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Abstract 6 

Two tomographic techniques are applied to two simulated sky images with different cloud fraction. The 7 
Algebraic Reconstruction Technique (ART) is applied to optical depth maps from sky images to 8 
reconstruct 3-D cloud extinction coefficients without considering multiple scattering effects. 9 
Reconstruction accuracy is explored for different products, including surface irradiance and extinction 10 
coefficients, as a function of the number of available sky imagers and setup distance. Increasing the 11 
number of imagers improves the accuracy of the 3-D reconstruction: for surface irradiance, the error 12 
decreases significantly up to four imagers at which point the improvements become marginal. But using 13 
nine imagers gives more robust results in practical situations in which the circumsolar region of images 14 
has to be excluded due to poor cloud detection. The ideal distance between imagers was also explored: for 15 
a cloud height of 1 km, increasing distance up to 3 km (the domain length) improved the 3-D 16 
reconstruction. An iterative reconstruction technique that iteratively updated the source function improved 17 
the results of the ART by minimizing the error between input red radiance images and reconstructed red 18 
radiance simulations. For the best case of a nine-imager deployment, the ART and iterative method 19 
resulted in 53.4% and 33.6% mean absolute error for the extinction coefficients, respectively. 20 

Nomenclature 
Abbreviations Variables 
AERONET Aerosol Robotic Network ऋ  Matrix relating k to ࣎࢖ [-] 
AirMISR Airborne multi-angle imaging 

spectroradiometer 
 [-] ௣  p-th row of matrix ऋࢇ

ART Algebraic reconstruction 
technique 

݂ Focal length [m] 

CBH Cloud base height I Radiance [W·sr−1·m−2] 
CF Cloud fraction. ܫmeas Ground truth radiance from LES input into 

SHDOM [W·sr−1·m−2] 
CTH Cloud top height I0 Emitted radiance [W·sr−1·m−2] 
DNI Direct normal irradiance i   Gradient descent iterative step [-] 
GHI Global horizontal irradiance J Source Function [W m−2 sr−1 Hz−1] 
MAE Mean absolute error j Iterative index [-] 
MBE Mean bias error k Extinction coefficient [m-1] 
MWR Microwave radiometer kk Matrix of all extinction coefficients in domain [-] 
LES Large eddy simulation ࢑࢙ Vector of extinction coefficients along a view 

path [-] 
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PB Pixel brightness ࡸ࢑ாௌ  Matrix of extinction coefficients from LES [-] 
RRBR Radiance Red-Blue Ratio L Distance between sky imagers [m] 
SHDOM Spherical harmonic discrete 

ordinate method 
LWC Liquid water content [kg m-3] 

SI Sky imagers ݉ Index in the vertical (z) direction [-]. ݉ =1, … , ௭ܰ 
SZA Solar zenith angle ݌ Pixel index [-]. p = 1, …, P, where P is the 

number of sky image pixels. 
  Nz Number of elements vertical levels in the domain 

[-] 
 ᇱ Distance from the principal point in the imageݎ  

plane [m] 
  ࢙ Position vector along the view path [m] 
  w Weighting factor [-] 
 [-] Iterative step size ߛ  
 [°] Zenith angle ߴ  
  ࣖ௣ Vector of all zenith angle of all pixels [°] 
 [°] ௦  Scattering angleߴ  
  ߬ Optical path [m] 
  ࣎௣ Vector of optical path of all pixels [m] 
  ߶ Azimuth [°] 
  ࣘ௣ Vector of all azimuth of all pixels [°] 
   Phase function [°] 
  ߱ Single scattering albedo [-] 
  ࣓ௗ  Unit vector of direction [-] 

1. Introduction 21 

The transition from conventional fossil energy to renewable energy has been aided by continued 22 
improvements in renewable technologies, but this progress is met with new challenges. Unlike 23 
conventional energy sources, which provide steady and reliable power output, solar energy generation 24 
requires larger regulation by ancillary generators to balance generation and demand during periods of 25 
high variability.  Accurate forecasting of these periods of high variability will support management of the  26 
electric grid and electricity markets and, therefore, ensure a more economical integration of solar power 27 
(Mathiesen et al., 2013). Currently, several different methods are used to forecast at different spatial and 28 
temporal resolutions, including numerical weather prediction (Lorenz et al., 2009; Mathiesen and Kleissl, 29 
2011) and satellite image-based forecasting (Hammer et al., 1999). Whole-sky imagery is the method of 30 
choice for short term forecasting (up to 15 minutes, e.g. Urquhart et al., (2013)). Physics-based solar 31 
forecasting using sky imagery (SI) has three main components: identifying clouds, advecting them, and 32 
calculating the solar energy that reaches the ground under the advected cloud field. Most algorithms 33 
assume that clouds exist as plane cloud at the cloud base height (CBH). In other words, the cloud 34 
geometric thickness is assumed to be negligible, which leads to projection errors (Kurtz et al., 2017). A 35 
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perfect representation of the cloud field requires a 3-D matrix of cloud extinction coefficients k(x,y,z) in 36 
the atmosphere. 37 

Basic geometric cloud information has been derived in a few papers. CBH was obtained from 38 
stereography applied to two sky imagers by Nguyen and Kleissl (2014).  Although CBH is a crucial 39 
aspect of the 3-D geometric description of a cloud, it does not completely describe the cloud properties. 40 
Peng et al. (2015) expanded on this concept by providing a variable CBH for different cloud layers using 41 
multiple cameras but still assumed a negligible cloud geometric thickness. The cloud voxel technique in 42 
Oberländer et al. (2015) provides 3-D cloud shape but does not provide extinction coefficients within the 43 
cloud; therefore it is not possible to calculate the resulting radiance field from first physical principles. 44 

