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ABSTRACT 

Remote sensing and ecology are fields that, with the development of new and better technologies, are 

commonly found together nowadays. This study analyzed the possible applications, implications and 

main sources of interferences of UAV remote sensing by utilizing a commercial NDVI camera (Sentera 

NDVI single sensor) and testing its overall performance in characterizing vegetation in the Danongdafu 

plantation site (Hualien, Taiwan). The results showed an overall performance with a correlation level 

(R2) of 0.77 when comparing values obtained with UAV and data obtained with a reflectometer. This 

permitted to differentiate areas with different ranges of NDVI value within the area surveyed. 

Nonetheless, a deeper study at a leaf-level suggested that final NDVI values obtained did not correspond 

to values derived from a more accurate equipment (UniSpec-SC spectrometer). 

 

Keywords: NDVI, UAV, remote sensing, carbon sequestration, flight plan, Sentera single sensor, 

UniSpec-SC 
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1. INTRODUCTION 

In a context in which conventional studies requires tedious sampling procedures, remote sensing 

techniques have become one of top techniques as it provides simple procedures which no longer requires 

physical effort, timewasting or entering zones of difficult access. The ability to correlate internal features 

of objects with the light reflected by them, has opened a still growing research field with a large number 

of applications in different environments. 

In this line, environmental studies usually imply quantification, management and/or measuring 

alterations of natural resources or natural ecosystems over time. Due to the large scale of these studies, 

classical sampling seems, in most cases, an impossible task to perform. Thus, modeling, or estimations 

using satellite imagery, have been recurrent within these fields. Vast simplifications of multivariate 

systems, such as nature itself, are common too. On the other hand, CO2 sequestration has always been 

one of the main topics in ecology, as vegetation or “primary producers” are, so to speak, the inflexion 

point whereby atmospheric carbon is available (once again) to the rest of organism in Earth whilst, at 

the same time, a greenhouse gas is being reduced. 

With this in mind, scientist have performed tens of thousands of studies related to global warming and 

CO2 cycle. In this matter, understanding how and, in particular, at which level ecosystems participate in 

CO2 sequestration is being one of principal topics among ecologists. Gross primary production (GPP) 

is a key parameter in order to determine ecosystems participation in CO2 cycle. Therefore, several 

models have been proposed over time in order to simulate and, eventually, predict nutrient and energy 

flux of ecosystems such as VPM model, TG model or the MODIS-based photosynthetic capacity model 

(Gao et al., 2014; Liu et al., 2014; Sims et al., 2008; Xiao et al., 2004). Despite the complexity inherent 

in the developing process and application of a prediction model —regarding to all the different variables 

involved (weather, seasons, phenology, nutrient availability…) and the error associated with measuring 

them—, verification of these have been, for years, an arduous issue brought about to heterogeneity of 

ecosystems. 

In this document it has been studied the possible applications of UAV remote sensing for validating 

modeling system at a local level. The main goal is to provide a reliable tool to supervise one of these 

models which finds its context in a background of a long-term project, promoted by the Department of 

Natural Resources and Environmental studies of the National Dong Hwa University (NDHU). The 

project is situated in the Danongdafu plantation site (Hualien County, Taiwan) and intends to analyze 

the effect of consecutive land-use changes along time.  

The Danongdafu plantation, once a sugar cane field and even earlier a natural forest, is now a 

recreational replanted area with about 1,250 hectares with about 30 tree species. A flux tower was placed 

deep inside the plantation which provides CO2 and H2O half-hourly flux, wind speed and direction and 

many other parameters related to the project. 
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Herein, it has been evaluated the possible application of commercial UAVs in differentiating zones with 

diverse levels of carbon sequestration by measuring Normalized Difference Vegetation Index (NDVI). 

NDVI is one of the most representative indexes employed in ecological researches. This index has been 

utilized to quantify photosynthetic activity and, therefore, primary production. Remote sensed data was 

then compared with leaf-level measurements. 

For this purpose, it has been established the following main objectives for this study:  

• Create a reference for future researches which provides basic knowledge related to remote 

sensing using UAVs. 

• Identify possible sources of interference and its implications over UAVs flight plan. 

• Provide practical information in order to facilitate the decision-making process with regard to 

spectral sensors acquisition and UAV flight parameters. 

• Compare NDVI data obtained from UAV remote sensing and spectrometry at the “Leaf-level”  

• Determine accuracy of UAV remote sensing equipment in measuring NDVI and its potentiality 

as a reliable instrument in carbon flux investigations.  

• Analyze possible differences of NDVI values among tree species and under adverse weather 

conditions. 

2. BASICS OF REMOTE SENSING AND NDVI 

In this chapter, some of the most basic parameters utilized in remote sensing are explained.  These 

concepts provide a deeper understanding of the mean features of any kind of remote sensor. Visual 

examples are used for a better understanding of how a generic multispectral sensor works.  A comparison 

between UAV and satellite remote sensing is provided as well as various sources of interferences.  

As for UAV flights, different recommendations and considerations are exposed in order to assure a 

better performance in data acquisition. Added to that, common pre-processing procedures prior to 

spectral analysis are described but also some precautions when applying these techniques. Finally, but 

not less important, a brief explanation of NDVI can be found. The matter have been focused on  main 

applications and limitations of this index, as well as how it can be utilized as a parameter for estimating 

GPP. 

2.1. WHAT IS REMOTE SENSING? 

Remote sensing can be defined, in simples word, as “(…) an attempt to measure something at a distance, 

rather than in situ” (Schowengerdt, 1997). Usually it is referred to the measurement of optical signals 

but no limited to it. In this manuscript, remote sensing is explained focusing on the measurement of 

visible and near infrared (NIR) radiation using an RGB modified camera. In this case it would be more 

accurate to refer to this subject as remote imaging as the data obtained is a “picture” of the objected 

analyzed. 
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For better understanding it is mandatory to consider that radiation follows a continuous nature which, 

in order to be interpreted, is measured by band of different widths (bandwidth) whilst it is transformed 

into discrete values of digital numbers (DN) throughout imaging spectrometer equipment. Moreover, 

remote sensing implies measuring something from distance which means there is no direct contact with 

the studied object.  

As for this study, the data obtained is reflected radiation from the surface of vegetation. In contrast to 

other remote sensing techniques, data obtained are three-dimensional grids or multi-bands images. The 

fact that grids are containing spectral information permits the production of not only qualitative analyses 

but quantitative analyses. Spatial information is included to each data point (or pixel).  For instance, in 

a given multi-spectral image every pixel has 2 spatial dimensions (X and Y) and a third dimension (λ) 

which represents  every band or channel that the camera is able to capture (Grahn & Geladi, 2007; 

Mollazade et al., 2012; Rosenfeld & Kak, 1982; Shaw & Manolakis, 2002). Each of these pixel  contains 

values of intensity (usually of reflected radiation) (see Figure 1). 

 

Depending on the quantity of channels (Spectral resolution) of the camera, researches distinguish 

between multispectral cameras (with a few number of channels) and hyperspectral cameras with 

hundreds of channels. RGB cameras are an example of multispectral cameras of 3 channels which 

captures reflected radiation in red, green and blue wavelengths, respectively. The DN range, or dynamic 

range, might vary depending on the radiometric resolution of the sensor. In simple words, DN’s value 

depends on the different levels of intensity that the sensor can distinguish, commonly measured in bits 

according to the next expression:  

Equation 1 

𝐷𝑁′𝑠 𝑟𝑎𝑛𝑔𝑒 =  2𝑏𝑖𝑡  

Figure 1 Pixeled representation of an image. A 3-band image can be represented as an array of pixels in which every pixel contains the information of 

reflectance value for 3 different monoband or channel. Every monoband pixel is a discretization of radiation which follows a continuous nature. 

Discretization usually is achieved by an average value of band’s boundaries. Remake of: Dorrepaal et al., 2016; PP Systems inc., 2010  
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Remote sensing is based on the fact that all chemical compounds, depending on their optical properties, 

react differently to radiation, transmitting, absorbing or reflecting part of the incoming radiation (Sun, 

2010). Thus, each material/component absorbs selectively the incident radiation (Absorption bands) 

(Elmasry et al., 2012; Smith, 2012) . Consequently, every material has a characteristic pattern along the 

spectrum, usually referred as spectral signature (see Figure 2). Hence, based on a given pattern or 

“spectral signature”, it is possible to distinguish materials or components by measuring the reflected 

radiation of a given object. 

2.2. APPLICATIONS OF REMOTE SENSING 

One of the first remote sensing techniques developed was radar technology which involves longwave 

radiation for detecting vehicles such as aircrafts or ships. This technology was then used for military 

purposes during Second World War (Taylor et al., 1934). Since then, many studies have been carried in 

different fields utilizing several new techniques in diverse wavelengths across the electromagnetic 

spectrum. Some of these studies are related to quantification or detection of the presence of compounds 

in pharmaceutic products and many others are related to food quality assessment. In both cases, NIR 

hyperspectral imaging is one of the most used techniques. Regarding to multispectral imaging (a few 

bands), most of its applications are related to mapping, global change detection/monitoring, 

environmental assessment and many other fields (Schowengerdt, 2007). 

Hundreds of thousands of studies can be found involving remote sensing. Nonetheless, the majority of 

them employed satellites for data acquisition rather than UAVs and even fewer involved obtaining 

vegetation features in a high vegetation density context using drones. Thus, UAV remote sensing 

technique is commonly employed in precision agriculture, focusing in the earliest stages of crops as it 

Figure 2 EXAMPLE OF SPECTRAL SIGNATURE OF DIFFERENT MATERIALS. SOURCE: SMITH, 2012. 
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is the most sensitive moment. As for this manuscript, it has been focused on UAV remote sensing under 

suboptimal weather conditions and high vegetation density. 

2.3. UAVS VS SATELLITE IMAGING 

It might be evident that the quality of the final images obtained from UAVs and satellite would vary as 

they are systems completely different and not under the same circumstances. Nonetheless, the sources 

of interference during the data acquisition process are the same. Moreover, workflow and price are 

significantly different between these two options. In this section, 2 types of remote sensing image 

acquisition are juxtaposed —unmanned aerial vehicles (UAVs) and satellites such as the Moderate 

Resolution Imaging Spectrometer (MODIS)— attending to practical or functional characteristic. 

The first and most essential difference is related to the distance from the surface of the object observed 

to the sensor which captures the reflected/emitted radiation. This affects the resulting images in different 

manners: In first place, the spatial resolution associated with each pixel or ground sampling resolution 

(GSD) in a satellite is much lower the one obtained from an UAV. In the best cases, GSD goes from 

around 0.7 meters/px for a specific panchromatic band (450-900nm) in the Quickbird satellite to 

hundreds or even thousands of meters in the case of MODIS (NASA, 2008; Satellite Imaging Corp, n.d.; 

Schowengerdt, 2007). Moreover, because of satellites are orbiting hundreds of kilometers from Earth’s 

surface, there are kilometers of atmosphere in between the sensor and Earth’s surface. Therefore, 

interferences related to weather are common in satellite imaging (see Figure 3). Further discussion about 

sources of interference in data collection is detailed later. 

