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ABSTRACT
Ordered Weighted Averaging (OWA) operators are a profusely applied class of av-
eraging aggregation functions, i.e., operators that always yield a value between the
minimum and the maximum of the inputs. The orness measure was introduced to
classify the behavior of the OWA operators depending on the weight vectors. Defin-
ing a suitable orness measure is an arduous task when we deal with OWA operators
defined over more intricate spaces, such us intervals or lattices. In this work we pro-
pose a suitable definition for the orness measure to classify OWA operators defined
on the set of m dimensional intervals taking real values in [0, 1]. The orness measure
is applied to decide which is the best partition of a continuous range that should
be divided into four linguistic labels. This example shows the good behavior of the
proposed orness measure.
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1. Introduction

In data mining, data preprocessing is a fundamental step necessary to improve the
quality and representation of data to be processed (Garćıa, Luengo, and Herrera 2015;
Astorino et al. 2011). One of the preprocessing tasks is discretization, that consists in
partitioning a continuous range (domain of a variable) into a set of non-overlapping
intervals (Liu et al. 2002). There is not a standard method to fulfill this process (Choi
and Moon 2004; Lavangnananda and Chattanachot 2017). The main reason is that the
best discretization scheme strongly depends on the context of the considered applica-
tion. For instance, in some situations it is advisable to take a partition with an equally
wide range for all the classes while ranges with different widths are preferred in other
cases. In this paper, we consider the lattice of m-intervals in order to ease the process
of discretization in data prepocessing. For this purpose, we generalize the notion of
orness measure for OWA operators which are defined over the lattice of m-dimensional
intervals in the unit interval.

OWA operators were introduced by Yager in (Yager 1988). Since then, many authors
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have studied the generalization of OWA operator to other spaces (De Miguel et al.
2017; Wang and Xu 2016; Wei et al. 2016; Merigó and Casanovas 2010; Yager 2009; Jin,
Mesiar, and Yager 2019; Paternain et al. 2019). The extension of OWA operators to
interval-valued fuzzy sets has been studied in (Bustince et al. 2013) and in (De Miguel
et al. 2016) by defining a linear order between the real intervals. In a complementary
way, OWA operators are generalized in (Lizasoain and Moreno 2013; Mesiar et al.
2018) to fuzzy sets that take values on a complete lattice (L,≤L), even in the case
where the order ≤L is not linear on L. A particular case is the lattice Im comprising
all the real m dimensional intervals [a1, . . . , am] with 0 ≤ a1 ≤ · · · ≤ am ≤ 1 with the
partial order ≤ given by

[a1, . . . , am] ≤ [c1, . . . , cm] if and only if a1 ≤ c1,..., am ≤ cm.

In this work, we investigate the lattice Im as a mathematical model to deal with
the different partitions of a continuous and bounded range. This lattice is particularly
simple and it gives an elemental solution to the task of associating each class with
its corresponding range. In particular, in this paper we introduce the notion of orness
measure for OWA operators defined over Im. We include an example in which the
orness measure is applied to choose the best weight vector to fusion three different
partitions corresponding to four linguistic labels. The advantage of the proposed orness
measure is that it shows a good behavior, i.e., the higher the elements of the weight
vector are, the higher the orness measure is.

The structure of the paper is as follows. In Section 2, we introduce some preliminaries
studies of OWA operators and orness measures. In Section 3, we deal with OWA
operators defined over the set of m-dimensional intervals introducing the definition of
the orness measure. We show the applicability of the proposed notion to decide an
appropriate partition of a continuous and bounded range in Section 4. We finish with
some conclusions and marking some future lines of research.

2. Preliminaries

Throughout this paper (L,≤L) denotes a complete lattice, i.e., a partially ordered set
in which all subsets have both a supremum and an infimum. 0L and 1L respectively
stand for the least and the greatest elements of the lattice L. For more information,
see (Birkhoff 1967; Davey and Priestley 1990).

Recall that an n-ary aggregation function defined over the lattice L (see (Ko-
morńıková and Mesiar 2011)) is a function M : Ln → L such that:

(1) M(a1, . . . , an) ≤L M(a′1, . . . , a
′
n) whenever ai ≤L a′i for 1 ≤ i ≤ n.

(2) M(0L, . . . , 0L) = 0L and M(1L, . . . , 1L) = 1L.

It is said to be idempotent if M(a, . . . , a) = a for every a ∈ L and it is called symmetric
if, for every permutation σ of the set {1, . . . , n}, M(a1, . . . , an) = M(aσ(1), . . . , aσ(n)).

Definition 2.1. (De Baets and Mesiar 1999) A map T : L × L → L is said to be a
t-norm (resp. t-conorm) on (L,≤L) if it is commutative, associative, increasing in each
component and has a neutral element 1L (resp. 0L).

Remark 1. Although t-conorms are formally defined as binary operations, S :
L × L → L, the associativity property ensures that we can compute the values for
any finite tuple of n inputs with n > 2. Indeed, the simplification S(a1, . . . , an) =

2



S
(
S
(
S(a1, a2), a3

)
, . . . , an−1

)
, an

)
is frequently used. Note that the order of the in-

puts lacks of importance since t-conorms are symmetric functions.