Stereographic techniques have already been used to obtain 3-D atmospheric water vapor distribution from 45 
ground-based GPS observations (Huang et al., 2008; Wu et al., 2017; Ye et al., 2016). Huang et al. (2008) 46 
revisited the cloud tomography technique and examined the mathematical nature of the retrieval problem 47 
and its relationship to the physical configuration of microwave radiometers.  Levis et al. (2015) applied an 48 
iterative tomographic technique to Airborne Multiangle SpectroPolarimetric Imager (AirMSPI) aircraft 49 
measurement to retrieve cloud extinction coefficients. The iterative method minimizes the difference 50 
between radiance in a simulated image and a ground-truth image. The cloud domain is discretized, and a 51 
system of linear equations is set up to relate ࢑ to radiation measured by microwave radiometers (MWRs). 52 
Levis et al. (2015) obtain a 33% mean absolute error (MAE) with a 22.2 m and 44.4 m horizontal and 53 
vertical resolution, respectively. 54 

In this paper, we will implement the iterative tomographic technique of Levis et al. (2015) to identify 3-D 55 
cloud extinction coefficients from sky images. Since iterative tomography is computationally too 56 
expensive for real-time solar forecasting, a faster technique called algebraic reconstruction is applied first 57 
and then used to initialize the iterative method. The tomographic methods and the synthetic cloud field is 58 
presented in Section 2. Section 3 describes the application of the tomographic methods. Section 4 presents 59 
results for the reconstruction of two synthetic sky images of different cloud fraction, and Section 5 60 
presents discussion and conclusions. Aides et al., (2013) and Holodovsky et al., (2016) applied a sky-61 
imagery tomographic approach for meteorological applications. This is the first time sky-imagery 62 
tomographic techniques are considered for solar forecasting, allowing forecasts to fully describe 3-D 63 
cloud effects and overcoming the constraints of the flat-plane assumption. 64 

2. 3-D Reconstruction Methodology 65 

2.1 Basic Principle 66 

Our setup is passive, using the steady, uniform and collimated sun as the radiation source. To uniquely 67 
define a 3-D cloud scene, we need to know the extinction coefficients (k) throughout the cloud scene. 68 
Similar problems exist in medical imaging, archaeology and generally in remote sensing and are known 69 
as computed tomography (Seeram, 2015). To solve for k, tomographic techniques relate measurements of 70 
transmission to k as, 71 ܫ = ଴݁ିܫ ∫ ࢑(࢙)ௗ࢙ =  ଴݁ିఛ,         (1) 72ܫ
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where I is the transmitted or attenuated radiance, ܫ଴ is the emitted radiance (from the sun), s is the path 73 
along the beam, and ߬ is the line integral of ࢑ or optical path. With multiple transmission measurements at 74 
different orientations, the extinction coefficients can be determined. For cloud tomography, we solve for 75 ࢑ of the 3-D cloud field from measurements of I by multiple sky imagers.  76 

2.2. Algebraic Reconstruction Technique 77 

In the atmospheric sciences, clouds were reconstructed by tomographic techniques from n MWR 78 
measurements of ࣎ = (߬ଵ, ߬ଶ, … , ߬௡) from various directions. Discretizing the domain yields the following 79 
matrix equation (Huang et al., 2008): 80 ऋ࢑ = ࣎ ,           (2) 81 

where the vector of extinctions coefficients ࢑ = (݇ଵ, ݇ଶ, … , ݇௡) is obtained by solving the system of 82 
linear equations. For notational conciseness and since most computations for each sky imager pixel and 83 
each sky imager are computationally independent, we generally denote physical 2-D variables such as sky 84 
imager optical path measurements using 1-D vectors of dimension ܲ, and physical 3-D variables such as 85 
the extinction coefficient field as 2-D matrices of dimension ܲ × ୸ܰ, where ܲ is the number of pixels in 86 
the 2-D image and ୸ܰ is the number of vertical levels. Most equations are applied for each sky imager 87 
sequentially, but for notational conciseness we drop the ‘si’ index for all variables (except for Eqs. 3 and 88 
4). For the application with sky imagers, ࣎ is the vector of optical paths derived from the Radiance Red 89 
Blue Ratio (RRBR) method (Mejia et al., 2016) and ݌ is the sky imager pixel index (݌ = 1, … , ܲ). The 90 
RRBR method uses a look-up table created from homogenous (overcast) cloud images to estimate ࣎୮ for 91 
each pixel. Thus, ࣎ is a vector of individual scalar ࣎୮ along the path defined by a pixel in a sky image at 92 
the pixel zenith angle (ࣖ௣, or view angle) and azimuth (ࣘ௣). 93 

We approximate line integrals by assuming that only one grid cell contributes at each z level, such that  94 ऋ is a matrix with ones when the element ࣛ௣,௠ satisfies the following equalities:  95 ݔ௣,௠ = nearest(ݖ௠ tan൫ࣖ௣൯ sin൫ࣘ௣൯ + ௣,௠ݕ ୱ୧)       (3) 96ݔ = nearest(ݖ௠tan൫ࣖ௣൯ cos൫ࣘ௣൯ +  ୱ୧),       (4) 97ݕ

and ࣛ௣,௠ = 0 elsewhere. ݉ = 1, … , ௭ܰ is the index in the vertical (z) direction, and ݔୱ୧  and ݕୱ୧ are the 98 
horizontal coordinates of the SI location. We assume ݖୱ୧ = 0. ‘nearest()’ represents rounding to the nearest 99 
grid point. In this way, a sparse matrix that reduces the computational cost of solving the system of 100 
equations is obtained.  An example of matrix ऋ obtained from applying Eqs. (3) and (4) is demonstrated 101 
in Figure 1 for one SI pixel. 102 



5 
 

 103 

Figure 1. Conceptual diagram of ray tracing to create matrix ऋ in Eq. 2 for one SI pixel along the view path s. ऋ is a 3-D matrix, 104 
but here only a vertical slice in x-z is shown. Numbers in the circles denote the values of ऋ. 105 