Besides, significant spatial alterations can be found near edge of images taken from space. Thus, 

complementary image correction is required. This is not exclusively to satellite imaging. In fact, this 

issue is related to the loss of information during the image process (see section 2.5.1. Overlap). This 

Figure 3  Example of atmosphere effects in radiation. Incoming radiation from sun (red-yellow arrows) are reflected unequally (orange arrows) 

from earth's surface and atmosphere. Remake from: (FIS, n.d.-a)  
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problem is also increased whenever sensor is not facing downwards (NADIR), image reconstruction 

becomes more complex and objects are often shown with deformities.  

Further practical characteristics between satellite and UAVs imaging can be found in the next table 

(Table 1) apart from those considered above. 

Table 1 Main differences between UAV imaging and satellite 

Features UAVs Satellite 

Spatial resolution High resolution (>12cm/px) Variable among bands(0.60m-

1000m>) 

Sensor customization Not fixed Fixed 

Weather interference Yes Yes 

Pricing 200$~3500$ (UAV only) Free or area-based pricing 

 

Spatial resolution of images captured from satellites might vary for a same satellite within the different 

bands that its sensor is able to capture. For instance, MODIS has a spatial resolution of  250m for bands 

1 and 2; 500m for band from 3 to 7 and 1000m for band from 8 to 36 (NASA, n.d.). Another feature is 

that sensors’ spectral sensitivity commonly used under UAVs, can be easily customized in order to 

detect radiation in different portions of the spectrum. This provides some level of flexibility as 

performed by Honrado et al., (2017) with regards to satellite remote sensing. Indeed, if the bands 

available of a given satellite are not suitable for a given study, the most appropriate solution is to use 

images obtained from a different satellite. Hence, it is likely that images from different satellites might 

be captured on different days (or hours), possess different spatial resolution and so on. Thus, research 

studies that utilizes satellites images, are constrained in different aspects and, in many cases, forced to 

modify the original objective of the study. 

Going back to Table 1, it might be noticed that in both cases, weather interferes in data acquisitions. 

Nonetheless, UAVs are directly exposed to weather adversities in contrast with satellite. Weather might 

affect the accuracy of the data obtained in both cases, but not the flight (or the orbit) of the equipment. 

The effect of weather on UAVs flight parameters are detailed later in section 2.5.3. Weather conditions . 

2.4. IMAGE PRE-PROCESSING 

As mentioned above, weather conditions might affect the captured spectral data. Depending on the 

quality of results needed, raw spectral data could be sufficient in initial stages of research. However, the 

presence of internal interferences due to sensor’s anomalies or electronic interferences makes, in most 

cases, mandatory or at least recommended to apply some sort of pre-processing techniques prior to any 

spectroscopy analysis (Amigo et al., 2015; Vidal & Amigo, 2012). 
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The level of mismeasurement of data points is strongly connected to sensor’s internal features, but also 

is highly ligated to a proper data obtaining process (an appropriate flight plan). Further discussion 

regarding this subject can be found later (see point 2.5. Flight plan). 

2.4.1. DE-NOISING (SMOOTHING) 

Some of the mentioned interferences can be noticed by simple checking spectrum when working with 

hyperspectral images. In contrast with multi-spectral images in which wavebands may not be proximate 

along the spectrum, de-noising an image in hyperspectral imaging can be done on the basis that 

contiguous bands are likely to have similar reflectance/transmittance values.  In multi-spectral imaging 

this cannot be applied because there are not enough wavebands to create a full spectrum for a given 

pixel in such a way that de-noising process could be done by simple smoothing of proximate wavebands 

along the spectrum (see Figure 4).  In this case, de-noising must be done for every single waveband 

taking in account spatial proximity within pixels. 

By applying this kind of preprocessing techniques of images it is likely to incur in edge suppression of 

objects within the images. At the same time, internal areas of a given area turn more “homogeneous”. 

Considering that edge delimitation is an especially interesting information when performing data 

classification analysis, it is necessary to apply a re-sharping process of borders after a satisfactory de-

noising process has been applied.  

2.4.2. CONTRAST ENHANCEMENT 

It is a common issue when capturing images that DN values (corresponding to reflectance values) of 

pixels do not use the full range of radiometric resolution. For instance, in an 8-bit image there are 256 

levels of intensity, from 0 to 255, but usually only a small range is used, resulting in a low contrast 

picture. This can be confirmed by analyzing its histograms. 

Figure 4 Real example of de-noising process by applying a smoothing filter. Original image (right) presents erratic black points within a white zone. 

These irregularities can be eliminated (left) homogenizing the area by applying a smooth process based on mean values of nearest neighbours or pixels 

in this case 
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In remote sensing, when performing a classification analysis, high contrast permits to differentiate more 

easily areas consisting of characteristic materials or textures which are represented by small variations 

in DN values in the original dataset. Enhancement of contrast can be obtained by modifying the 

histogram distribution. Nonetheless, depending on how the enhanced histogram is obtained, results may 

vary largely from the original and natural trend (see Figure 5). Therefore, if the objective of application 

of these techniques is obtaining “visual” differences, whatever of these algorithms might be a suitable 

solution. 

2.4.3. DEAD PIXELS AND OUTLIERS 

Manual check of frequency histogram cannot easily detect dead pixels nor outliers. In many cases, this 

is owing to storage of these erratic data as non-data point or zero values, which makes its detection a 

difficult and a timewasting task. Different procedures can be performed for outliers/dead pixel detection, 

but manual examination is always recommended. 

Depending on the nature of the outlier and, as for this study, the relative position within the image is of 

use. Simple extraction of these undesired data points can be an appropriate solution otherwise, linear 

interpolation can be performed for filling theses “gaps”. 

2.4.4. REGION OF INTEREST (ROI) 

Segmenting specific areas of an image or regions of interest, is a frequent practice in order to reduce the 

amount of data analyzed and separate relevant information. This can be also used as a tool for 

eliminating zones with low reliability data due to dead pixels, spatially deformed areas or others. 

This task can be performed by discrimination of pixel values based on threshold values. This procedure 

yields different results according to how contrasted are objects within a given image. Manual selection 

of a ROI can be easily applied by clipping input images with a mask layer, but only when there is a clear 

tendency of outliers, or irregularities, on the boundaries of the image (see Figure 7). 

  

Figure 5 example of different contrast enhancement techniques. Different algorithms of contrast enhancements (graphs 2 to 4) have been applied. 

Results may significantly vary from the original histogram (graph 1). 
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2.5. FLIGHT PLAN 

As in any data acquisition procedure, establishment of initial parameters is as important as posterior 

analysis. As for this study, the flight plan had a significant weight on obtaining high resolution maps. 

The ability to properly differentiate objects within the image can limit the acquirement of useful and 

accurate information.  

Thereby, the main flight parameters to take into consideration are image overlapping percentage, flight 

altitude, flight speed, flight path and area covered. These are the main variables/parameters that might 

affect image quality which the operator might modify to reduce uncertainties.  

Regarding this study, decision-making was based, fundamentally, on the capability of images captured 

to be employed to generate an orthomosaic of the area of study. 

2.5.1. OVERLAP 

Like in cartography overlap percentage is, probably, the most important parameter to determine as it 

may constrain the ability of modern softwares to not only stich images together, but correct deformities 

associated with the transformation of a three-dimensional world to a two-dimensional image. This 

“geometric” correction leads to the construction of an orthomosaic.  

Overlap percentage in two given consecutive images, is the quantity of area, measured as percentage, 

common within both images (see Figure 6). Thus, since in most cases aerial photogrammetry follows a 

grid pattern —because this procedure grants more homogeneity among images captured—, there is 

frontal and horizontal overlap. Common values of overlapping are between 60-85% —for both frontal 

and side overlapping—, being necessary high values when the possibility of matching pair of images by 

using tie points is low. In other words, when terrain surveyed is too homogeneous, it is recommended 

to implement high overlapping values, i.e., forests with high vegetation and no clear delimited objects. 

High overlapping values are always recommended when high resolution and precision are required. 

However, when using an excessively high overlapping percentage (>90%)(Pix4D, n.d.), it is likely to 

Figure 6 Example of two different overlapping percentage. A high overlap value increases the quantity of tie points (Right picture). By the 

other hand low values of overlapping complicates stitching of images and its posterior ortho-correction. 
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spend unnecessary time flying for covering a reduced portion of area. Moreover, this produces a 

disproportionate amount of reference points which dramatically increases the posterior processing time 

within any geospatial software (i.e. Pix4Dmapper).   

2.5.2. FLY SPEED AND ALTITUDE 

It seems obvious that the higher and faster the UAVs flies, the more area can be mapped in less time. 

Nevertheless, quality of images may be compromised: an important consideration when selecting high 

altitudes is that GSD is directly proportional to it, meaning that every pixel represents more area in 

reality when altitude is increased (which is synonymous of bad or low-resolution pictures).  

On the other hand, high speed parameters might endanger NADIR orientation of sensors, yielding 

misoriented pictures that cannot be implemented during the orthomosaic construction process, giving 

rise to missing data or gaps in the final map. This issue is less accentuated when incorporating gimbal 

systems which can automatically correct sensor’s orientation. Moreover, this complication can be 

partially corrected during the calibration of camera process (see Figure 7). 

2.5.3. WEATHER CONDITIONS  

In contrast with satellite remote sensing, UAVs are directly exposed to adverse weather conditions, 

making mapping, in many cases, an impossible task. There are two main considerations when planning 

flights regarding to weather conditions, regardless the fact that rainy days are undoubtedly dismissed: 

(1) flights should be done during midday when sun is in the highest position, avoiding capturing shades 

and reflected radiation as a result of non-orthogonal incident light; (2) wind speed should also be taken 

into account, as it may destabilize the UAV during flight, incurring in miss-oriented pictures. 

Another important consideration is to perform flight during clear skies conditions as, depending on the 

analysis performed, incoming radiation from sun might be altered by clouds. This is mainly because of 

Figure 7 Real case of bad orientation problem. False color RED-NIR map. Bad orientation of images captured in a specific area produces 

"gaps" in the final orthomap (left), this issue can be corrected, depending on the level of miss-orientation, by a recalibration of the cameras 

(right). Notice that there still are zones of missing data in the boundaries which should be avoided by selecting a ROI. 
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instead of direct sunlight, light comes as “diffuse” irradiation (Damm et al., 2015). Thus, it is 

recommended to use, simultaneously during the flight, an irradiance sensor in order to measure the 

incident radiation and then correct possible discrepancy with, so to speak, the “real” value of irradiation 

that is (in theory) arriving to the leaves’ surface. 

