different real-world 

problems. For example, Patidar et al. [2] developed a method for 

diagnosis of coronary artery disease classifying heart rate signals, 

Galar et al. [3,4] presented a survey in fingerprint classification, 

Huang and Lin [5] developed a system to classify multiple har- 

monic sources (which distort the original frequency) in a power 
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quality problem and finally, a study using different classifiers in 

earthquake predictions is done in [6] . 

Fuzzy Rule-Based Classification Systems (FRBCSs) [7] are widely 

used to deal with classification problems, since they usually 

present a good performance besides providing an interpretable 

model. The usage of linguistic terms for modeling the problem do- 

main allows these systems to be easily applied and understood by 

the final users of real world applications [8,9] . Moreover, FRBCSs 

can combine information coming from different sources, that is, 

expert knowledge, mathematical models, data bases, or empirical 

measures [9] . 

An important issue in any FRBCS is the considered Fuzzy Rea- 

soning Method (FRM) [10] , which consists in an inference proce- 

dure that uses the information stored in the knowledge base to 

determine the class in which new instances will be classified. To 

do so, in first place, one computes the compatibility between the 

example to be classified and each rule, which provides local in- 

formation. Then, this local information is aggregated, obtaining the 

global information associated with each known class. Finally, the 

class determined for the new example is the one presenting the 

maximum global information. 

http://dx.doi.org/10.1016/j.knosys.2016.12.004 
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The FRM of the Winning Rule (WR), which uses the maximum 

as aggregation function to obtain the global information, is widely 

used in the literature [11] . However, this method considers, for 

each class, just the information given by the fuzzy rule with the 

highest compatibility with the example and, thus, the available in- 

formation provided by all the other fired fuzzy rules is ignored. 

In order to avoid this shortcoming using averaging operators, Bar- 

renechea et al. [12] introduced a FRM that aggregates the informa- 

tion given by all the fired fuzzy rules using the Choquet integral 

[13] . Specifically, they achieved the best results when using the 

Choquet integral considering the power measure and applying the 

CHC evolutionary algorithm [14] to learn a different fuzzy measure 

for each class of the problem. 

Aimed at improving the results in [12] , Lucca et al. [15] in- 

troduced the concept of pre-aggregation function. These functions 

satisfy the same boundary conditions of an aggregation function, 

but are just directionally increasing [16] , that is, they are increasing 

along some specific ray (direction), but not for all directions. Fur- 

thermore, they presented the Choquet-like construction method of 

pre-aggregation functions, which are built by replacing the product 

operation of the Choquet integral by other t-norms. Finally, they 

applied these Choquet-like pre-aggregation functions in the FRM 

of the FRBCSs, showing that the use of Hamacher Product t-norm 

along with the power measure, outperformed the performance of 

the method by Barrenechea et al. [12] as well as that of the WR. 

From the methods introduced in [12,15] , the questions that 

arise are: “Is there a way to build a Choquet-like integral that 

is based on a more general aggregation than the product opera- 

tor, but that yields to an aggregation function instead of a pre- 

aggregation function? If so, is the FRBCS using this new method 

able to achieve a better or a similar performance than that of the 

most accurate Choquet-like pre-aggregation function?”

To answer the questions above, the objectives of this paper are: 

1. To introduce the notion of Choquet-like Copula-based aggrega- 

tion functions, called CC-integrals; 

2. To define different types of CC-integrals, using t-norms [17] , 

overlap functions [18–21] , and copulas [22] that are neither t- 

norms nor overlap functions; 

3. To analyze the behavior of CC-integrals when applied in FRBCSs. 

To test the quality of the FRBCS in which the FRM uses CC- 

integrals we consider 30 real-world problems that are publicly 

available in the KEEL database repository [23] . The performance of 

the classifiers is measured using the standard accuracy rate and 

the results are supported by appropriate statistical tests [24–26] . 

Specifically, we analyze the behavior of the different CC-integrals 

considered in this paper and we test if the best performing one is 

competitive versus the FRM of the WR, the classical Choquet inte- 

gral and the best Choquet-like based pre-aggregation function, that 

is, the one using the Hamacher t-norm (with the power measure 1 ), 

which is denoted by Ham PA in this paper. 

The paper is organized as follows. Section 2 presents some basic 

concepts that are necessary to develop the paper. Section 3 intro- 

duces the concept of CC-integral. The FRBCS using CC-integrals is 

presented in Section 4 . In Section 5 , we explain the experimental 

framework, including the description of the 30 datasets considered 

in this paper and statistical tests, used for comparing the achieved 

results. The analysis of the application and run-time of the CC- 

Integral in classification problems are presented in Section 6 and 

Section 7 is the Conclusion. 

In order to ease the readability of the paper, we have cre- 

ated three appendixes: the first one ( Appendix A ) containing a 

summary of the abbreviations used in this paper, the second 

1 For more explanation of the power measure see, [12,15] . 

( Appendix B ) in which is present an example of an overlap func- 

tion that is a copula and finally in the last one ( Appendix C ), where 

is shown the proof of the CC-integral is an increasing function. 

2. Preliminary concepts 

This section aims at introducing the background necessary to 

develop the paper. First, we present some basic concepts, and then 

some new results that are important in the context of the paper. 

2.1. Basic concepts 

The key concept in this paper is one of aggregation functions 

[11,27] : 

Definition 1. A function A : [0, 1] n → [0, 1] is said to be an aggre- 

gation function whenever the following conditions are satisfied: 

(A1) A is increasing 2 in each argument: for each i ∈ { 1 , . . . , n } , if 

x i ≤ y , then A (x 1 , . . . , x n ) ≤ A (x 1 , . . . , x i −1 , y, x i +1 , . . . , x n ) ; 

(A2) A satisfies the boundary conditions: A (0 , . . . , 0) = 0 and 

A (1 , . . . , 1) = 1 . 

Definition 2. An aggregation function T : [0, 1] 2 → [0, 1] is a t- 

norm if, for all x, y, z ∈ [0, 1], it satisfies the following properties: 

(T1) Commutativity: T (x, y ) = T (y, x ) ; 

(T2) Associativity: T (x, T (y, z)) = T (T (x, y ) , z) ; 

(T3) Boundary condition: T (x, 1) = x . 

If T satisfies (T3) ( and also T (1 , x ) = x only), then it is called a 

semi-copula. 

Definition 3. A function O : [0, 1] 2 → [0, 1] is said to be an overlap 

function if it satisfies the following conditions: 

(O1) O is commutative; 

(O2) O (x, y ) = 0 if and only if xy = 0 ; 

(O3) O (x, y ) = 1 if and only if xy = 1 ; 

(O4) O is increasing; 

(O5) O is continuous. 

Definition 4. A bivariate function C : [0, 1] 2 → [0, 1] is a copula if 

it satisfies the following conditions, for all x, x ′ , y, y ′ ∈ [0, 1] with 

x ≤ x ′ and y ≤ y ′ : 

(C1) C(x, y ) + C(x ′ , y ′ ) ≥ C(x, y ′ ) + C(x ′ , y ) ; 
(C2) C(x, 0) = C(0 , x ) = 0 ; 

(C3) C(x, 1) = C(1 , x ) = x . 

Copulas are functions that link (two-dimensional) probability 

distribution functions to their one-dimensional margins, playing 

an important role in the theory of probabilistic metric spaces and 

statistics [22] . 

Proposition 1 [17 , Proposition 9.8] [28 , Lemma 6.1.8, 

Lemma 6.3.1] . For each copula C : [0, 1] 2 → [0, 1], the Lukasiewicz 

and Minimum T-norms (T L , T M 

) T : [0, 1] 2 → [0, 1] it holds that: 

(i) T L ≤ C ≤ T M 

; 

(ii) C is increasing; 

(iii) C satisfies the Lipschitz property with constant 1, that is, for all 

x 1 , x 2 , y 1 , y 2 ∈ [0, 1], one has that: 

| C(x 1 , y 1 ) − C(x 2 , y 2 ) |≤| x 1 − x 2 | + | y 1 − y 2 | . 

2 For an increasing (decreasing) function we do not mean a strictly increasing 

(decreasing) function. 
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Table 1 

Examples of Copulas. 

(I) T-norms 

Definition Name Observations 

T M (x, y ) = min { x, y } Minimum Overlap function 

T P (x, y ) = xy Algebraic Product Overlap function 

T L (x, y ) = max { 0 , x + y − 1 } Lukasiewicz 

T HP (x, y ) = 

{
0 if x = y = 0 

xy 
x + y −xy 

otherwise 
Hamacher Product Overlap function 

(II) Non-associative overlap functions 

Definition Reference Observations 

O B (x, y ) = min { x √ 

y , y 
√ 

x } [18, Theorem 8] Cuadras-Augé family 

of copulas [32] 

O mM (x, y ) = min { x, y } max { x 2 , y 2 } [33, Example 3.1.(i)] , 

[34, Example 4] 

[35, Example 3.1] 

O α (x, y ) = xy (1 + α(1 − x )(1 − y )) , α ∈ [ −1 , 0[ ∪ ]0 , 1] [22, Apendix A (A.2.1)] , [36] 

(III) Other non-associative copulas 

Definition Reference Observations 

C F (x, y ) = xy + x 2 y (1 − x )(1 − y ) [17, Example 9.5 (v)] Non-commutative 

C L (x, y ) = max { min { x, 
y 
2 
} , x + y − 1 } [22, Apendix A (A.5.3a)] Non-commutative 

C Di v (x, y ) = 

xy + min { x,y } 
2 

[22, Apendix A (A.8.7)] 

An immediate consequence of Proposition 1 is that any copula 

is continuous. Then, each associative copula is a continuous t-norm 

[17, Corollary 9.9] . 

Theorem 1 [ 17 , Theorem 9.10] . Let T : [0, 1] 2 → [0, 1] be a t-norm. 

Then, the following statements are equivalent: 

(i) T is copula. 

(ii) T satisfies the Lipschitz property with constant 1. 

The definitions of overlap, t-norms and copulas can be easily 

extended to n-ary functions. [17,29–31] . 

Table 1 presents the copulas used in the rest of the paper, in 

particular, some t-norms T : [0, 1] 2 → [0, 1] ( Table 1 (I)), overlap 

functions O : [0, 1] 2 → [0, 1] ( Table 1 (II)) and copulas C : [0, 1] 2 

→ [0, 1] that are neither t-norms nor overlap functions ( Table 1 

(III)). Observe that the overlap functions and copulas shown in 

Table 1 are all non-associative. 

Now, we present the concept of fuzzy measure [13,37] , which 

is a central tool for defining the Choquet integral. In what follows, 

denote N = { 1 , . . . , n } , for an arbitrary n > 0. 

Definition 5. A function m : 2 N → [0 , 1] is said to be a fuzzy mea- 

sure if, for all X, Y ⊆ N , it satisfies the following properties: 

( m 1) Increasing: if X ⊆ Y , then m (X ) ≤ m (Y ) ; 

( m 2) Boundary conditions: m (∅ ) = 0 and m (N) = 1 . 

Regarding aggregation functions, we use fuzzy measures to ana- 

lyze the relationship among the elements that we are aggregating, 

obtaining the relevance of a coalition. In this paper, we adopt the 

power measure m PM 

: 2 N → [0 , 1] , which is defined, for all X ⊆ N , 

by 

m PM 

(X ) = 

( | X | 
n 

)q 

, with q > 0 . (1) 

The choice for this fuzzy measure was based on the results ob- 

tained by Barrenechea et al. [12] , who introduced an evolutionary 

algorithm to define the most suitable q to be used in the defini- 

tion of the measure for each class. See also the results shown in 

[15,36,38] , which also make use of such approach. 

The Choquet integral generalizes the Lebesgue integral, defined 

considering additive measures. The Choquet integral, however, con- 

siders fuzzy measures. The discrete Choquet integral [13] is defined 

on finite spaces: 

Definition 6 [ 11 , Definition 1.74] . Let m : 2 N → [0 , 1] be a fuzzy 

measure. The discrete Choquet integral is the function C m 

: 

[0 , 1] n → [0 , 1] , defined, for all of � x = (x 1 , . . . , x n ) ∈ [0 , 1] n , by: 

C m 

( � x ) = 

n ∑ 

i =1 

(
x (i ) − x (i −1) 

)
· m 

(
A (i ) 

)
, (2) 

where (x (1) , . . . , x (n ) ) is an increasing permutation on the input x , 

that is, 0 ≤ x (1) ≤ . . . ≤ x (n ) , where x (0) = 0 and A (i ) = { (i ) , . . . , (n ) } 
is the subset of indices corresponding to the n − i + 1 largest com- 

ponents of � x . 

Observe that the Eq. (2) can be also written as: 

C m 

( � x ) = 

n ∑ 

i =1 

(
x (i ) · m 

(
A (i ) 

)
− x (i −1) · m 

(
A (i ) 

))
, (3) 

which we call the Choquet integral in its expanded form. 

When using the Choquet integral in order to aggregate the in- 

puts, it is possible to consider the relevance of the different coali- 

tions (groups of inputs). 

2.2. Some new results on copulas and overlap functions 

Theorem 2. A copula C : [0, 1] 2 → [0, 1] is an overlap function if it 

is commutative and positive. 

Proof. Is immediate that any positive and commutative copula C 

satisfies (O1) and (O2) . It follows that: 

(O3): From (C3) , we have that C(1 , y ) = 1 if and only if y = 1 . From 

the monotonicity of C , this implies that C(x, y ) = 1 if and 

only if x = y = 1 . Thus, one concludes that C satisfies (O3) . 

(O4): From Proposition 1 (ii) , it follows that C is increasing. 

(O5): It follows from Proposition 1 (iii) that, since C satisfies the 

Lipschitz condition for a constant 1, then C is continuous. �

Notice that any overlap function which is also a copula, by (C3) , 

necessarily has 1 as neutral element and, by Proposition 1 , it sat- 

isfies the Lipschitz property with constant 1. 

Theorem 3. Let O : [0, 1] 2 → [0, 1] be an overlap function with neu- 

tral element and satisfying the Lipschitz condition for the constant 1. 
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O is a copula if, for all x, y, x ′ , y ′ ∈ [0, 1] with x ≤ x ′ and y ≤ y ′ , 
there exists z ≤ z ′ such that 

O (O (x, y ′ ) , z ′ ) = O (x, y ) (4) 

and 

O (O (x ′ , y ′ ) , z) = O (x ′ , y ) . (5) 

Proof. Trivially, (C2) and (C3) follows from (O2) and the well- 

known fact that whenever an overlap function has a neutral ele- 

ment then this element is 1. To prove (C1) , consider x, x ′ , y, y ′ , z, 

z ′ ∈ [0, 1] such that x ≤ x ′ , y ≤ y ′ and the Eqs. (4) and (5) hold. It 

follows that: 

O 

(
x ′ , y ′ 

)
− O 

(
x, y ′ 

)
≥ O 

(
O 

(
x ′ , y ′ 

)
, z ′ 

)
−O 

(
O 

(
x, y ′ 

)
, z ′ 

)
Lipschitz cond. for 1 

= O 

(
O 

(
x ′ , y ′ 

)
, z ′ 

)
− O ( x, y ) by Eq . ( 4 ) 

≥ O 

(
O 

(
x ′ , y ′ 

)
, z 

)
− O ( x, y ) 

= O 

(
x ′ , y 

)
− O ( x, y ) by Eq . ( 5 ) 

and then O (x, y ) + O (x ′ , y ′ ) ≥ O (x, y ′ ) + O (x ′ , y ) . �

Observe that when O has a neutral element, by its continu- 

ity and isotonicity, there always exist z, z ′ ∈ [0, 1] satisfying the 

Eqs. (4) and (5) . An example of an overlap function that is also a 

copula function, is introduced in Appendix B . 

3. Constructing Choquet-like Copula-based aggregation 

functions 

In this section, we introduce a method for constructing a family 

of aggregation functions obtained by combining the discrete Cho- 

quet Integral in its expanded form ( Eq. (3) ) with copulas, just sub- 

stituting the product operation in Eq. (3) by a copula. Such func- 

tions are called CC-integrals. 

In the following, consider N = { 1 , . . . , n } . 

Definition 7. Let m : 2 N → [0 , 1] be a fuzzy measure and C : [0, 1] 2 

→ [0, 1] be a bivariate copula. The Choquet-like Copula-based inte- 

gral with respect to m is defined as a function C 

C 
m 

: [0 , 1] n → [0 , 1] , 

given, for all x ∈ [0, 1] n , by 

C 

C 
m 

( � x ) = 

n ∑ 

i =1 

C 
(
x (i ) , m 

(
A (i ) 

))
− C 

(
x (i −1) , m 

(
A (i ) 

))
, (6) 

where (x (1) , . . . , x (n ) ) is an increasing permutation on the input x , 

that is, 0 ≤ x (1) ≤ . . . ≤ x (n ) , with the convention that x (0) = 0 , and 

A (i ) = { (i ) , . . . , (n ) } is the subset of indices of n − i + 1 largest com- 

ponents of � x . 

Proposition 2. Under the conditions of Definition 7 , C 

C 
m 

is well de- 

fined, for any copula C : [0, 1] 2 → [0, 1] . 

Proof. Since x (i ) ≥ x (i −1) and, by Proposition 1 , C is increasing, then 

it is immediate that C 

C 
m 

( � x ) ≥ 0 , for any �
 x ∈ [0 , 1] . On the other 

hand, by Proposition 1 , C satisfies the Lipschitz property with con- 

stant 1, that is, for all x 1 , x 2 , y 1 , y 2 ∈ [0, 1], one has that: 

| C(x 1 , y 1 ) − C(x 2 , y 2 ) |≤| x 1 − x 2 | + | y 1 − y 2 | . 
Then, since x (i ) − x (i −1) ≥ 0 and C is increasing, one has that: 

C(x (i ) , m (A (i ) )) −C(x (i −1) , m (A (i ) )) ≤ x (i ) − x (i −1) + m (A (i ) ) − m (A (i ) ) 

= x (i ) − x (i −1) . 

Thus, for any � x ∈ [0 , 1] , it follows that, 

C 

C 
m 

( � x ) = 

n ∑ 

i =1 

C 
(
x (i ) , m 

(
A (i ) 

))
− C 

(
x (i −1) , m 

(
A (i ) 

))

≤
n ∑ 

i =1 

x (i ) − x (i −1) 

= x (n ) 

≤ 1 . 

�

Consider a fuzzy measure m : 2 N → [0 , 1] and 

�
 x ∈ [0 , 1] n . The 

CC-integrals with respect to m , for each copula of Table 1 , assume 

a form included in Table 2 . 

Proposition 3. For any copula C : [0, 1] 2 → [0, 1] and fuzzy measure 

m : 2 N → [0 , 1] , C 

C 
m 

is idempotent. 

Proof. Considering � x = (x, . . . , x ) ∈ [0 , 1] n , one has that: 

C 

C 
m 

( � x ) = C(x, m (A (1) )) − C(0 , m (A (1) )) 

+ 

n ∑ 

i =2 

C(x, m (A (i ) )) − C(x, m (A (i ) )) 

= C(x, 1) − C(0 , 1) + 0 

= x. 

�

Proposition 4. For any copula C : [0, 1] 2 → [0, 1] and fuzzy measure 

m : 2 N → [0 , 1] , C 

C 
m 

satisfies the boundary conditions (A2) . 

Proof. Considering �
 0 = (0 , . . . , 0) ∈ [0 , 1] n and 

�
 1 = (1 , . . . , 1) ∈ 

[0 , 1] n , by Proposition 3 , one has that C 

C 
m 

( � 0 ) = 0 and 

C 

C 
m 

( � 1 ) = 1 . �

Proposition 5. For any copula C : [0, 1] 2 → [0, 1] and fuzzy measure 

m : 2 N → [0 , 1] , C 

C 
m 

is increasing (A1) . 

In order to ease the readability of the paper, the proof to the 

Proposition 5 was moved to Appendix C and from there, we can 

imply that the following results are immediate. 

Corollary 1. For any bivariate copula C : [0, 1] 2 → [0, 1] and fuzzy 

measure m : 2 N → [0 , 1] , it holds that min ≤ C 

C 
m 

≤ max . 

Theorem 4. For any bivariate copula C : [0, 1] 2 → [0, 1] and fuzzy 

measure m : 2 N → [0 , 1] , C 

C 
m 

is an average aggregation function. 

Proof. It follows from Propositions 4 and 5 , and Corollary 1 . �

4. Applying CC-integrals as aggregation functions in a fuzzy 

reasoning algorithm 

In this section, we recall firstly the main concepts of FRBCSs 

and, then, the algorithm of the proposed FRM using CC-integrals is 

presented. 

4.1. Fuzzy rule-based classification systems 

A classification problem is composed by m training examples 

characterized by n input attributes, denoted by 

�
 x p = (x p1 , . . . , x pn , y p ) , 

where 

• p = 1 , . . . , m ; 

• x pi , with i = 1 , . . . , n, is the value of the i th attribute; 
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Table 2 

Choquet-like Copula-based integral (CC-integral). 

Copula CC-integral 

TM C C M m 

( � x ) = 

∑ n 
i =1 ( min { x (i ) , m (A (i ) ) } − min { x (i −1) , m (A (i ) ) } ) 

TL C CL 
m 

( � x ) = 

∑ n 
i =1 ( max { 0 , x (i ) + m (A (i ) ) − 1 } − max { 0 , x (i −1) + m (A (i ) ) − 1 } ) 

TH C C HP 
m 

( � x ) = 

{
0 , if x = y = 0 

x (i ) m (A (i ) ) 

x (i ) + m (A (i ) ) −x (i ) m (A (i ) ) 
− x (i −1) m (A (i ) ) 

x (i −1) + m (A (i ) ) −x (i −1) m (A (i ) ) 
, otherwise 

OB C 
C O B 
m 

( � x ) = 

∑ n 
i =1 ( min { x (i ) 

√ 

m (A (i ) ) , m (A (i ) ) 
√ 

x (i ) } − min { x (i −1) 

√ 

m (A (i ) ) , m (A (i ) ) 
√ 

x (i −1) } ) 
O α C 

C O α
m 

( � x ) = 

∑ n 
i =1 (x (i ) m (A (i ) )(1 + α(1 − x (i ) )(1 − m (A (i ) ))) − x (i −1) m (A (i ) )(1 + α(1 − x (i −1) )(1 − m (A (i ) )))) 

OmM C 
C O mM 
m 

( � x ) = 

∑ n 
i =1 ( min { x (i ) , m (A (i ) ) } max { x (i ) 

2 , m (A (i ) ) 
2 } − min { x (i −1) , m (A (i ) ) } max { x (i −1) 

2 , m (A (i ) ) 
2 } ) 

CF C C F m 

( � x ) = 

∑ n 
i =1 (x (i ) m (A (i ) ) + x (i ) 

2 m (A (i ) )(1 − x (i ) )(1 − m (A (i ) )) − x (i −1) m (A (i ) ) + x (i −1) 
2 m (A (i ) )(1 − x (i −1) )(1 − m (A (i ) ))) 

CL C 
C C L 
m 

( � x ) = 

∑ n 
i =1 ( max { min { x (i ) , 

m (A (i ) ) 

2 
} , x (i ) + m (A (i ) ) − 1 } − max { min { x (i −1) , 

m (A (i ) ) 

2 
} , x (i −1) + m (A (i ) ) − 1 } ) 

CDiv C 
C C Di v 
m 

( � x ) = 

∑ n 
i =1 

(
x (i ) m (A (i ) )+ min { x (i ) , m (A (i ) ) } 

2 
− x (i −1) m (A (i ) )+ min { x (i −1) , m (A (i ) ) } 

2 

)

• y p ∈ C = { C 1 , C 2 , . . . , C M 

} is the label of the class of the p th 

training example. 

Although one may find in the literature several techniques to 

deal with classification problems, FRBCSs [39] are indeed the one 

most frequently adopted. Observe that FRBCSs allow us to have all 

the available information in the system modeling, obtaining an in- 

terpretable model and producing quite accurate results. A FRBCSs 

is composed by: 

(i) The Knowledge Base: it contains the Rule and the Data 

Bases, with, respectively, the fuzzy inference rules and the 

membership functions; 

(ii) The Fuzzy Reasoning Algorithm: it is the inference proce- 

dure used to classify examples considering all the informa- 

tion stored in the Knowledge Base. 

We adopt the following structure for the fuzzy rules: 

Rule R j : If x p1 is A j1 and . . . and x pn is A jn 

then Class is C j with RW j , (7) 

where: 

• x p = (x p1 , . . . , x pn ) is the n-dimensional vector of attribute val- 

ues corresponding to an example x p of the p th example; 

• R j is the label of the j th rule; 

• A ji is an antecedent fuzzy set which models a linguistic term; 

• C j is the class of the j th rule; 

• RW j ∈ [0, 1] is the rule weight [40] , which, in this case, is com- 

puted using the certainty factor. 

We adopt the FARC-HD [38] fuzzy classifier (Fuzzy Association 

Rule-based Classification model for High Dimensional problems), to 

accomplish the fuzzy rule learning process. The learning process of 

FARC-HD is composed of the following three stages: 

1) Fuzzy association rule extraction for classification: This step is 

aimed at generating fuzzy association rules from frequent item- 

sets. To do so, a search tree is constructed for each class com- 

puting the confidence and support of each item or itemset (in 

this algorithm an item is a linguistic label). We have to point 

out that the number of antecedents of the different fuzzy rules 

can be different and their maximum length is determined by 

the maximum depth allowed for the search tree. 

2) Candidate rule prescreening: This phase uses an instance weight- 

ing scheme to preselect the most interesting rules and conse- 

quently, to decrease the computational cost of the evolutionary 

process. 

3) Genetic rule selection and lateral tuning: The final stage of the 

method consists in the application of an evolutionary algorithm 

to perform both the lateral tuning of the fuzzy sets [41] and the 

selection of the best rules generated in the previous step. 

4.2. The new fuzzy reasoning method 

Once the fuzzy rules composing the system have been created, 

it is necessary a mechanism for classifying new examples. Specif- 

ically, let x p = (x p1 , . . . , x pn ) be a new example to be classified, L 

being the number of rules in the rule base and M being the num- 

ber of classes of the problem. The new algorithm where our CC- 

functions are applied in the FRM is composed of the following 

steps: 

Step 1 To compute the matching degree , that is, the strength of the 

activation of the if-part of the rules for the example x p , 

which is computed using a t-norm T ′ : [0, 1] n → [0, 1]: 

μA j (x p ) = T ′ (μA j1 (x p1 ) , . . . , μA jn (x pn )) , with j = 1 , . . . , L. 

(8) 

Step 2 The Association degree is computed, that is, for the class of 

each rule, the matching degree is weighted with the corre- 

sponding rule weight, given by: 

b k j (x p ) = μA j (x p ) · RW 

k 
j , with k = Class (R j ) , j = 1 , . . . , L. 

(9) 

Step 3 The example classification soundness degree for all classes is 

calculated, applying the CC-functions ( Eq. (6) ) to combine 

the association degrees obtained in the previous step, as 

follows: 

Y k (x p ) = C 

C 
m 

(
b k 1 (x p ) , . . . , b 

k 
L (x p ) 

)
, with k = 1 , . . . , M, (10) 

where C 

C 
m 

is the obtained CC-integral, for the copula C : 

[0, 1] 2 → [0, 1] and fuzzy measure m : 2 N → [0 , 1] ( Table 2 ). 

Since, whenever b k 
j 
(x p ) = 0 , it holds that: 

C 

C 
m 

(b k 1 (x p ) , . . . , b 
k 
L (x p )) 

= C 

C 
m 

(b k 1 (x p ) , . . . , b 
k 
j−1 (x p ) , b 

k 
j+1 (x p ) , . . . , b 

k 
L (x p )) , 

then, for practical reasons, only those b k 
j 
> 0 are considered 

in Eq. (10) . 

Step 4 A Classification decision function F : [0 , 1] M → { 1 , . . . , M} is 

applied over the example classification soundness degrees 

of all classes and thus, the class corresponding to the max- 

imum soundness degree is determined by: 

F (Y 1 , . . . , Y M 

) = min 

k =1 ... M 

k s.t. Y k = max 
w =1 , ... ,M 

(Y w 

) . (11) 

In practical applications, it is sufficient to consider 

F (Y 1 , . . . , Y M 

) = arg max 
k =1 , ... ,M 

(Y k ) . (12) 
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Table 3 

Association degrees for each class. 

C 1 C 2 C 3 

R x 0 .9 0 .89 0 .1 

R y 0 .2 0 .88 0 .3 

R z 0 .1 0 .86 0 .25 

As it can be observed, in the third step of the FRM we pro- 

pose to use CC-integrals, which are associated with a fuzzy mea- 

sure. According to the results obtained in several works (see, e.g., 

in [12,15,36] ), we have selected the power measure where the ex- 

ponent q is genetically learned. Therefore, for each class of the 

problem we create a different fuzzy measure by learning the most 

appropriate exponent to model the interaction among the rules of 

that class. To do so, the CHC evolutionary algorithm [14] is consid- 

ered since it is widely used in this domain [24,42] . The main spe- 

cific features of our evolutionary model are the following ones. 3 

• Coding Scheme: A chromosome is formed of as many genes as 

classes ( G k , k = 1 , . . . , M), using a real codification. That is: 

C CHOQUET = { G 1 , . . . , G M 

} 
where G k ∈ [0.01, 1.99] with k = 1 , . . . , M. However, the sug- 

gested range of the real values the exponents, q k , is [0.01, 100]. 

For this reason, it is necessary to adapt the value of the genes 

to the real range, as following: 

q k = 

{
G k if 0 < G k ≤ 1 

1 
2 −G k 

if 1 < G k < 2 

(13) 

• Initial Gene Pool: An individual containing all genes with value 

1 is included in the population. In this manner, the cardinality 

measure is obtained. 

• Chromosome Evaluation: The most common metric for classi- 

fication problems is used, i.e. the accuracy rate. This metric is 

the percentage of correctly classified examples. 

• Crossover Operator: The parent centrix BLX crossover operator 

[43] is selected as it is usually applied for real codifications. 

• Restarting Approach In order to avoid the local optima, the al- 

gorithm uses a restarting approach since it does not apply mu- 

tation during the recombination phase. To do so, a threshold is 

firstly initialized and it is decreased when no new individuals 

are included in the population after the crossover stage. When 

the threshold value is less than zero, all chromosomes (except 

the best one, as in the elitist scheme) are regenerated randomly 

with the purpose of introducing new diversity to the search. 

