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Abstract We apply Reeb’s theorem to prove the existence of periodic orbits
in the rotating Hénon-Heiles system. To this end, a sort of detuned normal form
is calculated that yields a reduced system with at most four non degenerate
equilibrium points. Linear stability and bifurcations of equilibrium solutions
mimic those for periodic solutions of the original system. We also determine
heteroclinic connections that can account for transport phenomena.
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1 Introduction

Hénon-Heiles system arise as a model to answer the question of the existence
of a third integral of motion in an axisymmetrical potential [13]. It was for-
mulated in the context of galactic dynamics, although the potential chosen
does not necessarily represent an actual galactic one. However, it is simple
enough to account for many qualitative aspects of similar, but more complex,
dynamical systems. For instance, it serves as a good model to study escape
dynamics [4] which, in turn, provides a mechanism to describe reaction dy-
namics with some open channels [15]. Moreover, also in the context of atomic
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physics, Hénon-Heiles system can be used as a suitable model for ion traps,
where a confinement region is created by means of external fields [16].

However, both in the field of atomic physics and in the field of galactic
dynamics, rotating potentials are of great interest. Indeed, the addition of a
magnetic field or a circularly polarized microwave field to a Rydberg atom
introduces a Coriolis term, giving rise to a rotating potential of Hénon-Heiles
type [29]. This model describes properly the chaotic ionization mechanism in
chemical reactions. On the other hand, in the context of galactic dynamics,
the classical book by Binney and Tremaine [3] emphasizes the necessity of
considering rotating potentials to better explain the dynamics of the stellar
orbits in a galaxy. In this, setting equilibrium points and periodic orbits play
an important role, as they organize the phase flow structure and different
qualitative aspects of the dynamical system can be understood. An interesting
example is the possibility of matter transfer through heteroclinic connections
between equilibrium points, a mechanism proposed to explain the formation
of spiral arms [31]. Nevertheless, the general interest lies in the determination
of periodic orbits, mainly used to classify different types of motion that can
account, for instance, for the existence of unusual rotating barred galaxies [27].

In this paper, we consider the system given by

H =
1

2
(X2 + Y 2)− ω(xY − yX) +

1

2
(x2 + y2) + ayx2 + by3, (1)

which can be viewed as a generalized Hénon-Heiles system in a rotating ref-
erence frame with angular velocity ω and it can serve as a model for chemical
reactions and galactic dynamics. The system depends on three parameters,
namely a, b and ω. The rotating frequency, ω, controls in a great deal the
structure of the phase space, modifying the stability properties of equilibrium
points when the critical value ω = 1 is crossed [14]. Our main goal is to estab-
lish the existence of periodic orbits in a vicinity of the origin when ω is close
to the critical value.

Averaging method [32,35] is suitable for this purpose. Indeed, it has been
extensively used to determine periodic orbits in both non rotating [1,5,6,18–
20] and rotating potentials [8,9] and also to establish periodic orbits for system
(1), as it is done in [17]. The method is simple to apply, although some times
tricky, but, if the system is Hamiltonian, alternative techniques can be used.
In this sense, suppose that the Hamiltonian is divided into an unperturbed
part and a perturbation, the solutions of the unperturbed system being peri-
odic. Then, the unperturbed Hamiltonian can be extended as a formal integral,
decreasing the number of degrees of freedom of the system by one unit, us-
ing normal form theory combined with symplectic reduction. The equilibrium
points of the reduced system are associated to families of periodic orbits of the
perturbed one, i.e. the full system. This is in essence Reeb’s theorem [30] which,
combined with symplectic reduction, is in many aspects equivalent to the av-
eraging method, but preferable as it discriminates multiple determination of
periodic orbits all the periodic orbits obtained are different. As well, it works
properly in some degenerate situations. More specifically, symplectic reduction
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provides the right way of obtaining the base space (or reduced space) in terms
of a fixed value of H0 (the unperturbed Hamiltonian), say h. This space can be
a symplectic manifold (regular reduction) or an orbifold (singular reduction)
but can be parameterized by global coordinates, the so called invariants of the
reduction process, see for instance [36]. This allows to analyze the dynamics of
the reduced system in the reduced space properly. We will use this approach
to prove the existence of periodic orbits for the Hamiltonian system defined
by (1).