2.6. WHAT IS NDVI? 

The normalized difference vegetation index (NDVI) has been one of fundamental pillars on 

characterizing vegetation activity for extensive areas for decades. NDVI has been widely used as a 

parameter to explain, ecological properties of interest such as Gross primary production (GPP), carbon 

fluxes, biomass… 

NDVI, as many other more modern vegetation indices (i.e. MNDVI, TVI or DVI), uses red and near-

infrared reflected radiation bands (Lillesand et al., 2014; Mutanga & Skidmore, 2004; Schowengerdt, 

1983), yielding a value between [-1, +1] according to Equation 2: 

Equation 2 

𝑁𝐷𝑉𝐼 =
𝑁𝐼𝑅−𝑅𝐸𝐷

𝑁𝐼𝑅+𝑅𝐸𝐷
  

The bands used for RED and NIR are usually defined by the sensor employed. Thus, bands with different 

wavelengths can be found for calculating NDVI depending on the source. This index is commonly 

modified by applying correction factors related to atmospheric influence, not homogeneous sunlight 

composition or internal interferences owing to the sensor itself. 

NDVI is based on the fact that vegetation tissues of a given ecosystem absorb radiation in blue and red 

wavelengths due to high concentration of photosynthetic pigments (Chlorophyll a, b, Carotenoids…). 

Simultaneously radiation in the green and NIR portions of the electromagnetic spectrum is reflected. 

This is a protective system that avoid overheating of tissues (National Learning Network for Remote 

Sensing, 1997). As a result, healthy leaves appear green in the visible part of spectrum gradually turning 

red/brown in fall season (deciduous species) as its pigments are no longer absorbing radiation in blue 

and, especially, red band. When pigment’s activity decreases to values close to zero, leaves present an 

entirely different spectral signature. The now “dead” leaf presents a distinctive spectral signature which 

is the results of the interactions of radiation with internal chemical compounds (i.e. cellulose). These 

intrinsic spectral properties of leaves allow to establish a correlation between a certain level of greenness 

and photosynthetic activity (FIS-b, n.d.). 

In ecology, the common application of NDVI is due to its correlation with the absorbed fraction of 

photosynthetically active radiation (FPAR) which is at the same time influenced by the Leaf Area Index 

(LAI). For instance, in order to apply some models based on Light Use Efficiency (LUE) for estimating 

GPP (g C*m-2d-1) —such as proposed by Monteith (Hilker et al., 2008; Monteith, 1977; Rosgen et al., 

2007)— GPP is expressed as a function of the incoming photosynthetically active radiation (PAR), FPAR 
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and a conversion efficiency term ε (g C MJ-1) that represents the absorbed energy which is then fixed as 

carbon-base compounds (Chapin et al., 2011, Chapter 5; Lees et al., 2018) as shown in Equation 3:  

Equation 3 

𝐺𝑃𝑃 = 𝑃𝐴𝑅 ∗ 𝑓𝑃𝐴𝑅 ∗ 𝜀 

With this in mind (and the fact that as a result of the convergence of different factors involved in the 

absorbed photosynthetically active radiation and the ability of plants to utilize energy to generate 

carbohydrates), LUE (or 𝜀 in this case) takes similar and predictable values for all ecosystems. This 

statement can be accepted under  low-moderate irradiation and for  C3 photosynthesis type (Chapin et 

al., 2011, Chapter 5). Hence, NDVI is almost equal to FPAR (Chapin et al., 2011, Chapter 5; Running et 

al., 2004) and, therefore, GPP can be simplified into Equation 4: 

Equation 4 

  𝐺𝑃𝑃 ≅ 𝑃𝐴𝑅 ∗ 𝑁𝐷𝑉𝐼 ∗ 𝐿𝑈𝐸  

However, numerous studies have proven that NDVI asymptotically approach to an upper saturation level 

when biomass density arrives to a certain value. Thus, NDVI does not follow a linear correlation with 

FPAR when LAI exceeds a specific value which may vary within species (Gao et al., 2013; Mutanga & 

Skidmore, 2004; Sellers, 1985; Thenkabail et al., 2000; Todd et al., 1998; Tucker, 1977). This issue 

occurs because of large canopy structures are not represented, or not taken into consideration, when 

measuring NDVI value. It must be noticed that when mapping a given area, NDVI is calculated 

considering only the leaves exposed to the satellite or UAV’s sensor  

3. MATERIALS AND METHODS 

In this study, two main analyses were established to (a) determine the overall performance of, an NDVI 

camera (Sentera single sensor), on determining NDVI values when surveying a portion of the 

Danongdafu plantation; and (b) measure possible variations on NDVI values under two different 

weather conditions. All data were compared with leaf measurements obtained by a spectrometer 

(UniSpec-SC). 

In this chapter, the equipment employed during the analysis is described as well as data acquisition 

process and the posterior data analysis. Deeper details when calculating NDVI are provided in section 

3.5. Calculating NDVI values from false-color pictures. 

3.1. SITE DESCRIPTION 

In this study, a portion of Danongdafu plantation, in the vicinities of Guangfu Township (Hualien 

County, Taiwan) has been surveyed. This area is, currently, a zone of interest for the long-term project 

which requires the determination of the level of participation of tree species on carbon sequestration for 
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a given zone. Tests were performed during fall season from October to December, focusing on north-

east zone with respect to a flux tower placed within the plantation (see Map nº 1, Appendix section). 

In contrast to a natural ecosystem, Danongdafu has been replanted, hence an organized distribution of 

tree species can be found. Thus, all data can be separated among tree species as they are distinctly 

spatially separated. A shape file which contains spatial distribution of tree species has been employed 

to this purpose (see Map nº2, Appendix section).  

Additionally, some of the studies described in this document have been executed within National Dong 

Hwa University campus, specifically the Light source dependency (see 3.8.2 General performance and 

light-dependency) as well as some of the previous test performed in order to determine the most suitable 

flight parameters. 

3.2. MAPPING EQUIPMENT 

A DJI aircraft, model Phantom 4 pro v2.0 was implemented. It was equipped, by default, with a 4K 

RGB camera. An additional compatible commercial NDVI camera, model High-Precision NDVI 

Sentera single sensor, was assembled to the drone (see Figure 8). 

A summary of the main specifications of Aircraft and implemented sensors are shown below (Table 2): 

  

Figure 8 UAV montage. DJI Phantom 4 PRO v2.0 with a Sentera High resolution NDVI single sensor assembled (in green. 

Right picture) and the 4K RGB camera (in grey. Left picture). 
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Table 2 Specifications DJI drone, RGB camera and Sentera sensor. Source: DJI, 2018; Sentera LLC., 2017. 

 Feature Value 

A
ir

cr
a

ft
 

Model Phantom 4 pro v2.0 

Weight (includes battery and propellers) 1375 

Max ascent speed 6 m/s 

Max descent speed 4 m/s 

Max speed (horizontal plane) 45 mph (20 m/s) 

Satellite positioning system GPS/GLONASS 

Flight time (min/battery) ≈ 30 min 

R
G

B
 

C
a

m
er

a
 

Sensor 1” CMOS (Effective pixels: 20M) 

Field of View (FOV)/ Focal length 84º / 8.8 mm 

Aperture f/2.8 — f/11 

ISO range 100-12800 

S
en

te
ra

 N
D

V
I 

S
in

g
le

 s
en

so
r 

Sensor Resolution 1.2 MP CMOS 

Pixel count 1248 horizontal/950 vertical 

Field of View (FOV)  60º horizontal / 47º vertical 

Focal length 4.14 mm 

GSD (at 120 m altitude) ~11.00 cm 

Red Band 625 nm (100 nm width) 

NIR Band  840 nm (20 nm width) 

Radiometric resolution 8 bits (dynamic range 256 counts) 

3.3. IMAGE PROCESSING AND FLIGHT PLAN 

Images captured were processed with PIX4Dmapper (PIX4D S.A.) to generate a geometrically corrected 

orthomosaic. NDVI calculation was executed by employing RAW images. NDVI map was then matched 

with a shape layer which contains the spatial location of tree species within the Danongdafu plantation.  

Besides that, for obtaining an NDVI map for visual evaluation, a high pass filter (smoothing) was applied 

to the NDVI map for enhancing visual differences within the NDVI map. Nonetheless, for all the 

analyses which involves extracting data from the NDVI map, unaltered NDVI map was used. 

Prior to the image acquisition process, several flight tests were performed in order to determine which 

flight parameters were more suitable for obtaining acceptable orthomosaics without gaps or deformed 

objects whilst as mush area as possible is captured by the NDVI sensor. Thus, 70% of frontal and 

horizontal image overlap were set, flying at 400 ft (120 m), at a speed of 18 mph (8.0 m/s). Four batteries 

were used and 281.61 acres (115.92 ha) mapped. The Sentera FieldAgent™ application for iOS was 

used. Further explanation is detailed later regarding to the flight parameters selection criteria (see 4.1. 

Local assessment and species’ NDVI values2.5.3. Weather conditions ). 
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3.4. LEAF-LEVEL MEASUREMENTS  

3.4.1. SPECTROMETER 

In order to validate the NDVI measurements taken from the NDVI camera, several leaf-level 

measurements were performed with a leaf reflectometer, model UniSpec-Single Channel (UniSpec-SC) 

which permits to measure a full spectrum going from 310 nm to 1100 nm divided into 256 wavebands 

from a single point in a leaf (see Figure 9). 

Specifications of the reflectomer are shown below (see Table 3): 

Table 3 UniSpec-SC specifications. Source: PP Systems inc., 2009. 

Feature Value 

Wavelength range 310-1100 nm 

Raleigh Resolution* < 10 nm 

Bin Size (band width) 3.3 nm 

Absolute Accuracy < 0.3 nm 

Radiometric resolution 16 bits (65,000 counts) 

Scan Time < 1 second (plus integration time) 

Integration time** 4-3,200 ms 

Approx. Meassuring Diamater  2.1 mm (standard Fiberoptic) 

Light Source 7.0 W halogen bulb 

*Raleigh Resolution: the capability of the spectrometer to resolve two lines in a spectrum. 

**Integration time: the duration that photodiode array is exposed to light during measurement 

(exposure time). 

As oppossed to a remote sensing technique, the UniSpec-SC spectrometer is an active system which 

provides its own light source for making the measurement. Therefore, measures are independent of 

environmental light conditions resulting in more accurate measurements than those provided from 

passive systems such as a mulispectral camera. 