Definition 2.2. (Yager 1988) For each weight vector α = (α1, . . . , αn) ∈ [0, 1]n, with
α1 + . . .+ αn = 1, the map Fα : [0, 1]n → [0, 1] given by

Fα(a1, . . . , an) = α1aσ(1) + . . .+ αnaσ(n); aσ(1) ≥ . . . ≥ aσ(n)

is called an Ordered Weighted Averaging (OWA) operator.

OWA operators form a family of symmetric weighted average operators situated
between the AND-operator (given by the minimum) and the OR-operator (given by
the maximum), which includes the arithmetic mean.

With the purpose of classifying these operators, Yager introduced in (Yager 1988,
1993) an orness measure for each OWA operator Fα, which depends only on the weight
vector α = (α1, . . . , αn), in the following way:

orness(Fα) =
1

n− 1

n∑
j=1

(n− j) αj . (1)

It is easy to check that the orness of each operator is a real value situated between
0 and 1. The orness of the AND-operator, provided by the weight vector (0, . . . , 0, 1),
is equal to 0 and the orness of the OR-operator, provided by the weight vector
(1, 0, . . . , 0), is equal to 1. In general, the orness is a measure of the proximity of
each OWA operator to the OR-operator. For instance, the orness of the arithmetic
mean, provided by the weight vector (1/n, . . . , 1/n), is equal to 1/2.

Let (L,≤L, T, S) denote a quadruple in which (L,≤L) is a complete lattice endowed
with a t-norm T and a t-conorm S. In (Lizasoain and Moreno 2013), the notion of
OWA operators is extended from the real unit interval to any arbitrary complete lattice
L, whenever the weight vector α = (α1, . . . , αn) ∈ Ln satisfies that S(α1, . . . , αn) = 1L
and

T
(
a, S(α1, . . . , αn)

)
= S

(
T (a, α1), . . . , T (a, αn)

)
, for any a ∈ L.

We refer to these vectors as distributive weight vectors.

Remark 2. Note that finding distributive weight vectors may not be an easy task.
Fortunately, in (Lizasoain and Moreno 2013), it is proven that if (L,≤L,∧,∨) is a
complete distributive lattice, then any weight vector (α1, . . . , αn) ∈ Ln satisfying α1∨
. . . ∨ αn = 1L is distributive.

Definition 2.3. (Lizasoain and Moreno 2013) Let (L,≤L, T, S) be a quadruple. For
each distributive weight vector α = (α1, . . . , αn) ∈ Ln, the n-ary OWA operator Fα :
Ln → L is defined by

Fα(a1, . . . , an) = S
(
T (α1, b1), . . . , T (αn, bn)

)
,

where, for each (a1, . . . , an) ∈ Ln, the elements bn ≤L . . . ≤L b1 are calculated by
means of the k-th statistics {Ak : Ln → L | 1 ≤ k ≤ n} below:
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• b1 = A1(a1, . . . , an) = a1 ∨ . . . ∨ an ∈ L.

• b2 = A2(a1, . . . , an) =
(

(a1∧a2)∨ . . .∨ (a1∧an)
)
∨
(

(a2∧a3)∨ . . .∨ (a2∧an)
)
∨

. . . ∨
(
an−1 ∧ an

)
∈ L.

...
• bk = Ak(a1, . . . , an) =

∨
{aj1 ∧ . . . ∧ ajk | j1 < . . . < jk ∈ {1, . . . , n}} ∈ L.

...
• bn = An(a1, . . . , an) = a1 ∧ . . . ∧ an ∈ L.

Remark 3. Let (L,≤L, T, S) be a quadruple, (a1, . . . , an) ∈ Ln and (b1, . . . , bn) the
elements considered in Def. 2.3. The following statements hold.

(1) a1 ∧ . . . ∧ an = bn ≤L bn−1 ≤ . . . ≤L b2 ≤L b1 = a1 ∨ . . . ∨ an.
(2) If the set {a1, . . . , an} is totally ordered, then (b1, . . . , bn) is simply a rearrange-

ment of (a1, . . . an) with b1 ≥L . . . ≥L bn.
(3) Fα is an idempotent symmetric n-ary aggregation function lying between the

operators defined by the meet and the join on L. In other words, Fα is an
averaging operator.

(4) The k-th statistics {Ak : Ln → L | 1 ≤ k ≤ n} are particular cases of OWA
operators. Indeed, for any 1 ≤ k ≤ n, consider the weight vector (α1, . . . , αn),
with αk = 1L and αj = 0L for all j 6= k. Then the OWA operator Fα coincides
with Ak.

In 2016, Paternain et al. define a quantitative orness1 for any n-ary OWA operator
Fα : Ln → L whenever the lattice (L,≤L) satisfies the condition (MFC) given by:

(MFC) For any a, b ∈ L with a ≤L b, there exists some maximal chain between a
and b, a = a0 <L a1 <L . . . <L al = b, with a finite length l, where the maximality
means that, for any 0 ≤ i ≤ l − 1 there is no c ∈ L with ai <L c <L ai+1.