The evolutionary process also finishes when three restarts are 

sequentially done without improving the best solution. 

In order to clarify how the new FRM works, we introduce a 

short example considering different aggregation functions to per- 

form the third step of the FRM where the local information given 

by several rules (obtained after step 2 of the FRM) is aggregated 

according to the classes of the rules. More specifically, we compare 

the FRM that uses the maximum as aggregation function and our 

new methodology considering the CC-integral based on the mini- 

mum t-norm, TM . 

Example 1. A classification problem composed of 3 classes is stud- 

ied. In Table 3 we introduce the association degrees obtained by 

the fuzzy rules fired when classifying a new example. As it can 

be observed there are three fired rules for each class (columns of 

Table 3 ) and consequently, three aggregations have to be computed 

(one for each class) in the third step of the FRM. 

3 For more details about the evolutionary method see [12] . 

In order to show the behavior of our new method we consider 

the usage of the CC-integral based on the minimum t-norm ( T M 

) 

and the cardinality measure, that is, the power measure setting the 

exponent q to 1 (in order to ease the understanding of the calcula- 

tions). We compare it versus the classical FRM of the winning rule, 

which uses the maximum as the aggregation function. The values 

computed for each class using the two approaches are the follow- 

ing ones: 

• C 1 

– Sorted association degrees: [0.1, 0.2, 0.9] 
∗ Maximum = 0.9 
∗ TM = (min(0.1, 3 

3 ) − min(0, 3 
3 )) + (min(0.2, 2 

3 ) 

− min(0.1, 2 
3 )) + (min(0.9, 1 

3 ) − min(0.2, 1 
3 )) = 0.33 

• C 2 

– Sorted association degrees: [0.86, 0.88, 0.89] 
∗ Maximum = 0.89 
∗ TM = (min(0.86, 3 

3 ) − min(0, 3 
3 )) + (min(0.88, 2 

3 ) 

− min(0.86, 2 
3 )) + min((0.89, 1 

3 ) − min(0.88, 1 
3 )) = 0.86 

• C 3 

– Sorted association degrees: [0.1, 0.25, 0.3] 
∗ Maximum = 0.3 
∗ TM = (min(0.1, 3 

3 ) − min(0, 3 
3 )) + (min(0.25, 2 

3 ) 

− min(0.1, 2 
3 )) + (min(0.3, 1 

3 ) − min(0.25, 1 
3 )) = 0.3 

Once the association degree for each class has been computed, 

the predicted class is the one associated with the largest value (last 

step of the FRM): 

• Maximum = Max[ 0.9 , 0.89, 0.3] = C 1 

• TM = Max[0.33, 0.86 , 0.3] = C 2 

It can be noticed that the usage of the maximum as an aggrega- 

tion operator predicts class 1, since it only considers the informa- 

tion provided by one rule per class. However, if we look in detail 

at the association degrees presented in Table 3 , this prediction may 

not be ideal, since that the class 1 has one rule having a high com- 

patibility whereas the class 2 has three rules having high compat- 

ibilities (slightly less than that of class 1). Therefore, class 2 seems 

to be a most appropriate option. This fact is taken into account 

by our new approach since the information given by all the fuzzy 

rules and not only by the best one is considered and consequently, 

class 2 is predicted. 

Furthermore, in the example it can be observed that the behav- 

ior of the CC-integrals can be different depending on the values 

to be aggregated. For example, for class 2 the result is the mini- 

mum of the values to be aggregated, for class 3 is the maximum 

whereas for class 1 is an intermediate value. Therefore, the FRM is 

more flexible, which may imply a enhancement of its behavior. 

5. Experiment specifications 

In this section, firstly we present the real world classification 

problems besides the configuration for the considered approaches. 

After that, we introduce the statistical tests that are necessary to 

compare the achieved results. 

5.1. Datasets 

We have selected 30 real world datasets from the KEEL dataset 

repository [23] . Table 4 presents the characteristics of the these 

datasets: the identifier (Id.), the name (Dataset), the number of in- 

stances (# Inst) , the number of attributes (# At t ) and the number 

of classes (# Class ) . 

Some datasets, namely: magic, page-blocks, penbased, ring, 

satimage and twonorm , were stratified sampled at 10% in order to 

reduce their size for training. Some examples containing missing 

information were removed, e.g., in the wisconsin dataset. 
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Table 4 

Summary of the properties of the considered datasets. 

Id. Dataset # Inst # Att # Class 

App Appendiciticis 106 7 2 

Bal Balance 625 4 3 

Ban Banana 5300 2 2 

Bnd Bands 365 19 2 

Bup Bupa 345 6 2 

Cle Cleveland 297 13 5 

Eco Ecoli 336 7 8 

Gla Glass 214 9 6 

Hab Haberman 306 3 2 

Hay Hayes-Roth 160 4 3 

Iri Iris 150 4 3 

Mag Magic 1,902 10 2 

New Newthyroid 215 5 3 

Pag Pageblocks 5,472 10 5 

Pen Penbased 10,992 16 10 

Pho Phoneme 5,404 5 2 

Pim Pima 768 8 2 

Rin Ring 740 20 2 

Sah Saheart 462 9 2 

Sat Satimage 6,435 36 7 

Seg Segment 2,310 19 7 

Shu Shuttle 58,0 0 0 9 7 

Spe Spectfheart 267 44 2 

Tit Titanic 2,201 3 2 

Two Twonorm 740 20 2 

Veh Vehicle 846 18 4 

Vow Vowel 990 13 11 

Win Wine 178 13 3 

Wis Wisconsin 683 11 2 

Yea Yeast 1,484 8 10 

The model used in this paper, which was proposed in 

[12,36,42] , consists of a 5-fold cross-validation model, where a 

dataset is split in five partitions randomly. Each partition presents 

20% of the examples. Four partitions are used for training, and the 

other is used for testing. This process is repeated five times, us- 

ing a different partition to test the formed system each time. The 

performance of the approaches are measured considering each par- 

tition, based on the accuracy rate, which is defined by the number 

of correctly classified examples divided by the total number of ex- 

amples for each partition. After, is calculate the average result of 

the five testing partitions, which is output of the algorithm. 

5.2. Configuration of the different classifiers used in the study 

The parameter set-up for the FARC-HD algorithm is the one 

suggested by the authors: 

• The conjunction operator T ′ is the product t-norm; 

• The rule weight RW j is the certainty factor; 

• 5 linguistic labels per variable; 

• The minimum support is 0.05; 

• The threshold for the confidence is 0.8; 

• The depth of the search trees is limited to 3; 

• k t , the parameter that determines the number of fuzzy rules 

that cover each example, is equal to 2. 

The features considered for the evolutionary process are the fol- 

lowing ones: 

• The populations are composed of 50 individuals; 

• 30 bits per gen are considered for the Gray codification; 

• The maximum number of evaluations is 20.0 0 0. 

Finally, for the copula O α , the value adopted for the α parame- 

ter is 0.1 ( α = 0 . 1 ), since this value was tested in [36] previously, 

although in a different method, but providing better performance 

than the other values. 

5.3. Statistical tests for performance comparison 

In order to give statistical support for the analysis of the results, 

we consider the usage of hypothesis validation techniques [24,25] . 

Specifically, we use non-parametric tests, since the initial condi- 

tions that guarantee the reliability of the parametric tests cannot 

be performed [26] . 

In fact, we use the aligned Friedman rank test [44] to detect 

statistical differences among a group of results and to show how 

good a method is with respect to its partners. In this method, the 

algorithm achieving the lowest average ranking is the best one. Ad- 

ditionally, we have graphically shown the obtained ranks to easily 

observe which is the best method. 

Furthermore, we apply the post-hoc Holm’s test [45] to study 

whether the best ranking method rejects the equality hypothesis 

with respect to its partners. The post-hoc procedure allows us to 

know if a hypothesis of comparison could be rejected at a specified 

level of significance α. Specifically, we compute the adjusted p - 

value (APV) to take into account that multiple tests are conducted. 

As a result, we can directly compare the APV with the level of sig- 

nificance α so as to be able to reject the null hypothesis. 

Finally, we also consider the usage of the Wilcoxon test [46] in 

order to perform pair-wise comparisons. 

6. Analysis of the application of the CC-integral in classification 

problems 

This section is aimed at providing an analysis of the appli- 

cation of CC-integral in real-world classification problems. As we 

have mentioned in Section 4 , we use the FARC-HD fuzzy classifier 

whose FRM is adapted to use CC-integrals (the ones introduced in 

Table 2 ). Specifically, the goal of the analysis is to study whether 

the usage of CC-integrals in the FRM allows us to obtain results as 

accurate as those achieved by the best performing pre-aggregation 

functions introduced in [15] , which is named in this paper Ham PA . 

To do so, the study is divided in three main parts: 

• In first place, we want to determine the best CC-Integral. For 

that, we conduct a study comparing the different copulas con- 

sidered in this work (the ones shown in Table 1 ), which pro- 

duce all the CC-integrals presented in Table 2 . For this task, we 

divide the study according to the type of copula: t-norm, over- 

lap or copula (which is neither a t-norm nor an overlap func- 

tion), and finally, we compare the best of each group to deter- 

mine the best CC-integral ( Section 6.1 ). 

• Then, we compare if the best CC-integral is able to improve 

the results provided by the classical FRM of the WR as well as 

the standard Choquet integral and those provided by the best 

pre-aggregation function introduced [15] , that is, the Ham PA 

( Section 6.2 ). 

• Finally, we analyze the execution time taken by the different 

approaches ( Section 6.3 ). 

6.1. Analyzing the behavior of the different CC-integrals 

This subsection is aimed at analyzing the behavior of the pro- 

posed generalizations in the FRM. In order to determine the best 

CC-integral in this study we compare them by groups of copulas 

according to their types (copulas that are t-norms, overlaps and 

those that are neither t-norms nor overlap functions, the last de- 

note by n-copulas). From each group, we select the best one and 

we compare them to determine the best CC-integral. 

The results achieved in testing by the different CC-integrals are 

presented in Table 5 by columns, and in each line, containing the 

mean of accuracy obtained in the five partitions of the dataset 

where the best global result for each dataset is highlighted in 

boldface . 
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Table 5 

Accuracy rate achieved in testing for the different CC-integrals. 

Dataset TM TL TH OB O α OmM CF CL Cdiv 

App 85.84 82.99 84.94 81.13 85.84 81.13 83.98 83.03 83.03 

Bal 81.60 80.64 80.96 81.28 79.52 80.32 81.28 82.24 78.88 

Ban 84.30 84.43 85.91 86.17 86.11 87.00 85.85 86.79 85.38 

Bnd 71.06 68.24 69.38 66.01 67.72 67.41 70.47 68.54 67.70 

Bup 61.45 65.51 64.06 63.19 67.25 66.38 65.51 62.90 64.93 

Cle 54.88 57.57 56.91 56.92 55.23 56.55 55.92 54.54 54.89 

Eco 77.09 73.53 76.20 74.41 78.86 76.50 77.40 78.58 77.38 

Gla 69.17 61.71 64.97 66.39 63.55 60.29 60.76 63.12 66.82 

Hab 74.17 73.21 70.90 71.22 73.51 69.93 74.48 72.86 72.86 

Hay 81.74 79.46 79.49 78.75 79.49 78.72 78.75 79.49 78.75 

Iri 92.67 93.33 93.33 93.33 92.67 94.67 94.00 92.67 93.33 

Mag 79.81 80.34 79.86 79.34 80.07 79.02 80.02 79.97 79.07 

New 93.95 93.02 93.95 94.42 94.42 96.28 94.42 93.95 94.88 

Pag 93.97 93.98 93.61 93.97 94.88 94.16 94.16 93.79 94.34 

Pen 91.27 90.82 91.91 91.45 90.09 89.82 91.36 90.91 90.73 

Pho 82.94 81.83 83.40 83.55 83.46 82.62 82.73 83.53 83.10 

Pim 75.78 74.87 74.87 75.38 75.78 73.57 74.86 76.04 76.95 

Rin 87.97 89.46 89.19 89.73 90.41 88.38 89.59 88.65 89.59 

Sah 70.78 69.03 69.48 67.53 66.89 67.95 68.83 68.82 69.69 

Sat 79.01 78.54 79.94 79.62 78.85 78.69 79.63 79.16 79.00 

Seg 92.25 91.90 93.12 92.68 92.86 92.77 92.55 93.20 92.94 

Shu 98.16 97.66 97.29 97.52 97.47 97.24 96.41 97.79 98.07 

Spe 78.99 78.27 79.73 77.13 79.74 77.51 79.00 77.86 77.88 

Tit 78.87 78.87 78.87 78.87 78.87 78.87 78.87 78.87 78.87 

Two 85.14 85.68 84.59 84.73 84.59 85.14 84.32 85.14 83.92 

Veh 69.86 66.67 67.97 67.85 67.73 68.32 68.56 67.85 68.56 

Vow 68.89 66.26 67.88 66.57 67.47 67.37 66.97 65.76 68.38 

Win 93.83 95.48 96.08 94.35 94.38 96.62 96.62 98.32 95.51 

Wis 95.90 96.34 96.63 96.34 97.22 96.34 97.22 96.34 96.63 

Yea 57.01 57.75 57.61 57.28 56.40 57.34 57.55 57.82 57.88 

Mean 80.28 79.58 80.10 79.57 80.04 79.56 80.07 79.95 80.00 

Table 6 

Aligned Friedman and Holm test to compare the different CC-integrals derived from 

different families of copulas. 

t-Norm TM TL TH 

39.61 56.31 ( 0.02 ) 40.56 (0.88) 

Overlap OB O α OmM 

47.63 (0.23) 39.08 47.78 (0.23) 

n-Copula CL CF Cdiv 

39.76 (0.33) 49.08 47.65 (0.33) 

From the results shown in the previous table, it is possible no- 

tice that the behavior of the different CC-integrals derived from the 

same family of copulas are quite similar among themselves with 

the exception of Lukasiewicz (for t-norms) and OmM (for overlaps), 

which provided the worst results. Furthermore, it seems that the 

CC-integrals associated with the minimum t-norm, TM, achieved 

the best result in 9 datasets and the best average result among 

all CC-integrals under study. Therefore, a priori, TM would be the 

best CC-integral. Anyway, these conclusions cannot be meaningful 

without conducting the appropriate study. 

Specifically, we have carried out three multiple comparison sta- 

tistical tests (one for each family of aggregation functions) by ap- 

plying the aligned Friedman test and the post-hoc Holm’s test, 

whose results are shown in Table 6 . These results are grouped by 

rows according to the family of aggregation functions. In each row, 

we show the results of the three functions considered in this pa- 

per, for each family. The value of each cell correspond to the rank 

obtained by the aligned Friedman test, when comparing the dif- 

ferent functions belonging to the same family. The value shown in 

brackets represent the APV obtained by the Holm post-hoc test, us- 

ing as the control method the approach having the smallest rank, 

which is shown in boldface . The APV is underlined when there are 

statistical differences (considering a significance level of α = 0 . 1 ). 

As is shown in the first row of Table 6 , when considering t- 

norms, the results provided by TM are statistically better than 

those by TL and similar to those by TH. However, the fact that 

TM obtained a better overall mean providing the best result in 12 

datasets leads us to select it as the best t-norm. 

Regarding CC-integrals derived from overlap functions, we can 

see in the second row of Table 6 that the best ranked one is O α , 

but there are not statistical differences among them. From this 

group, we select O α as the representative, since it obtained the 

best overall mean and achieved the highest accuracy rate in 14 

data-sets and tie only once. 

Finally, the third row of Table 6 allows us to state that CF is the 

best option among the group of n-copulas. Although there are not 

statistical differences among the functions in this family, this cop- 

ula obtained the best ranking, which is based on obtaining the best 

result in 11 out of the 30 datasets, having a tie in two datasets. 

Once the best aggregation is determined for each family of cop- 

ulas, namely, TM, O α and CF, we conduct another statistical study 

to compare them among themselves. We have carried out again 

the aligned Friedman test to detect whether there are statistical 

differences among them or not. The obtained rankings are shown 

in Fig. 1 . Then we run the Holm’s statistical test using TM as con- 

trol method, since it provides the best ranking in the previous sta- 

tistical test. The obtained results by the Holm’s test are shown in 

Table 7 . From these results we can conclude that TH does not sta- 

tistically outperform neither O α nor CF. However, we select TM as 

the best option due to the fact that it obtained the best overall 

result, as shown in Table 5 . 

6.2. Comparison of the best CC-integral versus other averaging 

operators 

As we have shown in the previous section, the best CC-integral 

among the ones considered in this is study is the one related to 

the minimum t-norm, TM. In this section our aim is to compare 

this generalization against the classical FRM of the WR (it uses 

the maximum as aggregation function), the standard Choquet In- 
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Fig. 1. Rankings obtained by the best CC-integrals for each family of copulas. 

Table 7 

Holm test to compare the best CC-integrals for 

each family of copulas. 

Generalization APV 

O α 0 .98 

CF 0 .98 

Table 8 

Accuracy results achieved in test provided by the best CC-integral and other aver- 

aging operators. 

Dataset TM Choquet Ham PA WR 

App 85.84 80.13 82.99 83.03 

Bal 81.60 82.40 82.72 81.92 

Ban 84.30 86.32 85.96 83.94 

Bnd 71.06 68.56 72.13 69.40 

Bup 61.45 66.96 65.80 62.03 

Cle 54.88 55.58 55.58 56.91 

Eco 77.09 76.51 80.07 75.62 

Gla 69.17 64.02 63.10 64.99 

Hab 74.17 72.52 72.21 70.89 

Hay 81.74 79.49 79.49 78.69 

Iri 92.67 91.33 93.33 94.00 

Mag 79.81 78.86 79.76 78.60 

New 93.95 94.88 95.35 94.88 

Pag 93.97 94.16 94.34 94.16 

Pen 91.27 90.55 90.82 91.45 

Pho 82.94 82.98 83.83 82.29 

Pim 75.78 74.60 73.44 74.60 

Rin 87.97 90.95 88.78 90.00 

Sah 70.78 69.69 70.77 68.61 

Sat 79.01 79.47 80.40 79.63 

Seg 92.25 93.46 93.33 93.03 

Shu 98.16 97.61 97.20 96.00 

Spe 78.99 77.88 76.02 77.90 

Tit 78.87 78.87 78.87 78.87 

Two 85.14 84.46 85.27 86.49 

Veh 69.86 68.44 68.20 66.67 

Vow 68.89 67.58 68.18 67.98 

Win 93.83 93.79 96.63 96.60 

Wis 95.90 97.22 96.78 96.34 

Yea 57.01 55.73 56.53 55.32 

Mean 80.28 79.83 80.26 79.70 

tegral (the one that uses the product t-norm) and the best pre- 

aggregation function from [15] (Ham PA ). Table 8 shows the results 

achieved in testing by these four approaches, where the best global 

result for each dataset is highlighted in boldface . 

Looking at the results of these four approaches, it is noticeable 

that TM obtained the best average global result, which is simi- 

lar to that of Ham PA and it is superior to those of WR and the 

standard Choquet integral. In a closer look we can observe that 

TM obtains the best result in 12 datasets, whereas Ham PA , Cho- 

quet and WR provide the best results in 8, 5 and 4 datasets, re- 

Table 9 

Wilcoxon test to compare the best CC-integral versus the Ham PA , the Winning Rule 

and the standard Choquet integral. 

Comparison R + R − p-value 

TM vs. Ham PA 215.0 250.0 0.72 

TM vs. WR 311.5 153.5 0.09 

TM vs. Choquet 303.5 161.5 0.14 

spectively. 4 In order to support our previous results, we have car- 

ried out a set of pair-wise statistical comparisons using the well- 

known Wilcoxon signed-rank test [46] . Specifically, we have com- 

pared the best CC-integral, TM, versus WR, Ham PA and Choquet in- 

tegral. Table 9 shows the results of these comparisons, where R + 

indicates the ranks obtained by TM and R 

− represents the ranks 

achieved by the method used in each comparison. 

According to the obtained statistical results presented in 

Table 9 , we can affirm, with a high level of confidence, that the CC- 

integral defined by the minimum is better than the WR. Regarding 

the standard Choquet integral, we can observe that, although there 

are not statistical differences, the obtained p-value is low. Further- 

more, TM improves the results of the Choquet integral in 18 out of 

the 30 datasets considered in this study. These two facts, show that 

TM is enhancing the results provided by the standard Choquet in- 

tegral. Finally, we point out that, when comparing TM and Ham PA , 

the obtained p-value is high, which implies that the behavior of 

these two approaches is similar. 

6.3. Analyzing the execution time of the different CC-integrals 

In this subsection we present the analysis of the results in 

terms of the execution time. We must point out that this execu- 

tion time refers to all process, including the reading of the files 

containing the datasets, the execution of the learning algorithm as 

well as the classification of the training and testing examples and 

the writing of the output files. 

The experimnets have been carried out in a 8 nodes cluster 

connected via 1GB/s Ethernet LAN network. Half of these nodes 

are composed by 2 Intel Xeon E5-2620 v3 processors at 2.4 GHz 

(3.2 GHz with Turbo Boost) with 12 virtual cores in each one 

(where 6 of them are physical). Three of the remaining node are 

equipped with 2 Intel Xeon E5-2620 v2 processors at 2.1 GHz with 

the same number of cores than the previous ones. The last node 

is the master node, composed of an Intel Xeon E5-2609 processors 

with 4 physical cores at 2.4 GHz. All slaves nodes are equipped 

with 32GB of RAM memory, while the master works with 8GB 

of RAM memory. With the respect to storage specifications, all 

nodes uses Hard Disk Drivers featuring read/write performance of 

128 MB/s. 

We present in Table 10 the mean execution time of all differ- 

ent approaches considered in the study and we highlight in bold- 

face the aggregation that achieves the lowest execution time. From 

the execution times achieved, it is noticeable that all CC-integrals 

have a similar run-time (more or less one minute), being TL the 

quickest. In relation to the standard Choquet integral and the pre- 

aggregation function that considers the Hamacher product (Ham PA ) 

it is possible to observe that they have a similar execution time, 

even similar to the CC-integrals. This behavior is normal since all 

of them are based on the Choquet integral and the number of com- 

putations is the same. The small differences are due to the differ- 

ent aggregation function used. 

Regarding the FRM of the WR, as expected, it is the approach 

having the less execution time. This occurs because in this FRM it 

4 We have not considered in the count the Titanic dataset which have the same 

classification rate for all methods. 
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Table 10 

Average execution time considering all aggregations. 

Dataset TM TL TH OB O α OmM CF CL CDiv Choquet Ham PA WR 

App 0:05 0:05 0:05 0:04 0:06 0:06 0:06 0:06 0:05 0:05 0:05 0:01 

Bal 0:57 0:57 0:59 0:59 0:57 0:48 0:47 0:42 0:41 0:54 1:09 0:23 

Ban 2:37 2:16 2:36 2:32 2:15 3:40 3:13 2:11 2:50 2:41 2:19 0:25 

Bnd 0:28 0:27 0:33 0:34 0:32 0:32 0:29 0:25 0:29 0:31 0:29 0:14 

Bup 0:19 0:15 0:18 0:19 0:19 0:20 0:17 0:16 0:19 0:19 0:18 0:03 

Cle 0:29 0:25 0:30 0:32 0:33 0:32 0:34 0:30 0:28 0:35 0:31 0:19 

Eco 0:21 0:17 0:20 0:22 0:22 0:20 0:22 0:22 0:23 0:22 0:24 0:09 

Gla 0:11 0:10 0:13 0:14 0:14 0:13 0:14 0:11 0:12 0:12 0:13 0:05 

Hab 0:12 0:11 0:12 0:12 0:14 0:12 0:12 0:12 0:13 0:12 0:11 0:02 

Hay 0:05 0:05 0:05 0:05 0:06 0:05 0:05 0:04 0:04 0:05 0:05 0:03 

Iri 0:02 0:02 0:02 0:02 0:03 0:02 0:02 0:03 0:02 0:02 0:03 0:00 

Mag 2:22 2:41 2:50 2:39 2:41 4:29 3:41 2:23 2:27 2:47 2:54 0:55 

New 0:07 0:06 0:08 0:07 0:09 0:07 0:07 0:07 0:07 0:08 0:09 0:02 

Pag 0:23 0:20 0:23 0:22 0:24 0:26 0:23 0:25 0:23 0:23 0:22 0:09 

Pen 2:07 1:28 1:44 1:41 1:40 1:29 1:37 1:26 1:37 2:10 1:48 1:14 

Pho 3:35 3:36 4:04 3:58 5:27 3:46 3:26 2:57 3:07 5:04 4:57 1:11 

Pim 1:27 1:23 1:20 1:25 1:32 2:03 1:39 1:23 1:18 1:22 1:09 0:27 

Rin 0:41 0:48 0:40 0:42 0:32 0:40 0:37 0:31 0:29 0:46 0:33 0:23 

Sah 0:44 0:38 0:43 0:40 0:36 0:36 0:37 0:33 0:33 0:48 0:35 0:18 

Sat 1:17 1:03 1:01 0:58 1:00 0:52 0:52 0:48 0:50 1:14 1:04 0:57 

Seg 3:15 1:56 2:46 2:50 3:50 2:36 2:34 2:36 2:38 3:56 3:52 1:57 

Shu 1:04 0:48 1:00 0:50 1:04 0:48 0:44 0:58 0:57 1:15 0:54 0:18 

Spe 0:36 0:33 0:34 0:31 0:35 0:28 0:28 0:26 0:27 0:37 0:29 0:27 

Tit 0:51 0:50 0:53 0:51 1:02 0:44 0:42 0:39 0:39 0:52 1:02 0:10 

Two 0:45 0:46 0:43 0:45 0:47 0:59 0:54 0:42 0:44 0:44 0:44 0:29 

Veh 2:07 1:32 1:50 1:40 1:32 1:30 1:36 1:26 1:25 1:52 1:42 1:07 

Vow 1:55 1:16 1:56 1:55 1:31 1:56 2:07 1:47 1:51 1:53 1:39 0:49 

Win 0:02 0:02 0:02 0:02 0:02 0:01 0:02 0:02 0:03 0:02 0:02 0:01 

Wis 0:30 0:29 0:28 0:32 0:21 0:36 0:33 0:28 0:24 0:33 0:27 0:10 

Yea 1:49 1:38 1:57 1:57 2:22 2:15 2:30 1:41 1:47 2:04 2:17 0:46 

Mean 01:03 0:54 1:02 1:01 1:05 1:06 1:03 0:53 0:55 1:09 01:05 0:27 

is not necessary to perform as many calculations as with the CC- 

integrals based FRM (see Example 1 ). 

7. Conclusion 

In this paper, we introduce the notion of Choquet-like Copula- 

based aggregation function (CC-integral). We applied the CC- 

integral based on several kinds of copulas in FRBCSs, showing that 

the one based on the minimum t-norm presented the best results 

among the CC-integrals considered in this work. Furthermore, we 

highlight that this CC-integral allows to enhance the results of the 

classical FRM of the WR as well as those of the standard Choquet 

integral, and provides results that are competitive with those ob- 

tained by the Ham PA , offering new possibilities in defining FRMs 

with similar gain in performance. 

In future works, we intend to study the properties satisfied by 

the CC-integrals. We will also consider CC-integral in a fuzzy inter- 

val approach [47–51] , as, e.g., in [52,53] . 
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Appendix A. Abbreviations used in the paper 

In order to make a paper easy to read and clearer, we present 

in this appendix a table containing the abbreviations used through- 

out the paper. In Table A.11 is presented in each line the acronym 

followed by its meaning. 

Table A.11 

Abbreviations used in the paper. 

Abbreviation Meaning 

CC-integral Choquet-Like Copula-Based integral 

t-norm Triangular norm 

WR Winning Rule 

FRBCSs Fuzzy Rule-Based Classification Systems 

FRM Fuzzy Reasoning Method 

CHC Crossover using generational elitist selection with 

Heterogeneous recombination and Cataclysm mutation 

FARC-HD Fuzzy Association Rule-based Classification model for High 

Dimensional problems 

Appendix B. Example of an overlap function that is a 

non-associative copula 

We show that the overlap function O B is a copula. Consider x, 

y, x ′ , y ′ ∈ [0, 1] such that x ≤ x ′ and y ≤ y ′ . First observe that 

an equivalent definition for O B is the following one: O B (x, y ) = 

min { x, y } √ 

max { x, y } . Since O B is commutative, then it is sufficient 

to consider the following three cases: 

C ase 1: x ≤ x ′ ≤ y ≤ y ′ . In this case, one has that 

O B (x, y ) = x 
√ 

y , 

O B (x, y ′ ) = x 
√ 

y ′ , 
O B (x ′ , y ) = x ′ √ 

y , 

O B (x ′ , y ′ ) = x ′ 
√ 

y ′ . 
So, it holds that 

O B (x ′ , y ′ ) − O B (x ′ , y ) = x ′ 
√ 

y ′ − x ′ √ 

y = x ′ ( 
√ 

y ′ − √ 

y ) , 

O B (x, y ′ ) − O B (x, y ) = x 
√ 

y ′ − x 
√ 

y = x ( 
√ 

y ′ − √ 

y ) . 

Since x ≤ x ′ , then one concludes that 

O B (x ′ , y ′ ) − O B (x ′ , y ) ≥ O B (x, y ′ ) − O B (x, y ) . 
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Case 2: x ≤ y ≤ x ′ ≤ y ′ . In this case, one has that 

O B (x, y ) = x 
√ 

y , 

O B (x, y ′ ) = x 
√ 

y ′ , 
O B (x ′ , y ) = y 

√ 

x ′ , 
O B (x ′ , y ′ ) = x ′ 

√ 

y ′ . 

So, it holds that 

O B (x ′ , y ′ ) − O B (x, y ′ ) = x ′ 
√ 

y ′ − x 
√ 

y ′ = 

√ 

y ′ (x ′ − x ) , 

and 

O B (x ′ , y ) − O B (x, y ) = y 
√ 

x ′ − x 
√ 

y 

= 

√ 

y ( 
√ 

y 
√ 

x ′ − x ) 

= 

√ 

y ( 
√ 

yx ′ − x ) . 

Since 
√ 

y ≤
√ 

y ′ and 

√ 

yx ′ ≤
√ 

x ′ x ′ = x ′ , then it follows 

that 

O B (x ′ , y ′ ) − O B (x, y ′ ) ≥ O B (x ′ , y ) − O B (x, y ) . 