For the purpose of comparing the same index from both equipments (Sentera sensor and UniSpec),  

NDVI values obtained from UniSpec reflectometer must be calculated using the same wavebands as the 

Sentera sensor (see 3.5 Calculating NDVI values). 

Figure 9 UniSpec-SC leaf reflectometer. Source: PP Systems inc., 2009.  
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3.4.2.  SAMPLING PROCEDURE FOR REFLECTOMETER ASSESSMENT 

For the simple reason that data obtained from Sentera sensor are georeferenced images, it is mandatory 

to consider spatial information on the leaf-level measurements. This was achieved by sampling groups 

of leaves from specific areas of known tree species (see Figure 10).  

For each of the species considered, two zones were measured sampled and then assessed. As an example 

for B.javanica zone 13.A and zone 13.B were sample, where “13” is the identification number of the 

species and “A” and “B” the areas sampled. Thus, 30 data points were obtained for each zone sampled. 

The species present in the area surveyed were, attending to the area that represent, as follows (Table 4):  

Table 4 Species surveyed 

Species 

ID 

Species Area (ha) Species 

ID 

Species Area (ha) 

13 Bischofia javanica 15.8 12 Cinnamomum cassia 6.9 

3 Phoebe zhennan 12.2 8 Pterocarpus indicus 5.8 

7 Koelreuteria elegans 11.9 15 Fraxinus griffithii 3.5 

5 Zelkova serrata 10.6 4 Alnus formosana 2.1 

2 Liquidambar formosana 10.3 6 Cinnamomum camphora 1.6 

9 Michelia compressa 9.4 1 Acacia confusa 1.2 

10 Elaeocarpus decipiens 6.9 11 Melia azedarach 0.1 

 

Due to technical issues, only B javanica, K.elegans, P. zhennan, Z. serrata and M. compressa were 

sampled in this study. Examples of leaves sampled can be found in 4.RESULTS section. 

Sampling measurements obtained by UniSpec spectrometer followed the next conditions: 

Figure 10 Scheme of sampling process. Two zones (13A and 13B) are sampled for species “13”. 10 leaves are sampled for each zone and 3 

measurements performed for each leaf  
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a) Only leaves over 3 meters above ground can be employed as these are more likely to be visible 

from above and then captured by the UAV’s sensor. 

b) Leaves facing south are preferential as they are more exposed to sun 

c) Leaves are to be taken from at least 2 trees, covering an area of at least 3 m2. 

d) Measurements should be taken avoiding leaves’ veins as these are not likely to present 

photosynthetic tissues. 

e) Sampled data points should not be placed in the same location within the leaf, otherwise it would 

lead to data repetition or overrepresentation of data points. 

f) UniSpec parameters: 100% halogen source intensity and 20 ms for integration time. 

3.5. CALCULATING NDVI VALUES FROM FALSE-COLOR PICTURES 

In contrast to what the reader may anticipate, NDVI formula (Equation 2) cannot be directly applied to 

calculate its value. As it was mentioned in section 2.6., NDVI formula may be slightly modified in order 

to correct atmospheric interferences or other sources of interference.  

The Sentera NDVI High-Resolution Single Sensor is a modified RGB camera. It has been modified by 

changing its lens’s filters in such a way that only a portion of the incident radiation can pass through to 

the sensor (see Figure 11). 

 

In this case, only radiation from red band and NIR band can pass through the filter and then be measured 

by its 3 channels (commonly referred as Red, Blue and Green channels), using the first channel 

Figure 12 Sensitivity along the spectrum of single channels in Sentera NDVI sensor. Source: Sentera, 2017. 

Figure 11 Example of Sentera filter (Nelson, 2017) 
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(commonly for red band) for red portion of the radiation and the third channel (commonly for blue band) 

for the NIR portion of the radiation. Nevertheless, radiation is not scatter properly between its channels 

and a portion of NIR radiation is captured by channel 1 (or red band channel) and vice versa (see Figure 

12). 

In order to correct this issue the supplier proposes to use the next equations to isolate both red band and 

NIR band (Sentera LLC, 2017): 

Equation 5 

𝑅𝐸𝐷 = 1.0 ∗ 𝐷𝑁𝑐ℎ1 − 1.012 ∗ 𝐷𝑁𝑐ℎ3 

Equation 6 

𝑁𝐼𝑅 = 6.403 ∗ 𝐷𝑁𝑐ℎ3 − 0.412 ∗ 𝐷𝑁𝑐ℎ1 

Where DNch1 is the digital number of channel 1 and DNch3 is the digital number of channel 3. Moreover, 

owing to an unequal proportion of solar irradiance in RED and NIR bands the supplier recommends 

correcting this issue by multiplying NIR measured value by 1.5, resulting in Equation 7 when isolating 

the NIR band: 

Equation 7 

𝑁𝐼𝑅 = 9.605 ∗ 𝐷𝑁𝑐ℎ3 − 0.618 ∗ 𝐷𝑁𝑐ℎ1 

Applying equations 5 and 7 to the NDVI standard equation results in Equation 8: 

Equation 8 

𝑁𝐷𝑉𝐼 =
1.236 ∗ 𝐷𝑁𝑐ℎ3 − 0.188 ∗ 𝐷𝑁𝑐ℎ1

1.000 ∗ 𝐷𝑁𝑐ℎ3 − 0.044 ∗ 𝐷𝑁𝑐ℎ1
  

Equation 8 is the one to apply to the orthomosaic (false-color orthomosaic) obtained from PIX4Dmapper.  

By contrast, as it has been mentioned before (see 3.4.1 Spectrometer), data obtained with the 

spectrometer UniSpec-SC can be directly used, without any previous correction factor, as there are not 

climatic interferences or unequal light sources. The only aspect to consider is to use the same band width 

in both RED and NIR bands. As for the wavebands implemented by the Sentera NDVI Single sensor, it 

registers reflected radiation between 575-675 nm and 830-850 nm for the RED and NIR band, 

respectively (Nelson, 2017). 

3.6. SAMPLING PROCEDURE FROM NDVI MAP 
As the ultimate goal of this study is to compare the results obtained from a UAV-camera equipment 

with reflectometer (reference), it is necessary to establish a procedure which allows this comparison.  

For this purpose, once the NDVI map has been obtained, random points were sampled from the map. 

These points were obtained from a delimited circular area of radius 1.5 meters. At the same time, this 
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area was situated in the approximate area from leaves were sampled for reflectometer’s assessment. 

Thus, since the leaves sampled covered an area of about 3 m2 the likelihood of measuring points from a 

different area is reduced by considering a smaller area. 

 

3.7. LIGHT DEPENDENCY PROCEDURE 
It is crucial to eliminate any possible interference in data acquisition process, especially those related to 

sunlight direction (due to sun relative position) and NDVI values incorrectly classified for a given tree 

species. This last issue is, in all likelihood, due to the presence of undesired ground vegetation which is 

then interpreted as a tree species. This can be avoided by measuring a specific leaf or leaves. 

 As the main hypothesis to test is the influence of clouds on NDVI values obtained by Sentera sensor, 

data acquisition conditions must be repeated under two different weather conditions: “cloudy” and 

“sunny”. Being “sunny”, clear skies where leaves receive direct sunlight, and “cloudy” corresponds to 

skies completely cover by clouds. 

To correct the zenith angle associated to the incoming sunlight,  a hand-made platform with flat surface 

was employed for positioning the sample normal to the solar elevation angle (see Figure 13).  

The angle of inclination was estimated by measuring the size of the shade produced by objects and its 

respective height as shown in the next expression: 

Equation 9  

𝜃 = 𝑡𝑎𝑛−1 (
ℎ

𝑙
) 

Where θ is the inclination angle in which the platform should be displayed, h is the height a point from 

the object considered and l is the distance between the shade projected by this point and its orthogonal 

projection to the ground surface. 

The leaf sampled should not be extracted from the tree as it might deteriorate -as so the NDVI values 

would- between the two weather conditions. Moreover, measurements should be made during midday, 

as it is the moment of maximum irradiation, and sample must be south oriented.  

Figure 13 Hand-made regulable in angle position platform. 
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In order to increase the number of pixels detected within the leaf, the Sentera sensor was positioned 

approximately to 84 cm in front of the platform. This was achieved by a person grabbing the drone and 

positioning him or herself to a distance equivalent to two steps from the platform and fully extended 

arms. Furthermore, sampled leaf surface was delimited by using red tape so that the same area is 

measured under both weather conditions. 

3.8. DATA ANALYSIS 

As it has been mentioned earlier, the main objective of this manuscript is to determine the possible 

application of a DJI drone equipped with a Sentera NDVI camera on remote sensing research and to 

provide a basic knowledge of the main considerations and implications of sensor’s features, as well as 

flight parameters for future remote sensing studies. Several tests have been carried out in Danongdafu 

plantation site and datasets were compared with leaf-level measurements obtained with the UniSpec leaf 

reflectometer. All the analyses treated in here compare NDVI values obtained from two different 

methods: UAV-camera and leaf-level spectrometry. 

3.8.1. UAV REMOTE SENSING ANALYSIS ON DANONGDAFU PLANTATION 

This analysis first identified areas with a characteristic NDVI value by visual examination of the NDVI 

smoothed map. Secondly, for given areas which are easily recognizable by visual evaluation of NDVI 

map, average values of NDVI obtained by both leaf-level and remote sensed measurements were 

compared. And in third place, evaluate possible correlations NDVI-species analyzing the data obtained 

from both methods. The general procedure followed can be seen in Appendix C. 

For the second tests, the remote sensed data considered is the average NDVI values of  the areas sampled 

(i.e. zone 13A, zone 13B) as described in section 3.4.2 Sampling procedure for reflectometer assessment. 

Linear regression was then performed between average NDVI values obtained by Sentera sensor and 

UniSpec reflectometer for these given areas.  

Datasets obtained from the spectrometer is assumed to be more precise than any passive remote sensing 

technique, hence used as a reference as it is not influenced by external factors such as weather but, also 

because of being a self-calibrated instrument which uses its own light source.  

For the third test, Sentera data was compared with UniSpec NDVI values across the species sampled. 

T-test was performed in order to detect any possible match Camera-Reflectometer of the mean NDVI 

for the “zones” sampled. Additionally, an ANOVA test and a Tukey test were performed for the purpose 

of detecting significant difference between species by only using Sentera data. For these two last 

analyses mean NDVI values for each “polygon” were used as data. It was performed considering only 

the five species sampled. 

3.8.2. GENERAL PERFORMANCE AND LIGHT-DEPENDENCY ANALYSIS  

As explained before, the values of NDVI obtained by the Sentera sensor are likely to be influenced by 

weather conditions and by a non-homogeneous incident light composition. Therefore, it is reasonable to 
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think that NDVI values obtained are light-dependent. Bearing this in mind, a light dependency test was 

performed in order to analyze the possible influence of different light conditions on NDVI values 

obtained by the Sentera sensor. 

