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Abstract

We study some of the main features of Fractional Step Runge-Kutta-Nyström methods

when they are used to integrate Initial-Boundary Value Problems of second order in

time, in combination with a suitable spatial discretization. We focus our attention in the

order reduction phenomenon, which appears if classical boundary conditions are taken

at the internal stages. This drawback is specially hard when time dependent boundary

conditions are considered. In this paper we present an efficient technique, very simple

and computationally cheap, which allows us to avoid the order reduction; such technique

consists of modifying the boundary conditions for the internal stages of the method.
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1. Introduction

In this paper we deal with the development of efficient numerical algorithms for solving

Initial Boundary Value Problems (IBVP) of second order in time. As it is well-known,

the numerical integration of this kind of evolutionary problems can be realized by means

of the method of lines (see [1]). Such process consists of combining a numerical time inte-

grator with a suitable spatial discretization technique; typically, if we choose to discretize

firstly in space, using for example finite differences, finite elements or spectral methods,

a family of stiff Initial Value Problems of second order in time is obtained, which must
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be suitably integrated in time afterwards. If the (elliptic) spatial differential operator

is one-dimensional, there exist several methods which integrate adequately in time, for

example, Runge-Kutta (RK) or Runge-Kutta-Nyström (RKN) methods. In this way, we

obtain a totally discrete scheme which can be computationally interesting. But, if the

elliptic operator is M -dimensional the computational cost can be very high, whether you

use explicit or implicit methods for the time discretization. In order to avoid such draw-

back, in [2] there was introduced a new type of methods for the time discretization named

Fractional Step Runge-Kutta-Nyström methods (FSRKN). These FSRKN methods have

been designed by combining the ideas of Fractional Step Runge-Kutta methods (FSRK)

for parabolic problems (see [3, 4, 5]), together with RKN methods (see [6, 7]). In fact,

FSRKN methods can be viewed as a generalization of the alternating direction methods

proposed in [3, 8] for solving the wave equation efficiently.

The main advantage of FSRKN methods is the obtaining of a numerical solution from

unconditionally convergent schemes, which provide a low computational cost. To apply

such methods in an efficient way we must firstly split the spatial operator as a sum of

simpler operators in a certain sense; thus, only a piece of the splitting acts implicitly

at each fractional step. Such decomposition is very important in order to obtain good

results.

As it is well-known, one of the main drawbacks of many classical one-step time in-

tegrators is that they suffer an order reduction when they are used in this context; this

phenomenon is specially hard in the case of considering time dependent boundary data.

In the literature we can find an important number of papers about the order reduction

phenomenon (see [9, 10, 11, 12] for RK methods, [13, 14] for RKN methods). In [11]

the authors prove that for parabolic IBVP, RK methods present superconvergence in the

interior; thus it is well known that, for RK or RKN methods, the order reduction is due to

a non suitable election of the boundary conditions for the internal stages. This drawback

also appears when FSRKN methods are used in the time discretization of second-order

in time problems. In these methods the order reduction is related to the order of their

internal stages, as in RK or RKN methods. When the FSRKN method has all its stages

implicit, this relation is specially restrictive because the order reduction is very harsh.

We show a technique which permits us to recover the lost order in a extremely cheap

way, from the point of view of the computational cost involved. The basis of this strategy is

to obtain an improvement for the boundary conditions of the internal stages by following
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a simple recurrence process which involves only data of the given problem. Both the

introduction of this technique and the subsequent analysis of the consistency of the method

requires to consider the two discretization procedures in the inverse order, i.e., we will

discretize firstly in time, using FSRKN methods, and afterwards we will solve the family

of boundary value problems derived of this process.

This paper is structured as follows: in the following Section we describe the problem

as well as the time discretization methods proposed and we study the local error; we prove

that the order reduction is due to the boundary conditions and we show the technique to

diminish it as far as reaching the classical order. In Section 3 the global error is studied;

the theoretical results proven in this Section are corroborated by means of a numerical

test shown in Section 4, where we have used spectral methods for the spatial discretization

because they reach high orders of convergence. Finally, Section 5 presents some technical

results and the proofs of the main theorems of this paper.

Henceforth we denote with C any constant independent of the size of the time step

and the number of nodes of the spatial mesh.

2. The time discretization method

Second-order in time evolution IBVP governed by partial differential equations can be

written in an abstract form as follows:

“Find u : [0, T ] → H solution of

u′′(t) = Au(t) + f(t), 0 ≤ t ≤ T < ∞,

∂u(t) = g(t),

u(0) = u0,

u′(0) = v0, ”

(1)

where, typically, H is a Hilbert space of functions defined in a certain bounded domain

Ω ⊆ RM , integer M ≥ 1 with smooth boundary Γ and A : D(A) ⊆ H → H is a linear

differential operator of order d (integer d ≥ 1) that contains the spatial derivatives and

which is defined on a dense subset D(A) ⊂ H.

In order to ensure a well-posedness for problem (1) in the sense of Hadamard, we will

assume:

(A1) The boundary operator ∂ : D(A) ⊂ H → Hb is onto, with ker(∂) dense in D(A),

where Hb is a Hilbert space of functions.
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(A2) The restriction of A to ker(∂), denoted by A0 ≡ A|ker ∂ being A0 : D(A0) = ker(∂) ⊆

H → H, is self-adjoint and negative definite.

(A3) There exists ω̃ < 0 ∈ R (see [15]) such that for each µ ∈ R with µ > ω̃, the problem

1  (µI − A)u = 0,

∂u = v,

has, for every v ∈ Hb, a unique solution u = S(µ)v; which satisfies ∥S(µ)v∥ ≤ L∥v∥,

for certain constant L > 0 independently of µ for µ > ω0 > ω̃.

Also, in order to guarantee the convergence results we suppose the initial and boundary

data to be sufficiently smooth.

From hypothesis (A2), we have that the operator A0 is the infinitesimal generator of

a cosine function, of type ω = 0, on H. This guarantees the well-posedness of problem

(1) in the energy norm.

Many results of this article can be extended to the more general hipothesis

(A2’) The operator A0 is the infinitesimal generator of a C0-semigroup of type ω̃ ≤ 0.

When solving this type of problems with FSRKN methods, the elliptic operator A

is assumed to be split as a sum of m linear differential operators of order less than

or equal to d, each of them simpler in a certain sense, that is, A =
∑m

ℓ=1Aℓ, where

Aℓ : D(Aℓ) ⊆ H → H and ∩m
ℓ=1D(Aℓ) = D(A). Besides, associated to every operator Aℓ,

ℓ = 1, · · · ,m we will define the boundary operators ∂ℓ : D(Aℓ) ⊂ H → Hb
ℓ, ℓ = 1, · · · ,m,

and we will denote by A0
ℓ : D(A0

ℓ) = ker(∂ℓ) ⊂ H → H the restriction of Aℓ to ker(∂ℓ),

with ker(∂) = ∩m
ℓ=1 ker(∂ℓ).

To simplify the exposition we also consider a decomposition of the source term in m

smooth addends, f(t) =
∑m

ℓ=1 fℓ(t). Then, problem (1) can be written as

u′′(t) =
m∑
ℓ=1

(Aℓu(t) + fℓ(t)), 0 ≤ t ≤ T < ∞,

∂ℓu(t) = gℓ(t), 0 ≤ t ≤ T < ∞, ℓ = 1, · · · ,m,

u(0) = u0,

u′(0) = v0.

(2)

1I : H → H is the identity operator
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To assure that problem (2) with vanishing boundary conditions is well posed we sup-

pose that

(B1) The boundary operators ∂ℓ : D(Aℓ) ⊂ H → Hb
ℓ are onto, with ker(∂ℓ) dense in

D(Aℓ).

(B2) The operators A0
ℓ are self-adjoint and negative definite.

(B3) There exists ω̃ℓ ∈ R such that for each µ ∈ R with µ > ω̃ℓ, the problem (µI − Aℓ)u = 0,

∂ℓu = v,

has, for every v ∈ Hb
ℓ, a unique solution u = Sℓ(µ)v; which satisfies ∥Sℓ(µ)v∥ ≤

Lℓ∥v∥, for certain constant Lℓ > 0 independently of µ for µ > ω0
ℓ > ω̃ℓ.

From hypothesis (B2), we have that the operator A0
ℓ is the infinitesimal generator of a

cosine function, of type ω = 0, on H. Thus, we have that A0
ℓ is the infinitesimal generator

of a C0-semigroup of type ω̃ℓ < 0. Then, (µℓI −A0
ℓ)

−1 exists and is bounded for every µℓ

with Re(µℓ) > ω̄ℓ.

Furthermore, in what follows, we will assume that

∥Aℓ1 · · ·Aℓku
(j)(t)∥ ≤ C and ∥Aℓ1 · · ·Aℓkf

(j)
ℓk+1

(t)∥ ≤ C, (3)

for certain integers j, k as big as needed, with ℓi ∈ {1, · · · ,m}, for i = 1, · · · , k + 1.

When solving a linear problem like (2), FSRKN methods are defined by the following

algorithm,

Kn,i = Un + ciτVn + τ 2
m∑
ℓ=1

i∑
j=1

aℓ,ij (AℓKn,j + fℓ(tn,j)) , i = 1, · · · , s,

Vn+1 = Vn + τ
m∑
ℓ=1

s∑
j=1

bℓ,j (AℓKn,j + fℓ(tn,j)) , (4)

Un+1 = Un + τVn + τ 2
m∑
ℓ=1

s∑
j=1

βℓ,j (AℓKn,j + fℓ(tn,j)) ,

where tn,j = tn + cjτ , for j = 1, . . . , s and tn = nτ , n = 1, · · · , N , being τ = T/N the

time step size and N the number of steps (see [2]). Kn,i are the intermediate stages,

which can be considered as numerical approximations to the exact solution at time

tn,i, i = 1, · · · , s, and (Un, Vn)
T is the numerical approximation to the exact solution

(u(tn), u
′(tn))

T . Following the ideas of FSRK methods, we will assume that aℓi,ii > 0,
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i = 1, · · · , s, ℓ = 1, · · · ,m and we will group the coefficients aℓ,ij, bℓ,j, βℓ,j and ci which

appear in (4) in the following tableau

c A1 · · · Am

βT
1 · · · βT

m

bT1 · · · bTm

=

c1 a1,11 am,11

...
...

. . .
...

. . .

cs a1,s1 · · · a1,ss am,s1 · · · am,ss

β1,1 · · · β1,s · · · βm,1 · · · βm,s

b1,1 · · · b1,s · · · bm,1 · · · bm,s

The coefficients satisfy the additional hypotheses aℓ,ij = 0, βℓ,j = 0, bℓ,j = 0 for ℓ ̸= ℓj ∈

{1, · · · ,m}, 1 ≤ j ≤ s; these hypotheses allow us to compact the notation in the following

way

Kn,i = Un + ciτVn + τ 2
i∑

j=1

aℓj ,ij
(
AℓjKn,j + fℓj(tn,j)

)
, i = 1, · · · , s,

Vn+1 = Vn + τ
s∑

j=1

bℓj ,j
(
AℓjKn,j + fℓj(tn,j)

)
, (5)

Un+1 = Un + τVn + τ 2
s∑

j=1

βℓj ,j

(
AℓjKn,j + fℓj(tn,j)

)
.

