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Abstract 

A flexible approach to a two-step Biorefinery for the production of glucose and furfural 

from three different feedstocks is presented. Pretreatment conditions were selected to 

drive the production towards the generation of glucose or furfural. Harsh pretreatment 

conditions produced solids with highly accessible glycan contents for the enzymatic 

hydrolysis with 100 % glucose yields when wheat straw or poplar chips were used as 

feedstock. Mild conditions afforded xylan-rich hydrolysates that could be efficiently 

transformed to furfural, either under conventional or microwave heating in biphasic 

media. Yields for the transformation of xylan from feedstocks ranged between 45 % and 

90 % depending on the feedstock, the thermal pretreatment and the cyclodehydration 

conditions. Up to 12.6 kg of glucose and materials and 2.5 kg of furfural can be 

produced starting from 50 kg of biomass. A new analytical methodology based on 13C 

NMR that provided good quality analytical results is also presented. 

Keywords: Biorefinery, thermochemical pretreatment, enzymatic hydrolysis, glucose, 

cyclodehydration, biphasic medium, microwave, scale up, NMR quantification 

1.  Introduction  

In recent years, an increasing effort has been devoted to replace fossil fuels and fossil-

fuel derived chemicals (Barta el al., 2014; Martin et al., 2017). Lignocellulosic biomass, 

such as forestry and agricultural residues, is widely available worldwide at competitive 

prices and, even more important, its use as feedstock does not compete with human 

nutrition requirements. High production rates and low feedstock cost of lignocellulosic 
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biomass make them very attractive raw materials for the production of 2G biofuels, 

chemicals and materials (De Bhowmick et al., 2018). Lignocellulosic biomass is 

roughly composed of cellulose, hemicelluloses, and lignin, as well as small amounts of 

extractives (Behera et al., 2014). The bioconversion process of lignocellulosic materials 

to produce bioethanol or other bio-fuels requires three main steps including (Kumar et 

al., 2010): i) pretreatment to increase the accessibility of cellulose, hemicelluloses and 

lignins while minimizing the formation of by-products; ii) enzymatic hydrolysis of the 

cellulosic components to monomeric sugars that can subsequently be iii) fermented to 

ethanol and others. Downstream fractions arising from the conversion of lignocellulosic 

materials to biofuels, hemicellulose and lignin, have been typically underused.  

In the last few years, the Biorefinery concept has been defined as “the sustainable 

processing of biomass into a spectrum of marketable products and energy whilst 

encompassing a network of facilities that integrate different technologies for bio-based 

products generation” (Chandel et al., 2018). In this sense, biorefineries may enable the 

valorization of these downstream fractions into a wide variety of valuable chemicals, 

increasing the sustainability of the production of biofuels (Chatterjee et al., 2015; 

Werpy and Petersen, 2004; Liu et al., 2012). This definition points in the same direction 

than that defined in the circular economy objective from the European Commission 

(Towards a circular economy: A zero waste Programme for Europe, 2014).  

The key step in the production of biofuels is the hydrolysis of the cellulosic materials. 

Enzymatic hydrolysis is an effective and green process to enhanced production of 

monosaccharides from polymeric sugars for further bioconversion processes. Low 

enzyme activity and high enzyme costs make this step a critical point in the overall 

process for the production of bioethanol (Chen and Fu, 2016; Guo et al., 2018). 

Recently, some studies have already shown the feasibility of recycling these enzymes 

(Rodrigues et al., 2014), which noticeably increases the sustainability of the process. 
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The development of efficient and economical pretreatments to break the lignocellulosic 

matrix is another challenge for the bioconversion of these raw materials. Hydrolysis in 

diluted sulfuric acid hydrolysis, combined with high temperature and pressure, is a very 

effective and well-known process to depolymerize and dissolve the hemicellulose by 

removing the acetyl groups, uranic esters or glycosidic bonds (Seidl and Goulart, 2016) 

to obtain a glycan-enriched fraction more prone to enzymatic hydrolysis. 

Hemicellulose rich fraction is one of the most abundant downstream fractions after 

acidic hydrolysis of the lignocellulosic biomass, and is mainly composed of pentoses. 

Pentoses can be converted into furfural. Besides its use as a solvent, furfural can be used 

as a platform molecule for the synthesis of a number of derivatives: furanic compounds, 

pentanodiols or liquid alkanes that are potential biofuel components (Bond et al., 2014; 

Lange et al., 2012). During the last years, intensive research has provided excellent 

catalysts for the cyclodehydration of xylose to furfural as Lewis acids (Guenic et al., 

2015), zeolites (Choudhary et al., 2011), supported sulfonic acids (Wang et al., 2017), 

or tungstophoric acids (Dias et al., 2006). Despite that, its industrial synthesis still relies 

on the Quaker Oat’s process developed in the 1920’s. This process is based on the 

treatment of biomass in reactors with a mineral acid (i.e. sulfuric acid) (Zeitsch, 2000) 

at 170–185 ºC, being maximum furfural yields comprised between 45 % and 50 % of 

the total xylan in the raw material. The low cost of feedstock still makes this process 

viable despite the low overall yield. 

The production of furfural using downstream fractions in Biorefineries would be very 

attractive to improve its sustainability if cyclodehydration of xylose proceeded in much 

higher yields than in the current industrial process. This improvement in furfural yields 

must be based on the prevention of the potential formation of degradation products, 

such as humins, whose origin is attributed to the reaction of xylose with the as-formed 

furfural in the presence of the acidic medium (Garrett and Dvorchik, 1969; Montané et 
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al., 2002; Rose et al., 2000; Williams and Dunlop, 1948). Continuous extraction of 

furfural either by distillation (Mandalika and Runge, 2012), or using biphasic reaction 

media (Sádaba et al., 2014, Romo et al. 2018) is a promising methodology to prevent 

humins formation. Indeed, direct production of furfural from biomass has been already 

reported using aqueous mineral acids as catalyst in MIBK biphasic media with good 

yields (Delbecq et al., 2018; Zhang et al., 2013). Another challenge in the production of 

furfural is the intensive use of energy. In this sense, the use of microwave irradiation to 

activate the reaction may allow to reduce the energy expenses with good yields in the 

production of furfural either from xylose (Weingarten et al., 2010), xylan (Chheda et al., 

2007) or corn stover (Li et al., 2017; Mittal et al., 2017). 

Different approaches can be envisaged in the Biorefinery process. For instance, in the 

so-called one-stage process, furfural is produced from biomass by direct treatment of 

different feedstocks (Kim et al., 2012) like corncob (Mao et al., 2012), sugarcane 

bagasse (Mesa et al., 2014), olive stones (Montané et al., 2002), rice husk (Suxia et al., 

2012), shorgum straw (Vázquez et al., 2007) or straw (Yemiş and Mazza, 2011). The 

residual solid is hopefully used as the raw material for the production of fermentable 

sugars. The two-stage process, however, separates both steps in different reactors 

allowing their separate optimization that results in a better overall control of the whole 

process with, a priori, higher furfural yields and better quality solid residues 

(Mandalika and Runge, 2012). 

In this paper, we show the optimization of a two-stage process design, which could be 

used in a hypothetical Biorefinery focused on the production of glucose and on direct 

transformation of pentoses to furfural. 

2. Material and Methods 

2.1. Thermochemical Pretreatment  
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Biomass raw materials have been processed at CENER facilities of Biorefinery and 

Bioenergy Centre (BIO2C), located in Aoiz (Spain). The thermochemical pretreatment 

assays were made in a steam pressurized plug-flow horizontal reactor (Advancebio 

Systems LLC, USA) that allows a high solid load (50 %) and operation up to 192 ºC 

.The experimental conditions for thermochemical pretreatment were selected based on 

an experimental design using selected feedstocks (data not shown).  