For this test, NDVI data was obtained under two different weather conditions. In contrast with previous 

tests, a single leaf was analyzed for each scenario. Thus, in order to obtain a more spatially-precise data, 

sensor was manually positioned in front of a banana tree leaf, increasing the total amount of pixels 

detected within the leaf (see section 3.7. Light dependency procedure). The leaf has been positioned 

orthogonally to the incoming radiation to avoid possible interferences owing to a not perpendicular 

irradiance associated to sun position during fall season.  Box-plots and T-tests comparing (1) data obtain 

for both irradiance conditions (“sunny” and “cloudy”) was performed (sunny UAV vs. cloudy UAV); and 

(2) the differences between Sentera and UniSpec NDVI values under the same irradiance conditions 

(sunny UAV vs. sunny reflectometer). As in the previous test, UniSpec NDVI datasets are considered as 

reference values. 

4. RESULTS 

4.1. LOCAL ASSESSMENT AND SPECIES’ NDVI VALUES 
Several flight plans were performed using the supplier’s drone mapping application for iOS (Sentera 

FieldAgent™). Different combinations of flight parameters were tested, and images processed with 

Pix4Dmapper to generate a false-color orthomosaic. Maps obtained were compared. Hence, the final 

flight parameters were selected attending to the quality of the orthomosaics obtained for each of the 

flight parameters tested. “Quality” was determined by the absence of missing data, gaps or other 

irregularities observed within the orthomosaics. 

With this in mind, a minimum overlapping percentage of 70% was established which allows obtaining 

orthomosaics as mentioned. Regarding the flight speed, it was set to 18 mph (8.0 m/s) as this was the 

maximum speed whereby NADIR orientation was not compromised. Altitude was fixed to 400 ft (~120 

m) as this was the altitude flight limit established by local authorities.  

All these parameters were set to maximize the total amount of area covered in the shortest time possible. 

Avoiding areas of missing data was a requirement. This was achieved by assuring an adequate 

percentage of overlapping and NADIR orientation of the Sentara sensor during the flight. As for this 

study, a total of 286.61 acres (~115.92 ha) were surveyed on 30th November at midday. To achieve the 

task, four batteries were used in about 1 hour, resulting in 1,010 pictures captured 
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An orthomosaic was obtained by employing PIX4Dmaller software. The false-color map was created 

using 845 of the 1,010 pictures captured. An average GSD of 10.04 was achieved. Afterwards, NDVI 

was calculated by applying Equation 8 (see section 3.5.Calculating NDVI values from false-color 

pictures) using Qgis software. Results are shown in Figure 14. 

NDVI was categorized by considering 7 threshold ranges. This allows to visually differentiate areas 

with a characteristic NDVI value. The NDVI categories values go from 0.0 to 1 (Map nº3 in Appendix 

section). Thus, 4 categories explain most of the area considered. 

Secondly, random points were extracted from the RAW NDVI map for each of the areas corresponding 

to the sampled zones (13A, 13B…) as described in section 3.4.2.Sampling procedure for reflectometer 

assessment; every zone sampled correspond to an area delimited by a circle of radius 1.5 meters in the 

approximate location of the leaf-level measurements (Figure 15).  

Some examples of the leaf sampled and then used for leaf-level NDVI measurements are shown below 

(Figure 16). 

Figure 14 NDVI map obtained from the Danongdafu forest.  Map nº3, Appendix section  

Figure 15 Area sampled (brown). For the approximate location of leaf-level measurements were taken (left picture), then random points within 

this area were sampled (green dots) from the NDVI map (right picture). 

4) 
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Leaves in different phenological state for same species were found. In some cases, symptoms of fungus 

and other pathogens were detected (i.e. white dots on Z.serrata leaves). M. compressa seemed to be the 

“healthiest” species sample with no symptoms of disease nor deficiencies. 

Linear regression was performed between average NDVI values of the “zones” sampled for both of the 

methods employed (UAV and reflectometer). The graph below (see Figure 17) presents a prominent 

level of correlation, resulting in an R square value (R2) of 0.77.  

 

Points which present the highest differences UAV-reflectometer are areas associated with Z. serrata and 

P. zhennan. Data employed for linear regression can be found in Table 5. 
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Figure 17 Linear regression of average NDVI values for the areas sampled. 
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Figure 16  Examples of leaves sampled with UniSpec-SC: B. javanica (1), K. elegans (2), M. compressa (3), P. zhennan (4),), and Z. 

serrata (5) 
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Table 5 Mean NDVI values obtained for each sampled area. 

 

 

 

 

 

 

 

 

 

In order to obtained a deeper knowledge of the NDVI values measured, a box-plot (see Figure 18) was 

performed to compare samples measured from the NDVI camera and the reflectometer for every species 

sampled.  

For all the species sampled, NDVI value obtained from Sentera sensor presents, higher values than those 

obtained by the UniSpec reflectometer. Moreover, the differences between the average NDVI values 

obtained by the sensor and the reflectometer, for the species P. zhennan and Z. serrata in particular, 

present a higher difference than the other species sampled, resulting in a difference of 0.16 and 0.29 

respectively. Besides, in all species sampled, mean value is close to median value. 

Specie/Zone sampled Sentera mean NDVI UniSpec mean NDVI 

B. javanica/A 0.852 0.794 

B. javanica/ B 0.876 0.786 

P. zhennan/A 0.829 0.623 

P. zhennan/B 0.902 0.775 

Z. serrata/A 0.844 0.657 

Z. serrata/B 0.797 0.432 

K. elegans/A 0.899 0.853 

K. elegans/B 0.861 0.812 

M. compressa/A 0.920 0.844 

M. compressa/B 0.928 0.873 

Figure 18 Box plot of all sampled species. For each species, there is a pair of sampled populations: measurements obtained from NDVI map 

(orange) and measurements obtained from spectrometer (blue). Each box plot depicts the mean value (an “X”), the median value (a horizontal 

line inside the box) and the 25%-75% quartiles (box). 
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With the purpose of comparing populations of samples, multiple Student tests (or T-test) were performed. 

Analyses were done comparing groups of sampled population (Sentera-UniSpec), assuming unequal 

variance, a hypothetical difference between means of zero and a level significance value (α) of 0.05 (see 

Table 6). For these tests, accepting null hypothesis implies that there are not significant differences 

between mean values of population which could be associated purely to random values rather to a 

systematic distribution of the values measured. In other words, accepting the null hypothesis represents 

that it is not likely that significant differences can be found between NDVI camera and spectrometer 

measurements. 

. 
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For all four T-test performed, null hypothesis was rejected for both tails of the t-test. Degree of freedom (df) varies within tests (or species), going from 83 for Z. 

serrata to 113 for B. javanica 

Table 6 T-test for species sampled 

  

 
B. javanica Z. serrata K. elegans M. compressa P. zhennan 

Spectrometer Camera Spectrometer Camera Spectrometer Camera Spectrometer Camera Spectrometer Camera 

Mean 0.79 0.86 0.54 0.83 0.83 0.87 0.86 0.92 0.70 0.87 

Variance 0.001 0.002 0.015 0.003 0.002 0.002 0.000 0.002 0.010 0.006 

Observations 60 60 60 60 60 60 60 60 60 60 

Hypo.mean 

dif. 

0.00 0.00 0.00 0.00 0.00 

df 113.00 83.00 118.00 86.00 112.00 

t Stat -10.60 -16.38 -5.23 -9.67 -10.16 

P(T<=t) one-

tail 

6.01E-19 4.93E-28 3.68E-07 1.09E-15 7.07E-18 

t Critical one-

tail 

1.66 1.66 1.66 1.66 1.66 

P(T<=t) two-

tail 

1.20E-18 9.85E-28 7.35E-07 2.18E-15 1.41E-17 

t Critical two-

tail 

1.98 1.99 1.98 1.99 1.98 
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As described in section 3.8.1., an ANOVA analysis was performed in order to detect possible differences 

between mean NDVI of all polygons of same species attending to its variance. These mean NDVI values 

represent the mean NDVI value for each of the “polygon” within the shape file with the spatial 

distribution of the species (see 9. MAPS). Data employed can be checked in Appendix section. In this 

manner a single factor ANOVA analysis was implemented, considering a level of significance (α) of 

0.05. Results are shown in Table 7. 

Table 7 ANOVA test. Differences across species 

Source of Variation SS df MS F P-value F crit 

Between Groups 0.121 5.000 0.024 23.132 3.00974E-18 2.260 

Within Groups 0.206 197.000 0.001 
   

Total 0.326 202.000 
    

 

Where SS is sum of the squares, df the degree of freedom, MS the mean of the squares and F referring 

to “F” ratio from the F-test. Results indicates that null hypothesis has been rejected (F>F crit). This 

means that there are significant differences across the groups (or species for this case).  

Nonetheless, ANOVA cannot determine which pair of species can be “significantly distinguished”. In 

this line, Tukey test was performed, analyzing every possible combination of pairs of species which can 

be significantly differentiated. A significance level (α) of 0.05 was set. Results obtained are presented 

in Table 8. 

Table 8 Tukey's test for all species sampled 

Pair of species compared mean diff lwr upr  p adj 

K.elegans-B.javanica -0.022 -0.042 -0.002 0.023 

L.formosana-B.javanica -0.064 -0.086 -0.042 0.000 

M.compressa-B.javanica 0.027 -0.004 0.058 0.123 

P.zhennan-B.javanica -0.022 -0.043 -0.002 0.024 

Z.serrata-B.javanica -0.045 -0.065 -0.025 0.000 

L.formosana-K.elegans -0.042 -0.065 -0.019 0.000 

M.compressa-K.elegans 0.049 0.017 0.081 0.000 

P.zhennan-K.elegans -0.001 -0.022 0.021 1.000 

Z.serrata-K.elegans -0.023 -0.044 -0.002 0.019 

M.compressa-L.formosana 0.091 0.058 0.124 0.000 

P.zhennan-L.formosana 0.041 0.018 0.065 0.000 

Z.serrata-L.formosana 0.019 -0.004 0.041 0.166 

P.zhennan-M.compressa -0.050 -0.082 -0.018 0.000 

Z.serrata-M.compressa -0.072 -0.104 -0.041 0.000 

Z.serrata-P.zhennan -0.023 -0.044 -0.001 0.032 
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Where “mean diff” is the difference between mean values from each species, “lwr” is the “lower end 

point of the interval”, “upr” the “upper end point” and “p adj” the p-values after adjustment for multiple 

comparison.  