Note that the structure of the coefficients of FSRKN methods implies that in every

stage only one elliptic operator Aℓ acts implicitly and, in this way, when a multidimen-

sional problem is solved with an FSRKN method, at each intermediate stage we must solve

a problem which can be much simpler than the first one; thus, by choosing adequately the

split of the operator A, we can obtain important reductions in the computational cost of

these methods, compared to the computational costs associated to the use of other time

integrators like, for example, implicit RKN methods.

In order to have a unique solution from (4) we must assure that the intermediate

stages are well defined and that they have a unique solution. To obtain this solution we

must determine the values of the boundary conditions of such intermediate stages, thus

we must solve, for i = 1, · · · , s,

(I − τ 2aℓi,iiAℓi)Kn,i = Un + τciVn + τ 2
i−1∑
j=1

aℓj ,ijAℓjKn,j + τ 2
i∑

j=1

aℓj ,ijfℓj(tn,j), (6)

∂ℓiKn,i = Gℓi,n,i.

By denotingGℓ,n = [∂ℓKn,1, · · · , ∂ℓKn,s]
T , ℓ = 1, · · · ,m, e = [1, · · · , 1]T ,Kn = [Kn,1, · · · , Kn,s]

T
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and fℓ,n = [fℓ (tn,1) , · · · , fℓ (tn,s)]T the internal stages, in tensorial form, are given by2

Kn = (e⊗ I)Un + τ (c⊗ I)Vn + τ 2
m∑
ℓ=1

(Aℓ ⊗ I) ((I ⊗ Aℓ)Kn + fℓ,n) ,(7)

(∂1, · · · , ∂m)Kn = (G1,n, · · · , Gm,n).

Once Kn has been obtained,

Vn+1 = Vn + τ

m∑
ℓ=1

(bTℓ ⊗ I) ((I ⊗ Aℓ)Kn + fℓ,n) , (8)

Un+1 = Un + τVn + τ 2
m∑
ℓ=1

(βT
ℓ ⊗ I) ((I ⊗ Aℓ)Kn + fℓ,n) . (9)

To prove that (6) possess a unique solution, it is enough to consider problems

(I − τ 2aℓi,iiAℓi)K
b
n,i = 0, (10)

∂ℓiK
b
n,i = Gℓi,n,i,

for i = 1, . . . , s and once that Kb
n = [Kb

n,1, · · · , Kb
n,s]

T has been obtained, we must solve

(I ⊗ I − τ 2
m∑
ℓ=1

Aℓ ⊗ Aℓ)K
0
n = (e⊗ I)Un + τ (c⊗ I)Vn + τ 2

m∑
ℓ=1

(Aℓ ⊗ I)
(
(I ⊗ Aℓ)K̃

b
n + fℓ,n

)
,

(∂1, · · · , ∂m)K0
n = (0, · · · , 0), (11)

with K̃n = [0, Kb
n,1, · · · , Kb

n,s−1]
T .

With this decomposition it is immediately observed that the solution of (6) can be

expressed as Kn = K0
n +Kb

n.

The solvability of (10) is a direct consequence of hypothesis (B3) because, as we are as-

suming aℓi,ii > 0, we have that for (τ 2aℓi,ii)
−1 > ω0

ℓi
> ω̃ℓi , expression Sℓi((τ

2aℓi,ii)
−1)Gℓi,n,i

is solution of (10), with

∥Sℓi((τ
2aℓi,ii)

−1)Gℓi,n,i∥ ≤ Lℓi∥Gℓi,n,i∥,

where Lℓi > 0 is a constant independent of τ 2aℓi,ii.

The solvability of (11) was proven in [2].

2.1. Local error

Now, we study the local error that is made when problem (2) is solved in time by

using an FSRKN method. The boundary values of the internal stages appear as data to

2Note that, (Aℓ⊗I)(I⊗Aℓ) = (Aℓ⊗Aℓ); (b
T
ℓ ⊗I)(I⊗Aℓ) = (bTℓ ⊗Aℓ) and (βT

ℓ ⊗I)(I⊗Aℓ) = (βT
ℓ ⊗Aℓ)
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introduce and by following classical ideas for RK, RKN or FSRK methods, the first option

is to take these boundary values as ∂ℓKn,i = ∂ℓu(tn,i) = gℓ(tn,i), assuming that the internal

stages can be considered as approximations of the solution at the intermediate times tn,i.

As we will see later, this is not the best choice, since this implies a reduction in the order

of the error observed. This order is related to the stage order, and this stage order is only

1 when the FSRKN method has not got any explicit stage, as it will be proven in Lemma

2.3. We will show that by choosing these boundary values in an adequate way, the order

reduction can be avoided.

We introduce for FSRKN methods the concepts of classical and stage order which are

defined in a similar way as to RKN methods:

Definition 2.1. An FSRKN method given by (4) (or (5)) is said to have classical order

p when it is applied to numerically solve problem (2) if

∥ξn+1∥ ≡ ∥u′ (tn+1)− V̄n+1∥ = O(τ p+1) and ∥ρn+1∥ ≡ ∥u (tn+1)− Ūn+1∥ = O(τ p+1)

with
(
Ūn+1, V̄n+1

)T
the numerical solution obtained from the exact solution (u (tn) , u

′ (tn))
T

by taking a time step-size τ .

Definition 2.2. The stage order of an FSRKN method is defined as q = min{q̃, p}, being

p the classical order of the method and q̃ the maximum value such that, for ℓ = 1, · · · ,m,

ck = k(k − 1)Aℓc
k−2, k = 2, · · · , q̃,

where ck = [ck1, · · · , cks ]T and c0 = e. Similarly, it can be expressed as

cki = k(k − 1)
i∑

j=1

aℓ,ijc
k−2
j , i = 1, · · · , s, k = 2, · · · , q̃. (12)

When the above conditions are not satisfied by any q̃ ≥ 2 , then q̃ is taken equal to 1.

Notice that the minimum stage order that is obtained is 1.

Lemma 2.3. Let an FSRKN method be given by (4) (or (5)) whose coefficients satisfy

aℓi,ii ̸= 0, ∀ i = 1, · · · , s, (that is, all its stages are implicit). Then the maximum stage

order achieved is 1.

Proof. As aℓi,ii ̸= 0, ∀ i = 1, · · · , s, in particular, aℓ1,11 ̸= 0 and aℓ,11 = 0, ℓ = 1, · · · ,m,

ℓ ̸= ℓ1 for certain ℓ1 ∈ {1, · · · ,m}. When (12) is imposed to obtain order 2, for i = 1,

c21
2

= aℓ,11, ℓ = 1, · · · ,m,
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which leads, for ℓ = ℓ1 to c1 ̸= 0. On the other hand, if ℓ ̸= ℓ1, then aℓ,11 = 0 is deduced,

which implies c1 = 0, that is against to the fact that c1 ̸= 0.

Remark 2.4. For these methods, (except for those ones with classical order 1, which do

not have much interest in practice), it is always observed an order reduction when solving

problems like (1), so it is important to have techniques at our disposal to recover the lost

order.

As it was explained before, certain boundary values for the intermediate stages must

be chosen. These boundary values determine the local order observed, as it will be shown.

To avoid this order reduction, the procedure is to calculate, in a recursive way, the value

of these intermediate stages at the boundary. Thus, by taking as first choice the natural

boundary conditions, we define

K [0]
n = [K

[0]
n,1, . . . , K

[0]
n,s]

T = [u(tn,1), . . . , u(tn,s)]
T , (13)

G
[0]
ℓ,n = [G

[0]
ℓ,n,1, · · · , G

[0]
ℓ,n,s]

T = [gℓ(tn,1), . . . , gℓ(tn,s)]
T = ∂ℓK

[0]
n , ℓ = 1, · · · ,m,

and from this definition, for integer r ≥ 1 we obtain

K [r]
n = (e⊗ I)u(tn) + τ(c⊗ I)u′(tn) + τ 2

m∑
ℓ=1

(Aℓ ⊗ I)((I ⊗ Aℓ)K
[r−1]
n + fℓ,n), (14)

G
[r]
ℓ,n = ∂ℓK

[r]
n , ℓ = 1, · · · ,m.

Then, K̄
[r]
n , integer r ≥ 0, is defined as the vector that satisfies

K̄ [r]
n = (e⊗ I)u(tn) + τ(c⊗ I)u′(tn) + τ 2

m∑
ℓ=1

(Aℓ ⊗ I)((I ⊗ Aℓ)K̄
[r]
n + fℓ,n),

(∂1, · · · , ∂m)K̄ [r]
n = (G

[r]
1,n, · · · , G[r]

m,n). (15)

From K̄
[r]
n the approximations V̄

[r]
n+1 and Ū

[r]
n+1 are given by

V̄
[r]
n+1 = u′(tn) + τ

m∑
ℓ=1

(bTℓ ⊗ I)((I ⊗ Aℓ)K̄
[r]
n + fℓ,n), (16)

Ū
[r]
n+1 = u(tn) + τ u′(tn) + τ 2

m∑
ℓ=1

(βT
ℓ ⊗ I)((I ⊗ Aℓ)K̄

[r]
n + fℓ,n). (17)

Thus, the local errors in the derivative and in the solution are defined now as

ξ
[r]
n+1 = u′(tn+1)− V̄

[r]
n+1 and ρ

[r]
n+1 = u(tn+1)− Ū

[r]
n+1, (18)

for integer n ≥ 0. Then, the following Theorem can be proven
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Theorem 2.5. Let (4) (or 5) be the time semidiscretization obtained by using an FSRKN

with stage order q = min{q̃, p} and classical order p, for problem (2), with A satisfying

hypotheses (A1–A3) and {Aℓ}mℓ=1 satisfying hypotheses (B1–B3).

If the exact solution and the split of the source term of such problem satisfy bound (3)

and the boundary values are taken as G
[r]
ℓ,n = ∂ℓK

[r]
n with K

[r]
n given by (14), integer r ≥ 0,

then the local errors satisfy

∥ξ[r]n+1∥ = O(τmin{q̃+2r,p+1}) and ∥ρ[r]n+1∥ = O(τmin{q̃+2r+1,p+1}).

Notice that for r = 0, that is, when the boundary values for the intermediate stages

are chosen as G
[0]
ℓ,n,i = ∂ℓu(tn,i), ℓ = 1, · · · ,m, i = 1, · · · , s, the local error is referred to the

stage order. The order reduction can be completely avoided when the solution is regular

enough and the sufficient number of iterations is made.

3. Space Discretization

In this part we deal with the complete discretization of problem (2). Now, we describe

a general context which permits us to include spectral discretizations as well as some

finite element and finite difference methods.

We should to take into account that, although at each stage of the time discretization

we are obtaining several simpler problems, they are related in a way that all of them

belong to the same space. For every ℓ = 1, · · · ,m we want to solve

“Find u : Ω → H solution of Aℓu = Fℓ, in Ω,

∂ℓu = Gℓ, in Γℓ = ∂ℓΩ, ”

where Fℓ ∈ H, Gℓ ∈ Hb
ℓ and u ∈ D(Aℓ). Let us assume that operators Aℓ and ∂ℓ satisfy

the hypotheses pointed in the previous Section.