The paper is organized as follows. In section 2 we introduce some general
properties of the system, focusing on the linear approximation in a vicinity of
the origin. In section 3, Reeb’s theorem is presented, the normal form around
the origin is computed to first order and symplectic reduction is executed. Sec-
tion 4 is devoted to the statement of the main results about the existence of
periodic orbits, in particular Theorems 3, 4, 5 and 6. In section 5, bifurcations
of relative equilibria are related with the bifurcations of the families of peri-
odic orbits by means of Poincaré surfaces of section. Moreover, by applying
some theorems that reconstruct the flow of the full system associated with the
different bifurcations of the relative equilibria, we establish the occurring bi-
furcations of the families of periodic solutions. This is summarized in Theorem
7, our last main result.

We want to emphasize that our normalization and reduction procedures
are somehow non standard due to the fact that we are mainly interested in
values of the rotating frequency, ω, near 1. Thus, to succeed in our approach
we do not consider the 1:1 resonance combined with the Coriolis term existing
in the unperturbed part of the Hamiltonian function, and perform a different
approach to compute the average and reduce the truncated averaged system,
as we will see in section 3.

2 The system

We start by setting some properties of the Hamiltonian system corresponding
to (1). The equations of motion are given by

ẋ =
∂H
∂X

= X + ωy, Ẋ = −∂H
∂x

= −x+ ωY − 2axy,

ẏ =
∂H
∂Y

= Y − ωx, Ẏ = −∂H
∂y

= −y − ωX − ax2 − 3by2.

(2)

It is worth noting that the system enjoys some symmetries. Indeed, H remains
invariant under the transformations

H(x, y,X, Y ;ω, a, b) = H(x, y,−X,−Y ;−ω, a, b),
H(x, y,X, Y ;ω, a, b) = H(−x, y,X,−Y ;ω, a, b),

H(x, y,X, Y ;ω, a, b) = H(x,−y,−X,Y ;ω,−a,−b),
(3)
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The first symmetry allows us to restrict the study to the case ω > 0. Indeed,
let

Φ(t) = (x(t), y(t), X(t), Y (t))

be a solution of the differential system (2) for ω > 0, then

(x(−t), y(−t),−X(−t),−Y (−t))

is a solution for ω < 0. The second symmetry tells us that, if Φ(t) is a solution
of the Hamiltonian differential system (2), then

(−x(−t), y(−t), X(−t),−Y (−t))

is also a solution of the same system. That is, the phase flow is time reversal
symmetric with respect to the y axis. As a consequence, equilibrium points are
located symmetrically with respect to the y axis in the configuration space.
Moreover, periodic orbits are either symmetric with respect to the y axis or
they appear in pairs, which are symmetric respect to the y axis. Finally, the
third symmetry indicates that it is enough to consider either the case a ≥ 0
or the case b ≥ 0. In fact, if Φ(t) is a solution of (2) for a pair of values (a, b),
then

(x(−t),−y(−t),−X(−t), Y (−t))
is a solution when the pair is replaced by (−a,−b).

Another interesting quasi-symmetry of the system emerges when studying
equilibrium points. Suppose that

E0 ≡ (x0, y0, X0, Y0)

is an equilibrium point for ω = ω0, then

Ê0 ≡ (−x0/ω
2
0 ,−y0/ω

2
0 ,−X0/ω

4
0 ,−Y0/ω

4
0)

is also an equilibrium point for ω = 1/ω0. In some sense, there is a correspon-
dence between the situations 0 < ω < 1 and ω > 1. However, there is a slight
difference. Indeed, equilibrium points are related to the critical points of the
effective potential

Φeff = H− 1

2
(ẋ2 + ẏ2) =

1

2
(1− ω2)(x2 + y2) + y(ax2 + by2), (4)

in such a way that if E0 is an equilibrium point of the system (2), then (x0, y0)
is a critical point of the effective potential Φeff . It can be seen that, if E0

is a minimum (maximum) of the effective potential, then Ê0 is a maximum
(minimum) of Φeff . In the case E0 is a saddle point, the same happens for Ê0.
As a consequence, linear stability properties cannot be extended directly from
the case 0 < ω < 1 to the case ω > 1, if the corresponding critical point is
a minimum (maximum). While a minimum of Φeff is always a linear stable
equilibrium, the same cannot be said for a maximum. A detailed study of
equilibrium points of this system and their stability properties is given in [14],



Reeb’s theorem and periodic orbits for a rotating Hénon-Heiles potential 5

where it is established that the maximum number of equilibrium points is 4,
the origin being one of them for every value of the parameters.