Results shown in table 8 indicates that, only for the three cases marked in red (M.compressa-B.javanica; 

P.zhennan-K.elegans and  Z.serrata-L.formosana) , null hypothesis has been accepted. This implies that 

there are not significant differences between these pair of species and, therefore, cannot be differentiated 

by using NDVI values obtained from the Sentera sensor. For the rest of combination null hypothesis has 

been rejected which means that there are significant differences between these pairs of species. 

4.2. GENERAL PERFORMANCE AND LIGHT DEPENDENCY TEST 
For this analysis, a live banana tree leaf was sampled, as banana leaves are big enough to implement the 

procedure described in section 3.7.Light dependency procedure. Measurements were done one time for 

each of the weather conditions considered: “sunny” and “cloudy”. Measurements were taken at midday, 

orienting the leaf to south and placed over a flat surface in a zenith angle of 47° assuring the 

orthogonality between the leaf surface and the incoming sunlight for the case of “sunny”.  Measurements 

for calculating NDVI, were taken from a delimited area of the leaf as shown below (see Figure 19). 

These parameters were then repeated under the “cloudy” case. 

Spectrometer data points were obtained randomly within the delimited area for both days. A time frame 

of 4 days between the two sampling moments passed from 20th to 24th December. 

Figure 19 False color pictures (Red-NIR) employed for the overall performance and light dependency test. Picture capture the 20th December 

(left) during “sunny” day and the 24th December (right) under complete “cloudy” day.  
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Similar to the procedure followed in the previous analysis, random data NDVI data points were extracted 

from the RAW NDVI pictures (see Figure 20).  

 In order to analyze possible differences between weather conditions and NDVI values obtained from 

both of the instruments implemented, a box-plot was performed (Figure 21). 

In contrast with the previous analysis, the mean NDVI value from the spectrometer (blue) is higher than 

that from the Sentera sensor (orange). The variation of NDVI taken by Sentera sensor was higher under 

cloudy condition than under sunny condition. However, the differences between mean values of 

UniSpec measurements and Sentera have not changed from sunny to cloudy conditions (0.79 for 20th 

and 0.77 for 24th December). 

Figure 20 Data extraction from NDVI images. Day 20th December (left) and 24th December (right). Random data points (red dots) were extracted 

from the NDVI image within the delimited area (transparent blue and red polygons). 

Figure 21 Box plot of NDVI values obtained from a banana tree leaf. Measurements were taken under sunny (20th December) and cloudy 

(24th December) conditions. Each box plot depicts the mean value (an “X”), the median value (a horizontal line inside the box) and the 

25%-75% quartiles (box). 
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Likewise, the previous analysis, two T-tests were performed, using the same parameters for the analysis: 

unequal variance, hypothetical mean difference equal to zero and a significance value (α) of 0.05. T-

tests were paired in two groups as two hypotheses were tested (see Table 9). NDVI mean values vary 

between 0.70 to 0.80 while degree of freedom (df) do from 40 to 108. 

Table 9 T-test performed for banana leaf under two weather conditions. 

 

As shown, null hypothesis has been accepted for “light dependency” analysis —this analysis compares 

NDVI values obtained by Sentera sensor between both days—. By contrast, “overall performance” 

analysis has rejected null hypothesis for both days.  

These results suggest that it is not likely to find significant differences under diverse irradiant conditions 

for the Sentera sensor, whilst it is possible to detect significant differences between Sentera sensor and 

UniSpec results. These results are similar to those obtained on the previous analysis (see 4.1 Local 

assessment and species’ NDVI values). 

Additionally, a T-test between results obtained from UniSpec for both days was performed. The main 

purpose was to detect possible variation in leaf constitution during the time frame. Results obtained 

derived into null hypothesis acceptance. 

 

 
Overall performance Light dependency 

DAY 20 DAY 24 Spectrometer Sentera sensor 
 

UniSp

ec 

Sente

ra 

UniSp

ec 

Sente

ra 

Unispec-

D20 

UniSpec-

D24 

Sentera-

D20 

Sentera-

D24 

Mean 0.80 0.71 0.78 0.70 0.80 0.78 0.71 0.70 

Variance 0.001 0.002 0.004 0.004 0.001 0.004 0.002 0.004 

Observations 30 60 30 60 30 30 60 60 

Hypothesized Mean 

Difference 

0 0 0 0 

df 81 53 40 108 

t Stat 10.92 5.17 1.71 1.24 

P(T<=t) one-tail 6.95E-18 1.80E-06 0.05 0.11 

t Critical one-tail 1.66 1.67 1.68 1.66 

P(T<=t) two-tail 1.39E-17 3.60E-06 0.09 0.22 

t Critical two-tail 1.99 2.01 2.02 1.98 
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5. DISCUSSION 

After considering the results obtained above, UAV camera presents a high correlation level when 

comparing NDVI values from the spectrometer. This indicates that the Sentera sensor works, in general 

terms, satisfactorily. Thus, when analyzing the NDVI map, it is possible to observe zones with 

characteristics NDVI values. The most remarkable zone clearly differentiated from other parts of the 

NDVI map, correspond to M. compressa, depicted as a large pink zone in the center of the NDVI map 

which present values over 0.9 (see Map nº 3, Appendix section). Thus, it is likely that this specific 

species (or at least this specific area) might have a higher participation among others in CO2 

sequestration. 

Nonetheless, when considering the tree species and the NDVI map, it is not likely to find a correlation 

between High/low NDVI values of a given zone and the tree species situated on same area by simple 

visual evaluation of results. For instance, in the case of L.formosa, two different areas have significant 

different values which range from 0.6 to over 0.9. This can be observed in Map 3. These variations can 

be explained as different soil properties, resources availability or presence of diseases/pests associated 

with those areas. Furthermore, inter-species interactions might be taking place. These interactions must 

be considered in terms of soil-resources and sunlight competition. The two zones mentioned are, indeed, 

surrounded by different species; where the species at both sides of the areas considered are K.elegans 

and B.javanica for one case and K.elegans and P.zhennan for the other. 

By contrast with this issue, when considering mean NDVI of all polygons of same species, significant 

differences were found across species. Tukey’s test indicates that it is possible to differentiate some 

species from one another by simply comparing its mean values obtained with the Sentera sensor. 

However, this is only true for certain combination of species of all 5 tested in this study. 

On the other hand, when considering results in Table 6, a tendency of higher values from Sentera sensor 

than those obtained from leaf-level measurements can be found. This increment of NDVI value might 

be due to the presence of alive vegetation in ground’s surface which is detected by the sensor and, 

probably, assumed as one of the species sampled. Thus, Z. serrata and K. elegans —which present a 

characteristic not leafy, or low density, canopy in this season in contrast to the other species sampled—, 

have a remarkable difference between NDVI mean values sampled from Sentera sensor and UniSpec 

spectrometer. In both cases the majority of the pixels detected from the camera are likely to be measuring 

ground vegetation rather than objective species. It is noteworthy that these variations might be also a 

consequence of the interactions mentioned before (soil-species and species-species). 

Nevertheless, if the influence of ground vegetation is detached from measurements performed by 

Sentera sensor, it is reasonable to think that measurements between Sentera and UniSpec would be more 

accurate and closer to each other. This leads to the Light dependency analysis in which results obtained 

between Sentera sensor and the spectrometer are not “closer”. On the contrary, NDVI values obtained 
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from Sentera sensor, once eliminated the ground vegetation influence, seem to present lower results than 

those obtained from UniSpec spectrometer, suggesting that inaccuracy of results might be related to 

inner features of the remote sensor itself. Furthermore, Figure 18 shows different NDVI mean values 

among species when measurements were obtained with UniSpec. By contrast, mean NDVI values are 

rather “homogeneous” when measurements were obtained with Sentera sensor. It is possible that 

apparent “homogeneity” among mean values for the Sentera sensor is caused by ground vegetation in 

such a way that disparities among species found in UniSpec mean values are “normalized”, so to speak. 

It must not be forgotten that significant differences were found with Tukey’s test. 

Regarding the light dependency analysis, no significant differences were found as null hypothesis was 

accepted. This might be explained by the correction factor for irradiance difference between RED and 

NIR band provided by Sentera when calculating NDVI value or, because clouds might affect equally to 

both bands. Notice that despite no differences were found between both group of samples taken under 

different weather conditions, results highly differ from those used as a reference NDVI.  

Herein, regardless the applicability or not of NDVI to characterize photosynthetic activity due to 

saturation issues (High LAI), NDVI has been calculated using broad band which is capturing radiation 

close to “green” portion of the spectrum as “red band”. It is likely that this issue yields a NDVI value 

which cannot be bound, or at least not satisfactorily, to biomass parameters. In this line, it has been 

detected that narrow red-edge bands using a modified normalized difference vegetation index yielded 

higher correlation level with regards to biomass quantification than a standard NDVI (Mutanga & 

Skidmore, 2004). Mutanga and Skidmore reached an R2 of 0.22 for NDVI and 0.77 for MNDVI in a 

high vegetation density case. As for this study, calculations were to obtain a standard NDVI values as 

the spectral resolution of the remote sensor constrains the possibilities to compare different wavelengths.  

Other important considerations not contemplated within the analyses performed, are the technical 

inconveniences of using UAV remote sensing during fall-winter season as windspeed and rainy days 

might affect considerably the execution, or not, of the flight itself. Moreover, the fact that UAV remote 

sensing is a relatively recent tendency, implies that most of the APPs (or at least those tested for this 

study) are quite simple and agriculture-oriented. For instance, FieldAgent APP —which is the remote 

sensor provider’s drone mapping software— is not able to integrate the sensor’s parameters within the 

application environment in such a way that the sensor works completely separated from the rest of the 

UAV.  

6. CONCLUSIONS 

Remote sensing is, undoubtedly, a useful technique for measuring or sampling large areas which, 

otherwise, would not be possible to analyze and obtain representative data. Despite, all the 

complications or interferences that might affect the data acquisition process, time spent is 
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comparatively less than common sampling methods and provides more flexibility regarding to the 

daytime on which data is acquired.  

Herein, the main implications and considerations when utilizing UAVs in a remote sensing context 

were reviewed. Furthermore, although NDVI values obtained from Sentera sensor when isolating 

ground vegetation interference, were significantly different from UniSpec values, it was still 

possible to differentiate areas with a characteristic value of NDVI. The final value obtained, 

however, should not be consider as a “reliable” information to characterize these areas. Since, the 

“overall performance” of the Sentera sensor suggested that, despite weather conditions or possible 

mislabeling of NDVI values for each species, final NDVI values obtained do not correspond to 

reality (or at least not to those used as a reference) when analyzing a single banana tree leaf. Further 

studies should be performed with different species to verify this statement. On the other hand, 

UniSpec results suggested the possibility to discriminate between tree species by simply using a 

broad band NDVI calculation in contrast to NDVI values obtained from Sentera sensor. 