Three sources of biomass were used, poplar (Populus sp.), pine (Pinus radiata) and 

wheat straw (Triticum aestivum). For each feedstock, three parameters were combined 

at different levels: temperature, residence time and acid/feedstock ratio. Selected 

temperatures were 164 ºC, 178 ºC and 192 ºC for poplar and pine chips and 173 ºC, 

180 ºC and 187 ºC for wheat straw. Residence times were 5 minutes, 10 minutes or 15 

minutes for wheat straw and 5 minutes for pine chips and poplar chips. The preparation 

of the feedstock combinations was carried out previously based on dry matter (50 kg) 

content and adjusting the moisture up to 50 %. Sulfuric acid (98 %) was added at 

relations of 1 %, 2 % and 3 % for wheat straw and 0 %, 2 % or 4 % for pine chips and 

poplar chips to dry weight of the total solid content. Manual mixing was done to 

achieve homogenization and left overnight at room temperature before feeding the 

reactor. 

Compositional analysis 

Samples moisture content was calculated by drying at 105 ± 2 ºC up to constant weight 

according to CEN/TS 14774-3:2010 procedure. Ash content was determined after 

combustion for 2 h at 550 ± 10 ºC in a muffle, according to UNE-EN ISO18122:2015. 

Nitrogen determination was carried out following the UNE-EN ISO 16948:2015 and 

using a 5.25 conversion factor into protein. Quantification of cellulose, hemicellulose, 

and lignin content in the solid fraction resulting from thermochemical pretreatments was 

done according to NREL procedures nº 42618 and nº 42627 respectively.  
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Quantification of sugars in the liquid fractions resulting from thermochemical 

treatments was made either after filtration or after further acid hydrolysis of the 

oligomeric sugars to produce the monosaccharides. This second hydrolysis step was 

conducted at pH 1, upon addition of 72 % H2SO4 (w %), and autoclaving at 121 ºC for 1 

h. Samples were stored at - 20 ºC until analysis. 

Liquid samples were analyzed by liquid chromatography following three different 

methodologies HPLC1, HPLC2 and HPLC3. In HPLC1, NREL protocol (Sluiter et al., 

2008), sugars were quantified using a HPLC system (Agilent 1200) equipped with a 

refractive index detector (RID). The stationary phase was an ICSep ION 300 column 

(7.8 x 300 mm, Transgenomics, Glasgow, United Kingdom) at 72 ºC and 8.5 mM 

H2SO4 aq. was used as mobile phase. HPLC2 methodology was essentially similar, 

although RHM-Monosaccharide H+ (8 %) column (Phenomenex) at 75 ºC was used as 

stationary phase and H2O at 0.4 mL/min flow rate as mobile phase (Sádaba et al., 

2014),. Quantification using HPLC3 was made on a Metrohm 940 Professional IC Vario 

equipped with amperometric detector using Metrosep carb2 150/4.0 (Metrohm) and 

Metrosep Carb2 guard at 30 ºC as stationary phase. 300 mM NaOH aq. and 1mM 

sodium acetate at 0.5 mL/min solutions were used as mobile phase. 

Sugar degradation compounds after thermochemical pretreatment, such as furans 

(furfural, FAL, and 5-hydroxymethylfurfural, HMF) or acetic acid, were systematically 

quantified by HPLC with DAD index detection using a Zorbax column (250 x 4,6 mm, 

Agilent Technologies) at 50 ºC as stationary phase and a mobile phase consisting of 

water: acetonitrile at 80:20 ratio. 

1H and 13C NMR were recorded at 300 K in a Bruker ASCEND 400 spectrometer 

equipped with a PABBO 5 probe, at 400 MHz and 101 MHz respectively. Chemical 

shifts are given in ppm and referenced using residual signal from CHCl3 at 7.26 ppm 

and 4.79 ppm for H2O for 1H NMR. 13C NMR spectra were referenced using the signal 
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at - 2.74 ppm for trimethylsilylpropanesulfonic acid sodium salt (TMPS). The NMR 

signal was processed using the commercial Bruker Topspin 3.2 software. Determination 

of xylose, XYL, glucose, GLC, and mannose, MAN, in liquid samples by 13C NMR 

was made in D2O using TMPS as internal standard. Quantification of FAL and HMF 

was performed by 1H NMR using 1,3,5-trimethoxybenzene (TMOB) as internal 

standard in CDCl3. 

2.2. Enzymatic Hydrolysis 

The solid fraction obtained after the thermochemical pretreatment was submitted to 

hydrolysis, using a baseline enzyme cocktail (Cellic® CTec2) kindly provided by 

Novozymes Reaction conditions were set at 50 ºC, 10 % total solids content and pH 5 

with stirring at 180 rpm for 72 hours; pH was readjusted after 24 hours of hydrolysis. 

Enzyme dosage was 60 g/kg ODM. Samples were analyzed by HPLC for soluble sugars 

quantification using HPLC1.  

Yields for the enzymatic hydrolysis were calculated as follow: 

𝑔𝑙𝑢𝑐𝑜𝑠𝑒 𝑦𝑖𝑒𝑙𝑑 = 100 ∗
𝑔𝑙𝑢𝑐𝑜𝑠𝑒 𝑜𝑏𝑡𝑎𝑖𝑛𝑒𝑑 𝑎𝑓𝑡𝑒𝑟 𝑒𝑛𝑧𝑦𝑚𝑎𝑡𝑖𝑐 ℎ𝑦𝑑𝑟𝑜𝑙𝑦𝑠𝑖𝑠 (𝑔)

𝑔𝑙𝑢𝑐𝑜𝑠𝑒 𝑖𝑛 𝑡ℎ𝑒 𝑓𝑒𝑒𝑑𝑠𝑡𝑜𝑐𝑘 (
𝑔

100 𝑔𝑂𝐷𝑀⁄ ) ∗ 𝑚𝑎𝑠𝑠 𝑜𝑓 𝑓𝑒𝑒𝑑𝑠𝑡𝑜𝑐𝑘 (𝑔)/100 
 

Statistical analysis were carried out using Statistica version 13.05.0.17 (TIBCO) 

software. 

2.3. Cyclodehydration of xylose to furfural 

Laboratory scale reactions activated by microwave irradiation were performed on a 

CEM Discover S Class reactor, equipped with IR temperature probe and APD pressure 

controller, using a constant temperature program. Microwave irradiation was conducted 

at constant temperature with dynamic temperature/pressure control and a maximum 

power of 300 W. After the reaction was completed, the reaction mixture was rapidly 

cooled to 60 ºC with air current. Reactions were made by triplicate. Scaled-up reactions 

under microwave irradiation were run in an ETHOS One TM Microwave Digestion 
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System (Milestone Inc)., kindly provided by GOMENSORO. The digestion system was 

equipped with 12 reaction vessels (100 mL each) and a microwave diffusor that 

homogenizes the irradiation in the microwaves chamber. Vessels were charged to a total 

volume of 50 mL, using 18.75 mL of WSTH and 31.25 mL of MIBK 

Laboratory scale reactions with conventional heating were done in a 100 mL Autoclave 

Engineers apparatus controlled by PID using a total volume of 50 mL. Semi-pilot scale 

reactions were made using 4.0 L vessels at CENER facilities. Reactor was charged to a 

total volume of 2.0 L using 750 mL of WSTH and 1250 mL of MIBK 

For both microwave and conventional reactors, reaction times are referred to the point 

target temperature is reached, this is the end of ramping. 

XYL, MAN and GLC concentrations in the aqueous phases after cyclodehydration 

reaction were calculated using 13C NMR. Quantification of FAL and HMF was done by 

1H NMR as described before. 