If we pay attention to the eigenvalues of the linear system at the origin,
we find that they are

λ1,2 = ±i(ω − 1), λ3,4 = ±i(ω + 1), (5)

and it is always a center, provided ω 6= 1. However, just at ω = 1, there is a
pair of zero eigenvalues and the elliptic character is lost, which indicates the
appearance of a bifurcation. In fact, all the existing equilibrium points coalesce.
Moreover, in the passage from 0 < ω < 1 to ω > 1, the origin changes from a
minimum to a maximum of the effective potential.

Another interesting feature is that, in a vicinity to the origin, the system
can be viewed as two perturbed harmonic oscillators with frequencies |ω − 1|
and ω + 1. Thus, if ω ≈ 1, one of them oscillates fast in comparison to the
other and the theory of averaging is suitable to study the existence of periodic
solutions. This will be our goal, to prove the existence of periodic orbits and
their bifurcations in a vicinity of the origin when ω ≈ 1, that is, close to the
transition case.

3 Averaging and normal form

The averaging theory is a classical topic in the field of differential equations
(see for instance [32,35]) and has been used satisfactorily for the determina-
tion of periodic orbits in a great variety of dynamical systems. However, for
Hamiltonian systems, Reeb’s theorem provides an alternative framework to
prove the existence of periodic solutions [23,36].

Let (M,Ω) be a symplectic manifold of dimension 2n and consider a Hamil-
tonian system of the form

H = H0 + εH1,

where H0,H1 : M → R are smooth functions and ε a real small parameter.
Let us assume that, for ε = 0, there is an interval I ⊂ R such that, for each
h ∈ I, the solutions of the Hamiltonian system are periodic with period T (h).
Indeed, it is supposed that, for the Hamiltonian vector field Y0 = (dH0)#

with symplectic flow φt0, the set N0(h) = H−1
0 (h) is a connected circle bundle

over a base space (i.e., the reduced space) B(h), for each h ∈ I. Moreover, we
consider the projection π : N0(h) → B(h). Thus, the following result can be
proved in this context:

Theorem 1 The base space B(h) inherits, from (M,Ω), a symplectic struc-
ture $; i.e., (B(h), $) is a symplectic manifold.

Now, consider the Hamiltonian vector field Yε = Y0 + εY1 = dH#
ε with

symplectic flow φtε and the set Nε(h) = H−1
ε (h). Let the average of H1 be

H̄ =
1

T

∫ T

0

H1(φt0) dt,
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which is a smooth function on B(h), and let φ̄t be the flow on B(h) defined by
Ȳ = dH̄#. A critical point of H̄ is nondegenerate if the Hessian at the critical
point is nonsingular. Reeb’s theorem can be formulated as:

Theorem 2 If H̄ has a nondegenerate critical point at π(p) = p̄ ∈ B with p ∈
N0, then there are smooth functions p(ε) and T (ε) for ε small with p(0) = p,
T (0) = T , p(ε) ∈ Nε, and the solution of Yε through p(ε) is T (ε)-periodic.

To apply Theorem 2, the first step is to convert the Hamiltonian function
into an equivalent one made of two coupled harmonic oscillators with frequen-
cies 1− ω and 1 + ω. To achieve it, we transform the system by means of the
canonical change of variables

x = − x1√
2

+
x2√

2
, X = −X1√

2
+
X2√

2
,

y =
X1√

2
+
X2√

2
, Y = − x1√

2
− x2√

2
.

(6)

The transformed Hamiltonian is given by

H =
1

2
(1− ω)(x2

1 +X2
1 ) +

1

2
(1 + ω)(x2

2 +X2
2 )+

X1 +X2

2
√

2

(
a(x1 − x2)2 + b(X1 +X2)2

)
.

(7)

Taking into account that ω ≈ 1, the quadratic part of the Hamiltonian cor-
responds to two harmonic oscillators with widely separated frequencies. This
situation has been considered by Tuwankotta and Verhulst [34], who applied
averaging techniques to compute the normal form. The key idea consists in
considering the term with almost zero frequency as part of the perturbation.
In fact, the quadratic part of Hamiltonian (7) is no more than a detuned har-
monic oscillator in 1:0 resonance. It can be decomposed into two parts. One
corresponding to the pure resonance, which accounts for fast oscillations, and
the other one corresponding to the detuned part, associated to the slow os-
cillations. The detuned part is incorporated to the perturbation and the pure
resonant term is extended as a first integral, up to a certain order, by means
of normal form theory. Detuning is a useful technique to study the properties
of near resonant systems and has been applied to different models in galactic
dynamics [10,11,28] and also in atomic physics [16].