For the space discretization of this problem, we consider in Ω ∪ ∂Ω a grid ΩJ (not

necessarily uniform) associated to a natural parameter J related to the number of nodes

on it. In this grid, we denote the interior nodes as ΩI
J and the boundary ones as Ωb

J , with

ΩJ = ΩI
J ∪ Ωb

J and ΩI
J ∩ Ωb

J = Ø. After that, we take HJ ⊆ D(A), a finite-dimensional

space associated to this parameter, considering the subspace (or space of less dimension

than HJ) H0
J that contains the elements of HJ which vanish in some way on the boundary

∂Ω. Then, the collocation problem is as follows
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“Find uJ : ΩJ → HJ solution of AℓuJ = Fℓ, in ΩJ \ Ωb
J ,

∂ℓuJ = Gℓ, in Ωb
ℓ,J , ”

being Ωb
ℓ,J = Γℓ ∩ Ωb

J .

In order to obtain the numerical solution, we take operators PJ : H → H0
J , the

projection operator; A0
ℓ,J ≡ PJAℓ|H0

J
: H0

J → H0
J , symmetric and negative definite; κb

ℓ,J

operator such that κb
ℓ,JGℓ interpolates Gℓ in Ωb

ℓ,J , and vanishes in ΩJ \ Ωb
ℓ,J ; Sℓ,J ≡

PJAℓκ
b
ℓ,J : Hb

ℓ → H0
J and RJ : D(A) → H0

J the operator such that RJu is the numerical

approximation to u in H0
J . Because of this, it coincides with uJ in ΩI

J and it vanishes in

Ωb
J .

Then, we should solve problem

A0
ℓ,JRJu+ Sℓ,J∂ℓu = PJAℓu or similarly A0

ℓ,JRJu+ Sℓ,JGℓ = PJFℓ. (19)

Notice that because of their definition, PJu − RJu vanishes in Ωb
J . Besides, we consider

operators A0
J = PJA|H0

J
and SJ = PJAκ

b
J , with κb

Jg interpolating g in Ωb
J and vanishing

in ΩI
J , satisfying that A0

JRJu+ SJg = PJf .

Apart from that, we denote by ∥ · ∥J an approximation to the norm in H, assuming

that it defines a discrete norm in H0
J associated to a scalar product, such that for smooth

enough u ∈ C(Ω) ⊂ H and big enough J , the following compatibility relation between

norms is satisfied: ∥PJu∥J = O(∥u∥).

In what follows, we will assume that the following hypotheses are satisfied

(H1) There exists α̃ > 0 and a non-increasing function h̃ : (α̃,∞) → (−∞, 0) such that,

for ℓ = 1, · · · ,m, if u ∈ Hα(Ω) ⊂ D(Aℓ), with α > α̃ and J is big enough3,

∥(RJ − PJ)u(t)∥J = O(J h̃(α)∥u(t)∥Hα(Ω)). (20)

(H2) For uJ ∈ H0
J , there exist constants d̃ ≥ 0 and

˜̃
d ≥ 0 such that

∥A0
JuJ∥J = O(J2d̃∥uJ∥J),

∥B0
JuJ∥J = O(J d̃∥uJ∥J),

∥A0
ℓ,JuJ∥J = O(J

˜̃
d∥uJ∥J), ∀ ℓ = 1, · · · ,m,

with B0
J the operator such that (B0

J)
2 = −A0

J .

3For spectral methods, the function h̃(α) strictly decreases when α increases. For finite-differences

and finite-element methods h̃(α) is usually constant for α̃ sufficiently long.
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(H3) The operators B0
J and (I ⊗ IJ − τ 2

∑m
ℓ=1Aℓ⊗A0

ℓ,J) are invertible
4, and their inverse

is bounded independently of τ ∈ (0, τ0] and J .

(H4) The operators τ 2(bTℓ ⊗A0
ℓ,J)(I⊗IJ−τ 2

∑m
ℓ=1 Aℓ⊗A0

ℓ,J)
−1 and τ 2(βT

ℓ ⊗A0
ℓ,J)(I⊗IJ−

τ 2
∑m

ℓ=1Aℓ ⊗A0
ℓ,J)

−1 are bounded independently of τ ∈ (0, τ0] and J , ℓ = 1, · · · ,m.

3.1. Global error

In order to obtain the totally discrete scheme, we must realize the spatial discretization

of the scheme given by (7-9). Thus, for the spatial discretization of (7), we have, in

tensorial form,

K0
n,J = (e⊗IJ)U

0
n,J+τ(c⊗IJ)V

0
n,J+τ 2

m∑
ℓ=1

(Aℓ⊗IJ)((I⊗A0
ℓ,J)K

0
n,J+(I⊗Sℓ,J)Gℓ,n+(I⊗PJ) fℓ,n),

where, by using hypothesis (H3), K0
n,J can be obtained. The numerical approximations

to the function u(t) and its derivative are given by

V 0
n+1,J = V 0

n,J + τ

m∑
ℓ=1

(bTℓ ⊗ IJ)((I ⊗ A0
ℓ,J)K

0
n,J + (I ⊗ Sℓ,J)Gℓ,n + (I ⊗ PJ) fℓ,n),

U0
n+1,J = U0

n,J + τV 0
n,J + τ 2

m∑
ℓ=1

(βT
ℓ ⊗ IJ)((I ⊗ A0

ℓ,J)K
0
n,J + (I ⊗ Sℓ,J)Gℓ,n + (I ⊗ PJ) fℓ,n).

In Section 2 it is proven the relevance of making a good choice of the boundary con-

ditions for the time discretization scheme. Now we prove the influence of such conditions

for the final scheme too.

To obtain the totally discrete scheme, with less or without order reduction, we must

also consider the new boundary conditions G
[r]
ℓ,n given by (13) and (14) instead of Gℓ,n,

thus the following scheme is obtained:

K
0,[r]
n,J = (e⊗ IJ)U

0,[r]
n,J + τ(c⊗ IJ)V

0,[r]
n,J

+τ 2
m∑
ℓ=1

(Aℓ ⊗ IJ)((I ⊗ A0
ℓ,J)K

0,[r]
n,J + (I ⊗ Sℓ,J)G

[r]
ℓ,n + (I ⊗ PJ) fℓ,n), (21)

V
0,[r]
n+1,J = V

0,[r]
n,J + τ

m∑
ℓ=1

(bTℓ ⊗ IJ)((I ⊗ A0
ℓ,J)K

0,[r]
n,J + (I ⊗ Sℓ,J)G

[r]
ℓ,n + (I ⊗ PJ) fℓ,n),(22)

U
0,[r]
n+1,J = U

0,[r]
n,J + τV

0,[r]
n,J

+τ 2
m∑
ℓ=1

(βT
ℓ ⊗ IJ)((I ⊗ A0

ℓ,J)K
0,[r]
n,J + (I ⊗ Sℓ,J)G

[r]
ℓ,n + (I ⊗ PJ) fℓ,n). (23)

4IJ : H0
J → H0

J is the identity operator.
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In this way, we define the global errors associated to these new boundary conditions

as

ẽ
[r]
n+1,J = PJu

′(tn+1)− V
0,[r]
n+1,J and e

[r]
n+1,J = PJu(tn+1)− U

0,[r]
n+1,J (24)

where we assume that e
[r]
0,J = ẽ

[r]
0,J = 0, integer r ≥ 0.

Associated to the global error, there will appear a matrix whose powers are important

to bound to obtain stability in the discrete energy norm (see [2]). In the rest of paper,

in order to simplify the expressions we denote {A0
i,J}mi=1 ≡ A0

1,J , . . . , A
0
m,J . Thus, this

stability matrix R(τ, B0
J , {A0

i,J}mi=1) is the one given by

R(τ, B0
J , {A0

i,J}mi=1) =

 r11(τ, B
0
J , {A0

i,J}mi=1) r12(τ, B
0
J , {A0

i,J}mi=1)

r21(τ, B
0
J , {A0

i,J}mi=1) r22(τ, B
0
J , {A0

i,J}mi=1)

 ,

where

r11(τ, B
0
J , {A0

i,J}mi=1) = (τB0
J)

(
IJ +

m∑
ℓ=1

(βT
ℓ ⊗ τ 2A0

ℓ,J)(I ⊗ IJ − τ 2
m∑
k=1

Ak ⊗ A0
k,J)

−1(e⊗ IJ)

)
(τB0

J)
−1,

r12(τ, B
0
J , {A0

i,J}mi=1) = (τB0
J)

(
IJ +

m∑
ℓ=1

(βT
ℓ ⊗ τ 2A0

ℓ,J)(I ⊗ IJ − τ 2
m∑
k=1

Ak ⊗ A0
k,J)

−1(c⊗ IJ)

)
, (25)

r21(τ, B
0
J , {A0

i,J}mi=1) =

(
m∑
ℓ=1

(bTℓ ⊗ τ 2A0
ℓ,J)(I ⊗ IJ − τ 2

m∑
k=1

Ak ⊗ A0
k,J)

−1(e⊗ IJ)

)
(τB0

J)
−1,

r22(τ, B
0
J , {A0

i,J}mi=1) = IJ +
m∑
ℓ=1

(bTℓ ⊗ τ 2A0
ℓ,J)(I ⊗ IJ − τ 2

m∑
k=1

Ak ⊗ A0
k,J)

−1(c⊗ IJ).

Related to these functions, in order to bound the solution and the derivative, we define

functions r̃ij(τ, B
0
J , {A0

i,J}mi=1), 1 ≤ i, j ≤ 2 given by

r̃11(τ, B
0
J , {A0

i,J}mi=1) = (τB0
J)

−1r11(τ, B
0
J , {A0

i,J}mi=1)(τB
0
J),

r̃12(τ, B
0
J , {A0

i,J}mi=1) = (τB0
J)

−1r12(τ, B
0
J , {A0

i,J}mi=1),

r̃21(τ, B
0
J , {A0

i,J}mi=1) = r21(τ, B
0
J , {A0

i,J}mi=1)(τB
0
J),

r̃22(τ, B
0
J , {A0

i,J}mi=1) = r22(τ, B
0
J , {A0

i,J}mi=1).

We define by R̃(τ, B0
J , {A0

i,J}mi=1) the matrix whose elements are functions r̃ij, 1 ≤ i, j ≤ 2.