𝐹𝐴𝐿 𝑦𝑖𝑒𝑙𝑑 = 100 ∗ 

𝑀𝑊𝐹𝐴𝐿 ∗ 𝑚𝑜𝑙 𝑇𝑀𝑂𝐵 ⌈

∑ 𝐼𝐹𝐴𝐿

4
𝑇𝑀𝑂𝐵5.95

3

⁄ ⌉ − 𝑖𝑛𝑖𝑡𝑖𝑎𝑙 𝑐𝑜𝑛𝑐𝑒𝑛𝑡𝑟𝑎𝑡𝑖𝑜𝑛 𝑜𝑓 𝐹𝐴𝐿 (
𝑔
𝐿

) ∗ 𝑉ℎ𝑦𝑑𝑟𝑜𝑙𝑦𝑧𝑎𝑡𝑒(𝐿)

𝑐𝑜𝑛𝑐𝑒𝑛𝑡𝑟𝑎𝑡𝑖𝑜𝑛 𝑜𝑓 𝑥𝑦𝑙𝑜𝑠𝑒 (
𝑔
𝐿

) ∗ 𝑉ℎ𝑦𝑑𝑟𝑜𝑙𝑦𝑧𝑎𝑡𝑒(𝐿)
 

Where IFAL refers to the integral values for the signals corresponding to FAL at 9.54 

ppm, 7.96 ppm, 7.61 ppm and 6.59 ppm and TMOB to the integral value for the signal 

corresponding to the aromatic hydrogen atoms of 1,3,5- trimetoxybenzene at 5.95 ppm. 

FAL and HMF yields are referred to the FAL and HMF produced exclusively in the 

cyclodehydration reaction, considering the overall amount of XYL and xylan or 

hexoses in the hydrolysate samples.  

3. Results and discussion 

Three different feedstocks, wheat straw (Triticum aestivum), poplar chips (Populus sp.) 

and pine chips (Pinus radiata), were chosen for this study given their natural abundance 

in Navarre. Wheat straw is an abundant herbaceous residue in the agronomical sector. 
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Poplar and pine, which are abundant in Navarre forestry, were chosen as hard and soft 

wood models respectively. Compositional analysis of the biomass feedstocks is given in 

Table 1. 

3.1. Thermochemical pretreatment of biomass feedstock 

Thermochemical pretreatment of the biomass consisted in the acidic hydrolysis of the 

biomass using sulfuric acid with the aim of solubilizing the hemicellulosic fraction 

while keeping intact the lignocellulosic fraction. The slurry obtained after 

thermochemical pretreatment was filtered, affording a solid and a liquid fraction. 

Compositional analysis of the as-obtained solid fractions are gathered in (Figure 1). 

Thermochemical pretreatment of pine chips under mild conditions drastically reduced 

the presence of xylan-mannans in the insoluble fraction below 1.5 % and below 2.0 % 

in poplar chips. Nevertheless, in the case of wheat straw, xylan-mannan contents were 

above 3.2 % even under the harshest conditions (187 ºC, 15 min., 3 % of H2SO4), 

accounting for the different structures of herbaceous and woody biomass feedstocks. 

Because of this decrease in the xylan-mannan ratio in the composition of the insoluble 

fraction, a noticeable increase in the proportion of acid-insoluble lignin and glycan was 

observed in all cases. Indeed, highest lignin contents, 42.4 %, 34.1 % and 22.7 % for 

pine, poplar and wheat straw respectively, were obtained upon harshest pretreatment for 

each feedstock. More extensive xylan-mannan solubilization together with some glycan 

solubilization from the solid fractions was consequently observed. In the case of acid-

insoluble lignin, highest contents were found in pine chips insoluble fractions (25.9-

42.4 w %), although most of the values ranged from 30 % to 35 w %. On the other 

hand, lignin contents were similar in all the cases (ca. 26-28 %) in poplar insoluble 

fractions, regardless of the thermochemical pretreatment conditions. A similar effect 

could be observed in wheat straw insoluble fractions, whose lignin contents were very 

similar (ca. 16-18 %), excepting those where thermochemical pretreatment were 
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harshest. In that case, larger solubilization of the xylan-mannans fraction, and 

consequently an increase in lignin contents, was observed.  

A slight decrease in glycan proportion in the insoluble fractions could be observed in all 

the biomass sources under all treatments with regard to that found in the feedstocks 

suggesting, at least, a partial hydrolysis of celluloses under the experimental conditions, 

as it is shown in liquid fractions analysis (Figure 2). The highest glycan concentrations 

in the insoluble fraction are reached by far using poplar chips, 41.4  w %, and the lowest 

using wheat straw, 25.2  w %. Anyway, it is important to note that, regardless of the 

pretreatment conditions, glycan contents presented a very narrow distribution, 33.0 ± 

1.5 % for pine, 39.3 ± 1.8 % for poplar and 34.8 ± 1.2 % for wheat straw at 95 % 

confidence level. 

Soluble fractions were analyzed using HPLC1. As shown in Figure 2, the furans, 

organic acids and sugar concentration profiles had strong dependence on the feedstock 

used and the thermochemical treatment. More precisely, the highest soluble sugar 

concentration, 161 g/L, was obtained when pine chips were pretreated under relatively 

mild thermochemical conditions (165 ºC, 5 min, 2 % of H2SO4,). Relatively low furans 

concentrations were observed under these condition, although the concentration of 

acetic acid, from the removal of the acetyl groups in the raw material, reached 10 g/L. 

An increase either in the catalyst concentration, or in the reaction temperature was 

accompanied by a decrease in the sugar concentration, together with an increase of the 

furans concentration provoked by the sugar cyclodehydration to FAL or HMF. The 

increase in furans concentrations did not counterbalance the decrease in sugars that 

suggest that degradation of sugars to humins or levulinic acid may occur under harsh 

conditions. Other products from the degradation of lignocellulose as vanillin, fenol, 

syringol, ferulic acids or benzaldehyde (Wang et al., 2019), were detected in low 

concentrations. Noticeably, at relatively mild conditions in terms of the acid 
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concentration and the temperature, residence time is, by far, the most relevant factor in 

the production of soluble sugars and furans during pretreatment. Higher sugar 

productions are usually achieved at higher temperatures and residence times. 

When temperature and/or acid concentration were increased to higher levels, the 

concentration of sugars experienced a steady decrease albeit with a concomitant 

increase of furans and acetic acid production. In the case of poplar feedstock, the 

composition of sugars in the hydrolysates followed an opposite trend. At 2 % catalyst, 

sugar concentration from poplar increased with temperature and residence time, 

reaching up to 90 g/L except at 192 ºC, when sugar concentration decreased due to 

degradation processes (no significant increase in furans was observed). An increase in 

catalyst to 4  w % concentration also produced a decrease of sugars in the hydrolysate 

without significant increase in the furans concentration. This indicates that degradation 

of sugars and furans might occur under these conditions. However, in the case of wheat 

straw, at 1 % and 2 % catalyst loading, a steady increase in soluble sugar and furan 

concentrations could be observed upon increasing reaction temperature and residence 

times, reaching up to 53 g/L for xylans. However, when acid concentration was 3 %, an 

increase of residence times to 15 minutes was detrimental to sugar production at all 

temperatures, and the maximum sugar concentration was 65 g/L (at 180 ºC for 5 min). 

In all cases, furans concentrations steadily increased with harsher reaction conditions. 