To properly apply the averaging or normalization procedure, and taking
into account that ω ≈ 1, we introduce the scaling

1− ω = εν, xj = εxj , Xj = εXj , j = 1, 2,

where ν is a new parameter and ε is introduced to highlight that 1 − ω and
the variables xj , Xj are of the same order of smallness. If H is also scaled by
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a factor ε−2, we arrive at

H =
1

2
(1 + ω)(x2

2 +X2
2 )+

ε

[
1

2
ν(x2

1 +X2
1 ) +

X1 +X2

2
√

2

(
a(x1 − x2)2 + b(X1 +X2)2

)]
.

(8)

Hamiltonian (8) is in the form of Reeb’s theorem with

H0 =
1

2
(1 + ω)(x2

2 +X2
2 ),

H1 =
1

2
ν(x2

1 +X2
1 ) +

X1 +X2

2
√

2

(
a(x1 − x2)2 + b(X1 +X2)2

)
.

(9)

Fixed h = H0 ≥ 0, the set N0(h) = H−1
0 (h) is diffeomorphic to S1 × R2, a

connected circle bundle, the base space B(h) being R2, see [26]. Setting ε = 0,
and taking h > 0, all the solutions are periodic with period 2π/(1 + ω) and
are given by(

x0
1,

√
2h

1 + ω
sin(1 + ω)t,X0

1 ,

√
2h

1 + ω
cos(1 + ω)t

)
. (10)

The next step in applying Reeb’s theorem involves the average of H1. We can
proceed in different manners to obtain H̄1. The most direct approach is to
introduce polar coordinates for the unperturbed part H0,

x2 =
√

2r2 sin θ2, X2 =
√

2r2 cos θ2,

and average H1 over the angle θ2, that is

H̄1 =
1

2π

∫ 2π

0

H1 dθ2 =
1

2
ν(x2

1 +X2
1 ) +

X1

2
√

2

(
a(x2

1 + c) + b(X2
1 + 3c)

)
, (11)

where c = r2 = h/(1 + ω) is taken to be constant and it is related to the
amplitude of the periodic solutions for ε = 0.

Another way to obtain the average is by means of the reduction theory for
polynomial Hamiltonians [25,26]. Indeed, it is required that H0 is a formal
integral up to first order. If H1 is decomposed into the sum

H1 = K1 + H̃1,

the normal form, up to order one (truncating higher-order terms), is given by
K1, provided that the Poisson bracket {K1,H0} is equal to 0. By introducing
complex canonical variables

xk =
1√
2

(uk + ivk), Xk =
i√
2

(uk − ivk), k = 1, 2,

K1 is given by those monomials, uα1
1 uα2

2 vβ1

1 vβ2

2 , such that α2 = β2. It is easy
to check that K1 = H̄1. However, this approach has the flavor of a versal
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normal form [2], that is a normal form around an equilibrium point when the
canonical form of the linearized part depends on parameters (in our case, this
parameter is the frequency ω). We stress that the normal form is also valid
for the critical case ω = 1, which is the essence of versal normal forms. Due to
this fact, they have been used to study some interesting dynamical systems.
For instance, the dynamics around the Lagrangian point L4 in the circular
restricted three body problem near the critical mass ratio [7,33]. In addition,
if pushing the average procedure to higher orders is required, normal forms
can be computed in an algorithmic manner by means of Lie transforms.

In summary, after the averaging procedure or after computing the normal
form, up to first order, we are left with a reduced Hamiltonian system of
one degree of freedom defined in the reduced space B(h) = R2 given by the
Hamiltonian function

K = K1 = H̄1 =
1

2
ν(x2

1 +X2
1 ) +

X1

2
√

2

(
a(x2

1 + c) + b(X2
1 + 3c)

)
, (12)

depending on the four parameters ν, a, b and c.

4 Relative equilibria and periodic orbits

It is worth noting that Hamiltonian (12) is no more than a scaled version of
the effective potential (4) when c = 0. For c small enough, we will obtain the
same number of equilibrium points and the same bifurcation pattern than the
observed for the original system. We distinguish two cases. On the one hand,
if a = 0 the reduced Hamiltonian K depends on ν, b and c and it is converted
into

K =
1

2
ν(x2

1 +X2
1 ) +

bX1

2
√

2
(X2

1 + 3c). (13)

We can establish the following result.