The relation between matrices R(τ, B0
J , {A0

i,J}mi=1) and R̃(τ, B0
J , {A0

i,J}mi=1) can be ex-

pressed as

R̃(τ, B0
J , {A0

i,J}mi=1) =

 (τB0
J)

−1 0

0 IJ

R(τ, B0
J , {A0

i,J}mi=1)

 τB0
J 0

0 IJ

 . (26)
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In what follows, we will assume, for integer k ≥ 0, that

∥Rk(τ, {A0
i,J}mi=1)∥J ≤ C. (27)

We remind that the discrete energy norm is given by

∥(U, V )T∥2B0
J
= ∥B0

JU∥2J + ∥V ∥2J

Then, the following theorems can be stated

Theorem 3.1. Under hypotheses (H1-H4), bound (3), by assuming stability (27), u(k)(t) ∈

Hα(Ω), f
(k)
ℓ (t) ∈ Hα(Ω), k = 0, 1, · · · , p+2, ℓ = 1, · · · ,m, with ∥u(k)(t)∥Hα(Ω), ∥f (k)

ℓ (t)∥Hα(Ω),

uniformly bounded for 0 ≤ t ≤ T and with α such that α − d(r + 2) > α̃, the bound for

the global error in the energy norm is∥∥∥∥∥∥ e
[r]
n,J

ẽ
[r]
n,J

∥∥∥∥∥∥
B0

J

= O
(
τmin{q̃+2r,p}J d̃ + τmin{q̃+2r−1,p} + τJ d̃+h̃(α−d(r+2)) + J h̃(α−d(r+2)) + J d̃+h̃(α)

)
.

Theorem 3.2. Under hypotheses (H1-H4), bound (3), by assuming stability (27), u(k)(t) ∈

Hα(Ω), f
(k)
ℓ (t) ∈ Hα(Ω), k = 0, 1, · · · , p+2, ℓ = 1, · · · ,m, with ∥u(k)(t)∥Hα(Ω), ∥f (k)

ℓ (t)∥Hα(Ω),

uniformly bounded for 0 ≤ t ≤ T and with α such that α − d(r + 2) > α̃, the bounds for

the global error in the solution and in the derivative are

∥e[r]n,J∥J = O
(
τmin{q̃+2r,p} + τJ h̃(α−d(r+2)) + J h̃(α)

)
,

∥ẽ[r]n,J∥J = O
(
τmin{q̃+2r−1,p−1} + J h̃(α−d(r+2)) + J d̃+h̃(α)

)
.

From these results, assuming the spatial discretization to be good enough, we can

observe that the global errors are referred to the stage order, as well as it happens with

the local ones.

Remark 3.3. Sometimes, the order which is observed in the global error is one unit

greater than the one expected because of the theory. This is due to the summation-by-

parts procedure, which has been deeply studied for RKN methods (see [13, 14]).
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4. Numerical experiments

To show the behavior of FSRKN methods when solving a problem like (1), we will

solve equation

utt(x, y, t) = −uxxxx(x, y, t)− uyyyy(x, y, t) + f(x, y, t), (x, y, t) ∈ Ω× [0, T ],

u(x, y, t) = e−t+x2+2y, (x, y, t) ∈ Γ× [0, T ] = ∂Ω× [0, T ],

ux(x, y, t) = 2xe−t+x2+2y, (x, y, t) ∈ Γ1 × [0, T ],

uy(x, y, t) = 2e−t+x2+2y, (x, y, t) ∈ Γ2 × [0, T ],

u(x, y, 0) = ex
2+2y (x, y) ∈ Ω,

ut(x, y, 0) = −ex
2+2y, (x, y) ∈ Ω,

where Ω × [0, T ] = (−1, 1) × (−1, 1) × [0, 1], with Γ1 = {−1, 1} × [−1, 1] and Γ2 =

[−1, 1] × {−1, 1}. For this problem, we split the elliptic operator as A = A1 + A2, with

A1 u = −uxxxx and A2 u = −uyyyy. Besides, we decompose the source term as f(x, y, t) =

f1(x, y, t) + f2(x, y, t) taking f1(x, y, t) = uxxxx + 1
2
utt and f2(x, y, t) = uyyyy +

1
2
utt, in

order to obtain u(x, y, t) = e−t+x2+2y as the exact solution.

Firstly, we have discretized in time by using the R-stable FSRKN method presented in

[2] with stage order 1 and classical order 3. Thus, for each time step, we must solve four

boundary value problems, one per stage Kn,i, i = 1, · · · , 4. Every one of these problems is

essentially one-dimensional in space, as in the odd stages only uxxxx acts implicitly and in

the even stages the term that acts implicitly is uyyyy. We have integrated the boundary

value problem that appear by imposing the boundary values given by G
[r]
ℓ,n, ℓ = 1, · · · ,m

for r = 0 and r = 1, i.e, by taking the classical boundary conditions for r = 0 and the

new boundary conditions for r = 1.

On the other hand, after doing this, we have discretized in space by using the spectral

method described in [16, 17] (and deeply studied in [14]). For our discretization we

have taken 40 nodes in the interval (−1, 1), so we have obtained 40 decoupled systems

of size 40 × 40 to be solved at each stage. This can be compared with the system we

would have obtained when solving the same problem with an implicit RKN method and

an adequate spatial discretization for solving problems like uxxxx + uyyyy = F (u) in the

square (−1, 1) × (−1, 1); in this case we would have obtained a (40 × 40) × (40 × 40)

system to be solved.

In the tables, the local and global errors are given in the discrete norm associated to

the spatial discretization that we are using. The global error has been calculated as the
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difference between the exact solution at T = 1 and the numerical one obtained with our

method. In the figures, the error has been plotted as a function of τ , the time step-size, in

double logarithmic scale, so in this way the slope of the lines corresponds to the numerical

order observed.
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Figure 1: Graph for the local (left) and global (right) errors with order reduction (blue, continuous line)

and avoiding it with one iteration (pink dashed line) for the solution (o) and the derivative (*).

Order reduction Avoiding order reduction

τ u(t) u′(t) u(t) u′(t)

1/40 - 1/80 2.20728 1.19357 3.76489 2.92037

1/80 - 1/160 2.22778 1.21851 3.85445 3.01228

1/160 - 1/320 2.24447 1.23712 3.91191 3.07119

1/320 - 1/640 2.26014 1.25327 3.95459 3.02705

Table 1: Local orders

5. Proof of the main results

In order to prove the theorems, the following lemma is needed, which has been proven

in [2].

Lemma 5.1. Let us consider an FSRKN method satisfying that aℓi,ii > 0, i = 1, · · · , s,

ℓi ∈ {1, · · · ,m} and let {A0
ℓ}mℓ=1 be a system of self-adjoint and negative definite spatial

operators in H0. Then

(i) The operator (I ⊗ I − τ 2
∑m

ℓ=1Aℓ ⊗ A0
ℓ) is invertible, and its inverse is bounded

independently of τ ∈ (0, τ0].

16



Order reduction Avoiding order reduction

τ u(t) u′(t) u(t) u′(t)

1/40 - 1/80 2.23835 1.16461 2.93637 2.67649

1/80 - 1/160 2.18800 1.20047 2.98490 2.79997

1/160 - 1/320 2.19312 1.22326 2.98089 2.82830

1/320 - 1/640 2.21931 1.23887 2.89093 2.71291

Table 2: Global orders until T=1

(ii) The operators τ 2(bTℓ ⊗ A0
ℓ)(I ⊗ I − τ 2

∑m
ℓ=1Aℓ ⊗ A0

ℓ)
−1 and τ 2(βT

ℓ ⊗ A0
ℓ)(I ⊗ I −

τ 2
∑m

ℓ=1Aℓ ⊗ A0
ℓ)

−1 are bounded independently of τ ∈ (0, τ0], ℓ = 1, · · · ,m.

5.1. Proof of Theorem 2.5

The local errors defined by (18) can be written as

ξ
[r]
n+1 = (u′(tn+1)− V

[r]
n+1) + (V

[r]
n+1 − V̄

[r]
n+1), (28)

ρ
[r]
n+1 = (u(tn+1)− U

[r]
n+1) + (U

[r]
n+1 − Ū

[r]
n+1), (29)

with

V
[r]
n+1 = u′(tn) + τ

m∑
ℓ=1

(bTℓ ⊗ I)((I ⊗ Aℓ)K
[r]
n + fℓ,n), (30)

U
[r]
n+1 = u(tn) + τ u′(tn) + τ 2

m∑
ℓ=1

(βT
ℓ ⊗ I)((I ⊗ Aℓ)K

[r]
n + fℓ,n). (31)

where K
[r]
n is given by (13) for r = 0 and (14) for integers r ≥ 1.

Bound for V
[r]
n+1 − V̄

[r]
n+1 and U

[r]
n+1 − Ū

[r]
n+1

Let us firstly define δ
[r]
n = [δ

[r]
n,1, · · · , δ

[r]
n,s]T , integer r ≥ 0, as the vector that contains

the errors that are committed in the quadrature formula for the stages, in the way

K [r]
n = (e⊗ I)u(tn) + τ(c⊗ I)u′(tn) + τ 2

m∑
ℓ=1

(Aℓ ⊗ I)((I ⊗ Aℓ)K
[r]
n + fℓ,n) + δ[r]n . (32)

By doing (32) minus (14),

δ[r]n = τ 2
m∑
ℓ=1

(Aℓ ⊗ Aℓ)(K
[r−1]
n −K [r]

n ).

On the other hand, from (14) it can be proven that

K [r−1]
n −K [r]

n = τ 2
m∑
ℓ=1

(Aℓ ⊗ Aℓ)(K
[r−2]
n −K [r−1]

n ) = . . . =
(
τ 2

m∑
ℓ=1

Aℓ ⊗ Aℓ

)r−1

(K [0]
n −K [1]

n ).
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Finally, from (32) for r = 0 and expression (14) for r = 1, we take

δ[r]n =
(
τ 2

m∑
ℓ=1

Aℓ ⊗ Aℓ

)r
(K [0]

n −K [1]
n ) = τ 2r

( m∑
ℓ=1

Aℓ ⊗ Aℓ

)r
δ[0]n . (33)

Now, we develop δ
[0]
n component by component, by using Taylor developments with

integral rest. In order to simplify, for functions h(t) smooth enough, we introduce the

following notation:

Rp,n,i(h) =

∫ tn,i

tn

(tn,i − z)p h(p+1)(z)dz and Rp,n(h) = [Rp,n,1(h), · · · ,Rp,n,s(h)]
T .

Therefore,

δ
[0]
n,i =

p+1∑
k=2

τ kcki
k!

m∑
ℓ=1

(
Aℓu

(k−2)(tn) + f
(k−2)
ℓ (tn)

)
+

1

(p+ 1)!
Rp+1,n,i(u)

−
p+1∑
k=2

τ k

(k − 2)!

m∑
ℓ=1

i∑
j=1

aℓ,ijc
k−2
j

(
Aℓu

(k−2)(tn) + f
(k−2)
ℓ (tn)

)
− τ 2

(p− 1)!

m∑
ℓ=1

i∑
j=1

aℓ,ij

(
AℓRp−1,n,j(u) +Rp−1,n,j(fℓ)

)
=

p+1∑
k=q̃+1

τ k

k!

m∑
ℓ=1

(cki − k(k − 1)
i∑

j=1

aℓ,ijc
k−2
j )

(
Aℓu

(k−2)(tn) + f
(k−2)
ℓ (tn)

)
+

1

(p+ 1)!
Rp+1,n,i(u)−

τ 2

(p− 1)!

m∑
ℓ=1

i∑
j=1

aℓ,ij

(
AℓRp−1,n,j(u) +Rp−1,n,j(fℓ)

)
,

where we have used the definition of stage order given in (12) together with

u(k)(t) =
m∑
ℓ=1

(Aℓu
(k−2)(t) + f

(k−2)
ℓ (t)). (34)

Thus, this expression can be written in tensorial form as

δ[0]n =

p+1∑
k=q̃+1

τ k

k!

m∑
ℓ=1

(ck − k(k − 1)Aℓc
k−2)⊗

(
Aℓu

(k−2)(tn) + f
(k−2)
ℓ (tn)

)
+

1

(p+ 1)!
Rp+1,n(u)

− τ 2

(p− 1)!

m∑
ℓ=1

(Aℓ ⊗ I)
(
(I ⊗ Aℓ)Rp−1,n(u) +Rp−1,n(fℓ)

)
.