3.2. Enzymatic hydrolysis for soluble sugar production 

Insoluble fractions obtained after the thermochemical pretreatment were submitted to 

enzymatic hydrolysis with the aim of obtaining an enriched soluble sugar hydrolysate 

that can be used for fermentation into bioethanol, biobutanol (From the Sugar Platform 

to biofuels and biochemicals - Final Report for the European Comission Directorate-

General Energy, 2015) or any other products. Enzymatic hydrolysis was done, in all 

cases, using a baseline enzyme cocktail, Cellic® CTec2 under previously optimized 
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conditions (not shown). Higher GLC contents related to ODM after enzymatic 

hydrolysis were obtained when poplar chips were pretreated at 178 ºC at 4 % acid 

catalyst during 15 min. with an overall 40 g/100 g ODM and 100 % yield of the ODM 

GLC in the solid fraction (Figure 3, Table 1). Similar yields were obtained in the 

enzymatic hydrolysis of wheat straw solid fractions, 36 g/100 g ODM and 100 % yield, 

whereas, in the case of pine chips only, 26 g/100 g ODM were obtained with 71 % 

overall yield under GLC priorization conditions (Table 2, Figure 3).  

Milder conditions in the thermochemical pretreatment derived in lower conversion to 

GLC after enzymatic hydrolysis (Figure 3). Thus, in the case of poplar chips, a decrease 

in the residence time to 5 minutes at 178 ºC, at 2 % acid concentration caused a 

decrease in the yield of GLC to ca. 37 g/ 100g ODM. When the pretreatment 

temperature was 164 ºC the yield was significantly reduced to 32 g/ 100g ODM. Lower 

acid catalyst concentration during the thermochemical pretreatment was also a critical 

parameter, when similar operation temperatures and residence times were used. Indeed, 

at 178 ºC, 5 minutes and 2 % acid, the as measured GLC concentration was as low as 

ca. 27 g/ 100g ODM.  

Pine solid fraction was much more sensitive to the thermochemical pretreatment 

conditions. Highest GLC concentration was 25 g/ 100g ODM when the pretreatment 

was run at 192 ºC and 4 % catalysts. A slight decrease in the temperature to 178 ºC 

induced a decrease in GLC concentration to 15 g / 100g ODM. Finally, in the case of 

the wheat straw, maximal GLC yield was 36 g/ 100g ODM when the thermochemical 

pretreatment had been performed with residence times of 15 min. at 187 ºC at 2 % or 3 

% acid concentration. GLC yields were higher than 80 % under these or harshest 

pretreatment conditions, obtaining quantitative hydrolysis for the solid fractions 

obtained at 180 ºC and 2 % acid catalyst.  
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As a general trend, best results in terms of solubilized GLC were observed when harsh 

reaction conditions were applied in the thermochemical pretreatments. Poplar biomass 

produced the highest yields of GLC after enzymatic hydrolysis (40 g/ 100g ODM) 

followed by wheat straw (36 g/ 100g ODM) and pine (25 g/ 100g ODM). This 

difference shall be explained by a more comprehensive breakage of the biomass 

structure in poplar and wheat straw during the pretreatment, which eased the access of 

the enzymes to the cellulose. 

3.3. Cyclodehydration of xylose to furfural 

3.3.1. Analysis of the xylose contents 

Reliable quantification of XYL is one key issue concerning the optimization of the 

cyclodehydration reaction conditions, as well as the evaluation of the whole process. As 

it is shown in Table 2 and Figure 2, HPLC1 methodology provided the quantification of 

the combined amounts of XYL and MAN. Good separation of these analytes could not 

be achieved and hence, individual data could not be obtained. Quantification of XYL, 

MAN and GLC was tried using a different stationary phase, HPLC2 (Sádaba et al., 

2014), and, although GLC could be satisfactorily resolved, XYL and MAN could not 

be separated neither. Indeed, it is well known that most of the stationary phases 

commonly used in HPLC analysis do not perform good resolution of MAN, galactose 

and XYL that usually present very similar retention times. Besides that, some other 

monosaccharides such as fructose, altrose or galactose may be present as interferences 

leading, either to long analysis times (Kiemle et al., 2004), or to non-selective 

methodologies. Ionic chromatography, HPLC3, was also tried and MAN could be well 

resolved but, in the case of XYL and GLC, although retention times were different 

(6.42 min for GLC, 6.67 for XYL) good resolution could not be achieved neither. 

Additionally, a third compound, galactose, eluted at 6.96 min., that made quantification 

of XYL even more complicated. This did quantification of XYL a non-trivial issue, 
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particularly when dealing with hydrolysates from pine and poplar chips whose contents 

in MAN and GLC were significant.  

Quantification of monosaccharides in aqueous solution using 1H NMR is an alternative 

to chromatographic determination. This methodology has been described in biomass 

hydrolysate samples treated with deuterated H2SO4 and D2O as solvent. Despite 

chemical shifts of anomeric hydrogen atoms are very close to that of residual H2O, 

using NMR suppression of residual water signal is usually enough to obtain excellent 

results after careful integration of the signals (Altaner and Saake, 2016; de Souza et al., 

2013; Mittal et al., 2009). However, the need of using deuterated reactants and solvents 

prevents the analysis of representative amounts of sample. 

Direct 1H NMR quantification of the XYL, MAN and GLC contents in the obtained 

hydrolysates was directly tried adding the minimal amount of D2O for locking the NMR 

field. This methodology was unsuccessful in our samples, as the H2O signal made 

integration of anomeric hydrogen atoms not reliable even using water signal 

suppression pulse programs. However, when 13C{H} NMR was used, very well defined 

signals for the anomeric carbon atoms of D-XYL, D-MAN and D-GLC in their  and  

configurations could be observed. Peak assignment for the anomeric carbon of D-XYL, 

D-MAN and D-GLC in their pyranose form was made by comparison with pure 

standards prepared in similar conditions than those of the hydrolysates. Signals at 92.2 

ppm and 96.6 ppm where assigned to and -D-XYL; signals at 94.0 ppm and 93.7 

ppm to  and -D-MAN; signals at 92.1 ppm and 95.9 ppm to  and -D-GLC 

respectively. The presence of the corresponding furanose and open forms were not 

considered, as it is known that their amount is about 1 % in aqueous solution (Kiemle et 

al., 2004). Galactose and fructose were also detected in small amounts by NMR, but 

their quantification is out of the scope of this study. 3-(Trimethyl)silylpropane-1-
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sulfonic sodium salt (TMPS) was chosen as internal standard because, under our 

analysis conditions, showed good solubility in the medium. The intensities of the 

signals for the anomeric carbon atoms were calibrated with those corresponding to 

TMPS at -2.7 ppm, 14.9 ppm, 19.0 ppm and 54.3 ppm with excellent correlation for the 

three studied monosaccharides. Calibration standards were prepared to emulate the 

solutions arising from the acidic hydrolysis process: 25 L of H2SO4 (6 % w/v) and 

50 L of a solution of TMPS in D2O were added to 400 L aqueous solutions of the 

corresponding hydrolysate samples. 

Wheat straw hydrolysates, with very low amounts of MAN and GLC, were chosen to 

evaluate the accuracy of this method. In this way, WST and WSTH were first analyzed 

by HPLC using HPLC2 and HPLC3 methodologies and 13C{H} NMR (Table 3). The as-

determined XYL, MAN and GLC contents were similar between NMR and HPLC 

when the HPLC peaks are well-resolved (GLC for HPLC2, MAN for HPLC3). In the 

case of XYL, HPLC3 values were higher than those determined either using HPLC2 or 

NMR because XYL and GLC are not well resolved and the GLC content is relatively 

high whereas values are very similar for NMR and HPLC2. In the case of poplar and 

pine samples, similar considerations can be made for the accuracy in the concentration 

of GLC and MAN, XYL determined by NMR. These concentrations were, in pine and 

poplar samples, lower than those determined by HPLC, which can be attributed to the 

mentioned resolution problems in HPLC. Furthermore, although in low concentrations, 

the presence of other carbohydrates as galactose or fructose previously detected by 

NMR may cause interference in HPLC quantifications. Therefore, it was considered that 

quantification of XYL, MAN and GLC by 13C NMR is reliable in the rest of this study. 