Definition 2.4. (Paternain et al. 2016) Let (L,≤L, T, S) be a quadruple, where (L,≤L
) is a complete lattice satisfying condition (MFC). For any distributive weight vector
α = (α1, . . . , αn) ∈ Ln, consider the qualitative quantifier Qα : {0, 1, . . . , n} → L given
by:

Qα(0) = 0L

Qα(j) = S(α1, . . . , αj) , for j = 1, . . . , n.

For each j = 1, . . . , n, call µ(j) = dL (Qα(j − 1), Qα(j)), a distance defined as the
length of the shortest maximal chain between Qα(j − 1) and Qα(j).

If µ = µ(1) + . . .+ µ(n), then define

orness(Fα) =
1

n− 1

n∑
j=1

(n− j) µ(j)

µ
. (2)

In the conditions of Definition 2.4, the concept of orness(Fα) is well-defined, i.e., if
Fα = Fβ for some distributive weight vector β ∈ Ln, then orness(Fα) = orness(Fβ).

1In the literature, there is also a definition of qualitative orness (Ochoa et al. 2017), but this is out of the

scope of this work.
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Note that, since the unit interval [0, 1] does not satisfy the condition MFC, the orness
defined in Eq. (2) is not a valid expression. However, there is a natural definition of
distance d(a, b) between two elements a and b in [0, 1], named d(a, b) = |b− a|. If this
distance is placed instead of dL (Qα(j − 1), Qα(j)) in the previous formula, Yager’s
orness is recovered since:

d[0,1] (Qα(j − 1), Qα(j)) = αj for each j = 0, . . . , n.

3. OWA operators on the set of m dimensional intervals

Before considering the lattice Im comprising all the m-dimensional intervals contained
in [0, 1], we recall some results obtained in (De Miguel et al. 2018) about the quantita-
tive orness of OWA operators defined over Lm, where Lm denotes the m dimensional
intervals with bounds in a complete lattice L satisfying the (MFC) condition. Let
(L,≤L, T, S) be a quadruple, where (L,≤L) is a complete lattice satisfying the MFC
condition and endowed with a t-norm T and a t-conorm S.

We refer to the elements of Lm with boldface letters a = [a1, . . . , am] where ai ∈ L
and they satisfy a1 ≤L . . . ≤L am. It is worth mentioning that (Lm,≤Lm

) is also a
complete lattice with the order relation ≤Lm

given by

a ≤Lm
c if and only if ai ≤L ci for i = 1, . . . ,m.

Furthermore, the map T : Lm × Lm → Lm given, for any a, c ∈ Lm by

T (a, c) = [T (a1, c1), . . . , T (am, cm)]

is a representable t-norm on Lm. Similarly, the map S : Lm×Lm → Lm given, for any
a, c ∈ Lm by

S (a, c) = [S(a1, c1), . . . , S(am, cm)]

is a representable t-conorm on Lm.
It is worth mentioning that the definition of representable t-norms (t-conorms) is

more general than the one considered in this paper, since different t-norms T1, . . . Tm (t-
conorms S1, . . . , Sm) satisfying appropriate properties can be considered in each com-
ponent of the m-dimensional interval. See Lizasoain and Ochoa 2014, for more infor-
mation on representable t-norms (t-conorms) on Lm. Similarly, pseudo-representable
or non-representable t-norms (t-conorms) can be considered, see Deschrijver and Cor-
nelis 2007; Deschrijver 2008. In general, we believe there will be no big differences if
some other t-norms and t-conorms are considered in the paper whenever the weight
vectors are distributive and they generate m-dimensional intervals. However, for the
sake of simplicity in the notation, we only consider in this work the above notions of
representable t-norms and t-conorms.

In (De Miguel et al. 2018), it is shown that the lattice (Lm,≤Lm
) satisfies the (MFC)

property when (L,≤L) does. This means that a suitable definition of the distance
dLm

(a, c) can be defined as the length of any of the shortest maximal chain between
a and c. In fact, we can state the following theorem.

Theorem 3.1. (De Miguel et al. 2018) Let (L,≤L) be a complete lattice satisfying
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condition (MFC). It holds that the lattice (Lm,≤Lm
) also satisfies condition (MFC).

Furthermore, for any [a, c] ∈ Lm, it holds that

dLm
(a, c) = dL(a1, c1) + . . .+ dL(am, cm).

Remark 4. As a consequence, the orness measure introduced in Definition 2.4 can
be applied to OWA operators defined on (Lm,≤Lm

). In addition, it is easy to check
that a weight vector α = (α1 = [α11, . . . , α1m], . . . ,αn = [αn1, . . . , αnm]) ∈ (Lm)n

is distributive in the quadruple (Lm,≤Lm
,T,S) if and only if α∗i = (α1i, . . . , αni) is

distributive in the quadruple (L,≤L, T, S) for any 1 ≤ i ≤ m.

The following result holds.