To solve this system of equations in Eq. 2, we will use the algebraic reconstruction technique (ART) of 106 
Gordon et al., (1970). ART is a family of algorithms to reconstruct ࢑ by solving a system of linear 107 
equations. The conventional ART method iteratively adjusts ࢑࢙ (the extinction coefficient vector along a 108 
view path s associated with pixel p) as, 109 ࢑୨࢙ = ࢑୨ିଵ࢙ + ࣎౦ିࢇ౦ ⋅ ࢑ฮࢇ౦ฮమ  ୮,         (5) 110ࢇ

where ࢇ୮ is the p-th row of the matrix ऋ, ࢇ୮ maps one pixel in an image to the ࢑࢙ along its view path, 111 
and j is the iterative index. Our implementation slightly differs by iteratively adjusting ࢑ as, 112 ࢑୨࢙ = ࢑୨ିଵ࢙ ൤1 + ݓ ൬ ࣎౦ࢇ౦ ⋅ ࢑ − 1൰൨,         (6) 113 

where w is a weighting factor that is empirically set to 0.2. Eq. 6 is preferred over Eq. 5 as it naturally 114 
limits ࢑ to only positive values as opposed to the original ART method. Eq. 6 is first applied to all pixels 115 
of one sky imager (p = 1, …, P), then sequentially to the other sky imagers, and then j increments by one 116 
and the process repeats until convergence. The 3-D ࢑ matrix is continually updated with the solutions ࢑୨࢙ . 117 
The solution ࢑୨࢙  is further constrained by requiring ࢑୨࢙ = 0 when ࣎௣ = 0 consistent with Oberlander et al. 118 
(2015), which ensures more accurate solutions with less computational effort. When a pixel in a different 119 
sky imager is considered, the elements of k that were already marked as clear by another sky imager will 120 
not be included in the ART update of k (Figure 2). This constraint is analogous to geometrical space-121 
carving (Veikherman et al., 2015). 122 
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 123 

Figure 2: Conceptual diagram of ray tracing to create matrix ࢑ in Eq. 2 for two SI pixel along two view paths. The left sky 124 
imager pixel p1 shows clear skies and all extinction coefficients along the associated view path are set to zero. The right sky 125 

imager shows a cloud in pixel p2 and (initially) constant extinction coefficients are introduced along the associated view path, 126 
except along known clear grid points. ks elements of 0.1 are chosen randomly here. 127 

  128 
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2.3. Iterative Retrieval 129 

The ART method does not directly account for the effects of 3-D scattering. Therefore, non-local effects 130 
leading to adjustment of the extinction coefficients are unaccounted for. To improve the ART results, the 131 
iterative approach developed by Levis et al. (2015) for satellite data is implemented to sky images. After 132 
initializing k with the ART, the domain is simulated in a radiative transfer model. A gradient descent is 133 
applied iteratively to k to minimize the difference between measured transmitted radiance ܫ୫ୣୟୱ and the 134 
transmitted radiance simulated by Spherical Harmonic Discrete Ordinate Method (SHDOM), I (Aides et 135 
al., 2013; Levis et al., 2017; Veikherman et al., 2015).  136 

As background consider the integral form of the radiative transfer equation, 137 

,࢙)ܫ ࣓ௗ) = expൣ− ∫ ࢑(࢙ᇱ)࢙݀ᇱ௦଴ ൧ ,ୗ୍ݔ)൫ܫ ,(ୗ୍ݕ ࣓ௗ൯ + ∫ exp ቂ− ∫ ௦ᇲ௦ݐ݀(ݐ)࢑ ቃ௦଴ ,ᇱ࢙)ܬ ࣓ௗ)࢑(࢙′)࢙݀′, (7) 138 

where ܫ൫(ݔௌூ, ,(ௌூݕ ࣓ௗ൯ is extraterrestrial radiance at a ground location (ݔୗ୍, ∫ ,ୗ୍) incident from direction 139 ࣓ௗݕ ᇲ࢙࢙ݐ݀(ݐ)࢑  is a line integral over a field k along the segment extending from s to s’ illustrated as the 140 
dashed line in Figure 1, ࣓ௗ is the unit vector representing the direction of the view path, t is a dummy 141 
variable for integration, and J is the source function, which contributes the non-local scattering effects. 142 
Neglecting emission from the cloud, the source function J is 143 ܬ(࢙, ࣓ௗ) = ఠସగ ∫ ,࢙)ܫ ࣓ௗᇱ ;࢙)ࣂ( ࣓ௗ, ࣓ௗᇱ )࣓݀ௗᇱସగ଴ ,       (8)  144 

where ߱ is the single scattering albedo and ࣂ(࢙; ࣓ௗ, ᇱࢊ࣓ ) is the phase function at s. The phase function 145 
describes the fraction of energy scattered from ࣓ௗᇱ  to ࣓ௗ by an infinitesimal volume (Levis et al., 2015). 146 
Eq. 7 shows that I explicitly depends on ࢑ along the view path. When discretized, I then only depends on 147 
the ࢑ located along that I view path as illustrated in Figure 1. This integral of ࢑ in Eq. 7 is easily iterated 148 
to minimize ܫ୫ୣୟୱ −  causes the iterative process for one direction to 149 ܬ but ,(described in Eq. 9 below) ܫ
depend on the iterations at all other angles through 3-D scattering effects. ܫ also implicitly depends on k 150 
through ܬ, because scattering anywhere in the domain can increase ܬ at a particular view path. ܬ depends 151 
on the I in all directions such that iterating neighboring pixels affect all other pixels due to multiple 152 
scattering of radiation within and between clouds. 153 
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 154

Figure 3. Flow chart of the iterative retrieval method. Dotted and dashed arrows correspond to gradient descent and constant 155
source function iterations, respectively.  156