XYL content in WST and WSTH was 30.0 g/L and 53.0 g/L respectively. The 

difference in XYL content between these fractions is due to xylan oligomers (13C NMR 

signals at 101.8 and 101.6 ppm for the anomeric carbon) that were fully depolymerized 
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upon autoclaving of WST to produce WSTH. A similar reasoning can be applied to the 

content of GLC that raised from 3.9 g/L in WST to 6.2 g/L in WSTH. Concentration of 

MAN in pine sample PINH was 43.8 g/L, followed by XYL, 24.1 g/L and GLC 

14.1 g/L. XYL content in POP samples was 73.8 g/L, which is slightly higher than that 

found in POPH, 60.0 g/L, while FAL content increased from 0.8 g/L to 5.3 g/L upon 

autoclaving. If dilution effects are not considered, almost 63 % of the difference in XYL 

had been converted to FAL during autoclaving at 121 ºC. GLC contents were about 

15.0 g/L in both POP and POPH showing that almost all accessible glycan and xylan 

had been already hydrolyzed upon the thermochemical pretreatment. MAN contents 

were slightly increased showing that some mannan remained intact upon 

thermochemical pretreatment.  

3.3.2. Optimization of the cyclodehydration reaction. 

Two major challenges must be faced in order to improve the efficiency of the 

cyclodehydration reaction of XYL: i) the formation of degradation products from FAL, 

namely humins and ii) the intensive use of energy. Biphasic reactions conditions using 

methyl isobutyl ketone (MIBK) or toluene have proven to be effective to prevent 

humins formation given that FAL can be efficiently transferred to the organic phase 

upon its formation (Romo et al., 2018). Concerning to the use of energy, microwave 

reactors allow ramping in short times (ca. 2 min) that reduces the energy costs 

increasing the efficiency of the process. In addition, rapid cooling of the reaction 

mixture is achieved assuring excellent control of the reaction time that prevents the 

formation of byproducts. Another drawback associated to conventional heating and long 

ramping times is that XYL cyclodehydration occurs at temperatures as low as 150 ºC, 

which favors the formation of humins upon heating to higher temperatures, that can be 

also circumvented using microwave irradiation.  
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According to the work of Mittal (Mittal et al., 2017) and to previous studies on the 

kinetics of biphasic dehydration of XYL to FAL (Weingarten et al., 2010) the sulfuric 

acid, that is already present in the downstream fractions arising from thermochemical 

pretreatment, could be a good catalyst to perform cyclodehydration. In the case of pine 

and poplar feedstocks, hemicellulosic fractions with highest XYL concentrations (XYL 

priorization in Table 2) where chosen, whereas in the case of wheat straw, a high 

concentration sample, after treatment at 173 ºC at 2 % catalyst during 15 min. was used. 

Fully depolymerized pine samples, PINH, were used for reaction optimization under 

microwave irradiation. This election was not casual, because, in our opinion, the 

relatively high content in MAN (43.8 g/L) and GLC (14.1 g/L) would made 

optimization more difficult. Four different parameters were tuned in the 

cyclodehydration reaction of XYL to FAL: target temperature, pH, reaction time and 

MIBK: aqueous phase ratio. These are the most relevant parameters according to 

previous studies on the kinetics of XYL dehydration in biphasic media (Weingarten et 

al., 2010). NMR analysis of the resulting organic phases showed that FAL and HMF 

were almost the sole reaction products transferred to the organic phase. Although in 

some cases the measured FAL yields are slightly higher than XYL conversions, 

experimental error made these discrepancies not significant (Table 4). The effect of 

MIBK:H2O ratio was first studied at 170 ºC and 300 s reaction time (Table 4, entries 1-

5) at pH 0.73. Final concentrations of hexoses in the aqueous phase were similar in all 

the experiments, although HMF yield steadily increases with MIBK:H2O ratios 

reaching up to 21 % (entry 5) that proved efficient transfer to the organic phase. HMF 

yield did not justify the hexoses conversion. 13C NMR analysis of the aqueous phase 

evidenced the presence of levulinic acid (signals at 213.5 ppm and 177.4 ppm) as a 

degradation product and HPLC analysis confirmed the formation of small amounts of 

succinic acid, lactic acid, levulinic acid and acetic acid. FAL yield steadily increased 
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from 53 % at MIBK:H2O 1:1 to 84 % at  5:1 whereas XYL conversion raised from 73 

% to 85 %. As dehydration reaction takes place in the aqueous phase, XYL conversion 

is not so affected by MIBK:H2O ratio as FAL yield, which is much better extracted to 

the organic layer. Given the slight difference in terms of XYL conversion between 3:1 

and 5:1 ratios, the first was chosen in the rest of the optimization.  

An increase in reaction temperature from 150 ºC to 210 ºC (entries 3, 6, 7, 8) caused a 

steady decrease in the sugar concentration in the aqueous phase. FAL and HMF yields 

followed a similar trend, reaching their maximum at 190 ºC (100 % and 13 % 

respectively) and decreasing at 210 ºC, while conversion of XYL kept constant, 95 %. 

Faster degradation in the aqueous phase occurs at 210 ºC, whereas the rate of FAL and 

HMF transfer rate to the organic solvent kept almost constant, that explains the 

decrease in yields. The effect of reaction time was also studied, and upon ramping of the 

reactor to 190 ºC or 210 ºC, excellent FAL yields, 90 % and 97 %, can be observed 

(entries 9 and 10). At 190 ºC FAL yield reached its maximum 300 s after ramping (100 

%, entry 7) with a slight decrease after 600 s (92 %, entry 12). A similar trend was 

observed in the production of HMF, 14 %, 300 s after ramping, that dramatically 

decreased after 600 s. Finally, concerning the effect of the pH, no significant differences 

in the reaction performance could be found when the reaction was run at either pH 1.2 

or pH 0.73 in terms of FAL or HMF yields. A slight decrease in FAL yield was 

observed when the reaction was run at pH 0.63 athough XYL conversion kept constant 

(entries 7, 13 and 14).  

Optimized reaction conditions (190 ºC, 300 s, MIBK:H2O 3:1) were tested in fully 

hydrolyzed WSTH and POPH (entries 15 and 16) as received. Quantitative conversion 

of XYL and 84 % FAL yield were obtained in both cases. Similarly, WST and POP 

were directly reacted without any addition of sulfuric acid, pH 3 (entries 17 and 19) 

with low XYL conversions, (50 % and 16 %), and 28 % and 33 % FAL yields 
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respectively that can be attributed to relatively high pH values that caused slower 

kinetics in the cyclodehydration. Acidification of these samples to pH 1 and 1.8 

respectively provided similar yields (entries 18 and 20) than those obtained with WSTH 

and POPH under the same reaction conditions. In the case of POP samples, FAL yields 

were very similar to those from WST. It is worth noting that xylan had been already 

fully depolymerized in POP but not in WST. Therefore, it can be assumed that 

cyclodehydration is strongly dependent on the pH and that is much slower than xylan 

depolymerization. The lower selectivity towards FAL in poplar and wheat straw 

samples can be explained by the higher XYL concentration that may accelerate the 

formation of degradation products in the aqueous phase.  