Theorem 3.2. (De Miguel et al. 2018) Let (L,≤L, T, S) a quadruple where (L,≤L) is
a complete lattice satisfying condition (MFC) and let α = (α1, . . ., αn) be a distributive
weight vector in the quadruple (Lm,≤Lm

,T,S). Then,

ornessLm
(Fα) =

1

µ1 + . . .+ µm
(µ1ornessL(Fα∗1) + . . .+ µmornessL(Fα∗m)) ,

where for each i ∈ {1, . . . ,m}, α∗i = (α1i, . . . , αni) denotes the distributive weight
vector and µi =

∑n
k=1 dL (Qα∗i(k − 1), Qα∗i(k)).

We focus now in the lattice Im comprising all the m dimensional real intervals:

Im = {a = [a1, . . . , am] | 0 ≤ a1 ≤ . . . ≤ am ≤ 1},

with the order relation given by

a ≤ c if and only if ai ≤ ci for i ∈ {1, . . . ,m}.

Different t-norms and t-conorms are considered in different subsections.
Note that the symbol ≤ is used here both for denoting the order relation on I = [0, 1]

and on Im.
Although (Im,≤) is not an MFC-lattice, different distances can be considered on

it in order to define a quantitative orness for OWA operators. Taking into account
the result shown in Theorem 3.1 we propose the distance between any m dimensional
intervals a, c ∈ Im given by:

dIm(a, c) = dI(a1, c1) + . . .+ dI(am, cm) = |c1 − a1|+ . . .+ |cm − am|.

Observe that, in this case, the equality

dIm(a, c) = dI(a1, c1) + . . .+ dI(am, cm)

is not a fact, as in Theorem 3.1, but a definition.
After this choice, a quantitative orness can be defined following the same steps than

in Definition 2.4.

Definition 3.3. Let (Im,≤) be the lattice comprising all the m-dimensional intervals
with bounds in I = [0, 1] and let T and S be respectively a t-norm and a t-conorm
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defined on I. For any distributive weight vector α = (α1, . . . ,αn) in (Im,≤,T,S),
consider the qualitative quantifier Qα : {0, 1, . . . , n} → Im:

Qα(0) = [0, . . . , 0]

Qα(j) = S(α1, . . . ,αj) for j = 1, . . . , n.

For each j = 1, . . . , n, we denote µ(j) = dIm (Qα(j − 1), Qα(j)) and call µ = µ(1) +
. . .+ µ(n).

Now, define

ornessIm(Fα) =
1

n− 1

n∑
j=1

(n− j) µ(j)

µ
.

Theorem 3.4. Let (Im,≤,T,S) denote the quadruple of the lattices comprising all the
m-dimensional interval with bounds in [0, 1] and let T and S be respectively a t-norm
and a t-conorm in [0, 1]. If α∗i = (α1i, . . . , αni

) ∈ In is a distributive weight vector in
(I,≤, T, S) for each i ∈ {1, . . . ,m}, then the following results hold:

(1) The value µi =

n∑
k=1

µi(k) = 1 for any i ∈ {1, . . . ,m}.

(2) The value µ =

m∑
k=1

µ(k) = m.

(3) ornessIm(Fα) =
1

m

m∑
k=1

ornessI(Fα∗k).

Proof. (1) For each i = 1, . . . ,m, consider the distributive weight vector α∗i =
(α1i, . . . , αni) in (I,≤, T, S). The quantifier Qα∗i : {0, 1, . . . , n} → I is given by
Qα∗i(0) = 0 and, for j = 1, . . . , n, Qα∗i(j) = S(α1i, . . . , αji). For simplicity, we
denote Qα∗i(j) by qji. Hence, it holds that µi(j) = dI (Qα∗i(j − 1), Qα∗i(j)) =
(qji − q(j−1)i), which is non-negative because Qα∗i is monotonically increasing.
We find that

µi = µi(1) + . . . µi(n) =

n∑
i=1

(qji − q(j−1)i) = qni − q0i = 1.

(2) On the other hand, since the quantifier Qα : {0, 1, . . . , n} → Im is given by

Qα(0) = [0, . . . , 0]

Qα(j) = S(α1, . . . ,αj) = [qj1, . . . , qjm] for j = 1, . . . , n,

we have, for each j = 1, . . . , n,

µ(j) = dIm (Qα(j − 1), Qα(j)) =

m∑
i=1

dI (Qα∗i(j − 1), Qα∗i(j)) =

m∑
i=1

µi(j).
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Therefore,

µ =

n∑
j=1

µ(j) =

n∑
j=1

m∑
i=1

µi(j) =

m∑
i=1

n∑
j=1

µi(j) =

m∑
i=1

µi = 1 + . . .+ 1 = m.

(3) Now, ornessIm(Fα) =

1

n− 1

n∑
j=1

(n− j) µ(j)

µ
=

1

m(n− 1)

n∑
j=1

(n− j)
m∑
i=1

µi(j)

=
1

m(n− 1)

m∑
i=1

 n∑
j=1

(n− j)µi(j)

 =
1

m

m∑
i=1

(ornessI(Fα∗i)) .

Note that this formula does not involve the t-norm T chosen, except for the re-
quirement of distributivity of the weight vector. Only the t-conorm S and the distance
considered on the lattice Im are involved.