Theorem 3 Let us consider the Hamiltonian system defined by (8) when a =
0, ω ≈ 1 and let K be its average. Then, if b 6= 0 and h is small enough (i.e. c
small enough), there exist two families of periodic orbits, parameterized by h,
provided

2ν2 − 9b2c > 0.

In the case the inequality reverses, there are not periodic orbits.

Proof The equations of motion for the averaged system are

ẋ1 = νX1 +
3b

2
√

2
(X2

1 + c),

Ẋ1 = −νx1.

(14)

By setting the equations to zero, the equilibrium points result to be

E1,2 ≡
(

0,
−2ν ±

√
2ν2 − 9b2c

3b

)
. (15)
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Thus, if 2ν2 − 9b2c > 0, two non degenerate equilibria exist and, applying
Theorem 2, there exist two periodic orbits. ut

On the other hand, when a 6= 0, a proper scaling allows us to reduce the
number of parameters. Indeed, if K is multiplied by a2, we get

a2K =
1

2
ν
(
(ax1)2 + (aX1)2

)
+

(aX1)

2
√

2

(
(ax1)2 + a2c+

b

a

(
(aX1)2 + 3a2c

))
.

Thus, renaming the variables and the parameters according to

x1 → ax1, X1 → aX1, c→ a2c, b→ b/a, K → a2K,

we obtain

K =
1

2
ν(x2

1 +X2
1 ) +

X1

2
√

2

(
x2

1 + c+ b(X2
1 + 3c)

)
, (16)

depending again on ν, b and c. If this scaling was made from the very beginning,
the reduced Hamiltonian (16) would come from the averaging of Hamiltonian

H =
1

2
(X2 + Y 2)− ω(xY − yX) +

1

2
(x2 + y2) + yx2 + by3, (17)

which is no more than Hamiltonian (1) when a = 1.
On what follows, we will restrict ourselves to the case a 6= 0 with averaged

Hamiltonian K given by (16), coming from the starting Hamiltonian (17) with
a = 1. The following results can be stated.

Theorem 4 Let us consider the Hamiltonian system defined by (17) when
ω ≈ 1 and let K, given by (16), its average. Then, if b 6= 0 and h is small
enough (i.e. c small enough):

1. There are four families of periodic orbits, parameterized by h, if

(4− 6b)ν2 − (1 + 3b)c > 0 and 4ν2 − 6(1 + 3b)bc > 0.

2. There are two families of periodic orbits, parameterized by h, if

((4− 6b)ν2 − (1 + 3b)c)(4ν2 − 6(1 + 3b)bc) < 0.

3. There are no periodic orbits if

(4− 6b)ν2 − (1 + 3b)c < 0 and 4ν2 − 6(1 + 3b)bc < 0.

Proof The equations of motion for the averaged system are

ẋ1 = νX1 +
b√
2
X2

1 +
c+ x2

1 + (3c+X2
1 )b

2
√

2
,

Ẋ1 = −
(
X1√

2
+ ν

)
x1.

(18)
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By setting the equations to zero, the equilibrium points result to be

E1,2 ≡
(
±
√

(4− 6b)ν2 − (1 + 3b)c,−
√

2ν
)
,

E3,4 ≡
(

0,
−2ν ±

√
4ν2 − 6(1 + 3b)bc

3
√

2b

)
.

(19)

The statement of the theorem follows in a straight manner from Theorem 2
(Reeb’s theorem), provided that, under the conditions of the items, the equi-
libria, when they exist, are non degenerate. We name the families of periodic
orbits γi, i = 1, . . . , 4, where the subindex indicates the corresponding orbit is
associated to the equilibrium point Ei, with the same subindex. ut

It is worth noting that equations (18) are the same as the ones obtained by
means of the classical averaging method as it was done in [17], but there the
process to get them is more intricate.

The case b = 0 deserves a special treatment because, for this concrete
value, one of the points E3,4 goes to infinity, while the other remains, and the
maximum number of equilibrium points is, therefore, three. More precisely, if
ν > 0, E4 (minus sign) goes to infinity, whereas, if ν < 0, it is E3 (plus sign)
which goes to infinity. Just in the case b = 0 we find the three equilibrium
points

E1,2 ≡
(
±
√

4ν2 − c,−
√

2ν
)
, E3 ≡

(
0,
−c

2
√

2ν

)
, (20)

where we have named as E3 the third equilibrium, regardless of whether it
comes from E3 or E4. Thus, by virtue of Theorem 2, we arrive at the following
result.