For the sake of comparison, reaction temperature was optimized for WSTH as received 

using conventional heating and a 1.7:1 MIBK/H2O (optimized conditions with pure 

XYL, data not shown). Maximum reaction yield was obtained after ramping at 170 ºC, 

73 % yield (entries 21-24), while humins formation provoked a decrease in the yield at 

higher temperatures. Noteworthy, this maximum is observed at lower temperature than 

under microwave irradiation, which can be attributed to the longer time for ramping (32 

min. against 2 min.). These results were similar or even superior to those recently 

reported by Mittal (Mittal et al., 2017) who reported 85 % FAL yield from corn-stover 

hydrolysates under microwave irradiation using acidic catalysts. 

However, scaling the optimized laboratory parameters is another challenge in 

developing chemical processes, particularly under microwave heating because of the 

difficulties to ensure homogeneous irradiation of microwaves in large reaction volumes. 

Scaling of the cyclodehydration reaction under microwave irradiation was done using 

WSTH hydrolysate without any addition of sulfuric acid. In order to improve the 

sustainability of the process, reactions were run at 1.7:1 MIBK:aqueous ratio, as it had 

been done using conventional heating. Reaction temperature optimization was made 
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using only one vessel (Table 4, entries 25-28). Ramping was much slower although 

irradiation was made at 500 W, hence we decided to stop irradiation after reaching the 

target temperatures to prevent humins formation. Under these conditions, best FAL 

yields, 73 % (entries 4 and 5), were obtained when ramping to 200 ºC and 210 ºC. Then, 

the reliability of the system was tested using up to 5 reaction vessels simultaneously 

ramping to 200 ºC (entry 29). Temperature was reached after 5 minutes of irradiation at 

a maximum of 900 W, providing an average yield of 70.2 ± 2.2 %. This showed the low 

variability between the different reaction vessels, evidencing that microwave irradiation 

was homogeneous along the microwave chamber. Overall production of FAL in this 

batch was 2.23 g, and thus, 5.35 g could be expected using the whole 12 vessels system.  

Cyclodehydration reaction was also scaled-up under conventional heating using WSTH 

as received as starting material, under the same reaction conditions (Table 4, entries 30-

32) in a 4.0 L vessel. Ramping time was much longer than under microwave irradiation, 

hence, reaction was also stopped after reaching the target temperature. Maximum yields, 

90 % (entry 31), were obtained after ramping to 180 ºC and decreased, 68 % (entry 32), 

when ramping to 190 ºC. Overall FAL productions were relatively high, reaching 22.7 

g/batch when the reaction was run at 180 ºC. It is worth noting that large-scale reaction 

yields were higher or noticeably higher than those found in small-scale experiments 

with conventional heating, that was due to the shorter time needed to reach the target 

temperature in scaled-up systems that prevented the formation of undesired side 

products. Optimum ramping temperature was also different between microwave and 

conventional irradiation that is due again to the different ramping time. Thus, because of 

much slower rate in ramping, lower temperatures were needed under conventional 

heating to reach maximal productivity, whereas in the case of microwave irradiation, 

higher temperatures were required to reach the maximum.  
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Productivity of FAL with the different methodologies was estimated in terms of grams 

of FAL produced by time of operation of the used reactors. It was assumed 70 % FAL 

yield in scaled-up microwave heating and 90 % yield using conventional heating. 

Highest productivity was estimated using microwave digester with all the feedstocks, 

reaching up to 88 g FAL/h when using poplar chips as feedstock, 63.1 g FAL/h using 

wheat straw and 28.8 g FAL/h using pine chips. Given that the optimized yields for 

wheat straw were higher when using conventional heating, the estimated overall yields 

were also higher in the scale up of the reaction, 90 % for pine chips, 76 % for poplar 

chips and 58 % for wheat straw against 77 %, 59 % and 45 % respectively for the 

scaling in microwave digester. Therefore, using pine chips may afford almost 

quantitative conversion of xylans to FAL under conventional heating, although the 

highest productivity in terms of grams of FAL per hour is the lowest within the three 

studied feedstocks given their low composition in xylan. Highest productivities were 

estimated using poplar chips, 88 g/h but with lower overall efficiency 59 %.  

Our results, are better than those typically obtained in industry with 45 % overall FAL 

yield. The results from the XYL cyclodehydration are slightly superior to those found in 

the direct production of FAL from maple wood under conventional heating (Zhang et 

al., 2013) that reached up to 85 % FAL yield, but using lower xylan loadings. Few 

studies, however, have reported using directly Biorefinery derived downstream or syrup 

fractions for the production of FAL from XYL. 45 % FAL yield was reported using 

sulfonic ionic liquid as catalyst on a Biorefinery derived mixture from wheat and/or 

barley straw after 4 h of microwave irradiation (Serrano-Ruiz et al., 2012). Our results 

in the cyclodehydration are in the range of the 86 % overall FAL yield reported for the 

conversion of xylans in switchgrass using batch reactive distillation (Mandalika and 

Runge, 2012). In our study, however, more concentrated hydrolysates were used (20-50 

g/L vs 5.0 g/L xylan) that shows the efficiency of the biphasic system in transferring 



  

22 

FAL and hence, presents higher productivities. A very similar approach using 

sugarcane bagasse has been reported (Mesa et al., 2014) but, in this case, acidic thermal 

treatment is focused either to the production of FAL or XYL, obtaining 53 % and 75 % 

overall yields for FAL and XYL depending on the conditions, clearly under those 

reported in our study.  

Biorefinery concept implies a multiple use of one substrate for upgrading each fraction 

obtained after thermochemical pretreatment. According to this, the middle point in the 

thermochemical pretreatment for obtaining balanced yields for GLC or XYL 

production (Table 2) is different for each feedstock. In terms of the thermal pretreatment 

efficiency for glycans in the solid fraction, the best yields were obtained under harsh 

pretreatment conditions. In this sense, high temperatures together with long residence 

times in the reactor provided solid fractions with high glycan contents. Additionally, in 

view of the enzymatic hydrolysis yields, these glycans are far more accessible to the 

enzymes, promoting higher overall GLC yields. Indeed GLC yields were almost 

quantitative under these conditions for wheat straw and poplar chips.  

In the case of XYL extraction, harsh reaction conditions promoted the degradation of 

the as-extracted xylan (Figure 2). Hence, milder conditions were preferred in the 

thermochemical pretreatment, reaching excellent extraction yields for poplar (88 %) and 

pine (100 %) although in this case concomitant extraction of mannose was observed 

(Table 4). Higher GLC production can be achieved using wheat straw and poplar chips 

under optimized conditions. Similarly, in the case of the production of FAL, 

cyclodehydration of wheat straw and poplar chips hydrolysate would provide excellent 

yields in terms of g FAL/ 100 g ODM. On the other hand, overall yields in terms of 

available xylans are higher for pine chips, but their relatively high content in MAN 

reduce the yield in terms of g FAL/ 100 g ODM. Finally yet importantly, it has been 

demonstrated that this excellent yields in terms of FAL production can be achieved with 
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only a slight acidification of the hydrolysate sample after the thermochemical 

pretreatment of the feedstock. 

An overview picture for our two-steps Biorefinery (Figure 4) and the extraction 

conditions (Table 2) show the versatility of the proposed scheme. Overall yields for 

FAL production were estimated either using the actual concentrations of XYL in the 

liquid fraction, or using the overall extraction yields that are gathered in Table 2. This 

latter approximation shows the potential of the scheme. This way, starting from a 50 kg 

ODM batch, and considering 15 kg losses during thermochemical pretreatment 

operation, up to 12.6 kg of GLC could be obtained using poplar as feedstock, 12 kg 

using wheat straw and 8.3 kg using pine chips. Concerning to FAL, best feedstock 

would be pine chips, which would provide up to 2.5 kg using conventional heating and 

2.2 kg under microwave irradiation. FAL production from wheat straw and poplar chips 

would be similar when using conventional heating but noticeably lower under 

microwave irradiation. Obviously, estimated yields using the actual concentrations of 

XYL in the filtrate are lower, but in the case of using pine chips under conventional 

conditions, are not very far than those estimated under ideal extraction. Extensive 

washing of the solid fraction will, undoubtedly, allow to reach ideal extraction values. 