Figure 3 demonstrates the flow chart of the implementation of this iterative method. Since a more 157
accurate initialization decreases the computational cost, ࢑ from the ART method is input to the iterative 158
method. In the inner loop optimization (dotted arrows) a constant J is assumed. Then ܫ୫ୣୟୱ − is 159 ܫ
minimized iteratively by adjusting ࢑ at the grid points along s following a gradient descent method as 160 ࢑୨,୧ାଵ࢙ =  ࢑୨,୧࢙ − ߛ ୢூ౟,ౠୢ࢑ౠ,౟࢙ ,           (9) 161

where ݆ is the constant source function iterative step, i is the gradient descent iterative step, and ߛ is the 162
step size. Eq. 9 is repeated for all pixels in a sky image (p = 1, …, P), and then for all sky imagers, and 163
this is repeated until convergence. Convergence is met when the change in the total image error is less 164
than 1% of the original error following 165 ∑หܫ୫ୣୟୱ − ୧,୨หܫ − ∑หܫ୫ୣୟୱ − ୧ିଵ,୨หܫ < 0.01 ∑หܫ୫ୣୟୱ − ୧ୀ଴,୨ห,     (10) 166ܫ

where ∑ represents summation over all pixels in all images. Once Eq. 10 is satisfied, we recalculate J 167
until the change in the total image error decreases to 1% of the original error: 168 ∑ ୫ୣୟୱܫ| − |୧,୨ܫ − ∑ ୫ୣୟୱܫ| − |୧,୨ିଵܫ < 0.01 ∑ ୫ୣୟୱܫ| − ୧,୨ୀ଴|.     (11) 169ܫ

2.4. Constraining Cloud Base and Cloud Top Height 170

Two critical pieces of information obtained from cloud reconstruction are the CBH and cloud top height 171
(CTH) (Sun et al., 2016; Wang et al., 2016). Figure 4a shows one of the cloud scenes with a CTH of 1.2 172
km, a CBH of 820 m and Figure 4b and c show the ART results. Cloud artifacts are erroneously 173
reconstructed below and above the real cloud layer, for example at x = 1.5 km and x = 4.3 km in the 174
unconstrained ART method in Figure 4b. In general, artifacts occur because Eq. 6 is ill-conditioned due to 175
a lack of different perspectives for some k points. A lack of different perspectives can result from large 176
CBH relative to the imager spacing L, i.e. large CBH / L. If none of the imagers ‘sees’ the air immediately 177
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above the cloud, the reconstruction lacks sufficient information to clear these areas of clouds resulting in 178 
vertical lines or cones in the reconstructed image. To remove these artifacts, we assume that no clouds are 179 
present 250 m below the CBH or 250 m above the CTH (Figure 4c). The CBH and CTH are the heights 180 
of the highest and lowest non-zero extinction coefficients calculated from the Large Eddy Simulation 181 
(LES) results. The height restriction could also be applied in practice, although it would be limited to 182 
situations with single cloud layers. For example, ceilometers can determine the CBH with an accuracy 183 
better than 250 m. Estimating CTH in practice is more challenging, however CTH (and CBH) could be 184 
estimated with temperature and humidity profiles from radiosondes (Zhong et al., 2017).  185 

 186 

Figure 4. 2-D slice through k averaged along the y-axis from a) Large Eddy Simulation (LES); b) Reconstruction with 9 sky 187 
imagers separated by 1.5 km using the Algebraic Reconstruction Technique (ART) method; and c) improved reconstruction with 188 
cloud base and top height constraints. 189 

3. Testing Layout 190 

3.1. Objective and Domain Size 191 

The objective is to reconstruct the 3D extinction coefficient k(x,y,z) within a solar forecast domain from 192 
sky images. The improved accuracy of the initial state is expected to result in more accurate short-term 193 
forecasts. Sky imagers can provide valuable solar forecast information up to 15 min ahead depending on 194 
cloud speed, cloud height, and cloud dynamics (Chow et al., 2015; Martín and Trapero, 2015; Quesada-195 
Ruiz et al., 2014; Schmidt et al., 2015; Sun et al., 2016). Given that cloud speeds from the LES described 196 
in Section 3.2 vary between 8 to 10 m/s, domains should be on the order of 5 to 10 km. We chose a cloud 197 
domain of 6.4 by 6.4 km horizontal and 5 km vertical size with 50 m horizontal and 40 m vertical 198 
resolution for a total of 2,080,768 k points.  199 

Perfect 3D reconstruction requires that all sky imager cameras are geometrically and photometrically 200 
calibrated. Geometric calibration ensures accurate georeferencing of view paths for a single imager and 201 
for a cloud or clear space observed by two imagers and techniques for accurate in-situ geometric 202 
calibration exist (Urquhart et al., 2016). Photometric calibrations ensure that red-green-blue pixel 203 
brightnesses are uniquely and accurately converted to optical depths. We acknowledge that in practice sky 204 
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imagers are rarely photometrically calibrated in an absolute sense (the only known evaluation of 205 
photometric properties is presented in Urquhart et al., (2015). But as long as sky imagers are 206 
photometrically calibrated relative to each other, the reconstruction could be used to derive relative 207 
extinction coefficients from sky imagers and geometrically constrain clouds. Since all radiances at the 208 
ground depend linearly on the incident radiation at the top of the reconstruction domain, measurements 209 
from a single calibrated pyranometer in the domain could then be used for absolute calibration of the 210 
extinction coefficients. 211 

Another objective is to investigate the sensitivity of the tomographic techniques to different deployment 212 
configuration variables, specifically the number of imagers and the distance between imagers. It is 213 
expected that the reconstruction accuracy improves with more imagers, but at the expense of acquisition, 214 
setup, and maintenance of additional equipment. Therefore, if additional improvements are marginal, less 215 
sky imagers would be preferred. The sensitivity to cloud fraction is also examined. Unless they are near 216 
zenith of a sky image, even clouds in a single cloud layer can block the views of other clouds behind them 217 
and deteriorate reconstruction accuracy. In the extreme case of overcast conditions, 3D reconstruction 218 
would become impossible as no image information of the cloud top is available. 219 