Theorem 5 Let us consider the Hamiltonian system defined by (17) when
ω ≈ 1 and let K, given by (16), its average. Then, for b = 0 and h small enough
(i.e. c small enough), there are three families of periodic orbits, parameterized
by h, if 4ν2 − c > 0. In the case the inequality reverses, there only exist a
family of periodic orbits.

The existence of periodic solutions is not the only consequence of the ap-
plication of Reeb’s theorem. Indeed, the orbital stability of the periodic orbits
is inherited from the linear stability of the equilibrium points [23], which fol-
lows from the eigenvalues of the corresponding Jacobian matrix. Hence, our
next task is to perform the stability analysis, which is summarized in the next
theorem.

Theorem 6 For b 6= 0, the families of periodic orbits γ1,2 are orbitally unsta-
ble, when they exist. On the other hand we get:

1. If ν > 0, 4ν2 − 6(1 + 3b)bc > 0 and (4− 6b)ν2 − (1 + 3b)c > 0, the family
γ3 is orbitally stable, whereas the family γ4 is orbitally unstable for b < 0
and orbitally stable for b > 0.
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2. If ν > 0, 4ν2 − 6(1 + 3b)bc > 0 and (4 − 6b)ν2 − (1 + 3b)c < 0, the two
families γ3,4 are orbitally unstable for b < 0. If 0 < b < 1/3, then the family
γ3 is orbitally stable whereas the family γ4 is orbitally unstable. If b > 1/3
the family E3 is orbitally unstable and the family γ4 orbitally stable.

3. For ν < 0 the stability of the families γ3 and γ4 is as in the previous items,
interchanging the indices.

Proof We only have to accomplish the stability of the equilibrium points asso-
ciated with the periodic orbits. Thus, linearizing the equations of motion (18)
around an equilibrium point (x0

1, X
0
1 ), the stability character is deduced from

the eigenvalues of the matrix

A =


x0

1√
2

ν +
3bX0

1√
2

−ν − X0
1√
2
− x

0
1√
2

 ,

(x0
1, X

0
1 ) being the coordinates of the equilibrium point. For E1,2 we obtain

the eigenvalues

λ1,2 = ±
√

(4− 6b)ν2 + (1 + 3b)c√
2

.

Provided these points exist when the expression into the square root is positive,
they are unstable saddles and, consequently, the families γ1,2 are orbitally
unstable.

To establish the stability of the points E3,4 we note that the matrix A at
these points has the form

A|E3
=

(
0 α

β 0

)
, A|E4

=

(
0 −α
γ 0

)
,

where

α =

√
4ν2 − 6(1 + 3b)bc

2

and β and γ satisfy:

βγ = − (4− 6b)ν2 − (1 + 3b)c

6b
,

β + γ =
2(1− 3b)ν

3b
, β − γ = −

√
4ν2 − 6(1 + 3b)bc

3b
.

(21)

We note that α is positive and the stability character depends on the signs
of β and γ. In this way, if β < 0 and γ > 0, E3 and E4 are stable centers.
On the other hand, if β > 0 and γ < 0 the equilibrium points are unstable
saddles. However, the signs of β and γ can be deduced from (21). Indeed, in
the conditions of item (1), if b < 0 we have βγ > 0 and β + γ < 0. Thus, both
β and γ are negative and, consequently, E3, and also the family γ3, is stable
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Fig. 1 The bifurcation parameter plane (b, c) for ν > 0. There are seven different regions
with a different type of flow.

and E4 and the family γ4 unstable. On the contrary, if b > 0, it is deduced
from (21) that βγ < 0, whereas β − γ < 0. Thus, β < 0 and γ > 0 and both
E3 and E4 and the corresponding families γ3,4 are stable.

The other two items are proved in a similar way using the relations (21)
and, for the sake of conciseness, we omit the details. ut

5 Bifurcations and Poincaré surfaces of section

As a consequence of Theorem 6, the parameter plane (b, c) is divided into
different regions where the number of equilibrium points and their stability
character changes. In fact, we have to distinguish the cases ν > 0 and ν < 0
but, by item (3) of Theorem 6, the only difference is a permutation of the
indices 3 and 4. Fig. 1 summarizes the results of the previous theorem for the
case ν > 0. It can be seen that there exist seven different regions, where the
phase flow changes. Moreover, a bifurcation takes place when passing from one
region to another limiting one. The seven regions in Fig. 1 are delimited by
three curves:

Γ1 ≡ (4− 6b)ν2 + (1 + 3b)c = 0,

Γ2 ≡ 4ν2 − 6(1 + 3b)bc = 0,

Γ3 ≡ b = 0.