Case 3: x ≤ y ≤ y ′ ≤ x ′ . In this case, one has that 

O B (x, y ) = x 
√ 

y , 

O B (x, y ′ ) = x 
√ 

y ′ , 
O B (x ′ , y ) = y 

√ 

x ′ , 
O B (x ′ , y ′ ) = y ′ 

√ 

x ′ . 

So, it holds that 

O B (x ′ , y ′ ) − O B (x ′ , y ) = y ′ 
√ 

x ′ − y 
√ 

x ′ = 

√ 

x ′ (y ′ − y ) , 

O B (x, y ′ ) − O B (x, y ) = x 
√ 

y ′ − x 
√ 

y = x ( 
√ 

y ′ − √ 

y ) . 

Since x ≤ x ′ and ( 
√ 

y ′ − √ 

y ) ≤ y ′ − y, then one concludes 

that 

O B (x ′ , y ′ ) − O B (x ′ , y ) ≥ O B (x, y ′ ) − O B (x, y ) . 

Therefore, in all cases, O B (x ′ , y ′ ) + O B (x, y ) ≥ O B (x, y ′ ) + 

O B (x ′ , y ) , that is, O B satisfy (C1) . Since (C2) and (C3) are triv- 

ially satisfied by O B then O B is non-associative copula. 

Appendix C. Proofs 

This appendix is aimed to present the proof of Proposition 5 , 

which is recalled below. 

Proposition 5 . For any copula C : [0, 1] 2 → [0, 1] and fuzzy measure 

m : 2 N → [0 , 1] , C 

C 
m 

is increasing (A1) . 

Proof. Since C 

C 
m 

is trivially commutative, then it is sufficient to 

consider the case when the input � x is ordered, that is, x i = x (i ) , 

for each i = 1 , . . . , n . Also, by the transitivity, is it is sufficient to 

consider the following cases: 

(i) Consider x ( j) ≤ y ≤ x ( j+1) , for some j = 1 , . . . , n − 1 . Since, C 

is a copula, then it holds that: 

C(x ( j) , m (A ( j+1) )) + C(y, m (A ( j) )) 

≥ C(x ( j) , m (A ( j) )) + C(y, m (A ( j+1) )) . 

Thus, one has that 

C(x ( j) , m (A ( j) )) − C(x ( j) , m (A ( j+1) )) 

≤ C(y, m (A ( j) )) − C(y, m (A ( j+1) )) 

and, therefore, it holds that 

C(x ( j) , m (A ( j) )) − C(x ( j−1) , m (A ( j) )) + C(x ( j+1) , m (A ( j+1) )) 

−C(x ( j) , m (A ( j+1) )) 

≤ C(y, m (A ( j) )) − C(x ( j−1) , m (A ( j) )) + C(x ( j+1) , m (A ( j+1) )) 

−C(y, m (A ( j+1) )) . 

It follows that 

C 

C 
m 

(x 1 , . . . , x j , . . . , x n ) 

= 

n ∑ 

i =1 

C(x (i ) , m (A (i ) )) − C(x (i −1) , m (A (i ) )) 

≤
( 

j−1 ∑ 

i =1 

C(x (i ) , m (A (i ) )) − C(x (i −1) , m (A (i ) )) 

) 

+ 

(
C(y, m (A ( j) )) − C(x ( j−1) , m (A ( j) )) 

)
+ 

(
C(x ( j+1) , m (A ( j+1) )) − C(y, m (A ( j+1) )) 

)
+ 

( 

n ∑ 

i = j+2 

C(x (i ) , m (A (i ) )) − C(x (i −1) , m (A (i ) )) 

) 

= C 

C 
m 

(x 1 , . . . , x j−1 , y, x j+1 , . . . , x n ) . 

(ii) Consider x ( n ) ≤ y . Since C is increasing, it holds that 

C(x (n ) , m (A (n ) )) ≤ C(y, m (A (n ) )) , 

and, therefore, one has that 

C(x (n ) , m (A (n ) )) − C(x i , A (n −1) , m (A (n ) )) 

≤ C(y, m (A (n ) )) − C(x i , A (n −1) , m (A (n ) )) . 

It follows that: 

C 

C 
m 

(x 1 , . . . , x n ) = 

n ∑ 

i =1 

C(x (i ) , m (A (i ) )) − C(x (i −1) , m (A (i ) )) 

≤
( 

n −1 ∑ 

i =1 

C(x (i ) , m (A (i ) )) − C(x (i −1) , m (A (i ) )) 

) 

+ 

(
C(y, m (A (n ) ) − C(x (n −1) , m (A (n ) )) 

)
= C 

C 
m 

(x 1 , . . . , x n −1 , y ) . 

�
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a b s t r a c t 

This paper introduces the family of C F -integrals, which are pre-aggregations functions that 

generalizes the Choquet integral considering a bivariate function F that is left 0-absorbent. 

We show that C F -integrals are � 1 -pre-aggregation functions, studying in which conditions 

they are idempotent and/or averaging functions. This characterization is an important issue 

of our approach, since we apply these functions in the Fuzzy Reasoning Method (FRM) of 

a fuzzy rule-based classification system and, in the literature, it is possible to observe that 

non-averaging aggregation functions usually provide better results. We carry out a study 

with several subfamilies of C F -integrals having averaging or non-averaging characteristics. 

As expected, the proposed non-averaging C F -integrals obtain more accurate results than 

the averaging ones, thus, offering new possibilities for aggregating accurately the informa- 

tion in the FRM. Furthermore, it allows us to enhance the results of classical FRMs like the 

winning rule and the additive combination. 

© 2018 Elsevier Inc. All rights reserved. 

1. Introduction 

An effective approach to handle classification problems [25] is through the application of the Fuzzy Rule-Based Classifica- 

tion Systems (FRBCSs) [35] , since they provide the user with interpretable models by using linguist labels in their rules and, 

moreover, achieving accurate results. FRBCSs have been applied in several problems, including real-time vehicle classification 

[57] , health [52] or economy [49] , among many others. 

A key component in any FRBCS is the Fuzzy Reasoning Method (FRM) [14] , which determines how the information 

learned in form of fuzzy rules will be used to classify new examples. A crucial point in any FRM is the way to obtain the 

∗ Corresponding author. 
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information associated with each class of the problem. This is done by applying an aggregation [8,30,44] or, more recently, 

a pre-aggregation [11,12,22,40,42] function over the local information given by each fired rule of the FRBCS. 

In the literature, it is possible to find classical FRMs that consider, as the aggregation operator, the maximum (Winning 

Rule – WR) or the normalized sum (Additive Combination – AC). The first method takes into consideration only one rule (the 

one having the maximum compatibility with the example to be classified) and, obviously, has an averaging and idempotent 

behavior. On the other hand, the second method aggregates the information of all triggered rules and it has neither an 

averaging nor an idempotent behavior. Usually, the FRM of AC provides better performance than that the FRM of the WR, 

as it can be observed widely in the literature, since the most accurate FRBCSs currently (FURIA [33] , IVTURS [51] and FARC- 

HD [2] ) make use of the AC. 

Recently, several works were proposed to apply aggregation and pre-aggregation functions (with averaging and idem- 

potent characteristics) to aggregate the local information associated with each rule. The initial idea was proposed by Bar- 

renechea et al. [4] , where the Choquet integral [13] was used to perform this aggregation in a way that also took into ac- 

count the correlation between the rules. After that, this method was improved by Lucca et al. [40] , introducing the concept 

of pre-aggregation function, which is a generalization of the Choquet integral where the product operator of this function 

is replaced by a t-norm [36] . In [41] , the Choquet integral in its expanded form was generalized using copula functions [3] , 

instead of the product operator,obtaining aggregation functions called CC-integrals. 

In this paper, the product operator of the Choquet integral is replaced by a more general function F : [0, 1] 2 → [0, 1]. 

We study which are the minimal requirements that this function F must satisfy so that the obtained generalization of 

the Choquet integral is a pre-aggregation function. Specifically, we have found that the key property to achieve this is the 

presence of 0 as a left annihilator element, in which case the function F is called left 0-absorbent. 

The general aim is to apply such pre-aggregation functions in the FRM of a FRBCS, searching for more flexible ways of 

aggregating information. In this manner, it is possible to make an in-depth analysis of the their performances according to 

their averaging or non-averaging behavior. Observe that the non-averaging behavior is a novel approach, since we have not 

considered it in our previous works. 

Then, the first objective of this paper is the definition of the concept of C F -integral, which is a generalization of the 

Choquet integral based on a left 0-absorbent function F satisfying a minimal set of properties that guarantees that any C F - 

integral is a pre-aggregation function. Secondly, we analyze under which conditions such C F -integrals are idempotent and/or 

averaging pre-aggregation functions. In the sequence, we study subfamilies of C F -integrals, considering left 0-absorbent func- 

tions F that are (I) t-norms [36] , (II) overlap functions [5,10,19,20,23,24] , (III) copulas [3] that are neither t-norms nor overlap 

functions, (IV) other kinds of aggregation functions and (V) pre-aggregation functions. 

As done in [4,40,41] , we apply this generalization in the FRM of FRBCSs and we conduct an experimental study com- 

posed of two steps. The first one is based on C F -integrals having averaging characteristics, where we compare them among 

themselves in order to choose the representative for this family. After that, we compare this representative against the clas- 

sical FRM of WR, the standard Choquet integral, the best pre-aggregation achieved in [40] and the best CC-integral obtained 

in [41] . 

The second part of this analysis is concerned with C F -integrals having non-averaging characteristics. As done in the first 

part of the experimental study, firstly we determine the best function of this family and compare it against the classical 

non-averaging FRMs of AC and probabilistic sum. 

The experimental study was performed considering 33 datasets that are available in the KEEL database repository [1] . The 

standard accuracy rate is used to measure the performance of the classifiers and the results are supported by appropriate 

statistical tests [15,28,53] . 

The paper is organized in the following way. Section 2 is aimed at introducing the basic concepts that are necessary to 

understand the paper. The concept of C F -integral is introduced in Section 3 , where we analyze several properties, such as 

idempotency and averaging behaviors. The Section 4 presents the methodology to build a generalized FRM of FRBCSs using 

different C F integrals, configurations of the classifier used in this paper and the experimental framework. In Section 5 we 

show the experimental study, showing the results achieved in test considering this new approach, and the appropriate 

analysis. The conclusions are drawn in Section 6 . 

2. Basic concepts 

This section presents the preliminary concepts that are used in the development of this work. In our approach, the basic 

property that is considered for any bivariate function defined on [0, 1], is the following. 

Definition 1. A bivariate function F : [0, 1] 2 → [0, 1] with 0 as left annihilator element, that is, satisfying: 

( LAE ) ∀ y ∈ [0 , 1] : F (0 , y ) = 0 , 

is said to be left 0-absorbent. 

Moreover, the following two basic properties are also important: 

( RNE ) Right Neutral Element: ∀ x ∈ [0 , 1] : F (x, 1) = x ; 

( LC ) Left Conjunctive Property: ∀ x, y ∈ [0, 1]: F ( x, y ) ≤ x ; 



96 G. Lucca et al. / Information Sciences 435 (2018) 94–110 

Any bivariate function F : [0, 1] 2 → [0, 1] satisfying both (LAE) and (RNE) is called left 0-absorbent (RNE) -function. 

Now, we recall the concepts of aggregation and pre-aggregation functions, and specific types of aggregation functions, 

such as t-norms, overlap and copulas. 

Definition 2 [8,30,44] . A function A : [0, 1] n → [0, 1] is an aggregation function if the following conditions hold: 

( A1 ) A is increasing 1 in each argument: for each i ∈ { 1 , . . . , n } , if x i ≤ y , then A (x 1 , . . . , x n ) ≤ A (x 1 , . . . , x i −1 , y, x i +1 , . . . , x n ) ; 

( A2 ) A satisfies the boundary conditions: (i) A (0 , . . . , 0) = 0 and (ii) A (1 , . . . , 1) = 1 . 

Definition 3 [36] . An aggregation function T : [0, 1] 2 → [0, 1] is said to be a t-norm if, for all x, y, z ∈ [0, 1], the following 

conditions hold: 

( T1 ) Commutativity: T (x, y ) = T (y, x ) ; 

( T2 ) Associativity: T (x, T (y, z)) = T (T (x, y ) , z) ; 

( T3 ) Boundary condition: T (1 , x ) = T (x, 1) = x . 

Definition 4 [10,19,21] . A function O : [0, 1] 2 → [0, 1] is an overlap function if, for all x, y, z ∈ [0, 1], the following conditions 

hold: 

( O1 ) O is commutative; 

( O2 ) O (x, y ) = 0 if and only if x = 0 or y = 0 ; 

( O3 ) O (x, y ) = 1 if and only if x = y = 1 ; 

( O4 ) O is increasing; 

( O5 ) O is continuous. 

Definition 5 [3] . A bivariate function C : [0, 1] 2 → [0, 1] is said to be a copula if, for all x, x ′ , y, y ′ ∈ [0, 1] with x ≤ x ′ and 

y ≤ y ′ , the following conditions hold: 

( C1 ) C(x, y ) + C(x ′ , y ′ ) ≥ C(x, y ′ ) + C(x ′ , y ) ; 
( C2 ) C(x, 0) = C(0 , x ) = 0 ; 

( C3 ) C(x, 1) = C(1 , x ) = x . 

Observe that overlap functions, t-norms and copulas can be extended to n-ary functions (see, e.g., [26,27,29,36] ). 

Definition 6 [9] . Let � r = (r 1 , . . . , r n ) be a real n -dimensional vector, � r 	 = 

�
 0 . A function F : [0, 1] n → [0, 1] is � r -increasing if, for 

all vectors (x 1 , . . . , x n ) ∈ [0 , 1] n and for all c > 0 such that (x 1 + cr 1 , . . . , x n + cr n ) ∈ [0 , 1] n , it holds 

F (x 1 + cr 1 , . . . , x n + cr n ) ≥ F (x 1 , . . . , x n ) . (1) 

Similarly, ones defines an 

�
 r -decreasing function. 

Definition 7 [22,40] . Let � r = (r 1 , . . . , r n ) be a real n -dimensional vector, � r 	 = 

�
 0 . A function PA : [0, 1] n → [0, 1] is said to be an 

n-ary pre-aggregation function if it satisfies (A2) and it is � r -increasing. We say that PA is an 

�
 r -pre-aggregation function. 

Example 1. In this example, we analyze the basic properties (LAE), (RNE) and (LC) for some pre-aggregation functions. 

1. The function F NA : [0, 1] 2 → [0, 1], defined by: 

F NA (x, y ) = 

{
x if x ≤ y 
min { x 

2 
, y } otherwise 

is a left 0-absorbent pre-aggregation function. In fact, it is immediate that F NA satisfies (A2) . Moreover, consider x, y ∈ [0, 

1] and c > 0 such that y + c ∈ [0 , 1] . To show that F NA is (0, 1)-increasing, consider the following cases: 

x ≤ y : In this case, it holds that x ≤ y + c. It follows that: 

F NA (x, y + c) = x = F NA (x, y ) . 

x > y : If x > y + c, then one has that: 

F NA (x, y + c) = min 

{ 

x 

2 

, y + c 

} 

≥ min 

{ 

x 

2 

, y 

} 

= F NA (x, y ) . 

Now suppose that x ≤ y + c. Then, it follows that: 

F NA (x, y + c) = x > min 

{ 

x 

2 

, y 

} 

= F NA (x, y ) . 

1 For an increasing (decreasing) function we do not mean a strictly increasing (decreasing) function. 
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Thus, F NA is a (0, 1)-pre-aggregation function. In fact, F NA is � r -increasing whenever the non-zero vector � r = (r 1 , r 2 ) satis- 

fies r 2 ≥ r 1 ≥ 0. Hence, F NA is also (1, 1)-increasing. Finally, observe that F NA is left 0-absorbing (LAE) , since F NA (0 , y ) = 0 , 

for all y ∈ [0, 1]. Additionally, F NA satisfies (RNE) and (LC) . 

2. Consider now the function F NA 1 : [0, 1] 2 → [0, 1], defined by 

F NA 1 (x, y ) = 

{
x + y 

2 
if x ≤ y 

min { x 
2 
, y } otherwise . 

Similarly, one can show that F NA 1 is a (0, 1)-pre-aggregation function. However, it is not left 0-absorbent, since, for 

example F NA 1 (0 , 0 . 2) = 0 . 1 	 = 0 . 2 . Moreover, F NA 1 satisfies neither RNE nor LC . 

3. Consider a slight modification in the definition of the function F NA 1 , obtaining the function F NA 2 : [0, 1] 2 → [0, 1], defined 

by 

F NA 2 (x, y ) = 

{ 

0 if x = 0 

x + y 
2 

if 0 < x ≤ y 
min { x 

2 
, y } otherwise . 

Again, analogously, it is possible to show that F NA 2 is a (0, 1)-pre-aggregation function and it is immediate that F NA 2 is 

left 0-absorbent (LAE) . However, F NA 2 does not satisfy neither RNE nor LC . 

4. Similarly, one can modify F NA 2 into F NA 3 : [0, 1] 2 → [0, 1], defined by 

F NA 3 (x, y ) = 

{
x if y = 1 

F NA 2 (x, y ) otherwise , 

and then F NA 3 satisfies all three properties (LAE), (RNE) and (LC) . However, although F NA 3 satisfies (A2) , it is not (0, 1) 

increasing, since, for example, for x = 0 . 4 , y = 0 . 8 and c = 0 . 2 , one has that F NA 3 (0 . 4 , 0 . 8 + 0 . 2) = 0 . 4 < = 0 . 6 = 

0 . 4+0 . 8 
2 = 

F NA 3 (0 . 4 , 0 . 8) . 

Finally, it is worth mentioning that F NA , F NA 1 and F NA 2 are all (1, 0)-increasing, but F NA 3 is not. 

Definition 8 [40, Thorem 4.1] . Let � r = (r 1 , . . . , r n ) be a real n -dimensional vector, � r 	 = 

�
 0 . An 

�
 r -pre-aggregation function PA : 

[0, 1] n → [0, 1] is averaging if 

min ≤ PA ≤ max . 

Observe that there exist pre-aggregation functions that are averaging but are not aggregation functions, for example, the 

mode. 

Remark 1. Observe that all � r -pre-aggregation functions PA that are averaging are also idempotent. However the converse 

does not hold. For example, consider the (0, 1)-pre-aggregation function F NA of Example 1 , which is obviously idempotent. 

F NA is not averaging, since, for example: 

F NA (0 . 5 , 0 . 4) = min { 0 . 25 , 0 . 4 } = 0 . 25 < min { 0 . 5 , 0 . 4 } . 
Fuzzy integrals are well known aggregation operators. However, their use is not easy as their interpretation is not 

straightforward. In [54] , Torra and Narukawa study the interpretation of fuzzy integrals, focusing on Sugeno ones, show- 

ing their application in fuzzy inference systems when the rules are not independent, for control problems. 

The Choquet integral is a type of aggregation function which considers the relationship among the elements that are 

being aggregated, providing the relevance of a coalition by fuzzy measures. 

In what follows, denote N = { 1 , . . . , n } , for n > 0. 

Definition 9 [13,47] . A function m : 2 N → [0 , 1] is said to be a fuzzy measure if, for all X, Y ⊆N , the following conditions 

hold: 

( m 1) Increasingness: if X ⊆Y , then m (X ) ≤ m (Y ) ; 

( m 2) Boundary conditions: m (∅ ) = 0 and m (N) = 1 . 

In this paper, we have selected the power measure according to the results in [4,11,39,40,43] . The power measure is 

defined as m PM 

: 2 N → [0 , 1] , which is given, for all X ⊆N , by 

m PM 

(X ) = 

( | X | 
n 

)q 

, with q > 0 . (2) 

Definition 10 [8, Definition 1.74] . Let m : 2 N → [0 , 1] be a fuzzy measure. The discrete Choquet integral is the function C m 

: 

[0 , 1] n → [0 , 1] , defined, for all of � x = (x 1 , . . . , x n ) ∈ [0 , 1] n , by: 

C m 

( � x ) = 

n ∑ 

i =1 

(
x (i ) − x (i −1) 

)
· m 

(
A (i ) 

)
, (3) 

where 
(
x (1) , . . . , x (n ) 

)
is an increasing permutation on the input � x , that is, 0 ≤ x (1) ≤ . . . ≤ x (n ) , where x (0) = 0 and A (i ) = 

{ (i ) , . . . , (n ) } is the subset of indices corresponding to the n − i + 1 largest components of � x . 
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3. Construction of pre-agregation functions using Choquet integrals and left 0-absorbent functions 

In [40] , we introduced the concept of a pre-aggregation function, presenting a construction method of idempotent 

and averaging pre-aggregation functions by means of the Choquet integral. To do it, we replace the product operation in 

Eq. (3) by functions F that are (1, 0)-pre-aggregation functions satisfying (LAE), (RNE) and (LC) (see [40, Theorem 4.1] ). 

The application shown in that paper considered just the case when F is a t-norm, which obviously satisfies those three 

properties. 

In this paper, we intend to propose a more general way for this construction, since we do not require F to be an (1, 

0)-pre-aggregation function. That is, just the conditions (LAE) and (RNE) are necessary to have idempotent pre-aggregation 

functions. In case we want to obtain also averaging pre-aggregation functions the functions F also have to fulfill the (LC) 

property. 

In the following, we present the method for constructing a family of pre-aggregation functions defined by generalizing 

the discrete Choquet Integral using left 0-absorbent functions F : [0, 1] 2 → [0, 1], obtaining the so-called C F -integrals. 

Definition 11. Let F : [0, 1] 2 → [0, 1] be a bivariate function and m : 2 N → [0 , 1] be a fuzzy measure. The Choquet-like integral 

based on F with respect to m , called C F -integral, is the function C 

F 
m 

: [0 , 1] n → [0 , 1] , defined, for all x ∈ [0, 1] n , by 

C 

F 
m 

( � x ) = min 

{ 

1 , 

n ∑ 

i =1 

F 
(
x (i ) − x (i −1) , m 

(
A (i ) 

))} 

, (4) 

where (x (1) , . . . , x (n ) ) is an increasing permutation on the input � x , that is, 0 ≤ x (1) ≤ . . . ≤ x (n ) , with the convention that 

x (0) = 0 , and A (i ) = { (i ) , . . . , (n ) } is the subset of indices of n − i + 1 largest components of � x . 

Proposition 1. C 

F 
m 

is well defined, for any function F : [0, 1] 2 → [0, 1] and fuzzy measure m : 2 N → [0 , 1] . 

Proof. It is immediate. �

Remark 2. There are some other approaches presenting Choquet-like integrals or generalizations of the Choquet integrals, 

mostly not restricted to discrete domains. In [45] , Mesiar introduced some Choquet-like integrals defined in terms of pseudo- 

addition and pseudo-multiplication, presenting similar properties than those of the standard Choquet Integral. Murofushi 

and Sugeno [46] defined the fuzzy t-conorm integral, which is a generalization of Sugeno integral and Choquet integral 

based on a t-system composed by continuous t-conorms and a continuous t-norm which all are either idempotent (then 

the Sugeno integral is obtained), or all are Archimedean (then a transform of the Choquet integral is obtained). Differently, 

our Choquet-like integrals, introduced in Definition 11 , are obtained in the context of the discrete Choquet integral. They are 

based on the standard summation + (i.e., in this item less general than the two above mentioned types of integrals) and on 

a rather general function F (much more general than the pseudo-multiplications considered in the two above integrals). 

Remark 3. In the literature, there exist also other kinds of integrals not defined in terms of the Choquet/Sugeno integral 

but related to them. For example, Wang et al. [56] introduced a nonlinear integral with respect to set functions vanishing 

at the empty set which need not be monotone. Observe that if a fuzzy measure m is considered, then this integral coincides 

with the concave integral introduced by Lehrer [37] (see also [38] ). This integral is just the Choquet integral whenever 

the considered fuzzy measure m is superadditive, i.e., if m (E 1 ∪ E 2 ) + m (E 1 ∩ E 2 ) ≥ m (E 1 ) + m (E 2 ) , for any sets E 1 , E 2 ⊆N . In 

particular, these equalities hold when m is a belief measure [55] . We point out that Wang et al.’s integral coincides with our 

C F -integral only if F is the standard product and m is a supermodular fuzzy measure (and then they are just the standard 

Choquet integral, as the authors showed in [56, Corollary 2] ). 

Proposition 2. For any fuzzy measure m : 2 N → [0 , 1] and left 0-absorbent (RNE) -function F : [0, 1] 2 → [0, 1], C 

F 
m 

is idempotent. 

Proof. Considering � x = (x, . . . , x ) ∈ [0 , 1] n , one has that: 

C 

(F ) 
m 

( � x ) = min 

{ 

1 , F (x − 0 , 1) + 

n ∑ 

i =2 

F 
(
x − x, m (A (i ) ) 

)} 

by Eq. (4) 

= min { 1 , x } by (RNE ) and (LAE ) 

= x. 

�

Proposition 3. For any fuzzy measure m : 2 N → [0 , 1] and F : [0, 1] 2 → [0, 1] satisfying (RNE) , it holds that C 

F 
m 

≥ min . 
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Proof. Let (x (1) , . . . , x (i −1) , x (i ) , . . . , x (n ) ) be an increasing permutation of � x ∈ [0 , 1] n . It follows that: 

C 

F 
m 

( � x ) = min 

{ 

1 , F (x (1) − 0 , 1) + 

n ∑ 

i =2 

F (x (i ) − x (i −1) , m (A (i ) )) 

} 

by Eq. (4) 

= min 

{ 

1 , x (1) + 

n ∑ 

i =2 

F (x (i ) − x (i −1) , m (A (i ) )) 

} 

by (RNE ) 

≥ x (1) 

= min 

�
 x . 

�

Proposition 4. For any fuzzy measure m : 2 N → [0 , 1] and F : [0, 1] 2 → [0, 1] satisfying (LC) , it holds that C 

F 
m 

≤ max . 

Proof. Let (x (1) , . . . , x (i −1) , x (i ) , . . . , x (n ) ) be an increasing permutation of � x ∈ [0 , 1] n . It follows that: 

C 

F 
m 

( � x ) = min 

{ 

1 , 

n ∑ 

i =1 

F (x (i ) − x (i −1) , m (A (i ) )) 

} 

by Eq. (4) 

≤ min 

{ 

1 , 

n ∑ 

i =1 

(
x (i ) − x (i −1) 

)} 

by (LC ) 

= min { 1 , x (n ) } 
= x (n ) 

= max � x . 

�

Proposition 5. For any fuzzy measure m : 2 N → [0 , 1] and left 0-absorbent function F : [0, 1] 2 → [0, 1], if F satisfies (A2, ii) , then 

C 

F 
m 

satisfies the boundary conditions (A2) . 

Proof. Consider � 0 = (0 , . . . , 0) ∈ [0 , 1] n and 

�
 1 = (1 , . . . , 1) ∈ [0 , 1] n . It follows that: 

C 

F 
m 

( � 0 ) = min 

{ 

1 , 

n ∑ 

i =1 

F (0 − 0 , m (A (i ) )) 

} 

by Eq. (4) 

= 0 by (LAE ) 

and 

C 

F 
m 

( � 1 ) = min { 1 , F (1 − 0 , m (A (1) )) + 

n ∑ 

i =2 

F (1 − 1 , m (A (i ) )) } by Eq. (4) 

= min { 1 , F (1 , 1) + 

n ∑ 

i =2 

F (0 , m (A (i ) )) } 

= 1 . by (A2 )(ii ) and LAE 

�

Proposition 6. For any fuzzy measure m : 2 N → [0 , 1] , if the function F : [0, 1] 2 → [0, 1] satisfies one of the following conditions: 

(i) F is (1, 0) -increasing 

(ii) F satisfies (RNE) 

then C 

F 
m 

is � 1 -increasing. 
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Proof. Let (x (1) , . . . , x (i −1) , x (i ) , . . . , x (n ) ) be an increasing permutation of � x ∈ [0 , 1] n . Suppose that (i) holds and consider c > 0 

such that � x + c ∈ [0 , 1] n . Then, it follows that: 

C 

F 
m 

(x 1 + c, . . . , x n + c) = min 

{ 

1 , F (x (1) + c − 0 , m (A (1) )) + 

n ∑ 

i =2 

F (x (i ) + c − (x (i −1) + c) , m (A (i ) )) 

} 

by Eq. (4) 

≥ min 

{ 

1 , F (x (1) , m (A (1) )) + 

n ∑ 

i =2 

F (x (i ) − x (i −1) , m (A (i ) )) 

} 

by (i ) 

= C 

F 
m 

(x 1 , . . . , x n ) . by Eq. (4) 

Now consider that (ii) holds. It follows that: 

C 

F 
m 

(x 1 + c, . . . , x n + c) = min 

{ 

1 , F (x (1) + c − 0 , 1) + 

n ∑ 

i =2 

F (x (i ) + c − (x (i −1) + c) , m (A (i ) )) 

} 

by Eq. (4) 

= min 

{ 

1 , x (1) + c + 

n ∑ 

i =2 

F (x (i ) − x (i −1) , m (A (i ) )) 

} 

by (ii ) 

≥ min 

{ 

1 , x (1) + 

n ∑ 

i =2 

F (x (i ) − x (i −1) , m (A (i ) )) 

} 

= C 

F 
m 

(x 1 , . . . , x n ) . by Eq. (4) 

�

Theorem 1. For any fuzzy measure m : 2 N → [0 , 1] and left 0-absorbent (RNE) -function F : [0, 1] 2 → [0, 1], C 

F 
m 

is a � 1 -pre- 

aggregation function. 

Proof. It follows from Propositions 5 and 6 , observing that the property (RNE) implies (A2) (ii). �

Corollary 1. For any fuzzy measure m : 2 N → [0 , 1] and left 0-absorbent (RNE) -function F : [0, 1] 2 → [0, 1] satisfying (LC) , C 

F 
m 

is 

an idempotent averaging � 1 -pre-aggregation function. 

Proof. It follows from Propositions 3 and 4 , and Theorem 1 . �

Remark 4. Observe that, even when a left 0-absorbent function F : [0, 1] 2 → [0, 1] is not an averaging function, we may 

obtain an averaging C F -integral. For example, consider the left 0-absorbent function F NA : [0, 1] 2 → [0, 1] of Example 1 . By 

Remark 1 , we know that that F NA is idempotent but not averaging. However, it is immediate that F NA satisfies (RNE) and 

(LC), and, therefore, by Corollary 1 , the C F -integral C 

F NA 
m 

, for a fuzzy measure m , is an averaging idempotent � 1 -pre-aggregation 

function. 