The sensitivity study would be compromised by ߬௣ errors in the RRBR method which are used to assign 220 
cloud optical depth to each sky imager pixel and associated view path. For example, it is well documented 221 
that clouds are more difficult to detect in the circumsolar region (Yang et al., 2014) and that deployments 222 
with fewer clouds in the circumsolar region will perform better. We prevent random errors associated 223 
with the location of the clouds relative to the cameras by using a perfect ࣎௣ defined as 224 ࣎୮ = ऋ࢑୐୉ୗ.           (12) 225 

3.2. Virtual Cloud Fields and Sky Images 226 

The 3-D reconstruction methods are tested in the virtual testbed from Kurtz et al. (2017). This virtual 227 
testbed uses the University of California, Los Angeles (UCLA) LES (Stevens, 2010) to model a realistic 228 
3-D atmospheric boundary layer with continental cumulus clouds at high resolution for a time period of 229 
24 hours. Periodic boundary conditions represent infinite domains with the same ground cover, which 230 
allows the cloud and atmospheric turbulence to spin up and create realistic cloud shapes and dynamics 231 
such as condensation, evaporation and deformation. From the LES run, 3D liquid water content (LWC) of 232 
two representative time instances (at 4:38 h and 6:57 h after initialization) with cloud fractions of 6.8% 233 
and 33.3% are selected for reconstruction. Cloud fraction is defined as the fraction of grid points occupied 234 
by clouds in a vertical projection of the cloud field. 235 

The LES LWC is input into the SHDOM (Evans, 1998) to produce radiance fields (ܫmeas) at a constant 236 
solar zenith angle (SZA) of 45°. The SHDOM radiance field reproduces a 1701  1701 pixel sky image as 237 
would be obtained through a fisheye lens with an equisolid angle projection (Miyamoto, 1964) 238 ݎᇱ = 2݂ ݊݅ݏ ቀࣖ೛ଶ ቁ,            (13) 239 

where f is the focal length, and r’ is the distance from the principal point in the image plane. Three 240 
different wavelengths are simulated corresponding to the peak responses of the SI camera’s red (620 nm), 241 
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green (520 nm) and blue (450 nm) channels. The aerosol phase function, background Rayleigh and 242 
aerosol optical depths are obtained from the yearly average Aerosol Robotic Network (AERONET) 243 
measurements (Holben et al., 1998) as in Mejia et al. (2016). Spectral surface reflectances of 0.043, 244 
0.068, and 0.071 were used for the blue, green and red channel simulations, respectively (Markham, 245 
1992; Mejia et al., 2016). The cloud droplet effective radius, which is the area weighted mean radius of 246 
the cloud droplets, is 8 μm (Min, 2003) and defines the single scattering properties of the clouds in the 247 
SHDOM simulations. SHDOM simulations use open boundary conditions (Evans, 2015, 1998), which 248 
means that measurements outside the LES domain are not used for reconstruction. 249 

3.3. Sky Imager Deployment Layouts 250 

A sensitivity study elucidates the tradeoffs between different SI deployment variables, specifically the 251 
number and distance between imagers. A similar study by Huang et al., (2008) with MWR tomography 252 
found that the optimal number of MWR was 4, and that the optimal distance between MWR was 4 km. 253 
Nguyen and Kleissl (2014) demonstrated that the optimal distance between imagers for stereography is 254 
directly related to the CBH; therefore the optimal distance between imagers is expected to apply only for 255 
the CBH of our test case, which is 0.94 km.  256 

To compare the tradeoffs of using multiple imagers, we simulated 2, 3, 4, 5 and 9 imagers arranged as 257 
outlined in Figure 5. To obtain the optimal distance between imagers, we tested setups of 2, 3, 4, 5 and 9 258 
imagers evenly spaced from the center of the domain at distances ܮ = [0.25 0.5 1.0 1.5 2.0 3.0 4.0 6.0] 259 
km for the 2, 3, 4 and 5 imager setup, and ܮ = [0.25 0.5 1.0 1.5 2.0 3.0] km for the 9 imager setup. The 260 
dependence of reconstruction errors on the optimal number of imagers was analyzed with the respective 261 
spacings that minimized reconstruction error. 262 

 263 

Figure 5. Layout of sky imager deployments with different number of imagers and distance (ܮ) between imagers, a) 2 imagers 264 
along the x-axis, b) 3 imagers, c) 4 imagers, d) 5 imagers and e) 9 imagers. Red dots represent imager locations, and the green 265 
circle (green outline when imager located at center of domain) represents the center of domain. 266 
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3.4. Error Metrics 267 

Since measuring cloud properties of real clouds is extremely challenging, the main benefit of using 268 
simulated test cases is the validation against spatially-resolved cloud properties. To this end, we are 269 
interested in analyzing errors in extinction coefficient, image red (620 nm) pixel brightness (PB) and 270 
surface Global Horizontal Irradiance (GHI). The red PB has been arbitrarily selected, however, any of the 271 
red, green, blue channels could be used. While perfect k retrievals would automatically result in perfect 272 
image PB and surface GHI, erroneous k retrievals may have different impacts on GHI and image errors, 273 
which are more relevant in the practice of solar forecasting. We will quantify these errors by calculating 274 
the domain mean absolute error (MAE) and mean bias error (MBE), defined as 275 MAE = |࢑ైు౏ି࢑|തതതതതതതതതതതതത࢑ైు౏തതതതതതത  ,          (14) 276 

MBE = ࢑ି࢑ైు౏തതതതതതതതതതത࢑ైు౏തതതതതതത  ,           (15) 277 

where ࢑ can also be replaced with GHI or PB. For k, the spatial averages (denoted by overbars) are over 278 
all LES grid points. For GHI, the averages are over surface grid points in x and y. For PB, the averages 279 
are over all pixels of all sky images.  280 