More “appropriate” cameras should be tested. A prior selection of the sensor to utilize is required, 

attending to its spectral and spatial resolution. As for this study, analyses were limited to a single 

standard NDVI values, using specific broad bands. The data captured by the sensor constrained the 

possibilities of testing other vegetation index. A more “flexible” camera, in terms of spectral 

resolution and number of bands, should be more adequate for research purposes. 
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APPENDIX A 

 STATISTICS FROM RAW NDVI MAP (ONLY SPECIES SAMPLED CONSIDERED) 

  

Table A1 NDVI map statistics for all polygon of the species sampled 

Polygon ID Species  mean median stdev min max range 

0 Koelreuteria elegans 0.826 0.840 0.096 -2.992 1.220 4.212 

1 Koelreuteria elegans 0.827 0.833 0.056 -1.898 1.144 3.043 

2 Koelreuteria elegans 0.837 0.843 0.049 -0.768 1.134 1.902 

3 Koelreuteria elegans 0.821 0.828 0.052 -0.668 1.041 1.709 

4 Koelreuteria elegans 0.807 0.813 0.062 -1.199 1.044 2.243 

5 Koelreuteria elegans 0.833 0.847 0.082 -2.575 1.125 3.700 

6 Koelreuteria elegans 0.839 0.845 0.049 -1.272 1.141 2.413 

7 Koelreuteria elegans 0.829 0.841 0.074 -2.141 1.156 3.297 

8 Koelreuteria elegans 0.837 0.845 0.064 -1.805 1.134 2.939 

9 Koelreuteria elegans 0.846 0.856 0.069 -2.177 1.188 3.365 

10 Koelreuteria elegans 0.825 0.836 0.069 -2.682 1.212 3.894 

11 Koelreuteria elegans 0.797 0.805 0.070 -2.702 1.075 3.777 

12 Koelreuteria elegans 0.800 0.808 0.067 -1.985 1.212 3.197 

13 Koelreuteria elegans 0.826 0.843 0.094 -2.641 1.110 3.751 

14 Koelreuteria elegans 0.841 0.846 0.050 -1.121 1.094 2.216 

15 Koelreuteria elegans 0.838 0.844 0.047 -2.066 1.148 3.213 

16 Koelreuteria elegans 0.848 0.856 0.053 -0.633 1.072 1.705 

17 Koelreuteria elegans 0.830 0.838 0.051 0.067 1.001 0.934 

18 Koelreuteria elegans 0.827 0.833 0.050 -1.199 1.176 2.375 

19 Koelreuteria elegans 0.830 0.835 0.052 -1.426 1.089 2.514 

20 Koelreuteria elegans 0.819 0.852 0.132 -1.985 1.090 3.075 

21 Koelreuteria elegans 0.846 0.854 0.059 -1.805 1.147 2.951 

22 Koelreuteria elegans 0.864 0.879 0.096 -2.104 1.224 3.328 

23 Koelreuteria elegans 0.890 0.899 0.059 -1.985 1.206 3.191 

24 Koelreuteria elegans 0.848 0.857 0.085 -2.662 1.064 3.726 

25 Koelreuteria elegans 0.843 0.847 0.045 -0.668 1.054 1.721 

26 Koelreuteria elegans 0.849 0.854 0.045 0.309 1.049 0.740 

27 Koelreuteria elegans 0.840 0.854 0.085 -2.451 1.149 3.600 

28 Koelreuteria elegans 0.829 0.833 0.049 0.147 1.051 0.904 

29 Koelreuteria elegans 0.821 0.826 0.056 -0.025 1.008 1.034 

30 Koelreuteria elegans 0.747 0.784 0.177 -3.142 1.171 4.313 

31 Koelreuteria elegans 0.868 0.890 0.109 -2.104 1.223 3.327 

32 Koelreuteria elegans 0.846 0.866 0.108 -2.503 1.206 3.708 

33 Koelreuteria elegans 0.830 0.853 0.118 -2.682 1.202 3.884 

34 Koelreuteria elegans 0.847 0.854 0.065 -2.338 1.216 3.554 

35 Koelreuteria elegans 0.834 0.846 0.085 -2.104 1.217 3.321 

36 Koelreuteria elegans 0.869 0.876 0.064 -1.474 1.214 2.688 

37 Koelreuteria elegans 0.876 0.884 0.060 -1.040 1.117 2.157 

38 Koelreuteria elegans 0.833 0.846 0.078 -2.641 1.221 3.862 
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39 Bischofia javanica 0.858 0.866 0.076 -1.703 1.220 2.923 

40 Bischofia javanica 0.885 0.891 0.049 -1.040 1.069 2.109 

41 Bischofia javanica 0.868 0.875 0.063 -1.593 1.176 2.769 

42 Bischofia javanica 0.859 0.865 0.058 -1.703 1.141 2.844 

43 Bischofia javanica 0.857 0.863 0.053 -1.650 1.214 2.864 

44 Bischofia javanica 0.839 0.845 0.054 -1.272 1.188 2.460 

45 Bischofia javanica 0.868 0.880 0.080 -2.066 1.219 3.284 

46 Bischofia javanica 0.857 0.865 0.061 -1.985 1.156 3.141 

47 Bischofia javanica 0.870 0.878 0.057 -1.942 1.196 3.138 

48 Bischofia javanica 0.869 0.879 0.065 -1.942 1.176 3.119 

49 Bischofia javanica 0.856 0.865 0.062 -2.308 1.206 3.514 

50 Bischofia javanica 0.827 0.834 0.058 -1.898 1.176 3.074 

51 Bischofia javanica 0.825 0.832 0.056 -1.703 1.172 2.875 

52 Bischofia javanica 0.842 0.858 0.067 -0.131 1.117 1.248 

53 Bischofia javanica 0.848 0.857 0.052 0.298 1.004 0.706 

54 Bischofia javanica 0.858 0.864 0.049 -2.104 1.100 3.204 

55 Bischofia javanica 0.823 0.829 0.050 -0.081 1.020 1.101 

56 Bischofia javanica 0.843 0.848 0.051 -1.535 1.168 2.702 

57 Bischofia javanica 0.824 0.829 0.057 -1.343 1.168 2.510 

58 Bischofia javanica 0.878 0.883 0.039 -0.327 1.202 1.528 

59 Bischofia javanica 0.863 0.869 0.047 -1.535 1.141 2.676 

60 Bischofia javanica 0.866 0.871 0.042 -0.033 1.017 1.049 

61 Bischofia javanica 0.859 0.864 0.040 0.373 1.037 0.664 

62 Bischofia javanica 0.857 0.861 0.039 0.298 1.004 0.706 

63 Bischofia javanica 0.871 0.881 0.072 -2.026 1.188 3.214 

64 Bischofia javanica 0.860 0.868 0.078 -2.503 1.202 3.704 

65 Bischofia javanica 0.822 0.841 0.091 -1.852 1.039 2.891 

66 Bischofia javanica 0.830 0.838 0.058 0.070 0.992 0.921 

67 Bischofia javanica 0.854 0.863 0.067 -2.759 1.060 3.819 

68 Bischofia javanica 0.870 0.877 0.046 -0.768 1.110 1.878 

69 Bischofia javanica 0.852 0.855 0.039 0.314 1.024 0.711 

70 Bischofia javanica 0.840 0.860 0.117 -2.424 1.068 3.492 

71 Bischofia javanica 0.844 0.863 0.131 -2.965 1.206 4.171 

72 Bischofia javanica 0.876 0.893 0.091 -2.244 1.217 3.462 

73 Bischofia javanica 0.880 0.898 0.083 -2.104 1.216 3.320 

74 Bischofia javanica 0.889 0.906 0.081 -2.026 1.219 3.245 

75 Bischofia javanica 0.876 0.885 0.072 -2.211 1.223 3.434 

76 Bischofia javanica 0.850 0.864 0.074 -2.026 1.183 3.209 

77 Bischofia javanica 0.877 0.899 0.087 -2.451 1.217 3.668 

78 Bischofia javanica 0.884 0.903 0.078 -1.474 1.202 2.675 

79 Bischofia javanica 0.893 0.905 0.054 -0.768 1.094 1.863 

80 Bischofia javanica 0.851 0.865 0.065 -0.954 1.060 2.014 

81 Bischofia javanica 0.864 0.874 0.073 -2.662 1.209 3.871 

82 Bischofia javanica 0.874 0.879 0.052 -1.474 1.212 2.685 

83 Bischofia javanica 0.847 0.853 0.054 -1.852 1.188 3.040 
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84 Bischofia javanica 0.873 0.887 0.086 -2.244 1.206 3.450 