Therefore, by substituting in (33)

δ[r]n =

p+1∑
k=q̃+1

τ k+2r

k!

( m∑
ℓ1=1

Aℓ1 ⊗ Aℓ1

)r m∑
ℓ2=1

(ck − k(k − 1)Aℓ2c
k−2)⊗ (Aℓ2u

(k−2)(tn) + f
(k−2)
ℓ2

(tn))

+
τ 2r

(p+ 1)!

( m∑
ℓ=1

Aℓ ⊗ Aℓ

)r
Rp+1,n(u) (35)

− τ 2r+2

(p− 1)!

( m∑
ℓ1=1

Aℓ1 ⊗ Aℓ1

)r m∑
ℓ2=1

(Aℓ2 ⊗ I)
(
(I ⊗ Aℓ2)Rp−1,n(u) +Rp−1,n(fℓ2)

)
.
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Apart from this, we define ∆
[r]
n as the difference between K

[r]
n and K̄

[r]
n . Then, when

subtracting (15) to (32), taking into account that (∂1, · · · , ∂m)K̄ [r]
n = (∂1, · · · , ∂m)K [r]

n we

obtain

∆[r]
n = τ 2

m∑
ℓ=1

(Aℓ ⊗ Aℓ)∆
[r]
n + δ[r]n ,

(∂1, · · · , ∂m)∆[r]
n = (0, · · · , 0).

By using Lemma 5.1 we can solve for ∆
[r]
n , (notice that, now, Aℓ ≡ A0

ℓ )

∆[r]
n = (I ⊗ I − τ 2

m∑
ℓ=1

Aℓ ⊗ A0
ℓ)

−1δ[r]n . (36)

Now, we subtract (30) to (16), by using that now τ(bTk ⊗ Ak)∆
[r]
n ≡ τ(bTk ⊗ A0

k)∆
[r]
n

together with (35) and (36). Then, we obtain

V
[r]
n+1 − V̄

[r]
n+1 = τ

m∑
ℓ=1

(bTℓ ⊗ A0
ℓ)∆

[r]
n = τ

m∑
ℓ=1

(bTℓ ⊗ A0
ℓ)(I ⊗ I − τ 2

m∑
j=1

Aj ⊗ A0
j)

−1δ[r]n

=

p+1∑
k=q̃+1

τ k+2r−1

k!

m∑
ℓ1,···,ℓr+2=1

R̃k,ℓ1,···,ℓr+2(A
0
1, · · · , A0

m)Aℓ2 · · ·Aℓr+1(Aℓr+2u
(k−2)(tn) + f

(k−2)
ℓr+2

(tn))

+
τ 2r−1

(p+ 1)!

m∑
ℓ1,···,ℓr+1=1

bℓ1(A
0
1, · · · , A0

m)(Aℓ2 · · · Aℓr+1 ⊗ Aℓ2 · · ·Aℓr+1)Rp+1,n(u) (37)

− τ 2r+1

(p− 1)!

m∑
ℓ1,···,ℓr+2=1

bℓ1(A
0
1, · · · , A0

m)(Aℓ2 · · · Aℓr+2 ⊗ Aℓ2 · · ·Aℓr+1)(I ⊗ Aℓr+2)Rp−1,n(u)

− τ 2r+1

(p− 1)!

m∑
ℓ1,···,ℓr+2=1

bℓ1(A
0
1, · · · , A0

m)(Aℓ2 · · · Aℓr+2 ⊗ Aℓ2 · · ·Aℓr+1)Rp−1,n(fℓr+2),

where we have used notation

bℓ(A
0
1, · · · , A0

m) = (bTℓ ⊗ τ 2A0
ℓ)(I ⊗ I − τ 2

m∑
k=1

Ak ⊗ A0
k)

−1,

R̃k,ℓ1,···,ℓd(A
0
1, · · · , A0

m) = bℓ1(A
0
1, · · · , A0

m)(Aℓ2 · · · Aℓd−1
(ck − k(k − 1)Aℓdc

k−2)⊗ I),

Similarly, from (17) and (31), by using again (35) and (36),

U
[r]
n+1 − Ū

[r]
n+1 = τ 2

m∑
ℓ=1

(βT
ℓ ⊗ A0

ℓ)∆
[r]
n = τ 2

m∑
ℓ=1

(βT
ℓ ⊗ A0

ℓ)(I ⊗ I − τ 2
m∑
j=1

Aj ⊗ A0
j)

−1δ[r]n

=

p+1∑
k=q̃+1

τ k+2r

k!

m∑
ℓ1,···,ℓr+2=1

Rk,ℓ1,···,ℓr+2(A
0
1, · · · , A0

m)Aℓ2 · · ·Aℓr+1(Aℓr+2u
(k−2)(tn) + f

(k−2)
ℓr+2

(tn))

+
τ 2r

(p+ 1)!

m∑
ℓ1,···,ℓr+1=1

βℓ1(A
0
1, · · · , A0

m)(Aℓ2 · · · Aℓr+1 ⊗ Aℓ2 · · ·Aℓr+1)Rp+1,n(u) (38)
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− τ 2r+2

(p− 1)!

m∑
ℓ1,···,ℓr+2=1

βℓ1(A
0
1, · · · , A0

m)(Aℓ2 · · · Aℓr+2 ⊗ Aℓ2 · · ·Aℓr+1)(I ⊗ Aℓr+2)Rp−1,n(u)

− τ 2r+2

(p− 1)!

m∑
ℓ1,···,ℓr+2=1

βℓ1(A
0
1, · · · , A0

m)(Aℓ2 · · · Aℓr+2 ⊗ Aℓ2 · · ·Aℓr+1)Rp−1,n(fℓr+2),

where we have used now notation

βℓ(A
0
1, · · · , A0

m) = (βT
ℓ ⊗ τ 2A0

ℓ)(I ⊗ I − τ 2
m∑
k=1

Ak ⊗ A0
k)

−1,

Rk,ℓ1,···,ℓd(A
0
1, · · · , A0

m) = βℓ1(A
0
1, · · · , A0

m)(Aℓ2 · · · Aℓd−1
(ck − k(k − 1)Aℓdc

k−2)⊗ I),

From Lemma 5.1 we have that R̃k,ℓ1,···,ℓr+2(A
0
1, · · · , A0

m), Rk,ℓ1,···,ℓr+2(A
0
1, · · · , A0

m), bℓ1(A
0
1, · · · , A0

m)

and βℓ1(A
0
1, · · · , A0

m) are well defined and bounded for integers r ≥ 0, k ≥ q̃, ℓ1, · · · , ℓr+2 ∈

{1, · · · ,m}. Furthermore, when bounding the integral terms, if h(p+2)(t) are bounded

independently of τ for t ∈ [tn, tn,i], we have

∥Rp+1,n,i(h)∥ ≤ |ci|τ max
tn≤t≤tn,i

|tn,i − t|p+1∥h(p+2)(t)∥ = O(τ p+2). (39)

Moreover, for any (B, ∂), closed with B h(p)(t) bounded independently of τ for t ∈ [tn, tn,i]

(see [18]), we also have

∥BRp−1,n,i(h)∥ =

∥∥∥∥∫ tn,i

tn

(tn,i − z)p−1B h(p)(z)dz

∥∥∥∥ ≤ |ci|τ max
tn≤t≤tn,i

|tn,i − t|p−1∥B h(p)(t)∥ = O(τ p).

Thus, from hypothesis (B1), as (Aℓ, ∂ℓ) is closed for ℓ = 1, · · · ,m,, if A1 . . . Ak h
(p)(t) are

bounded independently of τ for t ∈ [tn, tn,i], we deduce that

∥A1 . . . AkRp−1,n,i(h)∥=
∥∥∥∥∫ tn,i

tn

(tn,i − z)p−1A1 . . . Akh
(p)(z)dz

∥∥∥∥
≤|ci|τ max

tn≤t≤tn,i

|tn,i − t|p−1∥A1 . . . Akh
(p)(t)∥ = O(τ p). (40)

Therefore, by using in expressions (37) and (38) these results together with (3), we

take

∥V [r]
n+1 − V̄

[r]
n+1∥ = O(τmin{q̃+2r,p+2r+1}) and ∥U [r]

n+1 − Ū
[r]
n+1∥ = O(τmin{q̃+2r+1,p+2r+2}).(41)

Bound for u′(tn+1)− V
[r]
n+1 and u(tn+1)− U

[r]
n+1

Differences u′(tn+1)− V
[r]
n+1 and u(tn+1)− U

[r]
n+1 can be written as

u′(tn+1)− V
[r]
n+1 = u′(tn+1)− V

[0]
n+1 +

r−1∑
i=0

(V
[i]
n+1 − V

[i+1]
n+1 ), (42)

u(tn+1)− U
[r]
n+1 = u(tn+1)− U

[0]
n+1 +

r−1∑
i=0

(U
[i]
n+1 − U

[i+1]
n+1 ). (43)
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From (30-31) together with (14-15) and (32) we obtain

V
[i]
n+1 − V

[i+1]
n+1 = τ

m∑
ℓ=1

(bTℓ ⊗ Aℓ)(K
[i]
n −K [i+1]

n ) = τ

m∑
ℓ=1

(bTℓ ⊗ Aℓ)δ
[i]
n ,

U
[i]
n+1 − U

[i+1]
n+1 = τ 2

m∑
ℓ=1

(βT
ℓ ⊗ Aℓ)(K

[i]
n −K [i+1]

n ) = τ 2
m∑
ℓ=1

(βT
ℓ ⊗ Aℓ)δ

[i]
n .

Then, because of (35) and by reorganizing the operators

V
[i]
n+1 − V

[i+1]
n+1

=

p+1∑
k = q̃ + 1,

k + 2i ≥ p

τ k+2i+1

k!

m∑
ℓ1,···,ℓi+2=1

bTℓ1Aℓ2 · · · Aℓi+1
(ck − k(k − 1)Aℓi+2

ck−2)Aℓ1 · · ·Aℓi+2
u(k−2)(tn)

+

p+1∑
k = q̃ + 1,

k + 2i ≥ p

τ k+2i+1

k!

m∑
ℓ1,···,ℓi+2=1

bTℓ1Aℓ2 · · · Aℓi+1
(ck − k(k − 1)Aℓi+2

ck−2)Aℓ1 · · ·Aℓi+1
f
(k−2)
ℓi+2

(tn)

+
τ 2i+1

(p+ 1)!

m∑
ℓ1,···,ℓi+1=1

(bTℓ1Aℓ2 · · · Aℓi+1
⊗ Aℓ1 · · ·Aℓi+1

)Rp+1,n(u)

− τ 2i+3

(p− 1)!

m∑
ℓ1,···,ℓi+2=1

(bTℓ1Aℓ2 · · · Aℓi+2
⊗ Aℓ1 · · ·Aℓi+1

)((I ⊗ Aℓi+2
)Rp−1,n(u) +Rp−1,n(fℓi+2)),

where we have used that some terms vanish because of the order p conditions ∀ i =

0, . . . , r − 1

bTℓ0Aℓ1 · · · Aℓic
k =

1

(k + 2i+ 1)(k + 2i) · · · (k + 1)
, (44)

for 0 ≤ k + 2i ≤ p− 1 and ℓ0, ℓ1, . . . , ℓi ∈ {1, . . . ,m}.