Example 3.5. For each k ∈ {1, . . . , n}, we calculate the quantitative orness of the
k-th statistics Ak : (Im)n → Im, which is the n-ary OWA operator determined by the
weight vector

α = (α1, . . . ,αn) with αk = [1, . . . , 1] and αj = [0, . . . , 0] for any j 6= k.

Note that S (α1, . . . ,αn) = [1, . . . , 1]. In addition, α is always distributive because

T [a, S (α1, . . . ,αn)] = a = S [T(a,α1), . . . ,T(a,αn)] .

Moreover, in this case,

Qα(j) =

{
[0, . . . , 0] if j < k
[1, . . . , 1] otherwise

and µ(j) =

{
m if j = k
0 otherwise

Now, by Theorem 3.4 (ii), we have

orness(Fα) =
1

m(n− 1)

n∑
j=1

(n− j)µ(j) =
1

m(n− 1)
(n− k)m =

n− k
n− 1

.

3.1. Im with the product t-norm and the Lukasievicz t-conorm

First, we consider on (I,≤) the t-norm T given by the product and the Lukasievicz
t-conorm S. Then the t-norm T on (Im,≤) is given by

T(a, c) = (a1 · c1, . . . , am · cm)

8



and the t-conorm S on (Im,≤) is given by

S(a, c) = (min{a1 + c1, 1}, . . . ,min{am + cm, 1}).

Proposition 3.6. Let (Im,≤,T,S) be the quadruple described above. A weight vector
α = (α1 = [α11, . . . , α1m], . . . ,αn = [αn1, . . . , αnm]) ∈ (Im)n is distributive in (Im,≤
,T,S) if and only if the following two conditions hold.

(1) α1i + . . .+ αni = 1, for all 1 ≤ i ≤ m.
(2) α11 = . . . = α1m; α21 = . . . = α2m; . . . ; αn1 = . . . = αnm.

Proof. By Remark 4, the weight vector α = (α1 = [α11, . . . , α1m], . . . ,αn =
[αn1, . . . , αnm]) is distributive in (Im,≤,T,S) if and only if, for each 1 ≤ i ≤ m,
α∗i = (α1i, . . . , αni) is distributive in (I,≤, T, S).

The weight vector α∗i is distributive in (I,≤, T, S) if S(α1i, . . . , αni) = 1 and it
holds that T (a, S(α1i, . . . , αni)) = T (a, 1) = S(T (a, α1i), . . . , T (a, αni)) for any a ∈ I.

Since we are considering Lukasievicz t-norm and t-conorm, it holds that:

a = T (a, 1) = S(aα1i, . . . , aαni) = min{a(α1i + . . .+ αni), 1} , for any a ∈ I

which only holds if α1i + . . .+ αni = 1.
But in that case, it must be

α11 = . . . = α1m; α21 = . . . = α2m; . . . ; αn1 = . . . = αnm.

Indeed, since αj ∈ Im, it means that αj1 ≤ . . . ≤ αjm for each 1 ≤ j ≤ n. If
αji < αj(i+1) for some j ∈ {1, . . . , n} and some i ∈ {1, . . . ,m− 1}, then

1 = α1i + . . .+ αji + . . .+ αni < α1(i+1) + . . .+ αj(i+1) + . . .+ αn(i+1) = 1,

which is not possible.

Theorem 3.7. Let (Im,≤,T,S) be the quadruple described above. For each distributive
weight vector α = (α1 = [α1, . . . , α1], . . . ,αn = [αn, . . . , αn]) in (Im,≤,T,S), we have

ornessIm(Fα) = ornessI(Fα) ,

where α = (α1, . . . , αn) denotes the distributive weight vector in (I,≤, T, S).

Proof. Note that, by Proposition 3.6, it is clear that for any i = 1, . . . ,m, the weight
vectors

α∗1 = α∗2 = . . . = α∗n = (α1, . . . , αn),

are distributive in (I,≤, T, S). Then, by Theorem 3.4:

ornessIm(Fα) =
1

m
(ornessI(Fα∗1) + . . .+ ornessI(Fα∗m)) = ornessI(Fα) ,

where α = (α1, . . . , αn).

Remark 5. Note that the value ornessI(Fα) coincides with that defined by Yager.
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We show that, in the particular case of this subsection, in which the considered
t-norm and t-conorms are the product and Lukasievicz, respectively, the weight vector
can be retrieved from the qualitative quantifier.

Proposition 3.8. Let (Im,≤,T,S) be the quadruple described above.
For each monotonically increasing function Q : {0, 1, . . . , n} → I with Q(0) = 0 and

Q(n) = 1, there exists a unique distributive weight vector α in (Im,≤,T,S) with the
qualitative quantifier Qα satisfying

Qα(j) = [Q(j), . . . , Q(j)] for 1 ≤ j ≤ n.

Proof. Define the weight vector α by:

α1 = [Q(1), . . . , Q(1)]

α2 = [Q(2)−Q(1), . . . , Q(2)−Q(1)]

...