Theorem 2. For any fuzzy measure m : 2 N → [0 , 1] and left 0-absorbent (1, 0) -pre-aggregation function F : [0, 1] 2 → [0, 1], C 

F 
m 

is 

a � 1 -pre-aggregation function. 

Proof. It follows from Propositions 5 and 6 , observing that any left 0-absorbent pre-aggregation function satisfies (LAE) . �

In Table 1 we show a set of bivariate functions F : [0, 1] 2 → [0, 1] that belong to different families like (I) t-norms, (II) 

overlap functions, (III) copulas that are neither t-norms nor overlap functions, (IV) aggregation functions not included in (I)- 

(III) and (V) left-0 absorbent (0, 1)-pre-aggregation functions. For each function F , we show its definition and reference (if 

they are new this field is left empty), as well as whether or not they satisfy (LAE), (RNE), (LC), (A2) and (1, 0)-increasingness. 

Then, in the last but two column, according to properties analyzed in the previous columns, we indicate whether or not the 

obtained C F -integral (constructed using Eq. (4) ) is a � 1 -pre-aggregation function (PA). Observe that the set of conditions that 

F should fulfill for the C F -integral to be a pre-aggregation function is one of the following ones: 

• Theorem 1 ( (LAE) and (RNE) ). 

• Theorem 2 ( (LAE), (A2) , (1, 0)-increasingness). 

Finally, the last but one column shows if the obtained C F -integral is averaging (AV) (that is, if it satisfies 

Propositions 3 and 4 ), and the last column if it is idempotent (ID) (that is, if it satisfies Proposition 2 ). 
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Table 1 

Analysis of the conditions of Theorems 1 and 2, Propositions 2 –4 , for families of left 0-absorbent functions F . 

(I) T-norms [36] 

Definition Name/Reference (LAE) (RNE) LC (A2) (1, 0)-inc. PA AV ID 

T M (x, y ) = min { x, y } Minimum � � � � � � � � 

T P (x, y ) = xy Algebraic Product � � � � � � � � 

T L (x, y ) = max { 0 , x + y − 1 } Łukasiewicz � � � � � � � � 

T HP (x, y ) = 
{

0 if x = y = 0 
xy 

x + y −xy 
otherwise 

Hamacher Product � � � � � � � � 

(II) Overlap functions [5,10,19,21] 

Definition Name/Reference (LAE) (RNE) LC (A2) (1, 0)-inc. PA AV ID 

O B (x, y ) = min { x √ 

y , y 
√ 

x } [10, Theorem 8] � � � � � 

Cuadras-Augé copula [48] 

O mM (x, y ) = min { x, y } max { x 2 , y 2 } [19, Example 3.1.(i)] , � � � � � � � � 

[18, Example 4] 

[21, Example 3.1] 

O α (x, y ) = xy (1 + α(1 − x )(1 − y )) , [3, Apendix A (A.2.1)] , [39] � � � � � � � � 

α ∈ [ −1 , 0[ ∪ ]0 , 1] Farlie-Gumbel-Morgenstern 

copula family ∗

O Di v (x, y ) = xy + min { x,y } 
2 

[3, Apendix A (A.8.7)] , � � � � � � � � 

[41, Table 1] 

GM(x, y ) = √ 

xy Geometric Mean [27, Example 1] � � � � 

HM(x, y ) = 
{

0 if x = 0 or y = 0 
2 

1 
x + 1 y 

otherwise Harmonic Mean [27, Example 1] � � � � 

S (x, y ) = sin 
(

π
2 
(xy ) 

1 
4 

)
Sine [27, Example 1] � � � � 

O RS (x, y ) = min 

{ 
(x +1) 

√ 
y 

2 
, y 

√ 

x 

} 
� � � � 

(III) Copulas that are neither t-norms nor overlap functions [3] 

Definition Name/Reference (LAE) (RNE) LC (A2) (1, 0)-inc. PA AV ID 

C F (x, y ) = xy + x 2 y (1 − x )(1 − y ) [36, Example 9.5 (v)] , � � � � � � � � 

[41, Table 1] 

C L (x, y ) = max { min { x, 
y 
2 
} , x + y − 1 } [3, Apendix A (A.5.3a)] , � � � � � � � � 

[41, Table 1] 

(IV) Aggregation functions other than (I)–(III) 

Definition Name/Reference (LAE) (RNE) LC (A2) (1, 0)-inc. PA AV ID 

F GL (x, y ) = 
√ 

x (y +1) 
2 

� � � � 

F BPC (x, y ) = xy 2 [8, Example 1.80] � � � � � � � � 

(V) Left 0-absorbent (0, 1)-pre-aggregation functions 

Definition Name/Reference (LAE) (RNE) LC (A2) (1, 0)-inc. PA AV ID 

F BD 1 (x, y ) = min { x, 1 − x + min { x, y q }} , 0 < q ≤ 1 � � � � � � � � 

F NA (x, y ) = 
{

x if x ≤ y 

min { x 
2 
, y } otherwise 

� � � � � � � � 

F NA 2 (x, y ) = 

⎧ ⎨ 

⎩ 

0 if x = 0 
x + y 

2 
if 0 < x ≤ y 

min { x 
2 
, y } otherwise 

� � � � � 

∗ When α = 0 , we have that O α = T P , the product t-norm, which was considered in the first part of table. 
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4. Applying C F -integrals in fuzzy rule-based classification systems 

In this section, we firstly present the application of C F -integrals in classification problems [25] , adopting it to ag- 

gregate the information given by the fuzzy rules. To do so, consider that a classification problem consists of m train- 

ing examples, x p = (x p1 , . . . , x pn , y p ) , with p = 1 , . . . , m, where x pi , with i = 1 , . . . , n, is the value of the i th attribute and 

y p ∈ C = { C 1 , . . . , C M 

} is the label of the class of the p th training example, where M is the number of classes. 

In this work, we use FRBCSs to tackle this kind of problems. Specifically, we have selected FARC-HD [2] to accomplish 

the learning of the fuzzy rules, since it is one of the most precise fuzzy classifiers nowadays. The form of the fuzzy rules 

used by this algorithm is: 

Rule R j : If x p1 is A j1 and . . . and x pn is A jn then x p is C j with RW j , 

where x p = (x p1 , . . . , x pn ) is the n-dimensional vector of attribute values corresponding to an example x p , R j is the label 

of the j th rule, A ji is an antecedent fuzzy set modeling a linguistic term, C j is the label of the class of the rule R j , with 

C j ∈ { 1 , . . . , M} and RW j ∈ [0, 1] is the rule weight [34] , which, in this case, is computed using the certainty factor. 

We have used the set up suggested by the authors of FARC-HD, which is as follows: the product t-norm as the conjunc- 

tion operator, five linguistic labels per variable, modeled by triangular shaped membership functions, the minimum support 

is set to 0.05, the threshold for the confidence is 0.8 and the maximum depth of the search tree is limited to 3. 

In this paper, we propose a new FRM, where C F -integrals are used to obtain the information associated with each class 

of the problem, that is, to aggregate the local information given by the fired rules of the system when classifying a new 

example, x p . Specifically, the predicted class for a new example x p is computed by: 

class = arg max 
k = { 1 , ... ,M} 

(C 

F 
m k 

(μA j (x p ) * RW j | Class (R j ) = k )) with, j = 1 , . . . , L . (5) 

where C 

F 
m k 

is the C F -integral (associated with the fuzzy measure m k ) considered to aggregate information given by the fired 

rules for the class k , μA j 
is the matching degree of the example x p with the antecedent of the j th fuzzy rule, RW j is its rule 

weight and L is the number of fuzzy rules in the system. 

From Eq. (5) it can be observed that we consider a different C F -integral for each class of the problem. This is due to the 

fact that we construct a different fuzzy measure for each class of the problem. Specifically, we use the power measure (see 

Eq. (2)) in which a different q exponent is learnt for each class of the problem using a genetic algorithm, as we have done 

in our previous papers in the topic (see [4,40,41] for details of the evolutionary algorithm). Regarding the parameters of this 

genetic algorithm, we consider a population composed of 50 individuals, 20.0 0 0 evaluations and 30 bits for each gene in 

the gray codification. 

In the remainder of this section we present the experimental framework used to test the quality of our new FRM. In 

first place we present the considered datasets ( Ssection 4.1 ) followed by the statistical tests that are used in this paper for 

performing comparisons ( Section 4.2 ). 

4.1. Datasets 

In this paper, to analyze the performance of our proposal, we consider 33 different datasets selected from the KEEL 2 

dataset repository [1] . The properties of the selected datasets are summarized in Table 2 , showing for each dataset the 

identification of this dataset (ID), followed by the name of the dataset (Dataset), the number of examples ( # Ex.), the number 

of attributes ( # Atts.) and the number of classes ( # Class). 

Some datasets, namely: magic, page-blocks, penbased, ring, satimage and twonorm , were stratified sampled at 10% in order 

to reduce their size for training. Some examples containing missing information were removed, e.g., in the wisconsin dataset. 

We have applied a 5-fold cross-validation technique, that is, split the dataset into five partitions randomly. Each partition 

has 20% of the examples. We use four partitions for training, and the other is used for testing. This process is repeated five 

times, using a different partition for testing each time. In each iteration we measure the quality of the classifier using the 

accuracy rate, which is defined as the number of correctly classified examples divided by the total number of examples for 

each partition. We then compute the average result of the five testing partitions, which is the output of the algorithm. 

4.2. Statistical tests for performance comparisons 

For the statistical analysis of the results, we use hypothesis validation techniques [28,53] , namely, non-parametric tests, 

since the initial conditions that guarantee the reliability of the parametric tests cannot be guaranteed [15] . 

We apply the aligned Friedman rank test [31] to detect statistical differences among a group of results and to verify the 

quality of a method in comparison to its partners. The algorithm achieving the lowest average ranking is the best one. 

Additionally, to analyze if the best ranking method rejects the equality hypothesis with respect to its partners we use 

the post-hoc Holm’s test [32] . This method allows us to see whenever a hypothesis of comparison could be rejected at 

a specified level of significance α. We compute the adjusted p -value (APV) to take into account that multiple tests are 

2 http://www.keel.es . 
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Table 2 

Summary of the properties of the datasets considered in this study. 

Id. Dataset # Ex. # Atts. # Class 

App Appendiciticis 106 7 2 

Bal Balance 625 4 3 

Ban Banana 5300 2 2 

Bnd Bands 365 19 2 

Bup Bupa 345 6 2 

Cle Cleveland 297 13 5 

Con Contraceptive 1473 9 3 

Eco Ecoli 336 7 8 

Gla Glass 214 9 6 

Hab Haberman 306 3 2 

Hay Hayes-Roth 160 4 3 

Ion Ionosphere 351 33 2 

Iri Iris 150 4 3 

Led led7digit 500 7 10 

Mag Magic 1902 10 2 

New Newthyroid 215 5 3 

Pag Pageblocks 5472 10 5 

Pen Penbased 10,992 16 10 

Pho Phoneme 5404 5 2 

Pim Pima 768 8 2 

Rin Ring 740 20 2 

Sah Saheart 462 9 2 

Sat Satimage 6435 36 7 

Seg Segment 2310 19 7 

Shu Shuttle 58,0 0 0 9 7 

Son Sonar 208 60 2 

Spe Spectfheart 267 44 2 

Tit Titanic 2201 3 2 

Two Twonorm 740 20 2 

Veh Vehicle 846 18 4 

Win Wine 178 13 3 

Wis Wisconsin 683 11 2 

Yea Yeast 1484 8 10 

performed. Then, we can directly compare the APV with the level of significance α, and, thus, we are able to reject the null 

hypothesis. 

5. Experimental study and results 

In this section, we present the results achieved in testing when using the FRM generalized by C F -integrals. To do so, the 

results of our proposal are analyzed considering three main steps: 

1. Firstly, we present the results and analyze the performance of each averaging C F -integral. After that, we compare them 

among themselves in order to discover which generalization is the one that best represent the family of averaging C F - 

integrals. 

2. The second part of the study is related to C F -integrals that are not averaging. In order to find the best representative 

method of this family, we firstly analyze the achieved results and after that, compare them among themselves. 

3. Once we have found the two best C F -integrals obtained in the previous steps, in order to test the quality of our approach, 

we perform the following comparisons: 

(a) The best averaging C F -integral versus classical averaging functions (FRM of the WR) and our previous averaging pre- 

aggregation functions. 

(b) The best non-averaging C F -integral versus the classical non averaging functions, like the FRM of AC or the usage of 

the probabilistic sum. 

(c) Finally, we test whether the application of the best non averaging function enhances the results of the averaging 

operators or not. 

5.1. Analysis of the performance of averaging C F -integrals 

This subsection is aimed at analyzing the performance of the averaging C F -integrals considered in this study (see Table 1 ) 

in the FRM. The results achieved in test by the 9 averaging functions are available in Table 3 , by columns. In each row we 

introduce the results of each dataset, highlighting the best global result in boldface . We also include in this table the 

number of datasets where each function achieves the best ( # Wins) and the worst ( # Loses) result, respectively. 
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Table 3 

Accuracy achieved in test by different averaging C F -integrals. 

Dataset O α O B O mM O Div CF CL F BPC F BD 1 F NA 

App 83.03 83.03 84.94 83.94 82.99 85.84 83.07 83.94 82.99 

Bal 80.32 82.08 82.56 81.60 82.24 84.00 80.32 84.80 82.56 

Ban 86.09 86.81 86.85 85.79 85.70 85.04 87.02 83.09 86.09 

Bnd 68.26 71.83 67.70 69.68 69.13 69.66 66.62 71.09 69.40 

Bup 63.77 65.51 66.09 65.51 65.22 62.32 66.67 64.06 67.83 

Cle 55.23 56.24 54.55 55.90 52.18 55.54 54.88 57.92 57.92 

Con 52.00 52.89 52.75 53.83 52.54 50.78 52.95 52.41 52.27 

Eco 76.49 76.20 77.08 75.61 77.09 78.87 77.69 79.17 78.88 

Gla 62.14 66.82 60.75 63.10 63.58 63.09 63.54 65.44 64.51 

Hab 72.85 72.86 72.21 72.52 69.92 72.86 73.17 72.21 73.51 

Hay 78.75 78.72 78.01 80.26 78.75 79.46 78.01 77.95 78.72 

Ion 90.04 88.32 87.47 89.47 89.46 89.75 89.47 89.46 90.60 

Iri 92.00 94.00 94.00 93.33 94.67 93.33 92.00 93.33 93.33 

Led 68.00 68.40 67.60 68.80 69.00 68.00 68.80 68.00 68.60 

Mag 80.18 79.86 79.97 79.91 78.81 79.76 78.86 79.55 80.02 

New 95.35 94.88 94.42 95.35 94.88 94.42 94.88 93.49 93.49 

Pag 93.43 94.52 93.98 93.97 94.89 93.61 94.34 94.34 93.97 

Pen 90.09 91.09 89.45 90.82 90.55 90.27 90.09 92.55 91.45 

Pho 83.05 82.92 83.29 82.81 83.23 83.88 82.70 81.96 82.86 

Pim 75.13 75.38 76.17 74.48 75.78 75.52 73.82 73.56 75.13 

Rin 89.19 89.32 90.00 89.86 89.73 89.46 88.38 88.78 90.27 

Sah 71.85 69.48 70.78 68.18 69.48 68.39 71.21 69.70 68.61 

Sat 79.16 78.54 79.00 78.23 80.72 79.16 78.38 78.70 78.54 

Seg 92.73 92.51 93.33 92.77 92.94 93.20 92.42 93.16 92.55 

Shu 97.01 97.29 97.01 97.84 97.10 97.01 97.10 97.15 96.78 

Son 80.78 75.49 77.93 77.42 77.89 79.83 74.05 80.29 78.85 

Spe 77.48 77.88 76.75 76.39 77.51 76.77 79.76 74.92 78.26 

Tit 78.87 78.87 78.87 78.87 78.87 78.87 78.87 79.06 78.87 

Two 84.73 83.78 84.46 85.14 85.68 85.41 84.19 85.14 83.92 

Veh 68.21 67.73 66.55 67.02 70.33 67.38 68.20 69.26 67.97 

Win 95.48 94.97 97.21 93.24 94.38 92.13 96.62 96.62 96.03 

Wis 96.49 96.63 96.34 96.34 96.05 96.19 96.34 96.64 96.34 

Yea 56.33 57.35 57.08 57.48 57.34 56.87 57.48 55.12 56.40 

Mean 79.23 79.46 79.25 79.26 79.35 79.29 79.15 79.48 79.62 

# Wins 4 2 3 5 6 2 3 5 5 

# Loses 4 2 6 4 5 4 7 6 4 

Table 4 

Statistical analysis of the methods based on averaging C F -integrals. 

Algorithm Ranking APV 

F NA 129.31 –

O B 138.93 1.0 

F BD 1 143.21 1.0 

CF 145.60 1.0 

CL 149.71 1.0 

O Div 152.74 1.0 

O mM 154.01 1.0 

F BPC 162.77 0.79 

O α 164.68 0.75 

From the results shown in Table 3 , it is possible to notice that all the averaging C F -integrals, except F NA , present a mean 

performance between 79.15 and 79.48. We have to highlight the function F NA since it achieves the best global mean and also 

the best accuracy rate in 5 out of the 33 datasets considered in this study. Moreover, observe that the functions O α , O Div , 

CF, F BD 1 and F NA achieves similar results in terms of number of datasets with the best and worst performance respectively, 

while the remainder functions achieves worse results. 

In order to select objectively the best function among this group, we have carried out a statistical study according to the 

recommendations made in the specialized literature [16,28,53] . 

Specifically, we have performed the aligned Friedman rank test to compare the 9 approaches, whose obtained rankings 

are presented in the second column of Table 4 . In this table we sort the values from the lowest to highest obtained ranking, 

where the best one is highlighted in boldface . Then, we apply the Holm’s post-hoc test, to check whether the control 

approach (the one associated with the best ranking) is statistically better than the remainder approaches, showing the 

obtained APV in the last column of this table. 
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Table 5 

Accuracy achieved in test by different non-averaging C F -integrals. 

Dataset GM HM Sin O RS F GL F NA 2 

App 82.08 83.98 85.80 83.98 82.08 85.84 

Bal 88.48 86.40 89.44 88.00 89.12 88.64 

Ban 85.28 86.19 82.79 85.58 83.42 84.60 

Bnd 71.30 70.51 72.69 69.19 71.01 70.48 

Bup 61.16 66.96 63.48 66.09 62.03 64.64 

Cle 57.23 57.24 57.55 55.88 57.25 56.55 

Con 53.77 52.21 54.31 53.84 54.24 53.16 

Eco 81.26 79.47 82.45 80.07 81.55 80.08 

Gla 65.44 69.17 66.83 65.89 66.33 66.83 

Hab 71.54 71.88 71.87 72.87 70.24 71.87 

Hay 79.49 79.43 77.98 81.77 78.69 79.43 

Ion 90.89 88.91 87.46 88.32 90.04 89.75 

Iri 94.67 94.00 94.00 94.00 94.00 94.00 

Led 68.00 68.40 69.60 69.20 68.80 69.80 

Mag 80.02 80.23 79.34 80.23 79.70 79.70 

New 97.67 95.81 95.35 95.81 97.67 96.28 

Pag 94.34 93.97 94.34 94.52 94.34 94.15 

Pen 92.18 92.09 91.45 92.00 92.73 92.91 

Pho 82.07 83.73 80.96 82.72 81.27 81.44 

Pim 74.87 74.87 75.13 75.00 76.82 74.61 

Rin 90.95 90.00 88.51 90.27 91.35 89.86 

Sah 69.04 68.84 71.20 71.86 70.33 70.12 

Sat 79.01 78.69 77.45 80.72 78.53 80.41 

Seg 93.46 92.73 92.47 92.77 93.07 92.42 

Shu 97.06 96.92 96.69 96.37 96.69 97.15 

Son 82.73 81.28 81.74 83.19 83.69 83.21 

Spe 77.51 79.76 78.65 78.27 79.76 79.77 

Tit 78.87 78.87 78.87 78.87 78.87 78.87 

Two 89.19 86.89 91.49 89.05 90.00 92.57 

Veh 67.97 68.79 64.77 67.38 69.03 68.08 

Win 96.08 96.05 97.17 97.16 95.49 96.08 

Wis 96.93 97.07 96.34 97.06 95.76 96.78 

Yea 56.94 58.15 56.47 57.28 57.68 57.08 

Mean 80.23 80.29 80.14 80.46 80.35 80.52 

# Wins 5 8 7 7 7 7 

# Loses 4 7 11 3 5 2 

From these results, it is noticeable that there are no statistical differences among the averaging functions. However, for 

the sake of selecting a representative for this family, we choose the function F NA as it obtains the best global mean and it is 

selected as the control method in the Holm’s test. 

5.2. Studying the quality of non-averaging C F -integrals 

In this subsection, we present the achieved results in testing when one considers C F -integrals that do not have averaging 

characteristics. We present the results of the 6 functions of this type in Table 5 , by columns. In each row we introduce the 

results of each dataset where the best result is highlighted in boldface . Like in Table 3 , # Wins and # Loses represent the 

number of datasets where the function obtains the best and worst result, respectively. 

From the results presented in Table 5 , we can directly conclude that the non-averaging functions have a superior mean 

in relation to the averaging functions ( Table 3 ), since the smallest obtained mean (80.14 by Sin) is superior than the best 

averaging C F -integral (79.62 by F NA ). Additionally, we have to highlight the leap in performance provided by the usage of 

F NA 2 and O RS . The first function has the best accuracy in 7 datasets and the worst accuracy in only 2 dataset. The function 

O RS also achieves a good mean, with best accuracy in 7 datasets and the worst one in 3 datasets. Furthermore, we should 

stress that although the number of dataset in which the remainder functions provide the best results is similar the number 

of datasets where they provide the worst result is larger, which implies a decrease on the overall performance as shown in 

Table 5 . 

According to the obtained results, it is necessary to conduct a statistical analysis to select the best function among 

this group. In order to do it, we have performed the same statistical study as in the previous section. The results of the 

aligned Friedman and Holm’s tests are presented in Table 6 . As expected, according to Table 5 , all methods present a similar 

behavior, therefore, we select F NA 2 as representative of this family since it is considered as control variable and it also 

achieves the best global mean. 
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Table 6 

Average rankings of the non-averaging C F -integrals (aligned Friedman). 

Algorithm Ranking APV 

F NA 2 91.78 - 

F GL 95.12 1.0 

O RS 95.39 1.0 

GM 99.22 1.0 

HM 105.13 1.0 

Sin 110.33 0.94 

Table 7 

Results achieved in test by the averaging FRMs. 

Dataset F NA Choquet Ham PA CP Min WR 

App 82.99 80.13 82.99 85.84 83.03 

Bal 82.56 82.40 82.72 81.60 81.92 

Ban 86.09 86.32 85.96 84.30 83.94 

Bnd 69.40 68.56 72.13 71.06 69.40 

Bup 67.83 66.96 65.80 61.45 62.03 

Cle 57.92 55.58 55.58 54.88 56.91 

Con 52.27 51.26 53.09 52.61 52.07 

Eco 78.88 76.51 80.07 77.09 75.62 

Gla 64.51 64.02 63.10 69.17 64.99 

Hab 73.51 72.52 72.21 74.17 70.89 

Hay 78.72 79.49 79.49 81.74 78.69 

Ion 90.60 90.04 89.18 88.89 90.03 

Iri 93.33 91.33 93.33 92.67 94.00 

Led 68.60 68.20 68.60 68.40 69.40 

Mag 80.02 78.86 79.76 79.81 78.60 

New 93.49 94.88 95.35 93.95 94.88 

Pag 93.97 94.16 94.34 93.97 94.16 

Pen 91.45 90.55 90.82 91.27 91.45 

Pho 82.86 82.98 83.83 82.94 82.29 

Pim 75.13 74.60 73.44 75.78 74.60 

Rin 90.27 90.95 88.78 87.97 90.00 

Sah 68.61 69.69 70.77 70.78 68.61 

Sat 78.54 79.47 80.40 79.01 79.63 

Seg 92.55 93.46 93.33 92.25 93.03 

Shu 96.78 97.61 97.20 98.16 96.00 

Son 78.85 77.43 79.34 76.95 77.42 

Spe 78.26 77.88 76.02 78.99 77.90 

Tit 78.87 78.87 78.87 78.87 78.87 

Two 83.92 84.46 85.27 85.14 86.49 

Veh 67.97 68.44 68.20 69.86 66.67 

Win 96.03 93.79 96.63 93.83 96.60 

Wis 96.34 97.22 96.78 95.90 96.34 

Yea 56.40 55.73 56.53 57.01 55.32 

Mean 79.62 79.22 79.69 79.58 79.15 

# Wins 6 5 11 11 5 

# Loses 4 7 3 8 10 

5.3. Comparisons of the best C F -integrals against classical FRMs 

Once we have selected the functions that represent the family of C F -integrals with averaging or non-averaging character- 

istics ( F NA and F NA 2 ), we compare them against classical averaging ( Section 5.3.1 ) and non-averaging functions ( Section 5.3.2 ), 

respectively. 

5.3.1. Analyzing the behavior of the representative averaging C F -integral 

In first place, we compare the best averaging function against FRMs where averaging aggregations are applied. Namely, 

the FRM of the Winning Rule (WR) [8] , the standard Choquet integral (Choquet) [4] , the best pre-aggregation function 

presented in [40] (which is named Ham PA since it is based on the Hamacher t-norm) and the best Choquet-Like Copula- 

based [41] (which is named CP Min as it is based on the Minimum t-norm). We have to point out that the pre-aggregation 

function based on the Hamacher t-norm (Ham PA ) is also a C F -integral (where F is the Hamacher t-norm). 

The results achieved in test by this averaging FRMs are available in Table 7 , using the same structure as the tables 

presented before. 
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Table 8 

Statistical analysis of the FRMs based on averaging operators. 

Algorithm Ranking APV 

Ham PA 68.96 

F NA 76.25 0.62 

CP Min 80.87 0.62 

Choquet 92.98 0.12 

WR 95.90 0.08 

Table 9 

Results achieved in test by classical non-averaging operators. 

Dataset F NA 2 AC ProbSum 

App 85.84 83.03 85.84 

Bal 88.64 85.92 87.20 

Ban 84.60 85.30 84.85 

Bnd 70.48 68.28 68.82 

Bup 64.64 67.25 61.74 

Cle 56.55 56.21 59.25 

Con 53.16 53.16 52.21 

Eco 80.08 82.15 80.95 

Gla 66.83 65.44 64.04 

Hab 71.87 73.18 69.26 

Hay 79.43 77.95 77.95 

Ion 89.75 88.90 88.32 

Iri 94.00 94.00 95.33 

Led 69.80 69.60 69.20 

Mag 79.70 80.76 80.39 

New 96.28 94.88 94.42 

Pag 94.15 95.07 94.52 

Pen 92.91 92.55 93.27 

Pho 81.44 81.70 82.51 

Pim 74.61 74.74 75.91 

Rin 89.86 90.95 90.00 

Sah 70.12 68.39 69.69 

Sat 80.41 79.47 80.40 

Seg 92.42 93.12 92.94 

Shu 97.15 95.59 94.85 

Son 83.21 78.36 82.24 

Spe 79.77 77.88 77.90 

Tit 78.87 78.87 78.87 

Two 92.57 90.95 90.00 

Veh 68.08 68.56 68.09 

Win 96.08 96.03 94.92 

Wis 96.78 96.63 97.22 

Yea 57.08 58.96 59.03 

Mean 80.52 80.12 80.07 

# Wins 17 10 8 

# Loses 11 12 11 

From these results, it is possible to observe that WR and Choquet have a low mean while Ham PA is the one obtaining 

the best global mean, followed by our new averaging C F -integral, F NA and CP Min . Moreover, observe that Ham PA is also the 

function that has the biggest number of good results (along with CP Min ) and the lowest number of cases having bad results. 

We have conducted the same statistical study than in the previous sections, where the achieved results are presented in 

Table 8 . These results are sorted according to the ranking and highlighting in boldface the control ranking. Whenever there 

is an statistical difference in favor to the control method the APV is underlined. 

Observing these results, we can see that the pre-aggregation function based on the Hamacher t-norm is considered as 

control variable, and it also presents differences against the FRM of the WR and a positive trend versus the standard Choquet 

integral. On the other hand, it is not possible to affirm that there are differences against the remainder functions. Therefore, 

we consider Ham PA as the best averaging C F -integral since it achieves the best mean and the largest number of datasets 

having the best accuracy. 

5.3.2. Analyzing the behavior of the best non-averaging C F -integral 

Next, we study the behavior of the non-averaging operators. Specifically, we compare our representative for the family of 

non-averaging C F -integral, F NA 2 , against the classical FRMs of the additive combination (AC) and the probabilistic sum (PS). 

The results are available in Table 9 , having the same structure of our results presented before. 
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Table 10 

Statistical analysis of the methods based on non-averaging operators. 

Algorithm Ranking APV 

F NA 2 41.80 

AC 53.65 0.14 

PS 54.54 0.14 

Table 11 

Statistical analysis of the best non-averaging C F -integral against the averaging oper- 

ators. 

Algorithm Ranking APV 

F NA 2 64.93 

Ham PA 90.77 0.06 

F NA 99.40 0.02 

CP Min 102.95 0.02 

Cho 117.43 7.91E-4 

WR 121.48 3.05E-4 

We can see in the obtained results that the C F -integral based on the function F NA 2 presents the highest global mean. If 

we look closer, this function achieves the best accuracy in almost half of the datasets considered in this study. On the other 

hand, the classical aggregation functions applied in the FRM provide the best result in a lower number of datasets (10 and 

8, respectively). 

Again, to statistically compare these methods among themselves, we perform the Friedman rank test and the Holm’s post 

hoc test. The obtained results are available in Table 10 . These results show that our new function F NA 2 has the best rank and, 

consequently, it is considered as control variable as it was expected according to the previous results. When we observe the 

obtained APVs we can see that their APVs are low, which shows a trend pointing out that our new non-averaging function 

is very competitive versus these two classical aggregation functions. Therefore, the quality of our proposal is proved since it 

is enhancing the results of the classical FRM of the AC and PS. 