Similarly, we consider now the order p conditions ∀ i = 0, . . . , r − 1

βT
ℓ0
Aℓ1 · · · Aℓic

k =
1

(k + 2i+ 2)(k + 2i+ 1) · · · (k + 1)
, (45)

for 0 ≤ k + 2i ≤ p − 2 and ℓ0, ℓ1, . . . , ℓi ∈ {1, . . . ,m}. Then, again, because of (35) and

by reorganizing the operators

U
[i]
n+1 − U

[i+1]
n+1

=

p+1∑
k = q̃ + 1,

k + 2i ≥ p− 1

τ k+2i+2

k!

m∑
ℓ1,···,ℓi+2=1

βT
ℓ1
Aℓ2 · · · Aℓi+1

(ck − k(k − 1)Aℓi+2
ck−2)Aℓ1 · · ·Aℓi+2

u(k−2)(tn)
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+

p+1∑
k = q̃ + 1,

k + 2i ≥ p− 1

τ k+2i+2

k!

m∑
ℓ1,···,ℓi+2=1

βT
ℓ1
Aℓ2 · · · Aℓi+1

(ck − k(k − 1)Aℓi+2
ck−2)Aℓ1 · · ·Aℓi+1

f
(k−2)
ℓi+2

(tn)

+
τ 2i+2

(p+ 1)!

m∑
ℓ1,···,ℓi+1=1

(βT
ℓ1
Aℓ2 · · · Aℓi+1

⊗ Aℓ1 · · ·Aℓi+1
)Rp+1,n(u)

− τ 2i+4

(p− 1)!

m∑
ℓ1,···,ℓi+2=1

(βT
ℓ1
Aℓ2 · · · Aℓi+2

⊗ Aℓ1 · · ·Aℓi+1
)((I ⊗ Aℓi+2

)Rp−1,n(u) +Rp−1,n(fℓi+2
)).

Therefore, by using (3) we have

∥V [i]
n+1 − V

[i+1]
n+1 ∥ = O(τ p+1) and ∥U [i]

n+1 − U
[i+1]
n+1 ∥ = O(τ p+1). (46)

In order to bound u′(tn+1) − V
[0]
n+1 we use (30) for r = 0 and that K

[0]
n,i ≡ u(tn,i). By

developing by Taylor,

u′(tn+1) − V
[0]
n+1 =

p+1∑
k=1

τ k

k!
u(k+1)(tn) +

1

(p+ 1)!

∫ tn+1

tn

(tn+1 − z)p+1 u(p+3)(z)dz

−
p∑

k=0

τ k+1

k!

m∑
ℓ=1

bTℓ c
k(Aℓu

(k)(tn) + f
(k)
ℓ (tn))−

τ

p!

m∑
ℓ=1

(bTℓ ⊗ I)((I ⊗ Aℓ)Rp,n(u) +Rp,n(fℓ))

=
τ p+1

(p+ 1)!

m∑
ℓ=1

(1− (p+ 1)bTℓ c
p)(Aℓu

(p)(tn) + f
(p)
ℓ (tn))

+
1

(p+ 1)!

∫ tn+1

tn

(tn+1 − z)p+1 u(p+3)(z)dz

− τ

p!

m∑
ℓ=1

(bTℓ ⊗ I)((I ⊗ Aℓ)Rp,n(u) +Rp,n(fℓ)), (47)

where, in the last equality, we have used (34) and the order conditions given by (44).

With a similar argument to bound u(tn+1) − U
[0]
n+1, we subtract (31) for r = 0 to

u(tn+1),

u(tn+1)− U
[0]
n+1 =

τ p+1

(p+ 1)!

m∑
ℓ=1

(1− (p+ 1)pβT
ℓ c

p−1)(Aℓu
(p−1)(tn) + f

(p−1)
ℓ (tn))

+
1

(p+ 1)!

∫ tn+1

tn

(tn+1 − z)p+1 u(p+2)(z)dz

− τ 2

(p− 1)!

m∑
ℓ=1

(βT
ℓ ⊗ I)((I ⊗ Aℓ)Rp−1,n(u) +Rp−1,n(fℓ)), (48)

where (34) has been used again together with (45).

Then, by bounding (47) and (48), by using hypothesis (3), and bounds (39-40),

∥u′(tn+1)− V
[0]
n+1∥ = O(τ p+1) and ∥u(tn+1)− U

[0]
n+1∥ = O(τ p+1), (49)
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where we can conclude, by using bounds (46) and (49) in (42) and (43) that

∥u′(tn+1)− V
[r]
n+1∥ ≤ ∥v(tn+1)− V

[0]
n+1∥+

r−1∑
i=0

∥V [i]
n+1 − V

[i+1]
n+1 ∥ = O(τ p+1), (50)

∥u(tn+1)− U
[r]
n+1∥ ≤ ∥u(tn+1)− U

[0]
n+1∥+

r−1∑
i=0

∥U [i]
n+1 − U

[i+1]
n+1 ∥ = O(τ p+1). (51)

Finally, we bound (28) and (29) by using (41), (50) and (51), so

∥ξ[r]n+1∥ ≤ ∥u′(tn+1)− V
[r]
n+1∥+ ∥V [r]

n+1 − V̄
[r]
n+1∥

= O(τmin{q̃+2r,p+2r+1}) +O(τ p+1) = O(τmin{q̃+2r,p+1}),

∥ρ[r]n+1∥ ≤ ∥u(tn+1)− U
[r]
n+1∥+ ∥U [r]

n+1 − Ū
[r]
n+1∥

= O(τmin{q̃+2r+1,p+2r+2}) +O(τ p+1) = O(τmin{q̃+2r+1,p+1}).

5.2. Proof of Theorem 3.1

In order to study these global errors, let us define K̄
0,[r]
n,J , Ū

0,[r]
n+1,J and V̄

0,[r]
n+1,J as the

vectors that satisfy

K̄
0,[r]
n,J = (e⊗RJ)u(tn) + τ(c⊗RJ)u

′(tn)

+τ 2
m∑
ℓ=1

(Aℓ ⊗ IJ)((I ⊗ A0
ℓ,J)K̄

0,[r]
n,J + (I ⊗ Sℓ,J)G

[r]
ℓ,n + (I ⊗RJ) fℓ,n), (52)

V̄
0,[r]
n+1,J = RJu

′(tn) + τ
m∑
ℓ=1

(bTℓ ⊗ IJ)((I ⊗ A0
ℓ,J)K̄

0,[r]
n,J + (I ⊗ Sℓ,J)G

[r]
ℓ,n + (I ⊗RJ) fℓ,n),(53)

Ū
0,[r]
n+1,J = RJu(tn) + τRJu

′(tn)

+τ 2
m∑
ℓ=1

(βT
ℓ ⊗ IJ)((I ⊗ A0

ℓ,J)K̄
0,[r]
n,J + (I ⊗ Sℓ,J)G

[r]
ℓ,n + (I ⊗RJ) fℓ,n). (54)

Taking into account the expressions for V̄
[r]
n+1, Ū

[r]
n+1, ξ

[r]
n+1 and ρ

[r]
n+1 given by (16-18),

the global errors can be decomposed as

ẽ
[r]
n+1,J = (PJ −RJ)u

′(tn+1) +RJξ
[r]
n+1 + (RJ V̄

[r]
n+1 − V̄

0,[r]
n+1,J) + (V̄

0,[r]
n+1,J − V

0,[r]
n+1,J), (55)

e
[r]
n+1,J = (PJ −RJ)u(tn+1) +RJρ

[r]
n+1 + (RJ Ū

[r]
n+1 − Ū

0,[r]
n+1,J) + (Ū

0,[r]
n+1,J − U

0,[r]
n+1,J).(56)

If we apply operator RJ to the expressions given by (15-17), for integer r ≥ 0, we take

(I ⊗RJ)K̄
[r]
n = (e⊗RJ)u(tn) + τ(c⊗RJ)u

′(tn)

+τ 2
m∑
ℓ=1

(Aℓ ⊗RJ)((I ⊗ Aℓ)K̄
[r]
n + fℓ,n), (57)

(∂1, · · · , ∂m)K̄ [r]
n = (G

[r]
1,n, · · · , G[r]

m,n),
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RJ V̄
[r]
n+1 = RJu

′(tn) + τ
m∑
ℓ=1

(bTℓ ⊗RJ)((I ⊗ Aℓ)K̄
[r]
n + fℓ,n), (58)

RJ Ū
[r]
n+1 = RJu(tn) + τRJu

′(tn)

+τ 2
m∑
ℓ=1

(βT
ℓ ⊗RJ)((I ⊗ Aℓ)K̄

[r]
n + fℓ,n). (59)

Doing now (57) minus (52), and by using (19) we obtain

(I ⊗RJ)K̄
[r]
n − (I ⊗ IJ)K̄

0,[r]
n,J

= τ 2
m∑
ℓ=1

(Aℓ ⊗ IJ)((I ⊗RJ Aℓ)K̄
[r]
n − (I ⊗ A0

ℓ,J)K̄
0,[r]
n,J − (I ⊗ Sℓ,J)G

[r]
ℓ,n)

= τ 2
m∑
ℓ=1

(Aℓ ⊗ A0
ℓ,J)((I ⊗RJ) K̄

[r]
n − (I ⊗ IJ)K̄

0,[r]
n,J ))

+τ 2
m∑
ℓ=1

(Aℓ ⊗ (RJ − PJ)Aℓ)K̄
[r]
n .

Therefore, by applying hypothesis (H3) we obtain

(I ⊗RJ)K̄
[r]
n − (I ⊗ IJ)K̄

0,[r]
n,J = (I ⊗ IJ − τ 2

m∑
ℓ=1

(Aℓ ⊗ A0
ℓ,J))

−1τ 2
m∑
j=1

(Aj ⊗ (RJ − PJ)Aj)K̄
[r]
n .(60)

On the other hand, subtracting (54) to (59), and by using again (19),

RJ Ū
[r]
n+1 − Ū

0,[r]
n+1,J = τ 2

m∑
ℓ=1

(βT
ℓ ⊗ (RJ − PJ)Aℓ)K̄

[r]
n

+τ 2
m∑
ℓ=1

(βT
ℓ ⊗ A0

ℓ,J)((I ⊗RJ) K̄
[r]
n − (I ⊗ IJ)K̄

0,[r]
n,J ).