Last, but not least,  in the case of poplar chips, up to 14.1 kg of material is recovered 

under the non-ideal conditions from a 50 kg ODM batch (35 kg considering mass loss), 

that shows the potential of the proposed scheme. 

4. Conclusions 

Thermochemical pretreatment conditions of the feedstock are critical in the production 

of fermentable GLC and FAL in a two-step Biorefinery approach using wheat straw, 

pine and poplar chips. This approach allowed easy optimization of the different steps. 

Quantitative fermentable GLC yields were obtained after enzymatic hydrolysis. High 

FAL yields were obtained from the downstream fractions in biphasic medium, either 
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using conventional or microwave heating. Finally, a new analytical methodology based 

on 13C NMR has been proposed to quantify the concentration of sugars in aqueous 

media. This methodology provided excellent results in terms of precision and allowed 

the analysis of representative amounts of hydrolysate. 

E-supplementary data of this work can be found in e-version of this paper online 
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7. Figures captions 

Figure 1. Compositional analysis of insoluble fractions after thermochemical pre-

treatments using H2SO4 as catalyst for pine (up), poplar (middle) and wheat straw 

(down). Sugar contents (g/L) and acetic acid (g/L) (left axis); Furans (5-

hydroxymethylfurfural and furfural) (mg/L) (right axis) 

Figure 2. Soluble furans (5 hydroxymethylfurfural and furfural), acetic acid and xylose 

concentration detected in pine chips (up), poplar chips (middle) and wheat straw (down) 

slurry samples.  

Figure 3. Soluble glucose (g/100 g ODM) (Left axis) and Glucose yields (%) (right 

axis) after 72 h of enzymatic hydrolysis for pine (up), poplar (middle) and wheat straw 

(down) 

Figure 4. Scheme for the two-step Biorefinery. 

8. Tables 

Table 1. Compositional analysis of the biomass raw materials 

Table 2. Thermochemical pretreatment conditions for glucose and xylose production 

optimization 

Table 3. NMR and HPLC measured concentrations for glucose, xylose and mannose in 

hydrolyzed biomass samples. NMR data are expressed at 95 % confidence level. 

Table 4. Optimization of cyclodehydration reaction under microwave irradiation. 
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Table 1. Compositional analysis of the biomass raw materials 

Determination (%weight/ DMa) 
Wheat Straw Pine chips Poplar chips 

Avg. SD Avg. SD Avg. SD 

Total Extractives 14.8 2.6 10.6 0.6 8.3 0.2 

Ethanol-Soluble Extractives 3.2 0.5 1.9 0.3 2.2 0.3 

Total ash 4.3 0.8 1.9 0.0 1.0 0.0 

Glycan 34.1 1.4 37.1 0.9 40.6 0.4 

Xylan-Mannan 20.8 1.1 14.1 0.5 16.0 0.1 

Arabinan 2.1 0.3 0.3 0.0 0.5 0.04 

AIb Lignin 14.3 0.8 20.8 0.8 21. 8 0.4 

ASc Lignin 0.7 0.0 0.8 0.0 0.6 0.1 

AIb Ash 0.7 0.3 0.1 0.0 0.6 0.3 
 

a) DM: dry matter; b) AI: Acid insoluble; c) AS: acid soluble 
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Table 2. Thermochemical pretreatment conditions for glucose and xylose production 

optimization. 

Feedstock Priorization 

Pretreatment conditions 
Enzymatic 

hydrolysis 
Hydrolysate 

T 

(ºC) 

Acid 

catalyst 

(%w/w) 

Residence 

time 

(min) 

Glucose 

(g/100g 

ODM) 

Overall 

Glucose 

yield 

(%) 

 

Xylose 

+ 

mannose 

(g/100 

ODM) 

 

Xylose + 

mannose  

(% 

extraction 

yield) 

Wheat 

straw 

Middle  180 2 10 29.0 85 7.5 36 

Glucose  187 2 15 36.0 100 7.3 35 

Xylose  180 2 5 26.5 78 13.4 64 

Xylosea 173 2 15 -  10.2 49 

Pine 

chips 

Middle  178 4 5 18.2 49 10.5 74 

Glucose  192 4 5 26.3 71 7.4 52 

Xylosea  164 2 5 7.6 20 14.1 100 

Poplar 

chips 

Middle  178 3 15 40.0 99 13.1 82 

Glucose  178 3 5-15 40.0 99 13.1 82 

Xylosea 178 2 15 36.6 90 14.1 88 
a) Sample used in cyclodehydration optimization. 
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Table 3. NMR and HPLC measured concentrations for glucose, xylose and mannose in 

hydrolyzed biomass samples. NMR data are expressed at 95% confidence level. 

 

Sample 
Analysis 

method 
XYL (g/L) 

MAN 

(g/L)  

GLC 

(g/L) 

XYL+ MAN 

+GLC (g/L) 
FAL (g/L) b 

WST NMR 27.0 ± 0.5 0.5 ± 0.4 3.9 ± 1.0 31.4 0.9 

 HPLC2
 a 30.0 ± 1.9 0.4 ± 0.0 3.4 ± 1.2   

 HPLC3
  31.8 ± 0.4 0.2 ± 0.1 1.2 ± 0.2 33.2  

WSTH NMR 52.7 ± 1.7 1.0 ± 0.6 6.2 ± 0.9 59.9 1.0 

 HPLC2
 a 53.0 ± 2.0 1.2 ± 0.1 7.0 ± 0.4   

 HPLC3
  61.2 ± 0.6 0.9 ± 0.1 6.3 ± 0.3 68.4  

PINH NMR 24.1 ± 1.9 43.8 ± 3.0 14.1 ± 0.6 82.0 1.5 

 HPLC2
 a 28.6 ± 0.6 49.4 ± 3.2 12.0 ± 1.3   

 HPLC3
  28.4 ± 0.6 37.6 ± 0.4 12.6 ± 0.7 78.6  

POP NMR 73.8 ± 3.5 9.1 ± 0.4 14.8 ± 0.1 97.7 0.8 

 HPLC2
 a 89.4 ± 4.2 11.6 ± 0.6 14.5 ± 1.8   

 HPLC3 81.1 ± 0.2 9.0 ± 0.0 11.1 ± 0.3 101.2  

POPH NMR 60.0 ± 2.8 12.8 ± 0.6 14.7 ± 1.4 87.5 5.3 

 HPLC2
 a 74.4 ± 1.9 15.3 ± 0.4 15.4 ± 3.3   

 HPLC3
  80.0 ± 0.4 11.6 ± 0.2 15.0 ± 0.3 106.6  

a) the xylose and mannose contents in the sample were determined by a tentative partition of the signal assigned 

to xylose and mannose by HPLC2 using the ratios previously determined by NMR. b) FAL was quantified by 

NMR upon extraction with MIBK and addition of 1,3,5-trimethoxybenzene. 
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Table 4. Optimization of cyclodehydration reaction under microwave 

irradiation. Microwave optimization reactions (entries 1-20, 22 and 29) were 

run by triplicate and are expressed at 95% confidence level. 

ent

ry 

sam

ple 

Heat

ing 

T 

(ºC

) 

t  

(s) 

MIB

K/aq 

p

H 

Co

nv 

Xil

. 