To finish our study, for the sake of certifying the quality of our new function ( F NA 2 ), we also compare it versus the 

five averaging FRMs studied in the previous Section 5.3.1 . To accomplish this comparison, we have performed again the 

Friedman rank test and Holm’s post hoc test among these approaches. The results of the statistical test and the obtained 

APVs are shown in Table 11 , where the ranking related to the function considered as control method is highlighted in 

boldface . Furthermore, the APV is underlined when there are statistical differences favorably to the control approach versus 

the opponent method. 

The obtained statistical results clearly show the superiority of the C F -integral based on the function F NA 2 , since it achieves 

statistical differences versus all the remainder methods. All in all, the non-averaging C F -integral constructed using the func- 

tion F NA 2 , has proven to be the best choice among all developed functions, since it offers the best performance, it statistically 

outperforms classical averaging functions applied in the FRM and it is competitive with respect classical non averaging FRMs. 

6. Conclusion 

In this paper we have proposed a generalization of the Choquet integral by replacing its product operator by a function 

F with some weak properties. As a result, we have defined the C F -integrals, a new family of pre-aggregation functions with 

some particular characteristics, which allows us to enlarge the scope of the methodology that we proposed in [40] . The 

main advantages of this approach in relation to our previous work concerning generalizations of the Choquet integral are: 

• The function F used for the generalization may satisfy a less number of properties, and we still have a pre-aggregation 

function. 

• The resulting pre-aggregation function does not need to be neither an averaging nor idempotent function. 

We have applied these averaging and non-averaging C F -integrals in FRBCSs to tackle classification problems. Precisely, in 

this work we performed a study considering 33 different public datasets, and the conclusions we draw are the following 

ones: 

1. The considered averaging C F -integrals present a similar performance than that of our previous generalizations. 

2. The best averaging C F -integral is Ham PA , which was previously introduced in another paper. However, it is also a C F - 

integral (based on the Hamacher t-norm). 

3. The non-averaging C F -integrals, as expected, offer a performance superior than the averaging ones. 

4. The best C F -integral, F NA 2 , provides results that are statistically superior than all classical FRMs, and also, very competitive 

with the classical non-averaging FRMs like AC or PS. 

Consequently, we have created a new family of pre-aggregation functions, which provides accurate results when they 

have non-averaging features. 
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Future work is concerned with two lines of research. In one hand, we will search for a generalization of our CC-integrals 

[41] , by means of two arbitrary functions F 1 and F 2 , to put in the place of each copula, satisfying a minimal set of properties 

that guarantee that the generalized CC-integral is, at least, a pre-aggregation function. On the other hand, we will study our 

generalizations in an interval-valued context, following the approach in [6,7,17] , as in [49–51] . 
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Abstract—A key component of Fuzzy Rule-Based Classification
Systems (FRBCSs) is the Fuzzy Reasoning Method (FRM),
since it infers the class predicted for new examples. A crucial
stage in any FRM is the way in which the information given
by the fired rules during the inference process is aggregated.
A widely used FRM is the winning rule, which applies the
maximum to accomplish this aggregation. The maximum is an
averaging operator, which means that its result is within the
range delimited by the minimum and the maximum of the
aggregated values. Over the last years, new averaging operators
based on generalizations of the Choquet integral were also
proposed to perform this aggregation process. However, the most
accurate FRBCSs use the FRM known as additive combination,
that considers the normalized sum as the aggregation operator,
which is non-averaging. For this reason, this paper is aimed
at introducing a new non averaging operator named CF1F2 -
integral, which is a generalization of the Choquet-like Copula-
based integral (CC-integral). CF1F2 -integrals present the desired
properties of an aggregation-like operator, since they satisfy
appropriate boundary conditions and have some kind of in-
creasingness property. We show that CF1F2 -integrals, when used
to cope with classification problems, enhance the results of the
previous averaging generalizations of the Choquet integral and
they provide competitive results (even better) when compared
with state-of-the-art FRBCSs.

Index Terms—Fuzzy rule-based classification systems, Choquet
Integral, CF1F2 -integrals, CC-integrals, OD monotone functions.

I. INTRODUCTION

In a supervised classification problem [1] it is necessary to
determine the class of an example based on the information
given by labeled examples. Among others, an accurate way to
tackle classification problems is by using Fuzzy Rule-Based
Classification Systems (FRBCSs) [2]. This technique achieves
accurate results taking into consideration linguistic labels in
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mento of Automática y Computación and with the Institute of Smart
Cities, Universidad Publica de Navarra, Navarra, 31006 Spain e-mails:
{joseantonio.sanz,bustince}@unavarra.es.

G. Pereira Dimuro is with Institute of Smart Cities, Universidad Publica
de Navarra, Pamplona, Spain, and Centro de Ciências Computacionais,
Universidade Federal do Rio Grande, Rio Grande, Brazil, e-mail: gracal-
izdimuro@furg.br.

B. Bedregal is with Departamento de Informática e Matemática Aplicada,
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the rules, which leads to obtaining an interpretable model that
can be easily used in the decision making process.

The two main components of FRBCSs are the knowledge
base, which is composed of the rule base and the data base,
and the Fuzzy Reasoning Method (FRM) [3]. The latter
is a mechanism that uses the information available in the
knowledge base to assign a class to new examples that have
to be classified. The FRM of the winning rule is a classical
inference process found in the literature that assigns the class
of the fuzzy rule whose compatibility with the example to be
classified is maximum. To do so, it applies the maximum as the
aggregation operator, which has an averaging characteristic,
i.e., its result is delimited by the minimum and the maximum
of the values to be aggregated. Consequently, to classify an
example it only uses the information given by one fuzzy rule
and it disregards the remainder information.

Barrenechea et. al proposed in [4] a FRM that takes into
account the information provided by all the fired rules using
the Choquet integral [5]. After that, the Choquet integral was
generalized by replacing the standard product operator by
different t-norms, which led to the concept of pre-aggregation
functions [6]. Next, aiming at producing an aggregation func-
tion, in [7] the authors presented the Choquet-like Copula-
based integral (CC-integrals for short). They swapped the
product operator of the extended form of the Choquet integral
by two identical copulas C. These three approaches have
averaging characteristics [8] and they provide competitive
results in classification problems.

However, the state of the art FRBCSs algorithms, like
IVTURS [9], FARC-HD [10] or FURIA [11] apply the FRM
known as additive combination that is based on the usage of
the normalized sum as aggregation function [3], which has a
non-averaging behavior. Taking this fact into account, in [12]
the standard Choquet integral was generalized by replacing
the product operation by different functions F , introducing the
concept of CF -integrals. These integrals are pre-aggregations
that may have either averaging or non-averaging characteristics
according to the considered function F . The authors showed
that the non-averaging CF -integrals statistically overcome the
averaging ones, reinforcing the quality of the usage of non-
averaging functions in this domain.

For this reason, in this paper we define a new generalization
of the CC-integral, named CF1F2

-integral, substituting the
copula C by two fusion functions F1 and F2 satisfying some
special conditions. The new CF1F2

-integrals are non-averaging
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Ordered Directionally (OD) increasing functions satisfying
the required boundary conditions for any “aggregation-like
operator”. Moreover, we present a methodology to select the
best pairs of fusion functions F1 and F2 to define the CF1F2

-
integrals to tackle classification problems. Finally, we also
introduce a new FRM based on this new concept.

In the experimental study, we consider 33 different datasets
available in Keel dataset repository [13]. We analyze the
quality of our method by selecting the best CF1F2 -integrals
and comparing them against the state-of-the-art fuzzy classi-
fiers, the best CF -integral presented in [12] and the classical
probabilistic sum [14] applied in the FRM of a FRBCS as it
is a known non-averaging function. The quality of the results
is supported by a proper statistical study as suggested in the
specialized literature [15], [16], [17].

The paper is organized as follows. In Section II, we in-
troduce the background necessary to understand the paper.
In Section III, we introduce the concept of CF1F2

-integrals,
showing that these functions are OD increasing functions
satisfying appropriate conditions. We describe in Section IV
the use of CF1F2

-integrals in the FRM and the evolutionary
learning of the fuzzy measure. Section V introduces the experi-
mental framework, describing the datasets along with the setup
configuration for the different methodologies and the statistical
tests used for performance comparison. In Section VI we
present the experimental results achieved in testing by CF1F2 -
integrals and we draw the main conclusions in Section VII.

II. PRELIMINARIES

In this section, we present some basic theoretical concepts
that are necessary to develop the paper. Any n-ary function
F : [0, 1]n → [0, 1] is named fusion function as it receives n
values and it fuses them returning a single one.

Definition 1. [18], [19] A fusion function A : [0, 1]n → [0, 1]
is an aggregation function whenever the following conditions
hold:

(A1) A is increasing1 in each argument: for each i ∈
{1, . . . , n}, if xi ≤ y, then A(x1, . . . , xn) ≤
A(x1, . . . , xi−1, y, xi+1, . . . , xn);

(A2) A satisfies the boundary conditions: (i) A(0, . . . , 0) = 0
and (ii) A(1, . . . , 1) = 1.

An aggregation function A : [0, 1]n → [0, 1] is said to
be averaging if and only if: (AV) ∀(x1, . . . , xn) ∈ [0, 1]n :
min{x1, . . . , xn} ≤ A(x1, . . . , xn) ≤ max{x1, . . . , xn}.
Definition 2. [20] Let ~r = (r1, . . . , rn) be a real n-
dimensional vector, ~r 6= ~0. A function F : [0, 1]n → [0, 1]
is said to be ~r-increasing if for all ~x = (x1, . . . , xn) ∈ [0, 1]n

and for all c > 0 such that ~x+c~r = (x1+cr1, . . . , xn+crn) ∈
[0, 1]n it holds

F (~x+ c~r) ≥ F (x1, . . . , xn). (1)

Similarly, one defines an ~r-decreasing function.

1For an increasing (decreasing) function we do not mean a strictly increas-
ing (decreasing) function.

Definition 3. [6] A function PA : [0, 1]n → [0, 1] is said to be
an n-ary pre-aggregation function if the following conditions
hold:

(PA1) Directional increasingness: there exists
~r = (r1, . . . , rn) ∈ [0, 1]n, ~r 6= ~0, such that PA
is ~r-increasing;

(PA2) Boundary conditions: (i) PA(0, . . . , 0) = 0 and (ii)
PA(1, . . . , 1) = 1.

If F is a pre-aggregation function with respect to a vector
~r we just say that F is an ~r-pre-aggregation function.

In what follows, denote N = {1, . . . , n} for an arbitrary
n > 0.

Definition 4. [5], [21][22, Definition 1.77] A function m :
2N → [0, 1] is said to be a fuzzy measure if, for all X,Y ⊆ N ,
the following conditions hold:

(m1) Increasingness: if X ⊆ Y , then m(X) ≤ m(Y );
(m2) Boundary conditions: m(∅) = 0 and m(N) = 1.

A fuzzy measure m is symmetric whenever m(X) = m(Y )
for all X,Y ⊆ N such that | X |=| Y |.
Definition 5. [5] Let m : 2N → [0, 1] be a fuzzy measure. The
discrete Choquet integral is the function Cm : [0, 1]n → [0, 1],
defined, for all of ~x = (x1, . . . , xn) ∈ [0, 1]n, by:

Cm(~x) =

n∑

i=1

(
x(i) − x(i−1)

)
·m
(
A(i)

)
, (2)

where
(
x(1), . . . , x(n)

)
is an increasing permutation on the

input ~x, that is, 0 ≤ x(1) ≤ . . . ≤ x(n), where x(0) = 0 and
A(i) = {(i), . . . , (n)} is the subset of indices corresponding
to the n− i+ 1 largest components of ~x.

The CC-integral [7] is a generalization of the Choquet
integral using copulas [14].

Definition 6. [7, Definition 7] Let m : 2N → [0, 1] be a fuzzy
measure and C : [0, 1]2 → [0, 1] a copula. The CC-integral
with respect to m is the function CCm : [0, 1]n → [0, 1], defined,
for all of ~x = (x1, . . . , xn) ∈ [0, 1]n, by:

CCm(~x) =
n∑

i=1

(
C
(
x(i),m

(
A(i)

))
− C

(
x(i−1),m

(
A(i)

)))
.

(3)

III. A GENERALIZATION OF CC-INTEGRALS USING TWO
FUSION FUNCTIONS F1 AND F2

In this section, we introduce a method for constructing a
generalization of CC-integrals, named CF1F2

-integral, using
two fusion functions F1 and F2 satisfying some specific
properties instead of the same copula C (Section III.A). We
also present a mechanism for choosing the functions F1 and F2

that should work fine when applied in the FRM of FRBCSs
(Section III.B). Finally, we prove that CF1F2

-integrals built
with some specific pairs of fusion functions F1 and F2 are non-
averaging OD increasing functions satisfying proper boundary
conditions to be applied in the FRM (Section III.C).
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A. Defining the CF1F2
-integrals

In this subsection, we aim at introducing the definition of
CF1F2

-integrals and analyzing some properties for specific
pairs of fusion functions F1 and F2.

An important concept used in this paper is the dominance
(or, conversely, subordination) property:
(DM) F1-Dominance (or, equivalently, F2-Subordination):

F1 ≥ F2, that is: ∀ x,y ∈ [0,1]: F1 (x,y) ≥ F2(x,y)

Definition 7. Let m : 2N → [0, 1] be a symmetric fuzzy
measure and F1, F2 : [0, 1]2 → [0, 1] be two fusion functions
fulfilling:
(i) F1-dominance
(ii) F1 is (1, 0)-increasing,

A CF1F2
-integral is defined as a function C

(F1,F2)
m : [0, 1]n →

[0, 1], given, for all x ∈ [0, 1]n, by

C(F1,F2)
m (~x) = (4)

min

{
1, x(1)+

n∑

i=2

F1

(
x(i),m

(
A(i)

))
−F2

(
x(i−1),m

(
A(i)

))
}
,

where (x(1), . . . , x(n)) is an increasing permutation on the
input ~x, that is, 0 ≤ x(1) ≤ . . . ≤ x(n), with the convention
that x(0) = 0, and A(i) = {(i), . . . , (n)} is the subset of
indices of n− i+ 1 largest components of ~x.

Observe that it is immediate that C
(F1,F2)
m is well defined,

for any pair F1, F2 : [0, 1]2 → [0, 1] and a symmetric fuzzy
measure m.

Remark 1. Observe that the first element of the summation
in the definition of C

(F1,F2)
m is just x(1) instead of

F1

(
x(1),m

(
A(1)

))
−F2

(
x(0),m

(
A(1)

))
.

This is considered to avoid the initial discrepant behavior of
non-averaging functions in the initial phase of the aggregation
process. For example, consider an unitary vector ~x = 0.9 ∈
[0, 1] and F1 = F2 = AV G, where AV G(x, y) = x+y

2 is the
arithmetic mean. Then, if we included the first element in the
summation of the integral the result would be:

C
(F1,F2)
m (~x) (5)

=min

{
1,

n∑

i=1

F1

(
x(i),m

(
A(i)

))
−F2

(
x(i−1),m

(
A(i)

))
}
,

=min

{
1,

0.9 + 1

2
− 0 + 1

2

}
= 0.45 6= 0.9.

Observe here the large discrepancy of the result, since one
expects that the aggregated value would be 0.9. Using our
definition of CF1F2 -integral (Equation (4)) this unexpected
behavior is avoided and the result is 0.9.

Table I shows the definitions of fusion functions F :
[0, 1]2 → [0, 1] that are (1, 0)-increasing (condition (ii) of
Definition 7) and, thus, candidates to be used as F1 and/or
F2 in the definition of CF1F2 -integrals. The expression of the
function is introduced in the first column whereas in the second
and in the third columns we show the family (or families)

of the function and the source where they were published,
respectively.

As we have mentioned, all these functions fulfill condition
(ii) of Definition 7. Therefore, we need to study whether they
fulfill condition (i). Consequently, we conduct the study about
the dominance property in the next subsection.

B. Analyzing the Dominance (Subordination) property

In this paper, CF1F2
-integrals are applied in the FRM of

FRBCSs (see Section IV). In this environment, the discrim-
ination power is usually driven by fuzzy rules having the
best compatibility with the examples. Therefore, we need to
accentuate the differences among large values. According to
Equation (5), F1 deals with the larger value in each iteration
of the summation. For this reason, it is desirable to have a
high domination of F1 over F2, so that the difference among
the two values becomes larger, which can lead to improve the
system’s performance.

Consequently, the dominance property is an important con-
cept used in this work, playing a central role in the con-
struction of CF1F2

-integrals applied in the FRM of FRBCSs
discussed in this paper. For this reason, we analyze such
property in order to determine which fusion functions, among
those presented in Table I, are more suitable to be F1 and F2

in the construction the CF1F2
-integrals.

To do so, we define the concepts of dominance and subor-
dination strength degrees. Let F = {F1, . . . , Fm} be a set of
m fusion functions. The dominance and subordination strength
degrees, DSt and SSt, of a fusion function Fi ∈ F are defined
for j ∈ {1, . . . ,m} as follows:

DSt(Fi) =
1

m

m∑

j=1

{
1 if Fi ≥ Fj ,
0 otherwise · 100%

SSt(Fi) =
1

m

m∑

j=1

{
1 if Fi < Fj ,
0 otherwise. · 100%

That is, the DSt and SSt degrees of a fusion function
F take into account the number of functions in which F
dominates, or is subordinated to, respectively.

Table II presents the analysis of the dominance property
for the functions presented in Table I. In this table a cell is
marked with the X symbol when the function introduced in
the row dominates the one shown in the column. Furthermore,
we also show in this table the DSt of the function in the row
(it conforms the last column) and the SSt of the function in
the column (it conforms the last row), which imply a total
number of possible combinations of 50.

Since the number of possible combinations of fusion func-
tions, marked with X in Table II, for F1 and F2 is too high
(201 different combinations), we propose a methodology to
reduce the scope of this study. We consider the DSt and SSt
degrees to be Low, Medium and High when they are less than
33%, between 34% and 66% and larger than 66%, respectively.
Then, we have selected three functions of each category (Low,
Medium, High) for both DSt and SSt to play the role of
functions F1 and/or F2 respectively. The selected functions
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TABLE II: Analysis of the dominance property of the fusion functions introduced in Table I
TP TM TŁ TDP THP OB OmM Oα ODiv GM HM S FRS CF CL FGL FBPC FNA Fα FNA2 AVG FIM FIP DSt (%)

TP X X X X X 21.74

TM X X X X X X X X X X X X X 56.52

TŁ X X 8.70

TDP X 4.35

THP X X X X X X X X 34.78

OB X X X X X X X 30.43

OmM X X X 13.04

Oα X X X X X X 26.09

ODiv X X X X X X X X 34.78

GM X X X X X X X X X X X X X X X X 69.57

HM X X X X X X X X X X X X X X 60.87

S X X X X X X X X X X X X X X X X X X X X X X X 100

FRS X X X X X X X X 34.78

CF X X X X X X 26.09

CL X X X X 17.39

FGL X X X X X X X X X X X X X X X X X X 78.26

FBPC X X X 13.04

FNA X X X 13.04

Fα X X X 13.04

FNA2 X X X X 17.39

AVG X X X X X X X X X X X X X X X X X X X 82.61

FIM X X X X X X X X X X X X X X X 65.22

FIP X X X X X X X X X X X X X X X X 69.57

SSt (%) 65.21 34.78 73.91 100 39.13 47.82 69.56 56.52 39.13 17.39 21.73 4.34 21.73 43.47 56.52 8.69 78.26 43.47 26.08 13.04 8.69 13.04 8.69

TABLE I: (1, 0)-increasing fusion functions initially consid-
ered in this study

Definition Family Reference
TM (x, y) = min{x, y} t-norm, copula [23]
TP (x, y) = xy t-norm, copula [23]
TŁ(x, y) = max{0, x+ y − 1} t-norm, copula [23]

THP (x, y) =

{
0 if x = y = 0

xy
x+y−xy otherwise t-norm, copula [23]

TDP (x, y) =





x if y = 1
y if x = 1
0 otherwise

t-norm [23]

OB(x, y) = min{x√y, y√x} overlap function, copula [24], [25]

OmM (x, y) = min{x, y}max{x2, y2} overlap function, copula [26], [27], [28], [29]
Oα(x, y) = xy(1 + α(1− x)(1− y)), overlap function, copula [12], [14]

α ∈ [−1, 0[ ∪ ]0, 1]

ODiv(x, y) =
xy+min{x,y}

2
overlap function, copula [14]

GM(x, y) =
√
xy overlap function [30]

HM(x, y) =

{
0 if x = 0 or y = 0

2
1
x
+ 1
y

otherwise overlap function [30]

S(x, y) = sin
(
π
2
(xy)

1
4

)
overlap function [30]

CF (x, y) = xy + x2y(1− x)(1− y) copula [23], [7]
CL(x, y) = max{min{x, y

2
}, x+ y − 1} copula [14], [7]

AV G(x, y) = x+y
2

overlap

FRS(x, y) = min
{

(x+1)
√
y

2
, y
√
x
}

aggregation function [12]

FGL(x, y) =
√
x(y+1)

2
aggregation function [12]

FBPC(x, y) = xy2 aggregation function [18]

Fα(x, y) =

{
αx if x < y
max{αx, y} otherwise , 0 < α < 1 aggregation function [12]

FNA(x, y) =

{
x if x ≤ y
min{x

2
, y} otherwise Pre-aggregation function [12]

FNA2(x, y) =





0 if x = 0
x+y
2

if 0 < x ≤ y
min{x

2
, y} otherwise

Pre-aggregation function [12]

FIM (x, y) = max{1− y, x} Non Pre-Aggregation function [12]
FIP (x, y) = 1− y + xy Non Pre-Aggregation function [12]
∗ When α = 0, we have that Oα = TP , the product t-norm.

according to this methodology are presented in Table III,
which imply a total number of possible combinations of 81.

C. The selected CF1F2
-integrals as non-averaging OD mono-

tone functions

For the aggregation process in the FRM to be well defined
it is necessary an operator that has two characteristics. First,
some kind of increasingness property is required in order to
guarantee that the more information is provided the higher is
the aggregated value (condition (A1) of Def. 1 and Def. 3).
Second, the aggregation operator must satisfy boundary con-

TABLE III: Summary of the adopted functions according to
dominance/subordination strength degrees

Strength degree Dominance (F1) Subordination (F2)

Low
TDP S
FNA GM
OB Fα

Medium
THP TM
TM FNA
FIM TP

High

GM TŁ
FGL FBPC
S TDP

ditions related to the domain [0, 1] (condition (A2) of Def. 1
and Def. 3).

Our selected CF1F2 -integrals (Table III) satisfy the boundary
conditions (A2) of an (pre) aggregation function. However,
our selected CF1F2

-integrals are neither increasing nor direc-
tionally increasing. However, we have noticed that they do
present some kind of increasingness property. In fact, they are
Ordered Directionally (OD) monotone functions [31]. Such
functions are monotonic along different directions according
to the ordinal size of the coordinates of each input.

In this section, we prove such properties for our best CF1F2 -
integral, according to the results shown in Section VI (GM–
FBPC), since the proofs for the other pairs of fusion functions
F1 and F2, considered in this paper, are analogous. We also
show that they are non-averaging functions.

Definition 8. [31] Consider a function F : [0, 1]n → [0; 1] and
let ~r = (r1, . . . , rn) be a real n-dimensional vector, ~r 6= ~0.
F is said to be ordered directionally (OD) ~r-increasing if,
for each ~x ∈ [0, 1]n, any permutation σ : {1, . . . , n} →
{1, . . . , n} with xσ(1) ≥ . . . ≥ xσ(n), and c > 0 such that 1 ≥
xσ(1)+cr1 ≥ . . . ≥ xσ(n)+crn, it holds that F (~x+c~rσ−1) ≥
F (~x), where ~rσ−1 = (rσ−1(1), . . . , rσ−1(n)). Similarly, one
defines an ordered directionally (OD) ~r-decreasing function.

Theorem 1. For any symmetric fuzzy measure m : 2N → [0, 1]

Page 4 of 10IEEE Transactions on Fuzzy Systems Proof

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Review Only

5

and k > 0, C
(GM,FBPC)
m , where GM and FBPC are defined

in Table I, is an (OD) (k, 0, . . . , 0)-increasing function.

Proof. For all ~x ∈ [0, 1]n and permutation σ : {1, . . . , n} →
{1, . . . , n} with xσ(1) ≥ . . . ≥ xσ(n) and c > 0 such that
xσ(i)+ cri ∈ [0, 1], for i ∈ {1, . . . , n}, and 1 ≥ xσ(1)+ cr1 ≥
. . . ≥ xσ(n)+ crn, for ~rσ−1 = (rσ−1(1), . . . , rσ−1(n)), one has
that:

C
(GM,FBPC)
m (~x+ c~rσ−1)

= min
{
1, (x(1) + c · rσ−1(1))

+
n−1∑

i=2

(√
(x(i) + c · rσ−1(i)) ·m(A(i))

−(x(i−1) + c · rσ−1(i−1)) ·m(A(i))
2
)

+
√

(x(n) + c · rσ−1(n)) ·m(A(n))

−(x(n−1) + c · rσ−1(n−1)) ·m(A(n))
2
}

= min
{
1, (x(1) + c · 0)

+
n−1∑

i=2

(√
(x(i) + c · 0) ·m(A(i))

−(x(i−1) + c · 0) ·m(A(i))
2
)

+
√

(x(n) + c · k) ·m(A(n))

−(x(n−1) + c · 0) ·m(A(n))
2
}

≥ min
{
1, x(1)+

n−1∑

i=2

(√
x(i) ·m(A(i))− x(i−1) ·m(A(i))

2
)

+
√
x(n) ·m(A(n))− x(n−1) ·m(A(n))

2
}

= C
(GM,FBPC)
m (~x),

since GM dominates FBPC and GM is (1, 0)-increasing.
Thus, C

(GM,FBPC)
m is OD ( k, 0, . . . , 0)-increasing, for k >

0.

Theorem 2. For any symmetric fuzzy measure m : 2N →
[0, 1], C

(GM,FBPC)
m satisfies the boundary conditions (A2).

Proof. Consider ~0 = (0, . . . , 0) ∈ [0, 1]n and ~1 = (1, . . . , 1) ∈
[0, 1]n. It follows that:

C
(GM,FBPC)
m (~0)

= min

{
1, 0 +

n∑

i=2

√
0 ·m(A(i))−0 ·m(A(i))

2

}
= 0

C
(GM,FBPC)
m (~1)

= min{1, 1 +
n∑

i=2

√
1 ·m(A(i))−1 ·m(A(i))

2} = 1

Proposition 1. For any symmetric fuzzy measure m : 2N →
[0, 1], C

(GM,FBPC)
m is non-averaging.

Proof. Suppose that C
(GM,FBPC)
m is averaging. Now take

~x = (0.2, 0.5, 0.7, 0.9) and the power measure (Equation (10)),
with q = 1. It follows that

C
(GM,FBPC)
m (~x)

= min

{
1, 0.2 +

3∑

i=1

(GM(x(i),m(A(i)))

−FBPC(x(i−1),m(A(i))))
}

= min

{
1, 0.2 +

3∑

i=1

(√
x(i) ·m(A(i))− x(i−1) ·m(A(i))

2
)}

= min
{
1, 0.2 +

√
0.5 · 0.75− 0.2 · 0.752

+
√
0.7 · 0.5− 0.5 · 0.52 +

√
0.9 · 0.25− 0.7 · 0.252

}

= min{1, 1.59} > 0.9 = max{0.2, 0.5, 0.7, 0.9}.
This a contradiction with the averaging property.

IV. USING CF1F2
-INTEGRALS IN FUZZY RULE-BASED

CLASSIFICATION SYSTEMS

In this section, our goal is to describe the main components
of FRBCSs and the used fuzzy classifier. Furthermore, we
present the considered FRM containing the main modification
with respect to the original, which consist of the inclusion of
the CF1F2

-integrals in the aggregation stage.
A classification problem consists of t training examples

xp = (xp1, . . . , xpn, yp), with p = 1, . . . , t, where xpi,
with i = 1, . . . , n, is the value of the i-th variable and
yp ∈ C = {C1, . . . , CM} is the label of the class of the p-th
training example, and M is the number of classes.

In this paper, we focus on FRBCSs. Specifically, we use the
Fuzzy Association Rule-based Classification model for High
Dimensional Problems (FARC-HD [10]). The structure of the
fuzzy rules generated by this classifier has the following form:

Rule Rj : Ifx1 isAj1 and . . . andxn isAjn (6)
then Class isCj withRWj ,

where Rj is the label of the j-th rule, Aji is a fuzzy set
representing a linguistic term modeled by a triangular shaped
membership function. Cj is the class label and RWj ∈ [0, 1]
is the rule weight [32], which in this case is computed as the
confidence of the fuzzy rule.

In order to generate the set of fuzzy rules, FARC-HD applies
the following three stages:

• Fuzzy association rule extraction for classification: In this
step, an initial fuzzy rule base is obtained. To accomplish
it, for each class, a search tree [33] is constructed, whose
maximum depth is limited (parameter depthmax) . For
each linguistic label (item), the support and confidence
are calculated in order to obtain the frequent itemsets
(set of items). Then, a fuzzy rule is generated for each
frequent itemset.

• Candidate rule prescreening: This stage considers a
weighting pattern scheme [34] to select the best generated
fuzzy rules.

• Genetic rule selection and lateral tuning: At this point,
the previously generated fuzzy rules are optimized so as
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to enhance as much as possible the system’s performance.
To do so, the CHC evolutionary algorithm [35] is applied
to carry out a rule selection process and the lateral tuning
of the fuzzy sets [36].

A. Application of CF1F2
in the fuzzy reasoning method

Once the knowledge base has been learnt and a new
example has to be classified, the FRM is responsible to
perform this task. As we have mentioned, we modify the
classical FRM of FARC-HD [10] to include the usage of
CF1F2 -integrals in its third stage. The steps of the new FRM
are the following ones:

1) Matching degree: It represents the importance of the
activation of the if-part of the rules for the example to be
classified xp, using a t-norm T : [0, 1]2 → [0, 1].

µAj (x) = T (µAj1(x1), . . . , µAjn(xn)), j = 1, . . . , L,
(7)

where L is the number of rules.
2) Association degree: For each rule, the matching degree is

weighted by its rule weight:

bkj (x) = µAj (x) ·RW k
j , (8)

with k = Class(Rj) and j = 1, . . . , L.
3) Example classification soundness degree for all classes:

This is the stage in which the CF1F2
-integrals are applied.