Now, by substituting in this expression (60) and by using the following notation

T (τ, vℓ1 ,Aℓ2 , {A0
i,J}mi=1) = τ 2(vTℓ1 ⊗ A0

ℓ1,J
)(I ⊗ IJ − τ 2

m∑
k=1

Ak ⊗ A0
k,J)

−1(Aℓ2 ⊗ (RJ − PJ)),(61)

we take

RJ Ū
[r]
n+1 − Ū

0,[r]
n+1,J = τ 2

m∑
ℓ=1

(βT
ℓ ⊗ (RJ − PJ)Aℓ)K̄

[r]
n

+τ 2
m∑

ℓ1,ℓ2=1

T (τ, βℓ1 ,Aℓ2 , {A0
i,J}mi=1)(I ⊗ Aℓ2)K̄

[r]
n . (62)

In an analogous way, doing (58) minus (53), by using (19) and (60) together with (61)

we obtain

RJ V̄
[r]
n+1 − V̄

0,[r]
n+1,J = τ

m∑
ℓ=1

(bTℓ ⊗ (RJ − PJ)Aℓ)K̄
[r]
n

+τ
m∑

ℓ1,ℓ2=1

T (τ, bℓ1 ,Aℓ2 , {A0
i,J}mi=1)(I ⊗ Aℓ2)K̄

[r]
n . (63)
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To bound Ū
0,[r]
n+1,J − U

0,[r]
n+1,J (as well as V̄

0,[r]
n+1,J − V

0,[r]
n+1,J) we must subtract (21) to (52),

and by applying notation (24) together with Lemma 5.1 we take

K̄
0,[r]
n,J − K

0,[r]
n,J = (I ⊗ IJ − τ 2

m∑
ℓ=1

Aℓ ⊗ A0
ℓ,J)

−1
(
(e⊗ IJ)e

[r]
n,J + τ(c⊗ IJ)ẽ

[r]
n,J (64)

+τ 2
m∑
ℓ=1

(Aℓ ⊗ (RJ − PJ))fℓ,n + (e⊗ (RJ − PJ))u(tn) + τ(c⊗ (RJ − PJ))u
′(tn)

)
.

Now, on the one hand we do (54) minus (23) and on the other (53) minus (22) in order

to calculate Ū
0,[r]
n+1,J − U

0,[r]
n+1,J and V̄

0,[r]
n+1,J − V

0,[r]
n+1,J , respectively. From here, by using (64),

we obtain

Ū
0,[r]
n+1,J − U

0,[r]
n+1,J = e

[r]
n,J + (RJ − PJ)u(tn) + τ ẽ

[r]
n,J + τ(RJ − PJ)u

′(tn)

+τ 2
m∑
ℓ=1

(βT
ℓ ⊗ A0

ℓ,J)(K̄
0,[r]
n,J −K

0,[r]
n,J ) + τ 2

m∑
ℓ=1

(βT
ℓ ⊗ (RJ − PJ)) fℓ,n

expression that by using (25) together with (61) and (63) we reorganize as

Ū
0,[r]
n+1,J − U

0,[r]
n+1,J = (B0

J)
−1r11(τ, B

0
J , {A0

i,J}mi=1)B
0
J(e

[r]
n,J + (RJ − PJ)u(tn))

+(B0
J)

−1r12(τ, B
0
J , {A0

i,J}mi=1)(ẽ
[r]
n,J + (RJ − PJ)u

′(tn)) (65)

+τ 2
m∑

ℓ1,ℓ2=1

T (τ, βℓ1 ,Aℓ2 , {A0
i,J}mi=1)fℓ2,n + τ 2

m∑
ℓ=1

(βT
ℓ ⊗ (RJ − PJ))fℓ,n

and similarly

V̄
0,[r]
n+1,J − V

0,[r]
n+1,J = r21(τ, B

0
J , {A0

i,J}mi=1)B
0
J(e

[r]
n,J + (RJ − PJ)u(tn))

+r22(τ, B
0
J , {A0

i,J}mi=1)(ẽ
[r]
n,J + (RJ − PJ)u

′(tn)) (66)

+τ
m∑

ℓ1,ℓ2=1

T (τ, bℓ1 ,Aℓ2 , {A0
i,J}mi=1)fℓ2,n + τ

m∑
ℓ=1

(bTℓ ⊗ (RJ − PJ))fℓ,n.

From expressions (62) and (65) in (56) and the ones given by (63) and (66) in (55),

we have

e
[r]
n+1,J + (RJ − PJ)u(tn+1) = RJρ

[r]
n+1 + τ 2

m∑
ℓ=1

(βT
ℓ ⊗ (RJ − PJ)) ((I ⊗ Aℓ)K̄

[r]
n + fℓ,n)

+τ 2
m∑

ℓ1,ℓ2=1

T (τ, βℓ1 ,Aℓ2 , {A0
i,J}mi=1)((I ⊗ Aℓ2)K̄

[r]
n + fℓ2,n)

+(B0
J)

−1r11(τ, B
0
J , {A0

i,J}mi=1)B
0
J(e

[r]
n,J + (RJ − PJ)u(tn))

+(B0
J)

−1r12(τ, B
0
J , {A0

i,J}mi=1)(ẽ
[r]
n,J + (RJ − PJ)u

′(tn))
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and

ẽ
[r]
n+1,J + (RJ − PJ)u

′(tn+1) = RJξ
[r]
n+1 + τ

m∑
ℓ=1

(bTℓ ⊗ (RJ − PJ)) ((I ⊗ Aℓ)K̄
[r]
n + fℓ,n)

+τ
m∑

ℓ1,ℓ2=1

T (τ, bℓ1 ,Aℓ2 , {A0
i,J}mi=1)((I ⊗ Aℓ2)K̄

[r]
n + fℓ2,n)

+r21(τ, B
0
J , {A0

i,J}mi=1)B
0
J(e

[r]
n,J + (RJ − PJ)u(tn))

+r22(τ, B
0
J , {A0

i,J}mi=1)(ẽ
[r]
n,J + (RJ − PJ)u

′(tn))

If we define matrix M(τ, B0
J , {A0

i,J}mi=1) as

M(τ, B0
J , {A0

i,J}mi=1) =

 (B0
J)

−1r11(τ, B
0
J , {A0

i,J}mi=1)B
0
J (B0

J)
−1r12(τ, B

0
J , {A0

i,J}mi=1)

r21(τ, B
0
J , {A0

i,J}mi=1)B
0
J r22(τ, B

0
J , {A0

i,J}mi=1)

 ,

then the global errors can be written in matrix form as follows e
[r]
n+1,J + (RJ − PJ)u(tn+1)

ẽ
[r]
n+1,J + (RJ − PJ)u

′(tn+1)

 = M(τ, B0
J , {A0

i,J}mi=1)

 e
[r]
n,J + (RJ − PJ)u(tn)

ẽ
[r]
n,J + (RJ − PJ)u

′(tn)


+

 τ 2
∑m

ℓ1,ℓ2=1 T (τ, βℓ1 ,Aℓ2 , {A0
i,J}mi=1)((I ⊗ Aℓ2)K̄

[r]
n + fℓ2,n)

τ
∑m

ℓ1,ℓ2=1 T (τ, bℓ1 ,Aℓ2 , {A0
i,J}mi=1)((I ⊗ Aℓ2)K̄

[r]
n + fℓ2,n)


+

 τ 2
∑m

ℓ=1(β
T
ℓ ⊗ (RJ − PJ))((I ⊗ Aℓ)K̄

[r]
n + fℓ,n)

τ
∑m

ℓ=1(b
T
ℓ ⊗ (RJ − PJ))((I ⊗ Aℓ)K̄

[r]
n + fℓ,n)

+

 RJρ
[r]
n+1

RJξ
[r]
n+1


and, in a recursive way, we get that e
[r]
n,J + (RJ − PJ)u(tn)

ẽ
[r]
n,J + (RJ − PJ)u

′(tn)

 = Mn(τ, B0
J , {A0

i,J}mi=1)

 (RJ − PJ)u(0)

(RJ − PJ)u
′(0)

 (67)

+
m∑
k=1

Mn−k(τ, B0
J , {A0

i,J}mi=1)

 τ 2
∑m

ℓ1,ℓ2=1 T (τ, βℓ1 ,Aℓ2 , {A0
i,J}mi=1)((I ⊗ Aℓ2)K̄

[r]
k−1 + fℓ2,k−1)

τ
∑m

ℓ1,ℓ2=1 T (τ, bℓ1 ,Aℓ2 , {A0
i,J}mi=1)((I ⊗ Aℓ2)K̄

[r]
k−1 + fℓ2,k−1)


+

m∑
k=1

Mn−k(τ, B0
J , {A0

i,J}mi=1)

 τ 2
∑m

ℓ=1(β
T
ℓ ⊗ (RJ − PJ))((I ⊗ Aℓ)K̄

[r]
k−1 + fℓ,k−1)

τ
∑m

ℓ=1(b
T
ℓ ⊗ (RJ − PJ))((I ⊗ Aℓ)K̄

[r]
k−1 + fℓ,k−1)

+

 RJρ
[r]
k

RJξ
[r]
k


Apart from this, notice that

M(τ, B0
J , {A0

i,J}mi=1) =

 (B0
J)

−1 0

0 IJ

R(τ, B0
J , {A0

i,J}mi=1)

 B0
J 0

0 IJ

 (68)

and therefore,

Mk(τ, B0
J , {A0

i,J}mi=1) =

 (B0
J)

−1 0

0 IJ

Rk(τ, B0
J , {A0

i,J}mi=1)

 B0
J 0

0 IJ

 .
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Then, when we bound in the energy norm, by using bound (27), we get that

∥Mk(τ, B0
J , {A0

i,J}mi=1)∥B0
J

=

∥∥∥∥∥∥
 B0

J 0

0 IJ

Mk(τ, B0
J , {A0

i,J}mi=1)

 (B0
J)

−1 0

0 IJ

∥∥∥∥∥∥
J

=
∥∥Rk(τ, B0

J , {A0
i,J}mi=1)

∥∥
J
≤ C

Therefore, when we bound in the energy norm expression (67), we get that∥∥∥∥∥∥
 e

[r]
n,J

ẽ
[r]
n,J

∥∥∥∥∥∥
B0

J

≤ ∥Rn(τ, B0
J , {A0

i,J}mi=1)∥J
(
∥B0

J(RJ − PJ)u(0)∥J + ∥(RJ − PJ)u
′(0)∥J

)
+τ 2

m∑
k=1

∥Rn−k(τ, B0
J , {A0

i,J}mi=1)∥J∥
m∑

ℓ1,ℓ2=1

B0
JT (τ, βℓ1 ,Aℓ2 , {A0

i,J}mi=1)((I ⊗ Aℓ2)K̄
[r]
k−1 + fℓ2,k−1)∥J

+τ
m∑
k=1

∥Rn−k(τ, B0
J , {A0

i,J}mi=1)∥J∥
m∑

ℓ1,ℓ2=1

T (τ, bℓ1 ,Aℓ2 , {A0
i,J}mi=1)((I ⊗ Aℓ2)K̄

[r]
k−1 + fℓ2,k−1)∥J

+
m∑
k=1

∥Rn−k(τ, B0
J , {A0

i,J}mi=1)∥J

(
τ 2∥

m∑
ℓ=1

B0
J(β

T
ℓ ⊗ (RJ − PJ))((I ⊗ Aℓ)K̄

[r]
k−1 + fℓ,k−1)∥J + ∥B0

JRJρ
[r]
k ∥J

)