The first two curves, Γ1 and Γ2 establish the zones where E1,2 and E3,4 exist,
respectively. If they are crossed, the number of equilibria changes, but also
the stability of the remaining points. The third one, Γ3, is also related to the
existence of equilibrium points. In fact, when this curve is reached, one of
the equilibrium points E3 or E4 goes to infinity and the number of equilibria
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reduces by one. Moreover, a change in the stability in one of these points takes
place. It is worth noting that Γ2 is asymptotic to Γ3. In addition, both Γ1 and
Γ2 are asymptotic to b = −1/3, the classical case of the Hénon-Heiles system,
which corresponds to the dotted line in Fig. 1. This is not a bifurcation line
but, for b = −1/3, the three saddles in region 6 have the same energy and are
connected by heteroclinic orbits.

In order to compare the phase flow of the reduced system with the phase
flow of the original one, we set ε = 1 in such a way that ν = 1 − ω, and the
correspondence between the two systems is clearer, taking into account that
c = h/(1 + ω). We note that ε does not need to be small. The only important
thing is to ensure that H1 is small in comparison with H0, which is true if
ω ≈ 1 and |(xj , Xj)| < 1. Now, we fix the values of ω = 0.9 and h = 0.15
which gives c ≈ 0.08. We will follow the evolution of the flow as b goes from
region 7 to region 2, crossing regions 6, 5 and 4. In Fig. 2 it can be observed
that, for b = −0.6, inside the region 7, there are two saddles. As b increases
and reaches region 6, a saddle-node bifurcation occurs and a new saddle and
a center appear, as it is seen in Fig. 2 for b = −0.4. For the special value
b = −1/3, still in region 6, the three saddles are connected and, as soon this
value is overpassed, the center and the two symmetric saddles tend to coalesce
(b = −0.2 in Fig. 2) and a subcritical pitchfork bifurcation takes place when b
reaches Γ1. Once in region 5 (b = −0.09 in Fig. 2), we are left with two saddle
points, namely E3 and E4. As b increases, but still being negative, the saddle
in the right (X1 > 0) migrates to infinity and it appears as a center with
X1 < 0 when b > 0 (b = 0.045 in Fig. 2). Finally, when Γ2 is crossed, a new
saddle center bifurcation takes place and, in region 2, there are not critical
points (b = 0.08 in Fig. 2).

The same pattern of bifurcations is observed for the periodic orbits in the
system defined by Hamiltonian (17). This is visualized by means of Poincaré
surfaces of section. We start by defining the cross section x = 0 when it is
crossed with positive velocity, that is ẋ > 0. We set h = 0.15 and ω = 0.9
and follow the evolution of the phase flow on the surfaces of section for the
same values of b taken in the reduced system. Now, periodic orbits intersect
the cross section in one point and they resemble critical points. Fig. 3 shows
the different Poincaré surfaces of section for the specified values of b and the
correspondence with the phase flow of the reduced system is clear. It is worth
noting that the limit of the Poincaré surface of section undergoes a change as
b crosses from negative to positive values. Indeed, the change starts at

b = b0 = − (1− ω2)3/2

3
√

6h
,

when the region enclosed by the limit curve of the cross section splits into two
different ones. One of them is a bounded region surrounding the origin, while
the other one is an unbounded region increasingly away from the bounded one
as b approaches 0. For b = 0 only the bounded region remains and, as soon
as b takes positive values, the unbounded region appears in the other part of
the cross section. The two regions merge again for b = −b0. For |b| < |b0| it is
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not clear that the two systems look the same, because one of the equilibrium
points of the reduced system blows up and the smallness required in Theorem
4 is not guaranteed. However, in the bounded region, the two systems behave
in a similar way. This can be seen in Fig. 4, where a comparison between the
two systems is made for b = 0, ω = 0.9 and h = 0.057, which correspond to
c = 0.03, that is in the boundary of regions 6 and 3, on the curve Γ3.