At this point, for each class, all information given by the
fired fuzzy rules is aggregated. To do so, the positive
information provided by the previous step is aggregated
by Equation (9).

Sk(x) = C
CF1F2
mk

(
bk1(x), . . . , b

k
L(x)

)
, (9)

with k = Class(Rj) and bkj > 0.
where CF1F2

is the CF1F2
-integral considered to perform

the aggregation. We remind that we use as F1 and F2

the functions presented Table III (Section III-B). CF1F2
-

integrals are functions that generalize the Choquet inte-
gral (Equation (2)) and consequently, they use a fuzzy
measure. In this work, we use the symmetric fuzzy
measure applied in our previous papers, that is, the power
measure:

mk(X) =

( |X|
n

)qk
, with qk > 0, (10)

where the exponent qk is genetically learnt (see sec-
tion IV-B) by an evolutionary algorithm, to obtain the
most suitable value, qk, for each class k. Consequently,
we use a different measure for each class.

4) Classification: The final decision is made in this step.
To do so, a function F : [0, 1]M → {1, . . . ,M} is
applied over the results obtained by example classification
soundness degrees of all classes:

F ((S1, . . . , SM ) = arg max
k=1,...,M

(Sk). (11)

B. Evolutionary learning of the fuzzy measure for each class

The original FARC-HD algorithm makes usage of the CHC
evolutionary algorithm [35] to perform the lateral tuning of
the fuzzy sets [36] and select the best set of fuzzy rules. In
this paper we also learn a fuzzy measure for each class [4], k,
by learning the qk parameter as shown in Equation (10). The
specific features of our evolutionary model are:

1) Coding Scheme: The chromosome is divided into three
parts.
(i) The first one considers the genes related to the tuning

of lateral position of the membership functions and it
has as many genes as the number of linguistic labels,
where the range of each gene is [-0.5, 0.5] (for more
details see [36]).

(ii) The second part has one gene per class, k, and it
is used to learn the exponent qk. It is encoded in the
range [0.01, 1.99]. However, as the real range is [0.01,
100] as showed in [4] the values of the genes have to
be decoded in this range (See [4], [7] for details).

(iii) The last part of the chromosome is related to the
rule selection and it has as many genes as rules. Each
gene determines if the corresponding rule is used in
the FRM or not, by setting it to 1 (selected) or to 0
(not selected).

2) Chromosome Evaluation: We use as fitness function the
standard accuracy rate.

3) Initial Gene Pool: The population is composed by 50 in-
dividuals. Having one chromosome initialized by setting
to 0 the value of all the genes to perform the lateral
tuning, those used to learn the exponent of the fuzzy
measure are set to 1.0 to obtain the classical cardinality
fuzzy measure and the genes to perform the rule selection
process are set to 1. The remainder chromosomes are
randomly generated in the corresponding ranges of the
genes.

4) Crossover Operator: We use the Parent Centric BLX
(PCBLX) crossover operator [37] for the real coding part
and the HUX [38] for the binary coded part. Two parents
are crossed if their hamming distance divided by 2 is
superior than the threshold Th, which is initialized as:

Th =
(#Genes ·BITSGENE)

4.0
(12)

We use the Gray code to convert each real coded gene to
binary coding with a fixed number of bits for each gene
(BITSGENE).

5) Restarting Approach: To increase the convergence of the
algorithm, if new individuals are not included in the new
population, we decrease the threshold by BITSGENE.
When the threshold is smaller than 0 we pick the best
chromosome (elitist scheme) and reset all the population
with random values.

6) Stopping Criteria: The search process is stopped when:
(i) The maximum number of trials is reached.
(ii) A 100% is obtained as the fitness of the best indi-

vidual.
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V. EXPERIMENTAL FRAMEWORK

In this section we present the experimental framework used
in this paper. We start by describing the datasets along with
the configuration of the classifiers considered in this paper.
After that, the statistical methods that are used for performance
comparison.

A. Datasets and classifiers’ set-up

In this study, to assess the performance of our approach, we
consider 33 numeric datasets selected from the KEEL2 dataset
repository [39]. The features of the datasets are summarized in
Table IV, showing for each one its identification (ID), followed
by the name of the dataset (Dataset), the number of samples
(#Samp.), the number of features (#Feat.) and the number of
classes (#Class).

Examples containing missing information were removed,
e.g., in the wisconsin dataset. Also, the datasets magic, page-
blocks, penbased, ring, satimage and twonorm were stratified
sampled at 10% in order to reduce their size for training.

For each dataset, we have considered a 5-fold cross-
validation technique, that is, the dataset is splitted into five
random partitions, with 20% of the examples and maintaining
the class distribution. Then, we use four partitions for training,
and the remainder is used for testing. This process is repeated
five times, considering a different partition for testing each
time. We measure the quality of the classifier in each iteration
using the accuracy rate, which is defined as the number of
correctly classified examples divided by the total number of
examples for each partition. At the end, we compute the
average result of the five testing partitions, which is the result
we show for each algorithm.

In order to show the quality of our method, we compare
it versus three state-ofthe-art FRBCSs, namely, FURIA [11],
IVTURS [9] and the original FARC-HD [10]. We show the
configuration of these algorithms in Table V. In this table, we
have to stress that our new proposal and IVTURS share the
same fuzzy rule learning algorithm than that of FARC-HD and
consequently, we use the same values for their parameters to
perform a fair comparison.

B. Statistical tests for comparing performances

To give statistical support to the analysis of the results, we
consider some hypothesis validation techniques [16], [40], that
is, non-parametric tests, taking into account that the conditions
that guarantee the reliance of the parametric tests cannot be
warranted [17].

Specifically, we use the aligned Friedman rank test [41]
to discover statistical differences among a group of results
and to verify the quality of a method in comparison to otters
approaches. Observe that the algorithm achieving the lowest
average ranking is the best one.

Moreover, we also use the Holm post-hoc test [42] to find
the method that reject the equivalence hypothesis with respect
to the best approach found with the aligned Friedman rank
test. We compute the adjusted p-value (APV) considering that

2http://www.keel.es

TABLE IV: Properties of the datasets considered in this study

Id. Dataset #Samp. #Feat. #Class
App Appendicitis 106 7 2
Bal Balance 625 4 3
Ban Banana 5300 2 2
Bnd Bands 365 19 2
Bup Bupa 345 6 2
Cle Cleveland 297 13 5
Con Contraceptive 1473 9 3
Eco Ecoli 336 7 8
Gla Glass 214 9 6
Hab Haberman 306 3 2
Hay Hayes-Roth 160 4 3
Ion Ionosphere 351 33 2
Iri Iris 150 4 3
Led led7digit 500 7 10
Mag Magic 1,902 10 2
New Newthyroid 215 5 3
Pag Pageblocks 5,472 10 5
Pen Penbased 10,992 16 10
Pho Phoneme 5,404 5 2
Pim Pima 768 8 2
Rin Ring 740 20 2
Sah Saheart 462 9 2
Sat Satimage 6,435 36 7
Seg Segment 2,310 19 7
Shu Shuttle 58,000 9 7
Son Sonar 208 60 2
Spe Spectfheart 267 44 2
Tit Titanic 2,201 3 2
Two Twonorm 740 20 2
Veh Vehicle 846 18 4
Win Wine 178 13 3
Wis Wisconsin 683 11 2
Yea Yeast 1,484 8 10

TABLE V: Parameter setup of the considered algorithms

Algorithm Configuration

FURIA
Number of optimizations: 2
Number of folds: 3
Linguistic labels per variable: 5
Conjunction operator: Product t-norm

FARC-HD, IVTURS and Rule weight: Confidence
CF1F2 -integrals Minimum support: 0.05

Minimum confidence: 0.8
Depth of the search tree: 3
Number of fuzzy rules that cover each example: 2
Population size: 50
Gray codification: 30 bits per gene
Number of evaluations: 20.000

multiple tests are performed. Then, it is possible to directly
compare the APV with the level of significance α, and, thus,
we are capable of reject the null hypothesis.

VI. EXPERIMENTAL RESULTS

This section is aimed at analyzing the performance of our
new approach. To do so, we have separated the study in
two parts. In the first one, we present the results obtained
by the CF1F2

-integrals constructed using the pairs selected in
section III-B (Table III). In the second one, in order to show
the quality of our method, we perform comparisons against
different state-of-the-art FRBCSs.

A. Analysis of the results of different CF1F2
-integrals

The results achieved in test by all the constructed CF1F2
-

integrals are presented in Table VI. The rows represent the
functions used as F1, which are dominant in relation to the
functions F2, which are shown by columns and they have sub-
ordination characteristics. The result of each cell is the average
testing result among the 33 datasets considered in the study.
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We have to point out that we only show the averaged results
due to space limitations. The complete results can be accessed
in – https://github.com/Giancarlo-Lucca/TablesCF1F2. In Ta-
ble VI we highlight in boldface the maximum accuracy per
row and we underline the best accuracy for each column. We
have to point out that blank spaces are related to combinations
that could not be performed, since the dominance property is
not satisfied for the specific pair of functions.

In a general looking, it is possible to observe that the largest
accuracy is obtained by picking the function GM as F1 and
FBPC as function F2. This pair is a combination of a function
having a high dominance as F1 combined with a function
with a high subordination as F2. We can observe that for the
functions to be F1 the results are better when they are paired
with a function F2 with a high subordination degree (results
highlighted in boldface). The opposite is also observed, since
for each F2 function, the best results are obtained when
considering a F1 whit high dominance (underlined results). In
this manner, we can conclude that it is a good choice to select
pairs of functions whose F1 has a large dominance strength
degree and its F2 function is a highly dominated one.

Analyzing the results by categories (high, medium and low)
according to the functions F1, we have that:

• Using a function with high dominance characteristics
as F1 provides good results, since eight of the top
ten best classifications, are pairs with this characteristic.
Observe that, if we pick the functions GM and FGL
as F1, the results tend to present a stability since the
accuracies could be considered as similar. Regarding the
sine function, S, its unsatisfactory behavior could occur
since the differences between the pair of functions are too
wide, which may imply a decrease on the performance
of the classifier. Observe that in [30] this function also
presents a similar behavior.

• The usage of functions having medium dominance char-
acteristic as F1 (THP , TM and FIM ) tends to maintain
competitive results. From the 21 possible combinations of
these functions, only in four cases the obtained accuracy
are less than 80%.

• Applying functions with low dominance as F1, in general,
does not fulfill the dominance property and, for this rea-
son, less pairs can be used to construct CF1F2

-integrals.
However, from the seven pairs constructed in this study,
three of them provide poor results (less than 80%) and
the remainder ones obtain satisfactory results.

B. Comparisons against other non-averaging aggregation
functions and state-of-the-art fuzzy classifiers

As mentioned before, in general the obtained results tend
to be stable an satisfactory. Thus, in order to demonstrate
the quality of our approach, we compare the performance of
the CF1F2

-integral that achieved the highest accuracy (GM–
FBPC) against the best non-averaging function of our previous
paper [12] (FNA2), a classical non-averanging aggregation
operator like the probabilistic sum (P∗) and three state-of-the-
art fuzzy classifiers, namely, FURIA [11], IVTURS [9] and
FARC-HD [10].

TABLE VI: Accuracy mean achieved in testing by different
CF1F2

-integrals
F2

Low Medium High
S GM Fα TM FNA TP TŁ FBPC TDP

Low
TDP 77.17
FNA 77.58 80.42
OB 79.86 80.44 80.30 80.57

F1 Medium
THP 80.22 80.25 80.47 80.46
TM 79.54 79.02 80.42 80.68 80.52 80.41
FIM 80.05 80.20 79.92 80.04 80.26 80.45 79.88 80.08

High
GM 79.76 80.78 80.28 80.70 80.52 80.97 81.02 80.56
FGL 80.55 80.56 80.92 80.68 80.61 80.27 80.80 80.50
S 77.19 79.78 79.70 79.61 79.74 79.88 80.17 79.66 80.11

The results achieved in testing by the different methods are
detailed in Table VII by columns. In each row of this table we
present the accuracy obtained per each dataset. Furthermore,
we highlight in boldface the best achieved result for each one
and, in the two last rows, we present the number of datasets
in which the classifier achieves the best (#Wins) and the worst
result (#Loses).

From the obtained results, performing just a simple numer-
ical comparison, it is possible to observe that FURIA is the
method achieving the best global mean and the largest number
of best classification results. The CF1F2

-integral achieves the
second position in both criterias. However, we have to stress
that whilst FURIA provides the worst result in seven datasets,
our approach achieves the worst results in a single case.
Therefore, we can observe that our method provides a good
performance in a regular way. This affirmation can also be
made to the CF -integral, FNA2, but in this case it provides
the best results in a less number of datasets. For the remainder
methods, the results are worse than those of FURIA and our
new approach, since the number of datasets having the best
results are less and the number of loses cases are larger.

In order to highlight the behavior or our new method, if
we look at the results in Table VI and we compare them
against the ones of Table VII, we can find a large number of
combinations leading to a global mean equal or larger than that
of the compared methods (except that of FURIA). Specifically,
the number of combinations having an equal or greater average
result is 39, 36, 34 and 12 when compared against IVTURS,
P∗, FARC-HD and FNA2, respectively.

To support these findings we have conducted a set of
statistical studies (as many as combinations in Table VII) using
the aligned Friedman rank test to compare each CF1F2 -integral
with the remainder methods considered in this section, whose
obtained results are available in Table VIII. Specifically, in
this table we only show the results of those CF1F2

-integrals
(in columns) that obtain the best rank and consequently, they
are used as control method in the post-hoc Holm’s test, whose
obtained APV is shown in brackets. If there are statistical
differences between two methods, considering 0.05 (5%) as
the level of confidence, we underline the APV.

From the obtained results, it is noticeable that five CF1F2
-

integrals are considered as control method, presenting statisti-
cal differences against IVTURS, FARC-HD and P∗ in almost
all cases. Regarding FURIA and FNA2, we can infer that
there are no statistical differences between both methods, since
the obtained APVs are high. Therefore, we can conclude that
our new method obtains competitive results as it statistically
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TABLE VII: Results achieved in testing by different FRMs

Dataset FURIA IVTURS FARC-HD P∗ FNA2 (GM,FBPC)
App 87.71 84.94 83.03 85.84 85.84 86.80
Bal 83.68 85.76 85.92 87.20 88.64 89.12
Ban 88.57 81.70 85.30 84.85 84.60 84.79
Bnd 69.40 67.70 68.28 68.82 70.48 71.30
Bup 70.14 67.54 67.25 61.74 64.64 66.96
Cle 56.57 59.60 56.21 59.25 56.55 56.22
Con 54.17 53.36 53.16 52.21 53.16 54.72
Eco 80.06 78.58 82.15 80.95 80.08 81.86
Gla 72.91 67.31 65.44 64.04 66.83 68.25
Hab 72.55 72.85 73.18 69.26 71.87 72.53
Hay 81.00 80.23 77.95 77.95 79.43 78.66
Ion 89.75 92.89 88.90 88.32 89.75 88.33
Iri 94.00 96.00 94.00 95.33 94.00 94.00
Led 71.80 70.40 69.60 69.20 69.80 70.00
Mag 80.65 79.76 80.76 80.39 79.70 80.86
New 94.88 95.35 94.88 94.42 96.28 96.74
Pag 95.25 95.07 95.07 94.52 94.15 95.25
Pen 92.45 92.18 92.55 93.27 92.91 92.91
Pho 85.90 80.00 81.70 82.51 81.44 81.42
Pim 76.17 74.73 74.74 75.91 75.52 75.38
Rin 85.54 87.57 90.95 90.00 89.86 91.89
Sah 70.33 70.99 68.39 69.69 70.12 71.43
Sat 82.27 75.90 79.47 80.40 80.41 79.47
Seg 97.32 90.30 93.12 92.94 92.42 93.29
Shu 99.68 91.82 95.59 94.85 97.15 96.83
Son 78.90 80.33 78.36 82.24 83.21 85.15
Spe 77.88 80.52 77.88 77.90 79.77 79.39
Tit 78.51 78.87 78.87 78.87 78.87 78.87
Two 88.11 92.30 90.95 90.00 92.57 92.30
Veh 70.21 67.38 68.56 68.09 68.08 68.20
Win 93.78 97.19 96.03 94.92 96.08 95.48
Wis 96.63 96.49 96.63 97.22 96.78 96.78
Yea 58.22 55.86 58.96 59.03 57.08 58.56
Mean 81.06 80.04 80.12 80.07 80.55 81.02
#Wins 13 6 3 4 2 10
#Loses 7 12 7 8 3 1

TABLE VIII: Statistical results using the align Friedman rank
test and Holm’s post hoc test

GM–FBPC GM–TŁ FGL–TM FGL–FBPC GM–Fα
CF1F2 74.87 (–) 75.45 (–) 76.28 (–) 74.87 (–) 83.86 (–)
FURIA 83.81 (0.52) 85.10 (0.49) 84.12 (0.57) 83.81 (0.52) 80.27 (0.79)
FNA2 97.09 (0.23) 96.81 (0.25) 97.19 (0.27) 97.09 (0.23) 97.04 (0.46)
IVTURS 112.63 (0.02) 110.07 (0.04) 109.93 (0.05) 112.63 (0.02) 108.68 (0.13)
P∗ 112.56 (0.02) 112.81 (0.03) 113.22 (0.03) 112.56 (0.02) 111.01 (0.11)
FARC 116.01 (0.01) 116.72 (0.01) 116.22 (0.02) 116.01 (0.01) 116.12 (0.05)

improves other state-of-the-art fuzzy classifiers and it provides
similar results than those of FURIA.

VII. CONCLUSION

In this paper we have defined the concept of CF1F2
-

integrals, which are a generalization of the CC-integral in-
troduced in [7]. Specifically, these integrals use two different
fusion functions, F1 and F2, in order to try to enhance the
behavior of FRBCSs. The constructed CF1F2

-integrals are
non-averaging as most of the aggregation operator used by
state-of-the-art fuzzy classifiers are. Furthermore, these inte-
grals are OD increasing functions satisfying proper boundary
conditions. We have presented a method to select the best
combination of functions to be F1 and F2, which is based on
the concept of dominance and subordination.

From the obtained results, we can conclude that the results
of this approach could be considered as satisfactory and stable,
since the results are quite similar in many cases. Furthermore,
we showed that 5 different CF1F2 -integrals provide competi-
tive results when compared against FURIA and the best CF -
integral published in our previous work on the topic. Moreover,
we have to highlight that we achieve a statistical superior

performance versus two state-of-the-art fuzzy classifiers like
IVTURS and FARC-HD. All these facts support that this
approach is an efficient option and it expands the scope of
the generalizations of the Choquet integral.
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Abstract

This paper introduces the theoretical framework for a generalization of CF1F2
-integrals, a family of Choquet-like inte-

grals used successfully in the aggregation process of the fuzzy reasoning mechanisms of fuzzy rule based classification
systems. The proposed generalization, called by gCF1F2

-integrals, is based on the so-called pseudo pre-aggregation
function pairs (F1, F2), which are pairs of fusion functions satisfying a minimal set of requirements in order to be
either an aggregation function or just an ordered directionally increasing function satisfying the appropriate boundary
conditions. We propose a dimension reduction of the input space, in order to deal with duplicated elements in the input,
avoiding ambiguities in the definition of gCF1F2

-integrals. We study several properties of gCF1F2
-integrals, consid-

ering different constraints for the functions F1 and F2, and state under which conditions gCF1F2
-integrals present

or not averaging behaviors. Several examples of gCF1F2 -integrals are presented, considering different pseudo pre-
aggregation function pairs, defined on, e.g., t-norms, overlap functions, copulas that are neither t-norms nor overlap
functions and other functions that are not even pre-aggregation functions.

Keywords: Aggregation functions, pre-aggregation functions, ordered directionally monotonicity, pseudo
pre-aggregation function pair, Choquet Integral

1. Introduction

In 2016, Lucca et al. [1] introduced the notion of pre-aggregation function (PAF), which fulfills the boundary
conditions as any aggregation function, but, instead of being an increasing function, it is just directional increas-
ing [2]. That is, it increases along some specific ray (direction). Furthermore, the authors presented some methods
to produce PAFs [3, 4]. One of them is by generalizing the Choquet integral [5] replacing the product operator by a
t-norm, obtaining, under some constraints, idempotent and averaging PAFs. This approach was used in Fuzzy Rule-
Based Classification System (FRBCS) [6], presenting excellent results, when the Hamacher t-norm [7] is used for the
generalization, overcoming the Choquet integral and classical averaging operators in classification systems.
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Bustince)

Preprint submitted to Fuzzy Sets and Systems March 20, 2018



Those excellent results motivated us to explore a more general method for constructing PAFs based on the Choquet
integral. For that, instead of using just a t-norm, we replace the product operator by a fusion function F that is left
0-absorbent (i.e., F (0, x) = 0, for all x ∈ [0, 1]), obtaining the CF -integrals [8]. CF -integrals are pre-aggregation
functions, which, under certain conditions, may be idempotent and/or averaging functions. This allowed to analyse
sub-families of CF -integrals having or not the averaging behavior, showing that a CF -integral does not need to be an
averaging function when used in FRBCSs, since the non-averaging obtained more accurate results than the averaging
ones.

In the same line of this research, Lucca et al. [9] investigated another kind of Choquet integral that leads to
aggregation functions, instead of just PAFs. For that, the product operation of the standard Choquet integral was first
distributed and, then, replaced by a copula [10], obtaining the CC-integrals, which happen to be averaging aggregation
functions [11]. This approach presented excellent results in classification, in particular, when the minimun t-norm was
the considered copula, in which case it was called CMin-integral [12]. See also the application in [13].

Recently, Luca et al. [14] developed the concept of CF1F2 -integrals, which is a specific generalization of CC-
integrals, based on two possibly different fusion functions F1 and F2 (instead of a copula C) satisfying some ap-
propriate conditions, obtaining non-averaging Choquet-like integrals that were successfully used in the aggregation
process of the fuzzy reasoning mechanisms of fuzzy rule based classification systems. Their performance was proved
to be statistically equivalent to FURIA [15].

The aim of this paper is to generalize the concept of CF1F2 -integrals, obtaining the so-called gCF1F2 -integrals,
presenting a solid theoretical framework which gives the basis for applications. gCF1F2 -integrals are obtained by dis-
tributing the product operation of the Choquet integral and, then, using a pair of fusion functions (F1, F2), satisfying
some special conditions, we generalize the two instances of the product operation.

Then, the objectives of this paper are stated as:

1. To introduce the notion of pseudo pre-aggregation function pair (F1, F2), that is, a pair of fusion functions
satisfying some kind of boundary conditions, directional increasingness and F1-dominance property;

2. To introduce the notion of Choquet-like integral based on pseudo pre-aggregation function pair, called gCF1F2 -
integrals;

3. To show under which conditions gCF1F2 -integrals based on pseudo pre-aggregation function pairs (F1, F2) are
aggregation functions;

4. To show under which conditions gCF1F2
-integrals based on pseudo pre-aggregation function pairs (F1, F2) are

ordered directional (OD) increasing functions [16] and satisfy the desirable boundary conditions;
5. To study when gCF1F2

-integrals are averaging;
6. To analyze several types of pseudo pre-aggregation function pairs (F1, F2), built from t-norms [7], overlap

functions [17, 18, 19], copulas, and other functions that are not even PAFs, showing examples of different
gCF1F2

-integrals.

The paper is organized as follows. In Section 2, we present the basic concepts required to understand the paper.
In Section 3, we introduce the concept of pseudo pre-aggregation pairs and analyse several properties. The concept
of gCF1F2 -integrals is introduced in Section 4. In Section 5, we discuss when gCF1F2 -integrals are aggregation
functions, and the related properties. Section 6 studies when gCF1F2 -integrals are not aggregation functions, but OD
monotone functions. Section 7 is the Conclusion.

2. Preliminaries

In this paper, we call any n-ary function F : [0, 1]n → [0, 1] by a fusion function.

Definition 2.1. [20, 21] A function A : [0, 1]n → [0, 1] is an aggregation function whenever the following conditions
hold:

(A1) A is increasing1 in each argument: for each i ∈ {1, . . . , n}, if xi ≤ y, then

A(x1, . . . , xn) ≤ A(x1, . . . , xi−1, y, xi+1, . . . , xn);

1For an increasing (decreasing) function we do not mean a strictly increasing (decreasing) function.
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(A2) A satisfies the boundary conditions: (i) A(0, . . . , 0) = 0 and (ii) A(1, . . . , 1) = 1.

An aggregation function A : [0, 1]n → [0, 1] is said to be idempotent if and only if:

(ID) ∀x ∈ [0, 1] : A(x, . . . , x) = x, and

it is said to be averaging if and only if:

(AV) ∀(x1, . . . , xn) ∈ [0, 1]n : min{x1, . . . , xn} ≤ A(x1, . . . , xn) ≤ max{x1, . . . , xn}.
Observe that, since aggregation functions are increasing, the idempotent and averaging behaviors are equivalent

in the context of aggregation functions.

Definition 2.2. [10] A bivariate function C : [0, 1]2 → [0, 1] is a copula if it satisfies the following conditions, for
all x, x′, y, y′ ∈ [0, 1] with x ≤ x′ and y ≤ y′:
(C1) C(x, y) + C(x′, y′) ≥ C(x, y′) + C(x′, y);

(C2) C(x, 0) = C(0, x) = 0;

(C3) C(x, 1) = C(1, x) = x.

Definition 2.3. [2] Let ~r = (r1, . . . , rn) be a real n-dimensional vector, ~r 6= ~0 = (0, . . . , 0). A function F :
[0, 1]n → [0, 1] is said to be ~r-increasing if for all ~x = (x1, . . . , xn) ∈ [0, 1]n and for all c > 0 such that ~x + c~r =
(x1 + cr1, . . . , xn + crn) ∈ [0, 1]n it holds

F (~x+ c~r) ≥ F (~x).

Similarly, one defines an ~r-decreasing function.

Definition 2.4. [22, 4] A function PA : [0, 1]n → [0, 1] is said to be an n-ary pre-aggregation function (PAF) if the
following conditions hold:

(PA1) Directional Increasingness: there exists ~r = (r1, . . . , rn) ∈ [0, 1]n, ~r 6= ~0, such that PA is ~r-increasing;

(PA2) Boundary conditions: (i) PA(0, . . . , 0) = 0 and (ii) PA(1, . . . , 1) = 1.

If F is a pre-aggregation function with respect to a vector ~r we just say that F is an ~r-pre-aggregation function.

Another important concept used in this paper is the one of ordered directional (OD) monotonicity, introduced in
[16]. Observe that, when one considers directional monotonicity, the direction along which monotonicity is required
is the same for all ~x ∈ [0, 1]n. On the contrary, OD monotone functions are functions that allow monotonicity
along different directions depending on the ordinal size of the coordinates of each input ~x ∈ [0, 1]n. First, we
take a permutation σ : {1, . . . , n} → {1, . . . , n} to reorder the input ~x ∈ [0, 1]n in a decreasing order, obtaining
~xσ ∈ [0, 1]n. Then, a fusion function F : [0, 1]n → [0, 1] is OD ~r-increasing, for a real vector ~r = (r1, . . . , rn), with
~r 6= ~0, whenever F (~x) is less than or equal to the values of F when applied to

(~xσ + c~r)σ−1 = ~x+ c~rσ−1 , (1)

under the assumption that ~xσ and ~xσ + c~r are comonotone (i.e., either they increase or decrease at the same time).

Definition 2.5. [16] Consider a function F : [0, 1]n → [0; 1] and let ~r = (r1, . . . , rn) be a real n-dimensional
vector, ~r 6= ~0. F is said to be ordered directionally (OD) ~r-increasing if, for each ~x ∈ [0, 1]n, any permutation
σ : {1, . . . , n} → {1, . . . , n} with xσ(1) ≥ . . . ≥ xσ(n), and c > 0 such that 1 ≥ xσ(1) + cr1 ≥ . . . ≥ xσ(n) + crn, it
holds that

F (~x+ c~rσ−1) ≥ F (~x),

where ~rσ−1 = (rσ−1(1), . . . , rσ−1(n)). Similarly, one defines an ordered directionally (OD) ~r-decreasing function.

3



In what follows, denote N = {1, . . . , n}, for n > 0.

Definition 2.6. [5, 23] A function m : 2N → [0, 1] is said to be a fuzzy measure if, for all X,Y ⊆ N , the following
conditions hold:

(m1) Increasingness: if X ⊆ Y , then m(X) ≤ m(Y );

(m2) Boundary conditions: m(∅) = 0 and m(N) = 1.

Definition 2.7. [5] The discrete Choquet integral with respect to a fuzzy measure m is the function Cm : [0, 1]n →
[0, 1], defined, for all of ~x = (x1, . . . , xn) ∈ [0, 1]n, by:

Cm(~x) =
n∑

i=1

(
x(i) − x(i−1)

)
·m
(
A(i)

)
, (2)

where
(
x(1), . . . , x(n)

)
is an increasing permutation on the input ~x, that is, 0 ≤ x(1) ≤ . . . ≤ x(n), where x(0) = 0

and A(i) = {(i), . . . , (n)} is the subset of indices corresponding to the n− i+ 1 largest components of ~x.

Whenever one distribute the product operation in Equation (2), we obtain the Choquet Integral in its expanded
form:

Cm(~x) =
n∑

i=1

(
x(i) ·m

(
A(i)

)
− x(i−1) ·m

(
A(i)

))
. (3)

Substituting the product operation in Equation (2) by a copula C, Lucca et al. [9] introduced the CC-integral,
which are averaging aggregation functions:

Definition 2.8. Let m : 2N → [0, 1] be a fuzzy measure and C : [0, 1]2 → [0, 1] be a bivariate copula. The Choquet-
like copula-based integral with respect to m is defined as a function CCm : [0, 1]n → [0, 1], given, for all x ∈ [0, 1]n,
by

CCm(~x) =

n∑

i=1

C
(
x(i),m

(
A(i)

))
− C

(
x(i−1),m

(
A(i)

))
, (4)

where (x(1), . . . , x(n)) is an increasing permutation on the input x, that is, 0 ≤ x(1) ≤ . . . ≤ x(n), with the convention
that x(0) = 0, and A(i) = {(i), . . . , (n)} is the subset of indices of n− i+ 1 largest components of ~x.