αn = [Q(n)−Q(n− 1), . . . , Q(n)−Q(n− 1)]

By Definition 2.4, we have

Qα(0) = [0, . . . , 0] = [Q(0), . . . , Q(0)]

and, for j = 1, . . . , n,

Qα(j) = S (α1, . . . ,αj) = [Q(1) + (Q(2)−Q(1)) + . . .+ (Q(j)−Q(j − 1))

, . . . , Q(1) + (Q(2)−Q(1)) + . . .+ (Q(j)−Q(j − 1))]

= [Q(j), . . . , Q(j)]

In particular,

Qα(n) = S (α1, . . . ,αn) = [Q(n), . . . , Q(n)] = [1, . . . , 1],

whence the weight vector α is distributive.
In order to show the unicity, suppose that β is a distributive weight vector with

Qβ(j) = [Q(j), . . . , Q(j)] for 1 ≤ j ≤ n. We find that

β1 = Qβ(1) = [Q(1), . . . , Q(1)] = Qα(1) = α1 and, for any j = 2, . . . , n,

βj = Qβ(j)−Qβ(j − 1) = [Q(j)−Q(j − 1), . . . , Q(j)−Q(j − 1)]

= Qα(j)−Qα(j − 1) = αj ,

where the subtraction between m-dimensional intervals is made componentwise.

3.2. Im with the t-norm given by the meet and the t-conorm given by the
join

Consider now the lattice Im endowed with the t-norm given by the meet ∧ and the
t-conorm given by the join ∨. In this case, the lattice (Im,≤,∧,∨) is distributive.
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Table 1. Range of the linguistic labels according to the different experts.

healthy unhealthy very unhealthy hazardous

Expert 1 [0,100] [100, 200] [200,300] [300,500]

Expert 2 [0,150] [150,250] [250,350] [350,500]

Expert 3 [0,125] [125,200] [200,350] [350,500]

Proposition 3.9. Let α = (α1 = [α11, . . . , α1m], . . . , αn = [αn1, . . . , αnm]) ∈ (Im)n

be a weight vector in (Im,≤,T,S). The vector α is distributive if and only if αj =
[1, . . . , 1] for some j ∈ {1, . . . , n}.

Proof. Note that α is a weight vector if and only if α1 ∨ . . . ∨ αn = [1, . . . , 1]. This
means, in particular, that α11 ∨ . . . ∨ αn1 = 1, which holds only if αj1 = 1 for some
j ∈ {1, . . . , n}. Since αj ∈ Im, then αj = [1, . . . , 1].

The following result, which was proved in (De Miguel et al. 2018), asserts than it is
possible to retrieve the weight vector from the qualitative quantifier in this case.

Theorem 3.10. Let (Im,≤,∧,∨) be the quadruple described above.
For each monotonically increasing function Q : {0, 1, . . . , n} → Im with Q(0) =

[0, . . . , 0] and Q(n) = [1, . . . , 1], it holds that

(1) There exists some weight vector α in (Im,≤,T,∨) with Qα(j) = Q(j) for any
1 ≤ j ≤ n.

(2) Such a weight vector α is not necessarily unique. However, if both α and β are
weight vectors in (Im,≤,∧,∨) with Qα = Qβ, then the OWA operators Fα and
Fβ agree in Im.

4. An application of interval-valued OWA operators in order to find a
good partition

The Department of Environment is studying the air pollution of a certain region. For
this purpose, they need to classify the air quality taking into account four different
linguistic labels: healthy, unhealthy, very unhealthy and hazardous. They ask presti-
gious experts about the appropriate range of the different linguistic labels but their
answers do not coincide as it is stated in Table 1.

In order to choose the best partition of the ranges and to achieve a consensus
between the three experts, the Department of Environment has carried out an in-
dependent study to fuse the different ranges into a single one which represents the
consensus of all the opinions.

First of all, each expert opinion is mathematically represented as a 3-dimensional
interval considering the three bounds in which the linguistics labels change according to
each expert. Taking into account that the Air Quality Index (AQI) may vary between
0 and 500, these values are normalized.

Expert 1: [100, 200, 300] normalized to [0.2, 0.4, 0.6]

Expert 2: [150, 250, 350] normalized to [0.3, 0.5, 0.7]

Expert 3: [125, 200, 350] normalized to [0.25, 0.4, 0.7]
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Table 2. Partition generated aggregating with the weight vector α.

healthy unhealthy very unhealthy hazardous

Partition 1 [0,140] [140, 230] [230,350] [350,500]

Table 3. Partition generated aggregating with the weight vector β.

healthy unhealthy very unhealthy hazardous

Partition 2 [0,120] [120, 210] [210,330] [330,500]

The final ranges of each linguistic label are computed aggregating the preceding
3-intervals. In this case, the aggregation process is carried out by means of an OWA
operator Fα considering different weight vectors.

For the computation of the OWA operators the performing of b1, b2 and b3 is re-
quired.

b1 = [0.2, 0.4, 0.6] ∨ [0.3, 0.5, 0.7] ∨ [0.25, 0.4, 0.7] = [0.3, 0.5, 0.7]

b2 = [0.2, 0.4, 0.6] ∨ [0.2, 0.4, 0.6] ∨ [0.25, 0.4, 0.7] = [0.25, 0.4, 0.7]

b3 = [0.2, 0.4, 0.6] ∧ [0.3, 0.5, 0.7] ∧ [0.25, 0.4, 0.7] = [0.2, 0.4, 0.6]

4.1. Aggregation by means of OWA operators on (Im,≤,T, S)

For fusing the different ranges in (Im,≤,T,S), where T is the t-norm given by the
product and S is the Lukasievicz t-conorm, the following distributive weighting vectors
are considered:

α = ([0.6, 0.6, 0.6], [0.4, 0.4, 0.4], [0, 0, 0]) and

β = ([0.2, 0.2, 0.2], [0.4, 0.4, 0.4], [0.4, 0.4, 0.4]).