4. Results 281 

4.1 Nine Imager Validation 282 

We validate the ART and iterative methods on the 9 imager deployment with a separation of 1.5 km 283 
against the ground truth kLES for the two cloud fraction cases. A perfect ߬୮ as defined in Eq. 12 is input to 284 
the ART. Figure 6 shows MAEk as a function of the number of iterations. The initial k guess results in a 285 
large reconstruction error, but the ART method decreases the k MAE to 1.2% and 0.02% after 5 x 107 286 
iterations for a 33% and 6.8% cloud fraction (CF), respectively. The error for the high CF case continues 287 
to decrease after 5 x 107 iterations while the low CF case converges to zero MAEk after only 1 x 107 288 
iterations. Any additional cloud will block the view of other clouds in several imagers and limit the 289 
observability of cloud tops and clear sky voxels in the domain, requiring disproportionally more iterations 290 
to arrive at the solution. In the extreme case of an overcast cloud layer, cloud top heights could not be 291 
reconstructed at all. 292 
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 293 

Figure 6. Convergence of ART as indicated by the mean absolute error of the extinction coefficients. 33.3% and 6.8% CF test 294 
cases are the dashed and solid lines, respectively. 295 

Figure 7 validates the iterative reconstruction method. We input k output from the ART method. To 296 
validate the correct implementation of the iterative method, we eliminate the largest source of error by 297 
assuming that the source function J of the ground truth cloud field is known. Therefore referring to Figure 298 
3 the gradient descent iteration loop is not required and only the constant source function iteration is 299 
executed. Figure 7 demonstrates that the iterative method converges to 0.2% k MAE after 2 x 107 300 
iterations, significantly below the 1.2% k MAE of the ART alone (Figure 6). The image MAE converges 301 
faster, but remains slightly larger at 0.3%. However, each iteration with the iterative method takes 302 
significantly longer than an iteration with the ART method (see next section). 303 

 304 

Figure 7. Convergence of iterative method k (dashed) and image (solid) mean absolute errors for the 33% CF case.305 



14 
 

4.2. Optimal Deployment 306 

4.2.1. Optimal Sky Imager Distance 307 

The ART method is used to analyze optimal deployments because of its low computation cost. Using an 308 
Intel Core i7-3770 3.4GHz computer, 9 imagers, and a cloud fraction of 2.3%, the ART method yields 309 
converged results within about 30 seconds as opposed to 6 days with the iterative method, which 310 
corresponds to a factor of 2  104 difference in speed. The ART method (Section 3.1) is applied on a 311 
perfect ߬୮ as defined in Eq. 12. Figure 8 shows that the accuracy of the retrieved k increases with the 312 
distance between imagers. GHI and image pixel brightness MAE, on the other hand, do not improve for 313 
spacings larger than 1.5 km. The error decreases the most between ܮ = 0.25 km and ܮ = 0.5 km. The 314 
Appendix demonstrates the distance results for 4 and 2 imagers, respectively (Figure A1 and Figure A2). 315 
The results for 4 imagers are consistent with Huang et al., (2008) with an optimum between 2 km < ܮ <316 4 km for k. GHI and image error perform worse as ܮ increases beyond 4 km. The 2-imager setup 317 
continues to improve with increased separation.  318 

 319 

Figure 8. Domain averaged mean absolute error in (a) k, (b) image pixel brightness, and (c) Global Horizontal Irradiance (GHI) 320 
for retrievals with 9 imagers at different distances 321 .ܮ 

4.1.2. Optimal Number of Sky Imagers 322 

Figure 9 shows that increasing the number of SIs improves the overall reconstruction of the cloud 323 
domain. Similar to Huang et al. (2008), we observe a large performance increase when using 4 imagers 324 
compared to 2 or 3, and less improvement with additional imagers.  325 
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 326 

Figure 9. Domain averaged mean absolute error in (a) extinction coefficient k, (b) image pixel brightness, and (c) Global 327 
Horizontal Irradiance (GHI) for retrievals with 2, 3, 4, 5 and 9 imagers at their respective optimal separations. 328 

Although improvements in GHI and image pixel error between 4 and 9 imagers are minimal for an ideal 329 
case, using 9 imagers improves the robustness of the cloud scene reconstruction in real applications. Two 330 
mechanisms are expected to benefit tomographic methods applied to 4 or more imagers in real 331 
applications. The first benefit is that dirt on the dome of one imager does not contaminate the results. In 332 
single-imager cloud decision, dirt is often identified as a cloud since its red-blue-ratio is closer to clouds 333 
than the clear sky. Reconstruction limits the impact of dirt because the only solution that can satisfy a 334 
“cloud” in one image that is not present in any other images is a “cloud” located immediately above the 335 
imager. Such a low ‘cloud’ would be invisible to the other imagers as data at large pixel zenith angles is 336 
poorly resolved and therefore excluded. Thus, the constraint on minimum CBH results in the clearing of 337 
that cloud (see Section 2.4).   338 

The second benefit is that using data from the circumsolar region becomes unnecessary. As stated in 339 
Section 2.1, the circumsolar region in the sky hemisphere is a common source of cloud identification 340 
error. With 9 imagers, it is possible to ignore the circumsolar region in every imager as the neighboring 341 
imagers are able to fill in the missing data for the circumsolar region. Figure 9a and Figure 10 342 
demonstrate that in an ideal case (no circumsolar region errors), the k MAE only decreases to 5% from 343 
35%. Removing the pixels with less than a 30 degree solar pixel angle (also referred to as scattering 344 
angle) in each image (Figure 10), the k MAE decreases to 15% from 80%, i.e. a much larger improvement 345 
in percentage points for 9 imagers compared to 5 or less imagers. This result suggests that for real 346 
deployments at least 9 imagers are recommended.  347 
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 348 

Figure 10. Domain averaged k MAE for retrievals with 2, 3, 4 and 9 imagers using the full image (same as Figure 9a) in black 349 
and removing the circumsolar region with solar pixel angle ࣖ௦ < 30° in each image in dashed blue. 350 