Another integral that is related to fuzzy measure is the Sugeno Integral:

Definition 2.9. The discrete Sugeno integral with respect to a fuzzy measure m is the function Sm : [0, 1]n → [0, 1],
defined, for all of ~x = (x1, . . . , xn) ∈ [0, 1]n, by:

Sm(~x) =
n

max
i=1

{
min

{
x(i),m

(
A(i)

)}}
, (5)

where
(
x(1), . . . , x(n)

)
is an increasing permutation on the input ~x, that is, 0 ≤ x(1) ≤ . . . ≤ x(n), where x(0) = 0

and A(i) = {(i), . . . , (n)} is the subset of indices corresponding to the n− i+ 1 largest components of ~x.

3. Pseudo pre-aggregation function pairs (F1, F2)

In this section, we introduce the concept of pseudo pre-aggregation function pair and study some properties. In
the following, consider N = {1, . . . , n}.

Definition 3.1. Consider two bivariate functions F1, F2 : [0, 1]2 → [0, 1]. The pair (F1, F2) is said to be a pseudo
pre-aggregation function pair whenever the following conditions hold, for all y ∈ [0, 1]:

4



(DI) Directional Increasingness: F1 is (1, 0)-increasing;

(BC0) Boundary Conditions for 0:

(i) F1(0, y) = F2(0, y) and

(ii) F1(0, 1) = 0;

(BC1) Boundary Condition for 1: F1(1, 1) = 1;

(DM) F1-Dominance (or, equivalently, F2-Subordination): F1 ≥ F2.

Remark 3.1. Observe that, for any pseudo pre-aggregation function pair (F1, F2), by (i) and (ii), it holds that
F2(0, 1) = 0.

Remark 3.2. Whenever (F1, F2) is a pseudo pre-aggregation function pair then, for any F3 : [0, 1]2 → [0, 1] such
that F2 ≤ F3 ≤ F1, we have that (F1, F3) is also a pseudo pre-aggregation function pair. In particular, (F1, F1) is a
pseudo pre-aggregation function pair.

Definition 3.2. A pseudo pre-aggregation function pair (F1, F2) is pairwise increasing if, for all x, y1, y2 ∈ [0, 1]
and h > 0 such that x+ h ∈ [0, 1], the following condition holds:

(PI) If y2 ≤ y1 then F1(x, y1)− F2(x, y2) ≤ F1(x+ h, y1)− F2(x+ h, y2).

Proposition 3.1. Let (F1, F2) be a pseudo pre-aggregation function pair. If F2 is (1, 0)-decreasing, then the pair
(F1, F2) satisfies (PI).

PROOF. Since F1 is (1, 0)-increasing, then, for any h > 0 and x, y1, y2 ∈ [0, 1] such that x+ h ∈ [0, 1], it holds that
F1(x+h, y1) ≥ F1(x, y1). On the other hand, since F2 is (1, 0)-decreasing, then, for any h > 0 and x, y1, y2 ∈ [0, 1]
such that x + h ∈ [0, 1], it holds that −F2(x + h, y2) ≥ −F2(x, y2). Thus, one has that F1(x, y1) − F2(x, y2) ≤
F1(x+ h, y1)− F2(x+ h, y2). 2

Proposition 3.2. For a copula C, (C,C) is a pseudo pre-aggregation function pair satisfying (PI).

PROOF. It is immediate that any copula C satisfies (DI), (BC0) and (BC1). Thus, (C,C) is a pseudo pre-aggregation
function pair. From (C1), it is immediate that (C,C) satisfies (PI). 2

Remark 3.3. Observe that (PI) is a generalization of the 2-increasing property (C1). In fact, for any fusion function
F , (F, F ) satisfies (PI) if and only if F satisfies (C1).

We present in Table 1 examples of functions F : [0, 1]2 → [0, 1] satisfying (DI), (BC0)(ii) and (BC1). Those
functions are, then, candidates to be combined in order to build pseudo pre-aggregation function pairs. In Table 2, we
present an analysis of the Dominance property (DM), taking into account the functions presented in Table 1, all of
them obviously satisfying (BC0)(i). In this table, considering that functions F1 and F2 are represented, respectively,
in the lines and columns of the table, the pairs marked with “yes” satisfy (DM) or the F1-dominance (equivalently,
the F2-subordination). Thus, those pairs are pseudo pre-aggregation function pairs. The pairs marked with “no” are
not pseudo pre-aggregation function pairs since they do not satisfy (DM).

4. Constructing Choquet-like integrals based on pseudo pre-aggregation function pairs (F1, F2)

In this section, we introduce a method for constructing Choquet-like integrals defined by combining the discrete
Choquet integral in its expanded form (Equation (3)) with pseudo pre-aggregation function pairs (F1, F2), just replac-
ing the product operation in Equation (3) by (F1, F2). Such Choquet-like integrals, which generalize the concept of
CF1F2 -integrals introduced in [14], are called gCF1F2 -integrals.

Consider N = {1, . . . , n}, where n is the dimension of the input vectors ~x, that is, ~x = (x1, . . . , xn) ∈ [0, 1]n.
First, in order to handle repetitive elements in any input ~x, which would lead to an ambiguous definition, we proceed
to a dimension reduction, constructing a new space of dimension k ≤ n, considering K = {1, . . . , k}. For that, we
introduced the following auxiliary definition:
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Table 1: Fi : [0, 1]2 → [0, 1], i = 1, 2, satisfying (DI), (BC0)(ii), (BC1), for building pseudo pre-aggregation function pairs
(I) T-norms [7]
Definition Name/Reference
TM (x, y) = min{x, y} Minimum

TP (x, y) = xy Algebraic Product

TŁ(x, y) = max{0, x+ y − 1} Łukasiewicz

THP (x, y) =

{
0 if x = y = 0

xy
x+y−xy otherwise Hamacher Product

TDP (x, y) =





x if y = 1
y if x = 1
0 otherwise

Drastic Product

(II) Overlap functions [17, 18, 19, 24]
Definition Name/Reference
OB(x, y) = min{x√y, y√x} [17, Theorem 8], Cuadras-Augé family of copulas [25]

OmM (x, y) = min{x, y}max{x2, y2} [26, Ex. 3.1.(i)], [27, Ex. 4], [28, Ex. 3.1]

Oα(x, y) = xy(1 + α(1− x)(1− y)), [10, Apendix A (A.2.1)], [13],
α ∈ [−1, 0[ ∪ ]0, 1] Farlie-Gumbel-Morgenstern copula family

ODiv(x, y) =
xy+min{x,y}

2
[10, Ap. A (A.8.7)], [9, Table 1]

GM(x, y) =
√
xy Geometric Mean [29, Ex. 1]

HM(x, y) =

{
0 if x = 0 or y = 0

2
1
x
+ 1
y

otherwise Harmonic Mean [29, Ex. 1]

S(x, y) = sin
(
π
2
(xy)

1
4

)
Sine [29, Ex. 1]

(III) Copulas that are neither t-norms nor overlap functions [10]
Definition Name/Reference
CF (x, y) = xy + x2y(1− x)(1− y) [7, Ex. 9.5 (v)],[9, Table 1]

CL(x, y) = max{min{x, y
2
}, x+ y − 1} [10, Ap. A (A.5.3a)], [9, Table 1]

(IV) Aggregation functions other than (I)-(III)
Definition Name/Reference
AV G(x, y) = x+y

2
Arithmetic Mean

FRS(x, y) = min
{

(x+1)
√
y

2
, y
√
x
}

FGL(x, y) =
√
x(y+1)

2

FBPC(x, y) = xy2 [20, Ex. 1.80]

Fα(x, y) =

{
αx if x < y
max{αx, y} otherwise ,

0 < α < 1

(V) (1, 0)-Pre-Aggregation functions
Definition Name/Reference

FNA(x, y) =

{
x if x ≤ y
min{x

2
, y} otherwise

FNA2(x, y) =





0 if x = 0
x+y
2

if 0 < x ≤ y
min{x

2
, y} otherwise

(VI) Non Pre-Aggregation functions
Definition Name/Reference
FIM (x, y) = max{1− y, x}
FIP (x, y) = 1− y + xy

Definition 4.1. The dimension reduction of the inputs ~x ∈ [0, 1]n is performed by family of (n 7→ k)-dimension
reduction functions Rn7→k| : [0, 1]n → [0, 1]k, defined, for each ~x = (x1, . . . , xn) ∈ [0, 1]n, by:

Rn7→k(x1, . . . , xn) = (y1, . . . , yk), (6)

such that:

(R1) k =| {x1, . . . , xn} | is the cardinality of the set {x1, . . . , xn}.
6



Table 2: Analysis of the property (DM) for different candidates to pseudo pre-aggregation function pairs (F1, F2), satisfying (BC0)(i), constructed
from Table 1

TP TM TŁ TDP THP OB OmM Oα ODiv GM HM S FRS CF CL FGL FBPC FNA Fα FNA2 AVG FIM FIP
TP yes no yes yes no no yes no no no no no no no no no yes no no no no no no

TM yes yes yes yes yes yes yes yes yes no no no no yes yes no yes yes no no no no no

TŁ no no yes yes no no no no no no no no no no no no no no no no no no no

TDP no no no yes no no no no no no no no no no no no no no no no no no no

THP yes no yes yes yes no yes yes no no no no no yes no no yes no no no no no no

OB yes no yes yes no yes yes yes no no no no no no no no yes no no no no no no

OmM no no no yes no no yes no no no no no no no no no yes no no no no no no

Oα yes no yes yes no no yes yes no no no no no no no no yes no no no no no no

ODiv yes no yes yes no yes yes yes yes no no no no no no no yes no no no no no no

GM yes yes yes yes yes yes yes yes yes yes yes no yes yes yes no yes yes no no no no no

HM yes yes yes yes yes yes yes yes yes no yes no no yes yes no yes yes no no no no no

S yes yes yes yes yes yes yes yes yes yes yes yes yes yes yes yes yes yes yes yes yes yes yes

FRS yes no yes yes no yes yes yes no no no no yes no no no yes no no no no no no

CF yes no yes yes no no yes no no no no no no yes no no yes no no no no no no

CL no no yes yes no no no no no no no no no no yes no yes no no no no no no

FGL yes yes yes yes yes yes yes yes yes yes yes no yes yes yes yes yes yes yes no no no no

FBPC no no no yes no no no no no no no no no no yes no yes no no no no no no

FNA no no no yes no no no no no no no no no no yes no no yes no no no no no

Fα no no no yes no no no no no no no no no no yes no no no yes no no no no

FNA2 no no no yes no no no no no no no no no no yes no no yes no yes no no no

AVG yes yes yes yes yes yes yes yes yes yes yes no yes yes yes no yes yes yes yes yes no no

FIM yes yes yes yes yes yes yes yes yes no no no no yes yes no yes yes yes no no yes no

FIP yes yes yes yes yes yes yes yes yes no no no no yes yes no yes yes yes no no yes yes

(R2) {x1, . . . , xn} = {y1, . . . , yk} and

(R3) y1 < . . . < yk.

Note that the functions Rn7→k are well defined and, in case some components of the input ~x are repeated, they
collapse into one single value. With this definition at hand, we denote, for each j ∈ K and ~x ∈ [0, 1]n:

BRj (~x) = {i ∈ N | xi = yj}. (7)

Observe that, for every ~x ∈ [0, 1]n, it holds that ∪kj=1B
R
j (~x)) = N .

Definition 4.2. Let F1, F2 : [0, 1]2 → [0, 1] be a pair of functions such that F1 ≥ F2 (i.e., F1 dominates F2) and F1

is (1, 0)-increasing, and consider a fuzzy measure m : 2N → [0, 1]. Let Rn7→k : [0, 1]n → [0, 1]k be a (n 7→ k)-
dimension reduction function given in Definition 4.1. The generalized CF1F2

-integral based on (F1, F2) with respect
to m is defined as a function gC(F1,F2)

m : [0, 1]n → [0, 1], given, for all ~x ∈ [0, 1]n, by

gC
(F1,F2)
m (~x) = min



1,

k∑

j=1

F1

(
yj ,m

(
∪kp=jBRp (~x)

))
− F2

(
yj−1,m

(
∪kp=jBRp (~x)

))


 , (8)

with the convention that y0 = 0 and BRj is as defined in Equation (7).

Proposition 4.1. Under the conditions of Definition 4.2, gC(F1,F2)
m is well defined, for any pair F1, F2 : [0, 1]2 →

[0, 1] and fuzzy measure m.

PROOF. It is immediate that, for all ~x, ~x′ ∈ [0, 1]n, whenever gC(F1,F2)
m (~x) 6= gC

(F1,F2)
m (~x′), then ~x 6= ~x′. Now,

consider Rn7→k and BRj as defined in equations (6) and (7), respectively. Then, since F1 is (1, 0)-increasing and
F1 ≥ F2, one has that:

F1(yj ,m
(
∪kp=jBRp (~x)

)
)− F2(yj−1,m

(
∪kp=jBRp (~x)

)
) ≥ F1(yj ,m

(
∪kp=jBRp (~x)

)
)− F1(yj−1,m

(
∪kp=jBRp (~x)

)
)

≥ 0.

Therefore, it holds that gC(F1,F2)
m (~x) ≥ 0, for all ~x ∈ [0, 1]n. On the other hand, it is immediate that gC(F1,F2)

m (~x) ≤ 1,
for all ~x ∈ [0, 1]n. Thus, gC(F1,F2)

m is well defined. 2
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Lemma 4.1. ConsiderRn7→k andBRj as defined in equations (6) and (7), respectively. Then, for all ~x = (x, . . . , x) ∈
[0, 1]n, it holds that Rn7→k(~x) = x and BR1 (~x) = N .

PROOF. For any ~x = (x, . . . , x) ∈ [0, 1]n, we have that {x, . . . , x} = {y1} implies in y1 = x and K = {1}. It
follows that Rn7→k(~x) = x and BR1 (~x) = {i ∈ N | xi = y1 = x} = {1, . . . , n} = N . 2

Proposition 4.2. Under the conditions of Definition 4.2, for any fuzzy measure m : 2N → [0, 1] and F : [0, 1]2 →
[0, 1], if F (x, 1) = x, for all x ∈ [0, 1], then gC(F,F )

m is idempotent.

PROOF. Consider Rn7→k and BRj as defined in equations (6) and (7), respectively. Then, one has that:

gC
(F,F )
m (~x) = min

{
1, F (y,m(BR1 (~x)))− F (0,m(BR1 (~x)))

}
by Eq. (8)

= min {1, F (y,m(N)− F (0,m(N)} by Lemma 4.1
= min {1, F (x, 1)− F (0, 1)}
= x.

2

Proposition 4.3. Under the conditions of Definition 4.2, for any fuzzy measure m : 2N → [0, 1] and pair of functions
F1, F2 : [0, 1]2 → [0, 1], if F2(0, 1) = 0 and F1(x, 1) ≥ x, for all x ∈ [0, 1], then gC(F1,F2)

m ≥ min.

PROOF. Consider Rn7→k and BRj as defined in equations (6) and (7), respectively. Since F1 ≥ F2, one has that:

gC
(F1,F2)
m (~x) = min

{
1, F1(y1,m(∪kp=1B

R
p (~x)))− F2(y0,m(∪kp=1B

R
p (~x)))+

k∑

j=2

F1(yj ,m(∪kp=jBRp (~x)))− F2(yj−1,m(∪kp=jBRp (~x)))





≥ min {1, F1(y1,m(N))− F2(y0,m(N))} by (DM)
= min {1, F1(y1, 1)− F2(0, 1)}
≥ min {1, y1 − 0}
= y1

= min ~x.

2

5. gCF1F2 -integrals as aggregation functions

In this subsection, we show that a gCF1F2 -integral is an aggregation function whenever (F1, F2) is a pre-aggregation
function pair satisfying an additional condition, namely, the pairwise increasingness property (PI).

Proposition 5.1. ConsiderRn7→k andBRj as defined in equations (6) and (7). For any fuzzy measure m : 2N → [0, 1]

and pseudo pre-aggregation function pair (F1, F2), gC
(F1,F2)
m satisfies the boundary conditions (A2).

PROOF. Consider ~0 = (0, . . . , 0) ∈ [0, 1]n. It follows that:

gC
(F1,F2)
m (~0) = min

{
1, F1(0,m(BR1 (~0))− F2(0,m(BR1 (~0))

}
by Eq. (8)

= min {1, F1(0,m(N)− F2(0,m(N)} by Lemma 4.1
= min {1, F1(0, 1)− F2(0, 1)}
= 0 by (BC0).
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Consider ~1 = (1, . . . , 1) ∈ [0, 1]n. It follows that:

gC
(F1,F2)
m (~1) = min

{
1, F1(1,m(BR1 (~1)))− F2(0,m(BR1 (~1)))

}
by Eq. (8)

= min {1, F1(1,m(N)− F2(1,m(N)} by Lemma 4.1
= min{1, F1(1, 1)− F2(0, 1)

= 1 by (BC1), (BC0)

2

Lemma 5.1. Consider Rn7→k and BRj as defined in equations (6) and (7). Let m : 2N → [0, 1] be a fuzzy measure
and F1, F2 : [0, 1]2 → [0, 1] a pair of functions satisfying the conditions of Definition 4.2. Then

gC
(F1,F2)
m (~x) ≤ gC(F1,F2)

m (~z),

for every ~x = (x1, . . . , xn), ~z = (z1, . . . , zn) ∈ [0, 1]n such that x(n) ≤ z(n) and x(i) = z(i), for all (i) ∈
{(1), . . . , (n − 1)}, where (x(1), . . . , x(n)) and (z(1), . . . , z(n)) are, respectively, any increasing permutations of ~x
and ~z.

PROOF. Consider ~x = (x1, . . . , xn), ~z = (z1, . . . , zn) ∈ [0, 1]n such that x(n) ≤ z(n) and x(i) = z(i), for all
(i) ∈ {(1), . . . , (n− 1)}. Then, according to equations (6) and (7), we have that:

(i) Rn7→k(~x) = (y1, . . . , yk) such that {x1, . . . , xn} = {y1, . . . , yk}, with k ≤ n, and y1 < . . . < yk;

(ii) BRj (~x) = {i ∈ N | xi = yj}, for j ∈ K = {1, . . . , k};

(iii) Rn7→k(~z) = (h1, . . . , hw) such that {z1, . . . , zn} = {h1, . . . , hw}, with w ≤ n, and h1 < . . . < hw;

(iv) BRj (~z) = {i ∈ N | zi = hj}, for j ∈W = {1, . . . , w}.

One has the following cases:

K =W : In this case it holds that y1 = h1 < . . . < yk−1 = hw−1 < yk ≤ hw and BRj (~x) = BRj (~z), for all
j ∈ K =W . Since F1 is (1, 0)-increasing, it follows that:

gC
(F1,F2)
m (~x) = min



1,

k−1∑

j=1

(
F1(yj ,m(∪kp=jBRp (~x)))− F2(yj−1,m(∪kp=jBRp (~x)))

)

+F1(yk,m(BRk (~x)))− F2(yk−1,m(BRk (~x)))
}

≤ min



1,

w−1∑

j=1

(
F1(hj ,m(∪wp=jBRp (~y)))− F2(hj−1,m(∪wp=jBRp (~y)))

)

+F1(hw,m(BRw (~y)))− F2(hw−1,m(BRw (~y)))
}

= gC
(F1,F2)
m (~z).

k < w: In this case it holds that w = k + 1, x(n) = x(n−1) = z(n−1), y1 = h1 < . . . < yk = hw−1 < hw,
BRj (~x) = BRj (~z) for all j ≤ k − 1, | BRw−1(~z) |=| BRk (~x) | −1 and BRw (~z) = {n} (that is, | BRw (~z) |= 1).
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Since F1 is (1, 0)-increasing, it follows that:

gC
(F1,F2)
m (~x) = min



1,

k∑

j=1

(
F1(yj ,m(∪kp=jBRp (~x)))− F2(yj−1,m(∪kp=jBRp (~x)))

)




≤ min



1,

w−1∑

j=1

(
F1(hj ,m(∪wp=jBRp (~z)))− F2(hj−1,m(∪wp=jBRp (~z))))

)

+F1(hw,m(BRw (~z)))− F2(hw−1,m(BRw (~z)))
}

= gC
(F1,F2)
m (~z).

Observe that the case k > w never happens, since one would necessarily has z(n) = z(n−1) = x(n−1) < x(n), which
is a contradiction. 2

Theorem 5.1. Let F : [0, 1]2 → [0, 1] such that (F, F ) is a pair of functions satisfying the conditions of Definition
4.2. The pair (F, F ) satisfies (PI) if and only if gC(F,F )

m is increasing for each fuzzy measure m : 2N → [0, 1].

PROOF. (⇒) Suppose that (F, F ) satisfies (PI) and consider ~x = (x1, . . . , xt−1, xt, xt+1 . . . , xn) ∈ [0, 1]n, with
t ∈ {1, . . . , n}. By convention, given ~x ∈ [0, 1]n, we state that x0 = x(0) = 0 and xn+1 = x(n+1) = 1. We have the
following cases:

(i) ∀i ∈ N : i 6= t→ xt 6= xi. In this case, considering equations (6) and (7), for each ~x ∈ [0, 1]n, one has that:

• Rn7→k(~x) = (y1, . . . , yl−1, yl = xt, yl+1, . . . , yk) (with l ∈ K = {1, . . . , k}, k ≤ n, y0 = 0 and
yk+1 = 1) such that {x1, . . . , xt−1, xt, xt+1, . . . , xn} = {y1, . . . , yl−1, yl = xt, yl+1, . . . yk} and y1 <
. . . < yl−1 < yl = xt < yl+1 < . . . < yk.

• BRj (~x) = {i ∈ N | xi = yj}, for j ∈ K = {1, . . . , k}. In particular, one has that BRl (~x) = {t}.

Now, consider the following cases:

(ia) Suppose that there exists ~z ∈ [0, 1]n, with ~x < ~z, such that ~z = (z1 = x1, . . . , zt−1 = xt−1, zt, zt+1 =
xt+1, . . . , zt = xn) ∈ [0, 1]n with y1 < . . . < yl−1 < yl = xt < zt < yl+1 < . . . < yk. If t = 1 or
t = n then define ~z = (z, z2, . . . , zn) ∈ [0, 1]n or ~z = (z1, . . . , zn−1, z) ∈ [0, 1]n, respectively. In this
case, considering equations (6) and (7), one has that:

• Rn7→w(~z) = (h1 = y1, . . . , hl−1 = yl−1, hl = zt, hl+1 = yl+1, . . . , hw = yk), with w = k ≤ n,
where h1 = y1 < . . . < hl−1 = yl−1 < yl = xt < hl = zt < hl+1 = yl+1 < . . . < hw = yk.

• BRj (~z) = {i ∈ N | zi = hj} = {i ∈ N | xi = yj} = BRj (~x), for j ∈ W = K = {1, . . . , w = k}.
In particular, one has that BRl (~z) = {t} = BRl (~x).
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Since the pair (F, F ) satisfies (PI) and by Lemma 5.1, it follows that:

gC
(F,F )
m (~x)

= min



1,

l−1∑

j=1

(
F (yj ,m(∪kp=jBRp (~x)))− F (yj−1,m(∪kp=jBRp (~x)))

)
+ F (yl,m(∪kp=lBRp (~x)))

−F (yl−1,m(∪kp=lBRp (~x))) + F (yl+1,m(∪kp=l+1B
R
p (~x)))− F (yl,m(∪kp=l+1B

R
p (~x)))

+
k∑

j=l+2

(
F (yj ,m(∪kp=jBRp (~x)))− F (yj−1,m(∪kp=jBRp (~x)))

)




= min



1,

l−1∑

j=1

(
F (yj ,m(∪kp=jBRp (~x)))− F (yj−1,m(∪kp=jBRp (~x)))

)
+ F (xt,m(∪kp=lBRp (~x)))

−F (yl−1,m(∪kp=lBRp (~x))) + F (yl+1,m(∪kp=l+1B
R
p (~x)))− F (xt,m(∪kp=l+1B

R
p (~x)))

+

k∑

j=l+2

(
F (yj ,m(∪kp=jBRp (~x))− F (yj−1,m(∪kp=jBRp (~x)))

)




≤ min



1,

l−1∑

j=1

(
F (hj ,m(∪wp=jBRp (~z)))− F2(hj−1,m(∪wp=jBRp (~z)))

)
+ F (zt,m(∪wp=lBRp (~z)))

−F (hl−1,m(∪wp=lBRp (~z))) + F (hl+1,m(∪wp=l+1B
R
p (~z)))− F (zt,m(∪wp=l+1B

R
p (~z)))

+

w∑

j=l+2

(
F (hj ,m(∪wp=jBRp (~z)))− F (hj−1,m(∪wp=jBRp (~z)))

)




= gC
(F,F )
m (~z),

since m(∪kp=l+1B
R
p (~x)) = m(∪wp=l+1B

R
p (~z)) ≤ m(∪kp=lBRp (~x)) = m(∪wp=lBRp (~z)), and, by (PI), it

holds that

F (xt,m(∪kp=lBRp (~x)))−F (xt,m(∪kp=l+1B
R
p (~x))) ≤ F (zt,m(∪wp=lBRp (~z)))−F (zt,m(∪wp=l+1B

R
p (~z))).

(ib) Now, consider that n ≥ 2 and ~z ∈ [0, 1]n, with ~x < ~z, such that ~z = (z1 = x1, . . . , zt−1 = xt−1, zt, zt+1 =
xt+1, . . . , zt = xn) ∈ [0, 1]n with y1 < . . . < yl−1 < yl = xt < zt = yl+1 < . . . < yk. If t = 1 or
t = n then define ~z = (z, z2, . . . , zn) ∈ [0, 1]n or ~z = (z1, . . . , zn−1, z) ∈ [0, 1]n, respectively. In this
case, considering equations (6) and (7), one has that:

• Rn7→w(~z) = (h1 = yl, . . . , hl−1 = yl−1, hl = zt = yl+1, hl+1 = yl+2, . . . , hw = yk), with
w = k − 1 ≤ n, where h1 = yl < . . . < hl−1 = yl−1 < yl = xt < hl = zt = yl+1 < hl+1 =
yl+2 < . . . < hw = yk.
• BRj (~z) = {i ∈ N | zi = hj}.

Observe that, since hl = zt = yl+1, with l ∈W , then it holds that:

• ∀j ∈W : j < l→ BRj (~z) = BRj (~x),

• | BRl (~z) |=| BRl+1(~x) | +1,

• ∀j ∈W : j > l→ BRj (~z) = BRj+1(~x).

• | ∪kp=lBRp (~x)) |=| ∪wp=lBRp (~z)) |.
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Since the pair (F, F ) satisfies (PI) and by Lemma 5.1, it follows that:

gC
(F,F )
m (~x)

= min



1,

l−1∑

j=1

(
F (yj ,m(∪kp=jBRp (~x)))− F (yj−1,m(∪kp=jBRp (~x)))

)

+F (yl,m(∪kp=lBRp (~x)))− F (yl−1,m(∪kp=lBRp (~x)))
+F (yl+1,m(∪kp=l+1B

R
p (~x)))− F (yl,m(∪kp=l+1B

R
p (~x)))

+F (yl+2,m(∪kp=l+2B
R
p (~x)))− F (yl+1,m(∪kp=l+2B

R
p (~x)))

+
k∑

j=l+3

(
F (yj ,m(∪kp=jBRp (~x)))− F (yj−1,m(∪kp=jBRp (~x)))

)




= min



1,

l−1∑

j=1

(
F (yj ,m(∪kp=jBRp (~x)))− F (yj−1,m(∪kp=jBRp (~x)))

)

+F (xt,m(∪kp=lBRp (~x)))− F (yl−1,m(∪kp=lBRp (~x)))
+F (yl+1,m(∪kp=l+1B

R
p (~x)))− F (xt,m(∪kp=l+1B

R
p (~x)))

+F (yl+2,m(∪kp=l+2B
R
p (~x)))− F (yl+1,m(∪kp=l+2B

R
p (~x)))

+

k∑

j=l+3

(
F (yj ,m(∪kp=jBRp (~x)))− F (yj−1,m(∪kp=jBRp (~x)))

)




≤ min



1,

l−1∑

j=1

(
F (hj = yj ,m(∪wp=jBRp (~z)))− F (hj−1 = yj−1,m(∪wp=jBRp (~z)))

)

+F (hl = zt = yl+1,m(∪wp=lBRp (~z)))− F (hl−1 = yl−1,m(∪wp=lBRp (~z)))
+F (hl+1 = yl+2,m(∪wp=l+1B

R
p (~x)))− F (hl = zt = yl+1,m(∪wp=l+1B

R
p (~x)))

+
w∑

j=l+2

(
F (hj ,m(∪wp=jBRp (~z)))− F (hj−1,m(∪wp=jBRp (~z)))

)




= gC
(F,F )
m (~z),

since ∪kp=l+1B
R
p (~x) ⊂ ∪kp=lBRp (~x) = ∪wp=lBRp (~z), and, then, by (PI), it holds that

F (xt,m(∪kp=lBRp (~x)))− F (xt,m(∪kp=l+1B
R
p (~x)))

< F (hl = zt = yl+1,m(∪wp=lBRp (~z)))− F (yl+1,m(∪kp=l+1B
R
p (~x))).

(ic) Now consider l ∈ {1, . . . , k−3}, and ~z = (z1 = x1, . . . , zt−1 = xt−1, zt, zt+1 = xt+1, . . . , xn) ∈ [0, 1]n,
such that ~x < ~z, with y1 < . . . < yl−1 < yl = xt < yl+1 < . . . < zt < . . . < yk. If t = 1 or t = n
then define ~z = (z, z2, . . . , zn) ∈ [0, 1]n or ~z = (z1, . . . , zn−1, z) ∈ [0, 1]n, respectively. In this case,
considering equations (6) and (7), one has that:

• Rn7→w(~z) = (h1, . . . , hl−1, hl = zt, hl+1, . . . , hw), with w ≤ n, where h1 < . . . < hl−1 < hl =
zt < hl+1 < . . . < hw and {x1 = z1, . . . , xt−1 = zt−1, zt, xt+1 = zt+1, . . . , zn = xn} =
{h1, . . . , hl−1, hl = z, hl+1, . . . hw}.
• Bhj = {i | zi = hj}, for j ∈W = {1, . . . , w}.
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Consider r ∈ {2, . . . , w − l − 1}. Suppose that yl = xt < yl+1 < . . . < yk−r < zt < yk−r+2. Then, by
(ia) and (ib), it follows that:

gC
(F1,F2)
m (~x) ≤ gC(F1,F2)

m (~s1) ≤ . . . ≤ gC(F1,F2)
m (~sn−r−l) ≤ gC(F1,F2)

m (~z),

where, for i = 1, . . . , n− r − l, ~si = (x1, . . . , xt−1, yl+i, xt+1, . . . , xn).