As it has been observed in the previous paragraphs and in Figs. 2 and 3,
the behavior experienced by the equilibria of the reduced system translates to
the behavior of the related periodic solutions corresponding to the full system
defined in (2). In other words, the bifurcations occurring for the equilibria
Ei, i = 1, . . . , 4 at the parametric curves Γ1, Γ2 render the same for the
families of periodic orbits of the full Hamiltonian system. Indeed, the theory
of averaging ensures that if an equilibrium point is a saddle the family of
periodic orbits reconstructed from it is hyperbolic, see[32]. A Hamiltonian
version of this is based on Reeb?s theorem. In particular, the characteristic
multipliers of a periodic solution are obtained from the eigenvalues of the
linearisation of the equilibrium, see for instance [36], specifically Corollary
2.2. Regarding the pattern follow by the bifurcations, it is also the case that
a saddle-center bifurcation concerning equilibrium points is reconstructed as
a saddle-center bifurcation of the resulting periodic orbits. This appears for
instance in reference [12] (Theorem 3.1) and in [24] (concretely, in Theorem
6.2) although the first results of this refer to Meyer [22]. The same occurs with
other bifurcations of periodic solutions reconstructed from the bifurcation of
equilibrium points corresponding to a reduced space, see for instance Chapter
3 of [12]. This is realized in the following result.

Theorem 7 (1) For ν 6= 0 a periodic Hamiltonian (subcritical) pitchfork bi-
furcation takes place for the periodic orbits γ1 and γ2 when Γ1 ≈ 0. (2) For
ν 6= 0 a periodic Hamiltonian saddle-node bifurcation takes place for the peri-
odic orbits γ3 and γ4 when Γ2 ≈ 0.
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Proof The proof follows straightforwardly applying the results in [22,12,24]
which relates, under customary conditions of non-degeneracy (see for instance
[24]), the bifurcations occurring among relative equilibrium points with the bi-
furcations among the associated families of periodic orbits of the corresponding
full system. ut

Another interesting consequence of the relation between the relative equi-
libria and the families of periodic orbits is the existence of heteroclinic connec-
tions, when the equilibrium points attain the same value of the Hamiltonian
function. Thus, one expects to have heteroclinic connections for the families
γ1,2, when they exist, and also a heteroclinic connection for the three peri-
odic orbits sharing the same value of the Hamiltonian function for the case
b = −1/3. In this sense, it is possible to find orbits surrounding one periodic
orbit, going next to another one and surround it for a number of times and so
forth. Taking as a starting orbit the naive approximation given by (10), a grid
search algorithm [21], combined with the symmetries (3), is used to get the
actual periodic orbits. We do that for two concrete examples, when h = 0.08,
ω = 0.9, a = 1 and b = −0.6 and b = −1/3. In the firs case (b = −0.6) there
are two unstable periodic orbits, symmetric respect to the y axis, which are
heteroclinic connected. In the left panel of Fig. 5 the two unstable periodic
orbits are depicted in bold together with an orbit that, after 15 loops around
the orbit in the left, moves to the periodic orbit in the right and surround
it 45 times before it escapes to infinity, due to the high instability character
of the symmetric periodic orbits. For the case b = −1/3, we have the clas-
sical Hénon-Heiles system, plus the Coriolis term, which is invariant under
the action of the dihedral group D3. Thus, the three unstable periodic orbits
are equivalent excepting a 2π/3 rotation about the origin and there exists a
heteroclinic connection between them. In the right panel of Fig. 5 we depict
the three unstable periodic orbits in bold and an orbit that goes, after 30 rev-
olutions, from the upper periodic orbit to the left down periodic orbit. After
30 loops around it, the orbit moves to the right down periodic orbit, that also
surround 30 times, to return again to the upper one. This cycle is repeated
at least 36 times before the orbit escapes to infinity. This is an interesting
phenomenon that can account for transport mechanisms in specific dynamical
systems.

6 Conclusions

We have proved the existence of periodic orbits for a Hénon-Heiles rotat-
ing potential by means of the application of Reeb’s theorem, which produce
equivalent results than the classical averaging method. However, it is simple to
apply and techniques of reduction of polynomial Hamiltonians can be used to
reduce the system to an appropriate base space where equilibrium points are
directly related to periodic solutions. Moreover, for this particular system, the
equilibrium solutions and their bifurcations are, in essence, inherited by the
reduced system, when the energy is small enough. This fact serves to know, in
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advance, that the maximum number of families of periodic orbits, around the
origin, is four. Also the bifurcations we find are of saddle-center and subcritical
pitchfork type, which are reconstructed to bifurcations of periodic orbits corre-
sponding to the original Hamiltonian system. Finally, heteroclinic connections
between relative equilibria translate to heteroclinic connections between pe-
riodic orbits, allowing a transport mechanism along some parts of the phase
space.
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