4.2. 3D Reconstruction Methods 351 

To isolate characteristics of the reconstruction methods, we now focus on a specific deployment with 9 352 
imagers spaced at 1.5 = ܮ km. We use 9 imagers because this is the optimum scenario to demonstrate the 353 
limitations of the methods and not the deployments, while maintaining ܮ = 1.5 km (versus ܮ = 3 km) 354 
since it becomes increasingly difficult to obtain permissions to install camera systems away from the 355 
location of interest. For example, at a utility scale power plant with a typical dimension of 2 × 2 km, ܮ = 356 
3 km would require obtaining permissions from up to 5 adjacent property owners.  357 

 4.2.1. Algebraic Reconstruction Technique  358 

As described in Section 2.2, the ART method requires an input ࣎ to calculate ࢑. Unlike in Section 4.1 359 
where the ߬୮ input was assumed to be error-free based on Eq. 12, here the RRBR method provides the 360 
initial ࣎ (Mejia et al., 2016). The RRBR method uses both radiance and red blue ratio values to estimate ࣎ 361 
based on a look-up table of SHDOM simulations of homogenous clouds. Since the RRBR is based on 362 
homogeneous clouds, it has a propensity to underestimate ࣎ because homogeneous clouds are darker than 363 
heterogeneous clouds on average. This underestimation in ࣎ is seen in Figure 11 and Table 1 as the ࢑ 364 
MBE is -17.1%. Figure 11 shows that the spatial distribution and size of clouds by the ART method 365 
correspond broadly with the ground truth, but small differences in location and size cause a MAE for ࢑ is 366 
53.4% while the GHI MAE is significantly smaller at 1.53%.  367 
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 368 

Figure 11. 3-D depiction of reconstructed ࢑ from (a) the Algebraic Reconstruction Technique (ART) (a) and ground truth (b). 369 
The red boxes highlight an area where the extinction coefficients are underestimated by the ART method. 370 



18 
 

 371

Figure 12. Vertical sum (a, b, and c) and North-South sum (d, e, and f) of ࢑ (equivalent to ࣎) for CF of 6.8% from LES (ground 372
truth; a and d); reconstructed from Algebraic Reconstruction Technique (ART; b and e); and their difference (c and f). North (N) 373
is up and East (E) is to the right per convention. 374

Table 1. Error statistics of Algebraic Reconstruction Technique (ART) and iterative method for a CF of 6.8%. rMAE [%] is the 375
relative mean absolute error, and rMBE [%] is the relative mean bias error. DNI is the Direct Normal Irradiance and GHI is the 376
Global Horizontal Irradiance. k is the extinction coefficient and ࣎ is the vertical sum of k.  377

 378

Removing all (cloud-free) grid points with GHI / GHIclear > 0.98, the rMAE of GHI increases to 21.8%. 379
Most cloudy grid points are correctly identified with 98.8% of ࢑, being correctly separated as ࢑ = 0 or 380

 ART Iterative method 
rMAE [%] MAE rMBE [%] rMAE [%] MAE rMBE [%] ࣎  34.80 0.0481 [-] 17.10 17.20 0.0238 [-] 2.80 ࢑  53.40 0.00025 [-] 17.10 33.60 0.00015 [-] 2.80 

GHI 1.53 10.10 W mିଶ 0.04 0.85 5.6 W mିଶ -0.12 
GHI (GHI / GHIclear < 0.98) 21.80 68.90 W mିଶ -14.20 0.86 2.70 W mିଶ -0.15 
DNI 1.30 10.50 W mିଶ -0.46 0.81 6.50 W mିଶ -0.21 
Image pixel red channel  4.30 - 1.30 0.70 - 0.60 
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࢑ ≠ 0 (Table 2). ࢑ voxels that are misidentified are either thin clouds (߬ < 0.5), e.g. in the north west of 381 
the domain (as seen in Figure 11 inside the red box) or at the edges of clouds.  382 

Table 2. Contingency table of observed extinction coefficient and reconstructed Algebraic Reconstruction Technique (ART) 383 
extinction coefficient, k for CF = 6.8%. 384 

  Observation 
  ࢑ = 0 ࢑ ≠ 0 

 

ART 
࢑ = 0 94% 0.8% ࢑ ≠ 0 0.4% 4.8% 

4.2.2. Iterative Retrieval 385 

The iterative method is based on the assumption that iteratively minimizing the image error further 386 
minimizes the extinction coefficient errors. To decrease the computational cost, ࢑ from the ART method 387 
is input to the iterative method providing an accurate first estimate. Unlike in Section 4.1 the source 388 
function is not assumed to be known. Therefore the full bi-level iteration presented in Figure 3 is 389 
executed. Figure 13 and Table 1 demonstrate that the iterative method further decreases the image error. 390 
After 13 iterations, the image rMAE decreases from 4.3% to 0.7% and 13.2% to 7.0% for the 6.8% and 391 
33.3% CF cases, respectively. The ࢑ rMAE also decreases from 53.4% to 33.6% and 83.2% to 66.4% for 392 
the 6.8% and 33.3% CF cases, respectively. 393 

 394 

Figure 13. Mean average error for each iteration for the iterative method. a) Image pixel brightness; b) extinction coefficient.  395 

The iterative method decreases the error from the initial ART estimate. For the small CF case ࢑ rMAE 396 
decreases nearly 20 percentage points, or 36%. The over-predictive tendencies are resolved with the ࢑ 397 
rMBE improving from 17.1% to 2.8%, the GHI rMAE of cloudy regions improving from 21.8% to 398 
0.85%, and the GHI rMBE of cloudy regions improving from 14.2% to 0.15%.  399 
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4.3. Solar Forecasting 400 

Table 1 demonstrates that the rMAE in GHI is minor compared to the error in ࢑ for both the ART and the 401 
iterative method. For atmospheric science applications, the ࢑ error magnitude indicates that the current 402 
methods require further improvements to provide high quality 3-D cloud reconstructions. For solar energy 403 
applications, since surface GHI is the relevant quantity the ART method appears to be sufficient. 404 