(id) Suppose the same conditions of case (ic), but for ~z = (z1 = x1, . . . , zt−1 = xt−1, zt, zt+1 = xt+1, . . . , xn) ∈
[0, 1]n, such that zt = yj , for some yj > yl+1, that is, y1 < . . . < xt = yl < yl+1 < . . . < zt = yj <
. . . < yk. In this case, considering equations (6) and (7), one has that:

• Rn7→w(~z) = (h1 = y1, . . . , hl−1 = yj−1, hl = zt = yj , hl+1 = yj+1, . . . , hw), with w < k, where
h1 < . . . < hl−1 < hl = zt < hl+1 < . . . < hw and {x1 = z1, . . . , xt−1 = zt−1, zt, xt+1 =
zt+1, . . . , zn = xn} = {h1, . . . , hl−1, hl = zt, hl+1, . . . hw}.

• Bhj = {i | zi = hj}, for j ∈W = {1, . . . , w}.
Consider r ∈ {2, . . . , w−l−1}. Suppose that yl = xt < yl+1 < . . . < yk−r < zt = k−r+1 < yk−r+2.
Then, considering (ib), the proof is analogous to (ic).

(ii) ∃i ∈ N, i 6= t, s.t. xt = xi. In this case, we have the same subcases (ia)-(id), and the proofs are analogous.

(⇐) We prove the contrapositive. Suppose that the pair (F, F ) does not satisfy (PI). Then, there exist a, b, c, d ∈
[0, 1] such that a ≤ b, c ≤ d and F (a, d) − F (a, c) > F (b, d) − F (b, c). Observe that a 6= 1 and c 6= 1. Let
m : 2N → [0, 1] be such that m({n − 1, n − 2}) = d and m({n − 1}) = c. Then, for ~x = (0, . . . , 0, a, 1) and
~z = (0, . . . , 0, b, 1), we have that k = 3 and ~x ≤ ~z. Consider ~y = (0, a, 1) and ~h = (0, b, 1). Then, one has that:

gC
(F,F )
m (~x) = min

{
1, F (0,m(∪3p=1B

R
p (~x)))− F (0,m(∪kp=1B

R
p (~x))) + F (a,m(∪3p=2B

R
p (~x)))

−F (0,m(∪3p=2B
R
p (~x))) + F (1,m(BR3 (~x)))− F (a,m(BR3 (~x)))

}

= min {1, F (a,m({n− 2, n− 1}))− F (0,m({n− 2, n− 1})) + F (1,m({n− 1}))
−F (a,m({n− 1}))}

= min {1, F (a, d)− F (0, d) + F (1, c)− F (a, c)}
> min {1, F (b, d)− F (0, d) + F (1, c)− F (b, c)}
= min {1, F (b,m({n− 2, n− 1}))− F (0,m({n− 2, n− 1})) + F (1,m({n− 1}))
−F (b,m({n− 1}))}

= min
{
1, F (0,m(∪3p=1B

R
p (~x)))− F (0,m(∪kp=1B

R
p (~x))) + F (b,m(∪3p=2B

R
p (~x)))

−F (0,m(∪3p=2B
R
p (~x))) + F (1,m(BR3 (~x)))− F (b,m(BR3 (~x)))

}

= gC
(F,F )
m (~z).

Therefore, gC(F,F )
m is not increasing for each fuzzy measure m : 2N → [0, 1]. 2

Corollary 5.1. For any fuzzy measure m : 2N → [0, 1] and pseudo pre-aggregation function pair (F, F ) satisfying
(PI), gC(F,F )

m is an aggregation function.

PROOF. It follows from Proposition 5.1 and Theorem 5.1. 2

Observe that if for some pseudo pre-aggregation function pair (F, F ) and fuzzy measure m we have that gC(F,F )
m

is not increasing (and, thus, it is not an aggregation function) then (F, F ) does not satisfy (PI). Nevertheless, this does
not mean that, for some other fuzzy measure m′, gC(F,F )

m′ would not be an aggregation function.

Example 5.1. Let F : [0, 1]2 → [0, 1] be the function defined by

F (x, y) =





0 if x = 0 ∨ y = 0;
x+y
2 if 0 < x ≤ y;

x otherwise.
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Clearly, F is (1,0)-increasing, F (0, 1) = 0 and F (1, 1), and therefore (F, F ) is a pseudo pre-aggregation pair (in
fact, F is an aggregation function). But, (F, F ) does not satisfy (PI). In fact, one has that

F (0.3, 0.7)− F (0.3, 0.5) = 0.5− 0.4 = 0.1 > 0 = 1− 1 = F (1, 0.7)− F (1, 0.5).

Hence, by Theorem 5.1, for some fuzzy measure m, gC(F,F )
m is not increasing. In particular, by the proof of this

Theorem, gC(F,F )
m is not increasing for any fuzzy measure m such that 1 > m({n − 2, n − 1}) > m({n − 1}).

However, for the fuzzy measure m⊥ : 2N → [0, 1], defined by:

m⊥(X) =

{
1 if X = N ;
0 otherwise,

one has that gC(F,F )
m⊥ : [0, 1]n → [0, 1] is the aggregation function, defined, for all ~x = (x1, . . . , xn) ∈ [0, 1]n, by:

gC
(F,F )
m⊥ (~x) =

{
0 if y1 = 0
y1+1

2 otherwise,

where y1 = xt, such that xt ≤ xi, for all i ∈ {1, . . . , n}.
Notice that Theorem 5.1 requires a pseudo pre-aggregation function pair (F1, F2) satisfying (PI) and additionally

that F1 = F2 in order to guarantee that gC(F1,F2)
m⊥ is increasing. The following example shows that there exist pseudo

pre-aggregation function pairs (F1, F2), with F1 6= F2, satisfying (PI) such that gC(F1,F2)
m⊥ is not increasing.

Example 5.2. Consider the pseudo pre-aggregation function pair (TP , FBPC), where TP is the product t-norm and
FBPC is an aggregation function (which is neither a t-norm, overlap function nor a copula), as defined in Tables 1
and 2. Observe that TP dominates FBPC . Moreover, this pair satisfies (PI). In fact, for all x, y1, y2 ∈ [0, 1] and
h > 0 such that x+ h ∈ [0, 1], if y2 ≤ y1, it holds that:

TP (x+ h, y1)− FBPC(x+ h, y2) = (x+ h)y1 − (x+ h)y22 by Table 1

= xy1 − xy22 + h(y1 − y22)
= TP (x, y1)− FBPC(x, y2) + h(y1 − y22) by Table 1

≥ TP (x, y1)− FBPC(x, y2),

since h(y1 − y22) ≥ 0. However, gC(TP ,FBPC)
m is not increasing. In fact, consider ~x = (0.6, 0.4, 0.6, 0.5, 0.4, 0.6, 0.7)

and ~z = (0.6, 0.4, 0.6, 0.6, 0.4, 0.6, 0.7), that is, ~x < ~z. Then, k = 4 and w = 3, and:

• Rn7→k(~x) = (0.4, 0.5, 0.6, 0.7) and Rn7→w(~z) = (0.4, 0.6, 0.7);

• BR1 (~x) = {2, 5}, BR2 (~x) = {4}, BR3 (~x) = {1, 3, 6} and BR4 (~x) = {7};
• BR1 (~z) = {2, 5}, BR2 (~z) = {1, 3, 4, 6} and BR3 (~x) = {7}.

Suppose that the fuzzy measure m : 2N → [0, 1] is such that: m({1, 2, 3, 4, 5, 6, 7}) = 1, m({1, 3, 4, 6, 7}) = 0.8,
m({1, 3, 6, 7}) = 0.5 and m({7}) = 0.2. Then one has that:

gC
(TP ,FBPC)
m (~x) = min



1,

4∑

j=1

(
TP (yj ,m(∪kp=jBRp (~x)))− FBPC(yj−1,m(∪kp=jBRp (~x)))

)




= {1, TP (0.4,m({1, 2, 3, 4, 5, 6, 7}))− FBPC(0,m({1, 2, 3, 4, 5, 6, 7}))
+TP (0.5,m({1, 3, 4, 6, 7}))− FBPC(0.4,m({1, 3, 4, 6, 7}))
+TP (0.6,m({1, 3, 6, 7}))− FBPC(0.5,m({1, 3, 6, 7}))
+TP (0.7,m({7}))− FBPC(0.6,m({7}))}

= min{1, 0.4 · 1− 0 · (1)2 + 0.5 · 0.8− 0.4 · (0.8)2 + 0.6 · 0.5− 0.5 · (0.5)2 + 0, 7 · 0.2
−0.6 · (0.2)2}

= 0.835
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and

gC
(TP ,FBPC)
m (~z) = min



1,

3∑

j=1

(
TP (yj ,m(∪wp=jBRp (~z)))− FBPC(yj−1,m(∪kp=jBRp (~z)))

)




= {1, TP (0.4,m({1, 2, 3, 4, 5, 6, 7}))− FBPC(0,m({1, 2, 3, 4, 5, 6, 7}))
+TP (0.6,m({1, 3, 4, 6, 7}))− FBPC(0.4,m({1, 3, 4, 6, 7}))
+TP (0.7,m({7}))− FBPC(0.6,m({7}))}

= min{1, 0.4 · 1− 0 · (1)2 + 0.6 · 0.8− 0.4 · (0.8)2 + 0, 7 · 0.2− 0.6 · (0.2)2}
= 0.74.

Thus, gC(TP ,FBPC)
m (~x) > gC

(TP ,FBPC)
m (~z) and gC(TP ,FBPC)

m is not an aggregation function, since it is not increasing.

Now we present an example of a pseudo pre-aggregation function pair (F, F ) satisfying (PI) (then, fulfilling all
the requirements of Theorem 5.1), thus generating an aggregation function gC(F,F )

m⊥ .

Example 5.3. Consider the pseudo pre-aggregation function pair (FIP , FIP ), whereFIP is not even a pre-aggregation
function, as defined in Tables 1 and 2. This pair satisfies (PI). In fact, for all x, y1, y2 ∈ [0, 1] and h > 0 such that
x+ h ∈ [0, 1], if y2 ≤ y1, it holds that:

FIP (x+ h, y1)− FIP (x+ h, y2) = 1− y1 + (x+ h)y1 − (1− y2 + (x+ h)y2) by Table 1

= (1− y1 + xy1)− (1− y2 + xy2) + h(y1 − y2)
= FIP (x, y1)− FIP (x, y2) + h(y1 − y2) by Table 1

≥ FIP (x, y1)− FIP (x, y2),

since h(y1 − y2) ≥ 0. Thus, from Corollary 5.1, gC(FIP ,TIP )
m is an aggregation function, for any fuzzy measure

m : 2N → [0, 1].

Corollary 5.2. For any fuzzy measure m : 2N → [0, 1] and pseudo pre-aggregation function pair (F, F ) satisfying
(PI), gC(F,F )

m is an averaging aggregation function if and only if F (x, 1) = x, for all x ∈ [0, 1].

PROOF. It follows from Corollary 5.1 and Proposition 4.2. 2

Example 5.4. Consider the pseudo pre-aggregation function pair (FBPC , FBPC), where FBPC is an aggregation
function (which is neither a t-norm, overlap function nor a copula), as defined in Tables 1 and 2. This pair satisfies
(PI). In fact, for all x, y1, y2 ∈ [0, 1] and h > 0 such that x+ h ∈ [0, 1], then, whenever y2 ≤ y1, it holds that:

FBPC(x+ h, y1)− FBPC(x+ h, y2) = (x+ h)y21 − (x+ h)y22 by Table 1

= xy21 − xy22 + h(y21 − y22)
= FBPC(x, y1)− FBPC(x, y2) + h(y21 − y22) by Table 1

≥ FBPC(x, y1)− FBPC(x, y2),

since h(y21 − y22) ≥ 0. Therefore, since FBPC(x, 1) = x, then, from Corollary 5.2, it follows that gC(FBPC ,FBPC)
m is

an averaging aggregation function, for any fuzzy measure m : 2N → [0, 1].

Corollary 5.3. For any fuzzy measure m : 2N → [0, 1] and copula C, gC(C,C)
m is an averaging aggregation function.

PROOF. It follows from Corollary 5.2 and Proposition 3.2. 2
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Remark 5.1. Considering equations (4) and (8), by an easy calculation it is possible to check that, whenever F1 =
F2 = C, for a copula C, one has that:

gC
(C,C)
m (~x) = min



1,

k∑

j=1

C
(
yj ,m

(
∪kp=jBRp (~x)

))
− C

(
yj−1,m

(
∪kp=jBRp (~x)

))




=

n∑

i=1

C
(
x(i),m

(
A(i)

))
− C

(
x(i−1),m

(
A(i)

))
(9)

= CCm(~x),

which is, in fact, the CC-Integral used in classification problems in [9]. In [30, Theorem 1], Radko and Stupnanová
showed that the CC-Integral is a C-based universal integral ICm, for a fuzzy measure m and copula C. Additionally,
from [30, Corollary 2], for any fuzzy measure m : 2N → [0, 1] and copula C : [0, 1]2 → [0, 1], one has that gC(C,C)

m

is an OMA2 operator and vice-versa.

Remark 5.2. Observe that, by Remark 5.2, whenever F1 = F2 = C, for a copula C, it is not necessary to make the
dimension reduction to deal with duplicated elements.

Example 5.5. Consider the pseudo pre-aggregation pair (TM , TM ), where TM is the minimum t-norm. Then, for
any fuzzy measure m : 2N → [0, 1], gC(TM ,TM )

m is an averaging aggregation function, since (TM , TM ) satisfies PI
and TM (x, 1) = x. Moreover, by [30, Corollary 1], gC(TM ,TM )

m is a Sugeno Integral [32]. Observe that, by Remark
5.2, since F1 = F2 = TM , we do not need to worry about the duplicated components in the input ~x, so that we can
just consider that K = N in Definition 4.1. In fact, consider ~x ∈ [0, 1]n and let (x(1), . . . , x(n)) be an increasing
permutation on the input ~x, and A(i) = {(i), . . . , (n)} be the subset of indices of the n− i+ 1 largest components of
~x. It follows that:

gC
(TM ,TM )
m (~x) = min

{
1,

n∑

i=1

min
{
x(i),m

(
A(i)

)}
−min

{
x(i−1),m

(
A(i)

)}
}
,

= min



1,

n∑

i=1





x(i) − x(i−1) if x(i) ≤ m
(
A(i)

)

m
(
A(i)

)
− x(i−1) if x(i) > m

(
A(i)

)
∧ x(i−1) ≤ m

(
A(i)

)

0 otherwise.





Suppose that for some k ∈ {1, . . . , n}, it holds that x(k) > m
(
A(k)

)
, but x(k−1) ≤ m

(
A(k)

)
. Then it holds that:

gC
(TM ,TM )
m (~x) = min



1,

n∑

i=1





x(i) − x(i−1) if x(i) ≤ m
(
A(i)

)

m
(
A(i)

)
− x(i−1) if x(i) > m

(
A(i)

)
∧ x(i−1) ≤ m

(
A(i)

)

0 otherwise.





= min
{
1, (x(1) − x(0)) + (x(2) − x(1)) + . . .+ (x(k−1) − x(k−2)) + (m

(
A(k)

)
− x(k−1))

+ 0 + . . .+ 0︸ ︷︷ ︸
n−k





= min
{
1,m

(
A(k)

)}

= m
(
A(k)

)

Otherwise, one has the following possibilites:

2An aggregation function A = [0, 1]n → [0, 1] is an Ordered Modular Average (OMA) operator if it is commutative, idempotent, and
comonotone modular.[31]
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(i) For all k ∈ {1, . . . , n}, it holds that x(k) ≤ m
(
A(k)

)
. In this case, one has that:

gC
(TM ,TM )
m (~x) = min



1,

n∑

i=1





x(i) − x(i−1) if x(i) ≤ m
(
A(i)

)

m
(
A(i)

)
− x(i−1) if x(i) > m

(
A(i)

)
∧ x(i−1) ≤ m

(
A(i)

)

0 otherwise.





= min
{
1, (x(1) − x(0)) + . . .+ (x(n) − x(n−1))

= min
{
1, x(n)

}

= x(n)

(ii) For all k ∈ {1, . . . , n} such that x(k) > m
(
A(k)

)
it holds that x(k−1) > m

(
A(k)

)
. In this case, one has that:

gC
(TM ,TM )
m (~x) = min



1,

n∑

i=1





x(i) − x(i−1) if x(i) ≤ m
(
A(i)

)

m
(
A(i)

)
− x(i−1) if x(i) > m

(
A(i)

)
∧ x(i−1) ≤ m

(
A(i)

)

0 otherwise.





= min
{
1, (x(1) − x(0)) + (x(2) − x(1)) + . . .+ (x(k−1) − x(k−2))

+ 0 + . . .+ 0︸ ︷︷ ︸
n−k+1





= min
{
1, x(k−1)

}

= x(k−1).

Then, it follows that:

gC
(TM ,TM )
m (~x) =





m
(
A(k)

)
if ∃k ∈ {1, . . . , n} : x(k) > m

(
A(k)

)
∧ x(k−1) ≤ m

(
A(k)

)

x(n) if ∀k ∈ {1, . . . , n} : x(k) ≤ m
(
A(k)

)

x(k−1) if ∀k ∈ {1, . . . , n} : x(k) > m
(
A(k)

)
∧ x(k−1) > m

(
A(k)

)

=
n

max
i=1

{
min

{
x(i),m

(
A(i)

)}}

= Sm(~x),

where Sm is the Sugeno integral. Observe that CTM ,TM -integral is the CMin-integral analysed in [12].

6. gCF1F2 -integrals as OD monotone functions

In the previous section, we presented the requirements for gCF1F2 -integrals to be aggregation functions, showing
that there exist pseudo pre-aggregation function pairs that do not fulfill such requirements, and, therefore, the cor-
responding gCF1F2

-integrals are not aggregation functions. However, under some constraints, gCF1F2
-integrals are

OD increasing functions satisfying (A2), presenting, thus, some desirable conditions to play the role of “aggregation
operators” in applications (see, for example, [14]). In this section we prove such properties of gCF1F2

-integrals.
First, notice that, in order to study the directional increasingness feature of our integrals, it is necessary to com-

patibilize the dimension reduction process, which should be performed in both input ~x = (x1, . . . , xn) ∈ [0, 1]n and
direction vector ~r = (r1, . . . , rn) ∈ Rn, ~r 6= ~0, reducing both vectors to the same dimension k ≤ n. It is easy to see
that this compatible dimension reduction is possible if it holds that:

∀i, l ∈ {1, . . . , n}, i < l : xi = xl ⇒ ri = rl ∨ rl = 0. (10)

Example 6.1. There are different vectors ~r ∈ Rn that satisfy (10) for all ~x ∈ [0, 1]n. For example, consider the
vectors (w, . . . , w) and (w, 0, . . . , 0), with w 6= 0. However, the vector (w, 0, 0, w′, 0), with w,w′ 6= 0 does not
satisfy (10) for some ~x ∈ [0, 1]n. Take, for example, ~x = (0.2, 0.3, 0.5, 0.5, 0.6). Observe that x3 = x4 = 0.5 but
r3 6= r4 and r4 = w′ 6= 0.
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It follows that:

Proposition 6.1. Let Rn~x be the set of non null vectors ~r ∈ Rn satisfying (10), for a given ~x ∈ [0, 1]n. Then, for each
~x ∈ [0, 1]n, ~r ∈ Rn~x if and only if ~r = (w, 0, . . . , 0) ∈ Rn or ~r = (w, . . . , w) ∈ Rn , with w 6= 0.

PROOF. (⇒) Suppose that ~r ∈ Rn~x , for all ~x = (x1, . . . , xn) ∈ [0, 1]n, and ~r = (w1, . . . , wn), with ~r 6= ~0,
such that there exist i, j ∈ {1, . . . , n} with wi 6= wj and there exists h ∈ {2, . . . , n} with wh 6= 0. Then, take
~x = (x1, . . . , xn) ∈ [0, 1]n such that xi = xj = xh. Since xi = xj then, by (10), considering that wi 6= wj , it holds
that wj = 0. Now, since xj = xh, then, by (10), considering that wh 6= 0, then wj = wh, which is a contradiction
with wj = 0. Then, one concludes that either wi = wj , for all i, j ∈ {1, . . . , n}, or wh = 0, for all h ∈ {2, . . . , n}.
(⇐) It is immediate. 2

The dimension reduction of such direction vectors ~r can be done as follows:

Definition 6.1. Let Rn7→k : [0, 1]n → [0, 1]k be (n 7→ k)-dimension reduction function, as defined in Equation (6).
The direction (n 7→ k)-dimension reduction function is performed by the function Sn7→k : {(w, 0, . . . , 0), (w, . . . , w) ∈
R
n | w 6= 0} → {(w, 0, . . . , 0), (w, . . . , w) ∈ Rk | w 6= 0}, defined by:

Sn7→k((w, 0, . . . , 0)) = (w, 0, . . . , 0) (11)
Sn7→k((w, . . . , w)) = (w, . . . , w). (12)

Then we have the following results:

Lemma 6.1. Consider ~r = (w, 0, . . . , 0) ∈ Rn, w 6= 0. Let Rn7→k and Sn7→k be as defined in equations (6) and (11),
respectively, and denote Sn7→k((w, 0, . . . , 0)) = (w, 0, . . . , 0) = (s1, . . . , sn). Let σK : {1, . . . , k} → {1, . . . , k} be
a permutation in decreasing order defined, for all j ∈ K = {1, . . . , k}, as

σK(j) = (k − j + 1), (13)

(i.e., σK(1) = (k), σK(2) = (k − 1), . . ., σK(k) = (1)). Then, for all c > 0 such that yσK(1) + cw ∈ [0, 1], if

1 ≥ yσK(1) + cw > yσK(2) > . . . > yσK(k), (14)

then, for any ~z = ~y + c~sσ−1
K

, where ~sσ−1
K

= (sσ−1
K (1), . . . , sσ−1

K (k)), it holds that z(j) = yj + csk−j+1, that is,
z(k) = yk + cw and z(j) = yj , for all j ∈ {1, . . . , k − 1}.

PROOF. For all ~x ∈ [0, 1]n and respective ~y ∈ [0, 1]k, since y1 < . . . < yk, then yσK(1) = yn > . . . > yσK(k) = y1.
Considering ~r = (w, 0, . . . , 0) ∈ Rn, with w 6= 0, and its respective ~s = (w, 0, . . . , 0) ∈ Rk, suppose that, for all
c > 0 the inequality (14) holds (i.e., ~yσK and ~yσK + c~s are comotone, and either they increase or decrease at the same
time). Then, for any ~z = ~y + c~sσ−1

K
, where ~sσ−1

K
= (sσ−1

K (1), . . . , sσ−1
K (k)), as the same as in Equation (1), it holds

that ~zσK = (~y + c~sσ−1
K

)σK = ~yσK + c~s, and, thus, by the inequality (14), it holds that

1 ≥ zσK(1) = yσK(1) + cs1 > . . . > zσK(k) = yσK(k) + csk,

that is,

1 ≥ zσK(1) = yσK(1) + cw > zσK(2) = yσK(2) > . . . > zσK(k) = yσK(k).

This means that zσK(k) = yσK(k)+ cw and, for all j ∈ {1, . . . , k−1}, zσK(j) = yσK(j). From Equation (13), it holds
that:

z(k) = zσ−1
K σK(k) = yσ−1

K σK(k) + csσ−1
K (k) = y(k) + cs1 = yk + cw

and, for all j ∈ {1, . . . , k − 1},

z(j) = zσ−1
K σK(j) = yσ−1

K σK(j) + csσ−1
K (j) = y(j) + csk−j+1 = yj + csk−j+1 = yj ,

where (·) : {1, . . . , k} → {1, . . . , k} is a permutation in an increasing order with z(1) < . . . < z(k).
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Theorem 6.1. Let m : 2N → [0, 1] be a fuzzy measure and F1, F2 : [0, 1]2 → [0, 1] be fusion functions satisfying the
conditions of Definition 4.2. Consider ~r = (w, 0, . . . , 0) ∈ Rn, with w > 0. Then gC(F1,F2)

m is OD ~r-increasing.

PROOF. Let Rn7→k, BRj and Sn7→k be as defined in equations (6), (7) and (11), respectively. Let σN : {1, . . . , n} →
{1, . . . , n} be any permutation such that, for all ~x ∈ [0, 1]n, with

xσN (1) ≥ . . . ≥ xσN (k), (15)

and for all c > 0, such that 1 ≥ xσN (1) + cw ≥ xσN (2) ≥ . . . ≥ xσN (k), where ~rσ−1
N

= (rσ−1
N (1), . . . , rσ−1

N (k)) ∈ R.
Clearly, one can consider the permutation in the decreasing order σN : {1, . . . , n} → {1, . . . , n} defined in terms
of the permutation in the increasing order (·) : {1, . . . , n} → {1, . . . , n} as σN (1) = (n), σN (2) = (n − 1),
. . ., σN (n) = (1), that is, σN (j) = (n − j + 1), with j ∈ {1, . . . , n}. Then, one has that x(1) ≤ . . . ≤ x(n),
xσN (1) ≥ . . . ≥ xσN (n) and ~rσ−1

N
= (0, . . . , 0, w).

Due to the dimension reduction, for each ~x ∈ [0, 1]n, consider its respective ~y = (y1, . . . , yk) ∈ [0, 1]k and
~s = (w, 0, . . . , 0) ∈ Rk, obtained from ~r. Let σK : {1, . . . , k} → {1, . . . , k} be a permutation defined as the
restriction of σN toK, such that {xσN (1), . . . , xσN (n)} = {yσK(1), . . . , yσK(k)} and yσK(1) > . . . > yσK(k). Observe
that, after the dimension reduction, for any ~y ∈ [0, 1]k with respect to a ~x ∈ [0, 1]n satisfying (15), and, for all c > 0,
it holds that 1 ≥ yσK(1) + cw > 1σK(2) > . . . > yσK(k), with ~sσ−1

K
= (sσ−1

K (1), . . . , sσ−1
K (k)) = (0, . . . , 0, w) ∈ Rk.

Clearly, when considering σN defined in terms of the permutation in the increasing order (·), we have that σK(1) =
(k), σK(2) = (k − 1), . . ., σK(k) = (1), that is, σK(j) = (k − j + 1), with j ∈ {1, . . . , k}. Then, one has that
y(1) = y1 < . . . < y(k) = yk and yσK(1) > . . . > yσK(k). Then, from Lemma 6.1, it follows that:

gC
(F1,F2)
m (~x+ c~rσ−1

N
) = min

{
1, F1(yk + cw,m(BRk (~x)))− F2(yk−1,m(BRk (~x)))

+
k−1∑

j=1

F1

(
yj ,m

(
∪kp=jBRp (~x)

))
− F2

(
yj−1,m

(
∪kp=jBRp (~x)

))




≥ min
{
1, F1(yk,m(BRk (~x)))− F2(yk−1,m(BRk (~x)))

+
k−1∑

j=1

F1

(
yj ,m

(
∪kp=jBRp (~x)

))
− F2

(
yj−1,m

(
∪kp=jBRp (~x)

))




= gC
(F1,F2)
m (~x),

since F1 is (1, 0)-increasing. Thus, gC(F1,F2)
m is OD ( w, 0, . . . , 0)-increasing, for w > 0.

Corollary 6.1. Let m : 2N → [0, 1] be a fuzzy measure and (F1, F2) be a pseudo pre-aggregation function pair.
Consider ~r = (w, 0, . . . , 0) ∈ Rn, with w > 0. Then C

(F1,F2)
m is an OD ~r-increasing function satisfying the boundary

conditions (A2).

PROOF. It follows from Proposition 5.1 and Theorem 6.1.

7. Conclusion

In this paper, we introduced the gCF1F2 -integrals, either aggregation or OD monotone functions based on pseudo
pre-aggregation pairs for the generalization of the CF1F2

-integrals. We have stated under which conditions CF1F2
-

integrals are (averaging) aggregation or OD pre-aggregation functions. In summary, the main features of CF1F2
-

integrals in relation to our previous approaches related to the generalizations of the Choquet integral are:

1. The pseudo pre-aggregation pairs (F1, F2) used for building gCF1F2
-integrals satisfy a few number of con-

straint, less than, for example a pair of copulas (C,C) of the CC-integrals [9], and we still have an aggregation
function or, at least, an OD monotone function satisfying boundary conditions;
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2. The obtained aggregation or OD monotone function need not to be neither averaging nor idempotent to present
excellent results in classification (see [14]).

In future work, we will study our generalizations in an interval-valued context, following the approach in [33, 34,
35].
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justification and application, IEEE Transactions on Fuzzy Systems (2017) 1(In press, corrected proof). doi:10.1109/TFUZZ.2017.2769486.
[17] H. Bustince, J. Fernandez, R. Mesiar, J. Montero, R. Orduna, Overlap functions, Nonlinear Analysis: Theory, Methods & Applications

72 (3-4) (2010) 1488–1499.
[18] B. C. Bedregal, G. P. Dimuro, H. Bustince, E. Barrenechea, New results on overlap and grouping functions, Information Sciences 249 (2013)

148–170.
[19] G. P. Dimuro, B. Bedregal, On residual implications derived from overlap functions, Information Sciences 312 (2015) 78 – 88.
[20] G. Beliakov, A. Pradera, T. Calvo, Aggregation Functions: A Guide for Practitioners, Springer, Berlin, 2007.
[21] G. Mayor, E. Trillas, On the representation of some aggregation functions, in: Proceedings of IEEE International Symposium on Multiple-

Valued Logic, IEEE, Los Alamitos, 1986, pp. 111–114.
[22] G. Lucca, J. Sanz, G. Pereira Dimuro, B. Bedregal, R. Mesiar, A. Kolesárová, H. Bustince Sola, Pre-aggregation functions: construction and
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[30] R. Mesiar, A. Stupnanová, A note on cc-integral(to appear).
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