The result of the aggregation process by means of Fα is

Fα ([0.2, 0.4, 0.6], [0.3, 0.5, 0.7], [0.25, 0.4, 0.7]) =

[0.6, 0.6, 0.6] · [0.3, 0.5, 0.7] + [0.4, 0.4, 0.4] · [0.25, 0.4, 0.7]

+ [0, 0, 0] · [0.2, 0.4, 0.6] = [0.18, 0.3, 0.42] + [0.1, 0.16, 0.28] + [0, 0, 0]

= [0.28, 0.46, 0.7] ,

which generates the partition included in Table 2.
Similarly, by means of Fβ the result of the aggregation process is

Fβ ([0.2, 0.4, 0.6], [0.3, 0.5, 0.7], [0.25, 0.4, 0.7]) =

[0.2, 0.2, 0.2] · [0.3, 0.5, 0.7] + [0.4, 0.4, 0.4] · [0.25, 0.4, 0.7]

+ [0.4, 0.4, 0.4] · [0.2, 0.4, 0.6] = [0.06, 0.1, 0.14] + [0.1, 0.16, 0.28]

+ [0.08, 0.16, 0.24] = [0.24, 0.42, 0.66] ,

which generates the partition included in Table 3.
The influence of the chosen weighting vector can be quantified by means of the

quantitative orness of the OWA operators Fα and Fβ, which are obtained by means
of the quantitative orness of the following OWA operators defined on (I,≤, T, S):
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Table 4. Partition generated aggregating with the weight vector γ.

healthy unhealthy very unhealthy hazardous

Partition 3 [0,150] [150, 250] [250,350] [350,500]

(1) Fα with α = (0.6, 0.4, 0) ∈ I3.

The quantifier Qα : {0, 1, 2, 3} → I is given by

Qα(0) = 0, Qα(1) = 0.6, Qα(2) = Qα(3) = 1,

whence µ(1) = 0.6, µ(2) = 0.4, µ(3) = 0.

Therefore ornessI(Fα) =

1

n− 1

3∑
k=1

(n− k)µ(k) =
1

2
(2 · 0.6 + 1 · 0.4) = 0.8

(2) Fβ with β = (0.2, 0.4, 0.4) ∈ I3.

The quantifier Qβ : {0, 1, 2, 3} → I is given by

Qβ(0) = 0, Qβ(1) = 0.2, Qβ(2) = 0.6; Qβ(3) = 1,

whence µ(1) = 0.2; µ(2) = µ(3) = 0.4

Therefore ornessI(Fβ) =

1

n− 1

3∑
k=1

(n− k)µ(k) =
1

2
(2 · 0.2 + 1 · 0.4) = 0.4

Now, Theorem 3.7 gives:

ornessI3(Fα) = ornessI(Fα) = 0.8 and

ornessI3(Fβ) = ornessI(Fβ) = 0.4

4.2. Aggregation by means of OWA operators on (Im,≤,∧,∨)

For fusing the different ranges, the lattice (Im,≤,∧,∨) where T is the t-norm ∧ and
S is the t-conorm ∨ is also considered. In this lattice the considered weighting vectors
are:

γ = ([1, 1, 1], [0, 0.4, 1], [0, 0, 0.5]) and

δ = ([0, 0.2, 0.3], [0.2, 0.4, 0.5], [1, 1, 1]).

The result of the aggregation process by means of Fγ is

Fα ([0.2, 0.4, 0.6], [0.3, 0.5, 0.7], [0.25, 0.4, 0.7]) =

([1, 1, 1] ∧ [0.3, 0.5, 0.7]) ∨ ([0, 0.4, 1] ∧ [0.25, 0.4, 0.7])

∨ ([0, 0, 0.5] ∧ [0.2, 0.4, 0.6]) =

[0.3, 0.5, 0.7] ∨ [0, 0.4, 0.7] ∨ [0, 0, 0.5] = [0.3, 0.5, 0.7] ,

which generates the partition included in Table 4.
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Table 5. Partition generated aggregating with the weight vector δ.

healthy unhealthy very unhealthy hazardous

Partition 4 [0,100] [100, 200] [200,300] [300,500]

The result of the aggregation process by means of Fδ is:

Fδ ([0.2, 0.4, 0.6], [0.3, 0.5, 0.7], [0.25, 0.4, 0.7]) =

([0, 0.2, 0.3] ∧ [0.3, 0.5, 0.7]) ∨ ([0.2, 0.4, 0.5] ∧ [0.25, 0.4, 0.7])

∨ ([1, 1, 1] ∧ [0.2, 0.4, 0.6])