To demonstrate the potential of the ART for solar forecasting applications, the GHI map from the ART 405 
method in section 4.2 is advected using the average cloud speed from the LES. Figure 14 demonstrates 406 
rMAE of persistence, conventional single SI, and the ART forecasts relative to the ground truth 407 
measurements from the LES. The conventional SI forecast consists of a 2-D cloud representation and 408 
trinary (clear, thin cloud, thick cloud) cloud decision (Yang et al., 2014). The ART method significantly 409 
improves upon the conventional method throughout the 5 minutes forecast horizon. The improvements 410 
are due to better representation of 3-D clouds as well as the more accurate representation of cloud optical 411 
depth compared to the trinary system. At longer forecast times, the clouds evolve in shape and thickness, 412 
and the advantage of better initial cloud conditions decreases. The accuracy of persistence forecasts 413 
decreases for that same reason and for forecast horizons of 1 to 5 min, the ART rMAE then beats 414 
persistence. 415 

 416 

Figure 14. Global Horizontal Irradiance (GHI) forecast mean average error (MAE) for persistence forecast in red, conventional 417 
forecast (Yang et al., 2014) in magenta (dot-dashed), and Algebraic Reconstruction Technique (ART) forecast in black (dashed). 418 
The persistence forecast assumes that the current GHI persists for the next 5 minutes.  419 

5. Discussion and Conclusions 420 

This paper introduces the application of tomographic methods to multiple sky images to reconstruct 3-D 421 
fields of extinction coefficients. Virtual images are created by simulating 3-D heterogeneous cloud scenes 422 
in the atmospheric boundary layer using LES. As expected, more imagers increase the accuracy of 3-D 423 
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cloud reconstruction, especially for up to 4 imagers after which the benefits of additional imagers 424 
decrease. However, more imagers increase robustness to imager soiling and cloud detection errors in the 425 
circumsolar region of images. Although having more imagers improves the accuracy of the 3-D 426 
reconstruction, it also increases the capital, operations, and maintenance cost of the imagers, creating a 427 
tradeoff between more imagers and improved accuracy. The distance between imagers also plays an 428 
important role in reconstruction accuracy. In idealized scenarios with a 0.94 km cloud base height, an 429 
increase in separation between imagers led to an increase in 3-D reconstruction accuracy up to 3 km. This 430 
is because a diversity in view perspectives better constrains cloud dimensions.  431 

Summary statistics of the ART and the iterative methods are presented in Table 1. The ࢑ rMAE is 53.4% 432 
using the ART and decreases to 33.6% after 13 iterations of the iterative method. The ART method, using 433 ࣎ from the RRBR method, inherits the cloud optical depth under-predicting tendency of the RRBR as 434 
demonstrated by the -17.1% rMBE of ࢑. Although the iterative method decreases the rMBE, the 435 
computational cost of several days to reconstruct a single cloud scene renders the method unusable for 436 
solar forecast applications. Computational costs increase with higher cloud fraction as more cloud voxels 437 
must be solved. On the other hand, the ART method takes only about 30 seconds, which is compatible 438 
with solar forecast application. The ART method beats persistence forecast already at a 1-minute forecast 439 
horizon, demonstrating its potential for solar energy applications. 440 

It is important to note that these conclusions are for an idealized image and the results need to be 441 
validated in real images as well to account for both topographic obstructions and non-ideal lens distortion. 442 
Since buildings and trees commonly obstruct the horizon in an image, imagers where the cloud appears at 443 
a large zenith angle (near the horizon) may not contribute to the reconstruction of that cloud.  444 
Furthermore, cases with clouds obstructed by other clouds as in multiple cloud layers need to be 445 
investigated. Further, the sensitivity of the reconstruction accuracy to the surface albedo should be 446 
established given the abundant installation of utility-scale solar power plants near more reflective arid and 447 
semi-arid surfaces. 448 
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 549 

Appendix 550 

Figure A1 and Figure A2 are the equivalent of Figure 8 and demonstrate the improvements with increased 551 
separation for 4 and 2 imager deployments respectively. The results are  consistent with Huang et al., 552 
(2008) with an optimum between 2 km < L < 4 km for k. GHI and image error perform worse as L 553 
increases beyond 4 km. The 2-imager setup continues to improve with increased separation. 554 

 555 

Figure A1. Domain averaged mean error in (a) k, (b) image pixel brightness, and (c) Global Horizontal Irradiance (GHI) for 556 
retrievals with 4 imagers at different distances 557 .ܮ 
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 558 

Figure A2. Domain averaged mean error in (a) k, (b) image pixel brightness, and (c) Global Horizontal Irradiance (GHI) for 559 
retrievals with 2 imagers at different distances 560 .ܮ 

Figure A3 through Figure A5 show the reconstructed spatial fields of clear sky index and two 561 
perspectives of the extinction coefficient k. The results in Figure 8 are based on the data shown in these 562 
figures. 563 
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 564 

Figure A3. Spherical Harmonic Discrete Ordinate Method (SHDOM) simulated clear sky index at the surface from the 565 
reconstructed extinction coefficient field from different numbers of imagers (columns) at different spacing ܮ (rows) for a CF of 566 
6.8% using the ART method. Black dots represent imager locations. The bottom right image is ground truth from Large Eddy 567 
Simulation (LES). 568 
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 569 

Figure A4. Reconstructed vertically averaged extinction coefficient k from different number of imagers (columns) at different 570 
spacings ࡸ (rows) for a CF of 6.8% using the ART method. The bottom right graph is the correct k. 571 
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 572 

Figure A5. Reconstructed extinction k averaged in the North-South direction from different numbers of imagers (columns) at 573 
different spacings ࡸ (rows) for a CF of 6.8% using the ART method. The bottom right graph is the correct k. The data shown is 574 
identical to Figure A4, but as a vertical slice rather than a top-down view. 575 