(%

) 

FAL 

yield 

(%) 

HM

F 

yield 

(%) 

[XIL]

(g/L)  

[M

AN] 
(g/L

) 

[G

LC] 

(g/L

) 

[XIL]

(g/L)  

1 
PIN

H 

MW 

170 
30

0 
1 

0.

73 

73 

± 

5.1 

53 ± 

4.9 

5± 

0.3 

6.5 ± 

1.2 

24.9 

± 

1.1 

8.0 

± 

2.6 

6.5 ± 

1.2 

2 
PIN

H 

MW 

170 
30

0 
2 

0.

73 

75 

± 

6.6 

71± 

18.9 

9± 

2.7 

5.9 ± 

1.4 

25.1 

± 

3.2 

8.0 

± 

1.2 

5.9 ± 

1.4 

3 
PIN

H 

MW 

170 
30

0 
3 

0.

73 

80 

± 

1.5 

76 ± 

8.9 

10±0

.8 

4.9 ± 

0.3  

22.5 

± 

1.2 

7.2 

± 

0.3 

4.9 ± 

0.3  

4 
PIN

H 

MW 

170 
30

0 
4 

0.

73 

81 

± 

5.0 

75± 

12.7 

17± 

3.3 

4.6 ± 

1.0 

21.9 

± 

1.3 

6.9 

± 

1.4 

4.6 ± 

1.0 

5 
PIN

H 

MW 

170 
30

0 
5 

0.

73 

83

± 

6.3 

84± 

18.8 

21±5

.1 

4.2 ± 

1.3 

20.2 

± 

5.0  

6.3 

± 

1.4 

4.2 ± 

1.3 

6 
PIN

H 

MW 

150 
30

0 
3 

0.

73 

36

± 

4.8 

20 ± 

1.5 

5±0.

8 

15.3 ± 

1.2 

40.5 

± 

1.0 

10.

8 ± 

0.5 

15.3 ± 

1.2 

7 
PIN

H 

MW 

190 
30

0 
3 

0.

73 

95

± 

1.6 

100 ± 

9.6 

13±2

.0 

1.3 ± 

0.4 

2.6 

± 

0.6 

3.6 

± 

0.4 

1.3 ± 

0.4 

8 
PIN

H 

MW 

210 
30

0 
3 

0.

73 

94

± 

4.4 

87± 

2.26 

3±0.

8 

1.3 ± 

1.1 

2.0 

± 1. 

0.6 

± 

0.9 

1.3 ± 

1.1 

9 
PIN

H 

MW 

190 1 3 
0.

73 

84

± 

3.5 

90 ± 

6.2 

14±0

.7 

3.8 ± 

0.8 

13.5 

± 

1.3 

5.4 

± 

1.0 

3.8 ± 

0.8 

10 
PIN

H 

MW 

210 1 3 
0.

73 

93

± 

3.8 

97 ± 

5.4 

15±0

.7 

1.6 ± 

0.9 

3.6 

± 

1.8 

3.3 

± 

1.9  

1.6 ± 

0.9 

11 
PIN

H 

MW 

190 
12

0 
3 

0.

73 

91 

± 

2.2 

97 ± 

6.2 

11±2

.4 

2.3 ± 

0.5 

5.9 

± 

7.0 

3.4  

± 

1.5 

2.3 ± 

0.5 

12 
PIN

H 

MW 

190 
60

0 
3 

0.

73 

93 

± 

2.2 

92 ± 

2.4 

2±0.

9 

1.7 ± 

0.5 

1.7± 

0.6 

1.4 

±0.

7 

1.7 ± 

0.5 

13 
PIN

H 

MW 

190 
30

0 
3 

1.

20 

94 

± 

2.5 

98 ± 

3.1 

14±0

.9 

2.2 ± 

0.6 

2.1 

± 

1.0 

2.5 

±1.

2 

2.2 ± 

0.6 

14 
PIN

H 

MW 

190 
30

0 
3 

0.

63 

91 

± 

3.1 

89 

±2.3 

5±1.

5 

2.1 ± 

0.7 

2.2 

± 

1.2 

3.2 

± 

1.6 

2.1 ± 

0.7 
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15 
WS

TH
a 

MW 

190 
30

0 
3 

1.

00 

99

± 

0.5 

84 ± 

1.5 

17± 

10.0 

0.6 ± 

0.2 

0.9 

± 

1.1 

1.4 

± 

1.4 

0.6 ± 

0.2 

16 
PO

PH
a 

MW 

190 
60

0 
3 

0.

60 

99 

± 

0.1 

84 ± 

1.4 

10± 

1.5 

0.8 ± 

0.1 

0.1 

± 

0.3 

0.5 

± 

0.0 

0.8 ± 

0.1 

17 
WS

Ta 

MW 

190 
30

0 
3 

3.

01 

50 

±6.

0 

28 

±2.7 

17± 

5.3 

27 ± 

3.2 

1.1 

± 

0.4 

 2.8 

± 

0.5 

27 ± 

3.2 

18 
WS

T 

MW 

190 
30

0 
3 

0.

97 

99

± 

0.7 

86 ± 

2.7 

22 ± 

4.2 

0.7 ± 

0.3 

0.8 

± 

0.2  

1.1 

± 

0.7 

0.7 ± 

0.3 

19 
PO

Pa 

MW 

190 
60

0 
3 

3.

01 

16 

± 

0.8 

33 ± 

0.7 

16± 

0.8 

59.2 ± 

2.3 

8.3± 

0.2 

14.

2 ± 

nd 

59.2 ± 

2.3 

20 
PO

P 

MW 

190 
60

0 
3 

1.

8 

99 

± 

n.d

. 

87 ± 

0.2 

16 ± 

n.d 
0.8 1.2 1.3 0.8 

21 
WS

TH
b 

conv 
160 1 1.7 

1.

0 
 67  

    

22 
WS

TH
b 

conv 
170 1 1.7 

1.

0 
 

73.2 

± 4.0 
 

    

23 
WS

TH
b 

conv 
180 1 1.7 

1.

0 
 66  

    

24 
WS

TH
b 

conv 
190 1 1.7 

1.

0 
 60  

    

25 
WS

TH
b 

MW
c 

180 
39

6d 1.7 
1.

0 
 41  

    

26 
WS

TH
b 

MW
c 

190 
40

2d 
1.7 

1.

0 
 65  

    

27 
WS

TH
b 

MW
c 

200 
47

2d 
1.7 

1.

0 
 73  

    

28 
WS

TH
b 

MW
c 

210 
55

5d 

1.7 1.

0 
 73  

    

29 
WS

TH
b 

MW
c 

200 
30

0d 

1.7 1.

0 
 

70 ± 

2.2 
 

    

30 
WS

TH
b 

Con

vc 
170 

25

80d 

1.7 1.

0 
 74  

    

31 
WS

TH
b 

Con

vc 
180 

21

60d 

1.7 1.

0 
 90  

    

32 
WS

TH
b 

Con

vc 
190 

34

80d 

1.7 1.

0 
 68  

    

a) Sample reacted as obtained from thermochemical pretreatment b) Sample reacted as 

obtained from thermochemical pretreatment and autoclaving at 121ºC c) scaled up 

reactions d) refers to ramping time 
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Highlights 

A process for the production of fermentable glucose and furfural was optimized. 

Biomass pretreatment conditions determined the yield of enzymatic hydrolysis. 

The use of biphasic media was critical for obtaining high furfural yields. 

Separate process optimization provided quantitative yields for glucose and furfural. 

13C NMR spectroscopy has been satisfactorily used in sugar quantification. 

 

 

 