= [0, 0.2, 0.3] ∨ [0.2, 0.4, 0.5] ∨ [0.2, 0.4, 0.6] = [0.2, 0.4, 0.6] ,

which generates the partition included in Table 5.
The influence of the chosen weighting vector can be quantified by means of the

quantitative orness of the OWA operators Fγ and Fδ, which are obtained by means
of the quantitative orness of the following OWA operators defined on (I,≤,∧,∨):

(1) Fγi with γ1 = (1, 0, 0), γ2 = (1, 0.4, 0), γ3 = (1, 1, 0.5) in I3:

For i = 1, 2, 3, the quantifier Qγi : {0, 1, 2, 3} → I is given by

Qγi(0) = 0, Qγi(1) = Qγi(2) = Qγi(3) = 1,

whence µi(1) = 1, µi(2) = µi(3) = 0.

Therefore ornessI(Fγi) =
1

2
(2 · 1) = 1

(2) Fδ1 with δ1 = (0, 0.2, 1) ∈ I3:

The quantifier Qδ1 : {0, 1, 2, 3} → I is given by

Qδ1(0) = 0, Qδ1(1) = 0, Qδ1(2) = 0.2, Qδ1(3) = 1,

whence µ1(1) = 0; µ1(2) = 0.2; µ1(3) = 0.8

Therefore ornessI(Fδ1) =
1

2
(2 · 0 + 1 · 0.2) = 0.1

(3) Fδ2 with δ2 = (0.2, 0.4, 1) ∈ I3:

The quantifier Qδ2 : {0, 1, 2, 3} → I is given by

Qδ2(0) = 0, Qδ2(1) = 0.2, Qδ2(2) = 0.4, Qδ2(3) = 1,

whence µ2(1) = µ2(2) = 0.2; µ2(3) = 0.6

Therefore ornessI(Fδ2) =
1

2
(2 · 0.2 + 1 · 0.2) = 0.3

(4) Fδ3 with δ3 = (0.3, 0.5, 1) ∈ I3:

The quantifier Qδ3 : {0, 1, 2, 3} → I is given by

Qδ3(0) = 0, Qδ3(1) = 0.3, Qδ3(2) = 0.5, Qδ3(3) = 1,

whence µ3(1) = 0.3; µ3(2) = 0.2; µ3(3) = 0.5

Therefore ornessI(Fδ3) =
1

2
(2 · 0.3 + 1 · 0.2) = 0.4
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Table 6. Summary of the aggregation processes associated with

different weights. OWA operators Fα and Fβ are considered on

(I3,≤,T, S), while Fγ and Fδ are considered on (I3,≤,∧,∨)

Quantitative Aggregation Bounds of

orness result of opinions the considered

of each OWA by means range [0, 500]

operator of each OWA

δ 0.26̂ [0.2, 0.4, 0.6] [100, 200, 300]

β 0.4 [0.24, 0.42, 0.66] [120, 210, 330]

α 0.8 [0.28, 0.46, 0.7] [140, 230, 350]

γ 1 [0.3, 0.5, 0.7] [150, 250, 350]

Table 7. Final partition of the considered linguistic labels

Level 0 Level 1 Level 2 Level 3

healthy unhealthy very unhealthy hazardous

[0,100] [100, 200] [200,300] [300,500]

Now, Theorem 3.7 gives:

ornessI3(Fγ) =
1

3

(
ornessI(Fγ1) + ornessI(Fγ2) + ornessI(Fγ3)

)
= 1 and

ornessI3(Fδ) =
1

3

(
ornessI(Fδ1) + ornessI(Fδ2) + ornessI(Fδ3)

)
=

1

3
(0.1 + 0.3 + 0.4) = 0.26̂

Table 6 summarizes the study of the four possible weighting vectors associated with
the OWA operator.

Note that, as expected, the higher the orness is, the higher the aggregated bounds
are. This means that the defined orness shows a good behavior and it is a suitable
function to measure the distance between an OWA operator and the OR-operator.
Hence, a possible election of the best of the four partitions can be done by considering
the orness measure.

For instance, in the considered example of the Air Quality, a conservative decision
may be taken in order to protect the environment. This means that a weighting vector
with a low orness may be more appropriated. For instance, if they choose the weighting
vector δ for the aggregation of the expert opinions, the result is the one included in
Table 7. As a consequence, corrective measures will be activated at levels as low as
possible.

5. Conclusions

In this paper we introduce a quantitative orness measure defined for OWA operators
with values on the lattice of all the m-dimensional intervals with bounds between 0 and
1 endowed with a t-norm T and a t-conorm S. We also show an illustrative example in
which the behavior of the orness function is coherent with the aggregated values. This
examples deals with a one-dimensional bounded range which should be discretized into
4 different intervals. We consider the lattice of m-intervals as an appropriate model for
studying the problem of finding a good partition of any continuous and bounded range.
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Hence, the lattice of m-dimensional intervals can be a suitable tool in many problems,
specially those related with discretization in which a partition (some finite number of
bounds) should be considered. The advantage of m-intervals is that this model does
not require difficult computations. However, further theoretical developments may be
convenient. These developments as well as an application in data mining with real
data are left to future research.
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