85 Bischofia javanica 0.860 0.869 0.067 -2.066 1.204 3.270 

86 Bischofia javanica 0.836 0.846 0.062 -1.985 1.196 3.181 

87 Zelkova serrata 0.820 0.822 0.063 -2.211 1.188 3.399 

88 Zelkova serrata 0.823 0.825 0.057 -2.503 1.206 3.708 

89 Zelkova serrata 0.829 0.830 0.072 -2.141 1.224 3.365 

90 Zelkova serrata 0.756 0.763 0.069 0.055 1.030 0.974 

91 Zelkova serrata 0.789 0.795 0.057 -0.615 1.047 1.662 

92 Zelkova serrata 0.812 0.818 0.057 -0.408 0.962 1.370 

93 Zelkova serrata 0.786 0.790 0.067 -2.104 1.071 3.175 

94 Zelkova serrata 0.760 0.769 0.069 -2.104 1.117 3.221 

95 Zelkova serrata 0.836 0.850 0.097 -2.424 1.217 3.642 

96 Zelkova serrata 0.756 0.771 0.097 -2.527 1.004 3.531 

97 Zelkova serrata 0.825 0.825 0.070 -1.985 1.216 3.201 

98 Zelkova serrata 0.811 0.820 0.088 -1.852 1.196 3.048 

99 Zelkova serrata 0.789 0.796 0.077 -2.211 1.126 3.337 

100 Zelkova serrata 0.775 0.781 0.080 -1.755 1.156 2.911 

101 Zelkova serrata 0.788 0.798 0.120 -3.030 1.117 4.147 

102 Zelkova serrata 0.785 0.790 0.074 -2.308 1.004 3.312 

103 Zelkova serrata 0.795 0.800 0.063 -2.211 1.101 3.312 

104 Zelkova serrata 0.797 0.809 0.103 -2.978 1.176 4.154 

105 Zelkova serrata 0.799 0.806 0.074 -2.104 1.223 3.327 

106 Zelkova serrata 0.807 0.813 0.065 -1.942 1.204 3.146 

107 Zelkova serrata 0.809 0.814 0.062 -0.817 1.202 2.018 

108 Zelkova serrata 0.806 0.809 0.072 -2.211 1.223 3.434 

109 Zelkova serrata 0.812 0.814 0.060 -1.474 1.188 2.662 

110 Zelkova serrata 0.837 0.837 0.055 -1.121 1.188 2.309 

111 Zelkova serrata 0.840 0.842 0.050 0.085 1.049 0.963 

112 Zelkova serrata 0.833 0.835 0.052 0.085 1.012 0.927 

113 Zelkova serrata 0.833 0.839 0.064 -2.477 1.141 3.618 

114 Zelkova serrata 0.848 0.853 0.070 -2.662 1.060 3.722 

115 Zelkova serrata 0.857 0.863 0.065 -1.535 1.176 2.711 

116 Zelkova serrata 0.812 0.821 0.078 -2.777 1.124 3.901 

117 Zelkova serrata 0.794 0.802 0.084 -2.923 1.111 4.033 

118 Zelkova serrata 0.834 0.842 0.063 -1.474 0.989 2.463 

119 Zelkova serrata 0.833 0.842 0.052 0.085 0.963 0.878 

120 Zelkova serrata 0.797 0.800 0.054 -0.702 1.098 1.800 

121 Zelkova serrata 0.785 0.790 0.057 -0.864 1.076 1.940 

122 Zelkova serrata 0.869 0.874 0.045 -0.025 1.068 1.094 

123 Zelkova serrata 0.816 0.819 0.061 -1.898 1.176 3.074 

124 Zelkova serrata 0.840 0.849 0.059 -1.942 1.104 3.046 

125 Zelkova serrata 0.868 0.877 0.067 -1.755 1.198 2.953 

126 Zelkova serrata 0.818 0.823 0.056 -0.493 1.065 1.559 

127 Zelkova serrata 0.842 0.846 0.057 -1.650 1.188 2.837 

142 Liquidambar formosana 0.738 0.742 0.077 -2.141 1.217 3.358 
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143 Liquidambar formosana 0.738 0.744 0.080 -2.026 1.216 3.242 

144 Liquidambar formosana 0.753 0.756 0.079 -2.211 1.206 3.417 

145 Liquidambar formosana 0.865 0.871 0.058 -2.244 1.199 3.443 

146 Liquidambar formosana 0.863 0.872 0.068 -1.703 1.223 2.927 

147 Liquidambar formosana 0.875 0.882 0.065 -1.942 1.223 3.166 

148 Liquidambar formosana 0.745 0.748 0.069 -1.852 1.103 2.955 

149 Liquidambar formosana 0.767 0.773 0.087 -2.527 1.221 3.748 

150 Liquidambar formosana 0.716 0.720 0.080 -2.104 1.132 3.236 

151 Liquidambar formosana 0.792 0.800 0.101 -2.277 1.216 3.493 

152 Liquidambar formosana 0.722 0.727 0.090 -2.211 1.161 3.372 

153 Liquidambar formosana 0.881 0.890 0.059 -1.593 1.216 2.809 

154 Liquidambar formosana 0.882 0.893 0.070 -1.898 1.212 3.110 

155 Liquidambar formosana 0.820 0.827 0.102 -1.755 1.212 2.967 

156 Liquidambar formosana 0.797 0.803 0.095 -2.527 1.224 3.751 

157 Liquidambar formosana 0.803 0.808 0.102 -2.368 1.223 3.590 

158 Liquidambar formosana 0.768 0.777 0.093 -2.244 1.216 3.460 

159 Liquidambar formosana 0.772 0.780 0.092 -2.862 1.224 4.086 

160 Liquidambar formosana 0.838 0.842 0.066 -0.910 1.188 2.098 

161 Liquidambar formosana 0.835 0.840 0.067 -1.474 1.196 2.669 

162 Liquidambar formosana 0.833 0.840 0.071 -2.477 1.164 3.641 

163 Liquidambar formosana 0.826 0.835 0.078 -2.702 1.219 3.921 

164 Liquidambar formosana 0.807 0.816 0.097 -2.702 1.206 3.908 

165 Liquidambar formosana 0.775 0.785 0.134 -2.702 1.217 3.920 

166 Liquidambar formosana 0.823 0.833 0.081 -1.898 1.206 3.104 

167 Liquidambar formosana 0.805 0.816 0.057 0.085 1.072 0.987 

168 Liquidambar formosana 0.740 0.755 0.098 -2.575 1.025 3.600 

169 Liquidambar formosana 0.724 0.738 0.095 -2.597 1.043 3.641 

170 Liquidambar formosana 0.748 0.752 0.079 -2.177 1.214 3.391 

171 Phoebe zhennan 0.847 0.853 0.067 -1.474 1.226 2.700 

172 Phoebe zhennan 0.853 0.861 0.071 -2.141 1.220 3.361 

173 Phoebe zhennan 0.839 0.847 0.064 -1.442 1.223 2.664 

174 Phoebe zhennan 0.824 0.830 0.052 -1.942 1.033 2.976 

175 Phoebe zhennan 0.845 0.857 0.089 -2.893 1.214 4.107 

176 Phoebe zhennan 0.848 0.864 0.105 -2.451 1.224 3.676 

177 Phoebe zhennan 0.849 0.864 0.104 -2.575 1.223 3.797 

178 Phoebe zhennan 0.824 0.836 0.100 -2.682 1.220 3.902 

179 Phoebe zhennan 0.814 0.823 0.075 -2.503 1.183 3.685 

180 Phoebe zhennan 0.814 0.821 0.061 -2.424 1.117 3.542 

181 Phoebe zhennan 0.797 0.812 0.101 -3.005 1.217 4.222 

182 Phoebe zhennan 0.873 0.879 0.057 -2.104 1.209 3.313 

183 Phoebe zhennan 0.889 0.896 0.058 -1.985 1.209 3.194 

184 Phoebe zhennan 0.862 0.884 0.105 -2.741 1.225 3.966 

185 Phoebe zhennan 0.897 0.914 0.087 -2.211 1.220 3.431 

186 Phoebe zhennan 0.893 0.906 0.079 -1.852 1.224 3.076 

187 Phoebe zhennan 0.816 0.825 0.070 -2.575 1.196 3.770 
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188 Phoebe zhennan 0.817 0.825 0.074 -2.682 1.156 3.839 

189 Phoebe zhennan 0.830 0.838 0.063 -1.343 1.209 2.552 

190 Phoebe zhennan 0.846 0.851 0.050 -1.755 1.117 2.872 

191 Phoebe zhennan 0.839 0.847 0.056 -1.650 1.089 2.738 

192 Phoebe zhennan 0.852 0.867 0.087 -2.477 1.202 3.679 

193 Phoebe zhennan 0.801 0.810 0.075 -1.564 1.188 2.752 

194 Phoebe zhennan 0.772 0.790 0.103 -2.862 1.037 3.899 

195 Phoebe zhennan 0.895 0.912 0.103 -1.755 1.176 2.931 

196 Phoebe zhennan 0.844 0.852 0.065 -2.177 1.209 3.386 

197 Phoebe zhennan 0.706 0.715 0.095 -2.368 1.075 3.443 

198 Phoebe zhennan 0.771 0.784 0.089 -2.244 1.060 3.304 

199 Phoebe zhennan 0.748 0.759 0.086 -2.702 1.079 3.781 

200 Phoebe zhennan 0.855 0.861 0.047 -1.410 1.050 2.460 

201 Phoebe zhennan 0.819 0.822 0.065 -0.123 1.089 1.212 

202 Phoebe zhennan 0.881 0.902 0.090 -2.368 1.206 3.574 

203 Phoebe zhennan 0.851 0.860 0.072 -1.852 1.209 3.062 

204 Phoebe zhennan 0.845 0.862 0.124 -3.300 1.188 4.488 

205 Phoebe zhennan 0.855 0.871 0.114 -3.227 1.212 4.439 

283 Michelia compressa 0.911 0.919 0.065 -2.244 1.222 3.466 

284 Michelia compressa 0.828 0.898 0.201 -3.100 1.156 4.256 

285 Michelia compressa 0.893 0.908 0.085 -2.551 1.156 3.708 

286 Michelia compressa 0.914 0.925 0.070 -2.795 1.214 4.009 

287 Michelia compressa 0.901 0.914 0.084 -3.209 1.202 4.411 

288 Michelia compressa 0.876 0.895 0.094 -2.396 1.217 3.614 

289 Michelia compressa 0.865 0.873 0.064 -2.026 1.216 3.242 

290 Michelia compressa 0.856 0.865 0.068 -2.396 1.222 3.618 

291 Michelia compressa 0.897 0.905 0.048 -1.199 1.206 2.405 

292 Michelia compressa 0.885 0.895 0.068 -2.338 1.206 3.544 

293 Michelia compressa 0.876 0.895 0.097 -2.308 1.220 3.528 
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APPENDIX B 

MEAN NDVI VALUES OF ALL “POLYGONS” OF SAME SPECIES. (ONLY SPECIES 

SAMPLED CONSIDERED) 

 

  

  

Figure B1 Box-plot of mean NDVI values of all “polygons” of same species. All input data can be found in Appendix A. Each data point is the 

mean value of all the pixels within a given “polygon”.  Each box plot depicts the mean value (an “X”), the median value (a horizontal line 

inside the box) and the 25%-75% quartiles (box) of the “population” of mean values considered. 
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APPENDIX C 

FLOWCHART OF DATA ACQUISITION PROCESS FOR MAPPING THE DANONGDAFU PLANTATION 

Figure C1 Flowchart of data acquisition process followed for mapping Danongdafu plantation site 

https://www.youtube.com/watch?v=NGdZ8O2cWks
https://desk.zoho.com/portal/sentera/kb/articles/sentera-single-sensor-pix4d-templates-ndvi-and-ndre
https://www.youtube.com/watch?v=NGdZ8O2cWks
https://desk.zoho.com/portal/sentera/kb/articles/sentera-single-sensor-pix4d-templates-ndvi-and-ndre
https://www.youtube.com/watch?v=NGdZ8O2cWks
https://desk.zoho.com/portal/sentera/kb/articles/sentera-single-sensor-pix4d-templates-ndvi-and-ndre
https://www.youtube.com/watch?v=NGdZ8O2cWks
https://www.youtube.com/watch?v=NGdZ8O2cWks
https://desk.zoho.com/portal/sentera/kb/articles/sentera-single-sensor-pix4d-templates-ndvi-and-ndre
https://www.youtube.com/watch?v=NGdZ8O2cWks
https://desk.zoho.com/portal/sentera/kb/articles/sentera-single-sensor-pix4d-templates-ndvi-and-ndre
https://desk.zoho.com/portal/sentera/kb/articles/sentera-single-sensor-pix4d-templates-ndvi-and-ndre
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