+
m∑
k=1

∥Rn−k(τ, B0
J , {A0

i,J}mi=1)∥J

(
τ∥

m∑
ℓ=1

(bTℓ ⊗ (RJ − PJ))((I ⊗ Aℓ)K̄
[r]
k−1 + fℓ,k−1)∥J + ∥RJξ

[r]
k ∥J

)
+∥B0

J(RJ − PJ)u(tn)∥J + ∥(RJ − PJ)u
′(tn)∥J

From here, by taking into account the expression for functions T (τ, vℓ1 ,Aℓ2 , {A0
i,J}mi=1),

1 ≤ ℓ1, ℓ2 ≤ m, the bound (27) together with hypotheses (H2) and (H4), we get that∥∥∥∥∥∥
 e

[r]
n,J

ẽ
[r]
n,J

∥∥∥∥∥∥
B0

J

= O(J d̃∥(RJ − PJ)u(0)∥J + J d̃∥(RJ − PJ)u(tn)∥J)

+ O(∥(RJ − PJ)u
′(tn)∥J + ∥(RJ − PJ)u

′(0)∥J)

+ τ 2
m∑
k=1

O(J d̃∥
m∑
ℓ=1

(e⊗ (RJ − PJ))((I ⊗ Aℓ)K̄
[r]
k−1 + fℓ,k−1)∥J)

+ τ

m∑
k=1

O(∥
m∑
ℓ=1

(e⊗ (RJ − PJ))((I ⊗ Aℓ)K̄
[r]
k−1 + fℓ,k−1)∥J)

+
m∑
k=1

O(J d̃τ 2∥
m∑
ℓ=1

(βT
ℓ ⊗ (RJ − PJ))((I ⊗ Aℓ)K̄

[r]
k−1 + fℓ,k−1)∥J + J d̃∥RJρ

[r]
k ∥J)

+
m∑
k=1

O(τ∥
m∑
ℓ=1

(bTℓ ⊗ (RJ − PJ))((I ⊗ Aℓ)K̄
[r]
k−1 + fℓ,k−1)∥J + ∥RJξ

[r]
k ∥J)

From hypothesis (H1) and the uniform boundedness of u and fℓ, ℓ = 1, · · · ,m, we
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have5

∥(PJ −RJ)u(tn)∥J = O(J h̃(α)∥u(tn)∥Hα(Ω)) = O(J h̃(α)∥u∥∞,Hα(Ω)) = O(J h̃(α)), (69)

∥(PJ −RJ)u
′(tn)∥J = O(J h̃(α)∥u′(tn)∥Hα(Ω)) = O(J h̃(α)∥u′∥∞,Hα(Ω)) = O(J h̃(α)),(70)

∥(RJ − PJ)fℓ(tk,i)∥J = O(J h̃(α−d)∥fℓ(tk,i)∥Hα−d(Ω))

= O(J h̃(α−d)∥fℓ∥∞,Hα−d(Ω)) = O(J h̃(α−d)). (71)

The bounds obtained for ∥(RJ −PJ)u(0)∥J and ∥(RJ −PJ)u
′(0)∥J are similar to the ones

given by (69) and (70). From (71) we deduce, for v ∈ Rs, ℓ = 1, · · · ,m and k ≥ 0 that

∥(vT ⊗ (RJ − PJ))fℓ,k∥J = O(J h̃(α−d)). (72)

On the other hand, we have defined ∆
[r]
k = K

[r]
k −K̄

[r]
k , so we have that K̄

[r]
k = K

[r]
k −∆

[r]
k .

From (13) and (14) it can be proven in a recursive way that

K
[r]
k =

r−1∑
j=0

τ 2j(
m∑
ℓ=1

Aℓ ⊗ Aℓ)
j(e⊗ I)u(tk) +

r−1∑
j=0

τ 2j+1(
m∑
ℓ=1

Aℓ ⊗ Aℓ)
j(c⊗ I)u′(tk)

+
r−1∑
j=0

τ 2j+2(
m∑
ℓ=1

Aℓ ⊗ Aℓ)
j

m∑
i=1

(Ai ⊗ I)fi,k +
r∑

j=0

τ 2j(
m∑
ℓ=1

Aℓ ⊗ Aℓ)
jK

[0]
k ,

so (I ⊗ Aℓ)K
[r]
k ∈ Hα−d(r+1)(Ω) for ℓ = 1, . . . ,m. Apart from that, from (32) for r = 0,

(33) and (36), we take

∆
[r]
k = τ 2r

(
I ⊗ I − τ 2

m∑
ℓ=1

Aℓ ⊗ A0
ℓ

)−1

(
m∑
ℓ=1

Aℓ ⊗ Aℓ)
r
[
K

[0]
k − τ 2

m∑
ℓ=1

(Aℓ ⊗ I)((I ⊗ Aℓ)K
[0]
k + fℓ,k)

−(e⊗ I)u(tk)− τ(c⊗ I)u′(tk)
]
,

which permits us to deduce that ∆
[r]
k ∈ Hα−(r+1)d(Ω). Therefore (I⊗Aℓ)∆

[r]
k ∈ Hα−(r+2)d(Ω).

From this, we have that K̄
[r]
k ∈ Hα−(r+2)d(Ω), so by bounding, for v ∈ Rs

∥(vT ⊗ (RJ − PJ)Aℓ)K̄
[r]
k ∥J = O(J h̃(α−d(r+2))). (73)

Finally,

∥RJρ
[r]
k ∥J ≤ ∥PJρ

[r]
k ∥J + ∥(RJ − PJ)ρ

[r]
k ∥J ≤ ∥PJρ

[r]
k ∥J + ∥(RJ − PJ)(u(tk)− U

[0]
k )∥J

+
r−1∑
i=0

∥(RJ − PJ)(U
[i]
k − U

[i+1]
k )∥J + ∥(RJ − PJ)(U

[r]
k − Ū

[r]
k )∥J ,

∥RJξ
[r]
k ∥J ≤ ∥PJξ

[r]
k ∥J + ∥(RJ − PJ)(u

′(tk)− V
[0]
k )∥J

+
r−1∑
i=0

∥(RJ − PJ)(V
[i]
k − V

[i+1]
k )∥J + ∥(RJ − PJ)(V

[r]
k − V̄

[r]
k )∥J .

5The notation ∥u∥∞,Hα(Ω) ≡ max0≤t≤T ∥u(t)∥Hα(Ω).
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By bounding, using the results (47-49) together with (20), we have

∥(RJ − PJ)(u
′(tk)− V

[0]
k )∥J = O(τ p+1J h̃(α−d)),

∥(RJ − PJ)(u(tk)− U
[0]
k )∥J = O(τ p+1J h̃(α−d)).

Apart form this, from the definition of V
[i]
k and U

[i]
k , given by (30) and (31) respectively,

as (I ⊗ Aℓ)K
[i]
k ∈ Hα−d(i+1)(Ω), we have that V

[i]
k − V

[i+1]
k ∈ Hα−d(i+2)(Ω) and U

[i]
k −

U
[i+1]
k Hα−d(i+2)(Ω). Then, by using this together with bounds (46), we get

∥(RJ − PJ)(U
[i]
k − U

[i+1]
k )∥J = O(τ p+1J h̃(α−d(i+2))),

∥(RJ − PJ)(V
[i]
k − V

[i+1]
k )∥J = O(τ p+1J h̃(α−d(i+2))).

Finally, as U
[r]
k − Ū

[r]
k = τ 2

∑m
ℓ=1(β

T
ℓ ⊗ A0

ℓ)∆
[r]
k−1 and V

[r]
k − V̄

[r]
k = τ

∑m
ℓ=1(b

T
ℓ ⊗ A0

ℓ)∆
[r]
k−1,

we deduce that U
[r]
k − Ū

[r]
k ∈ Hα−d(r+2)(Ω) and V

[r]
k − V̄

[r]
k ∈ Hα−d(r+2)(Ω); thus by using

(41), we get that

∥(RJ − PJ)(U
[r]
k − Ū

[r]
k )∥J = O(τmin{q̃+2r+1,p+2r+2}J h̃(α−d(r+2))),

∥(RJ − PJ)(V
[r]
k − V̄

[r]
k )∥J = O(τmin{q̃+2r,p+2r+1}J h̃(α−d(r+2))).

Therefore, Theorem 2.5 together with these bounds leads to

∥RJρ
[r]
k ∥J = O(τmin{q̃+2r+1,p+1}) +O(τ p+1J h̃(α−d))

+
r−1∑
i=0

O(τ p+1J h̃(α−d(i+2))) +O(τmin{q̃+2r+1,p+2r+2}J h̃(α−d(r+2)))

= O(τmin{q̃+2r+1,p+1}), (74)

and, similarly

∥RJξ
[r]
k ∥J = O(τmin{q̃+2r,p+1}). (75)

Then, by using bounds (69-75) we get∥∥∥∥∥∥
 e

[r]
n,J

ẽ
[r]
n,J

∥∥∥∥∥∥
B0

J

= O(J d̃+h̃(α) + J h̃(α)) + τ 2
m∑
k=1

O(J d̃+h̃(α−d(r+2))) + τ
m∑
k=1

O(J h̃(α−d(r+2)))

+τ 2
m∑
k=1

O(J d̃+h̃(α−d(r+2))) + τ
m∑
k=1

O(J h̃(α−d(r+2)))

+
m∑
k=1

O(τmin{q̃+2r+1,p+1}J d̃ + τmin{q̃+2r,p+1}) +O(J d̃+h̃(α) + J h̃(α))

= O(τmin{q̃+2r,p}J d̃ + τmin{q̃+2r−1,p} + τJ d̃+h̃(α−d(r+2)) + J h̃(α−d(r+2)) + J d̃+h̃(α))
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5.3. Proof of Theorem 3.2

To calculate the error in the solution and in the derivative, we use that the powers of

matrix R(τ, B0
J , {A0

i,J}mi=1) can be expressed as

Rk(τ, B0
J , {A0

i,J}mi=1) =

 r11,k(τ, B
0
J , {A0

i,J}mi=1) r12,k(τ, B
0
J , {A0

i,J}mi=1)

r21,k(τ, B
0
J , {A0

i,J}mi=1) r22,k(τ, B
0
J , {A0

i,J}mi=1)

 ,

where the elements rij,k, 1 ≤ i, j ≤ 2, integer k ≥ 1, are formed by products and sums

of the elements rij, 1 ≤ i, j ≤ 2. From (27) we take that ∥R(τ, B0
J , {A0

i,J}mi=1)∥J ≤ C,

with C constant independent of the power k. Therefore, we can deduce that, (for C again

constants independent of k)

∥rij,k(τ, B0
J , {A0

i,J}mi=1)∥J ≤ C, 1 ≤ i, j ≤ 2. (76)

On the other hand, by using (26) together with (68), we get that

Mk(τ, B0
J , {A0

i,J}mi=1) =

 r̃11,k(τ, B
0
J , {A0

i,J}mi=1) τ r̃12,k(τ, B
0
J , {A0

i,J}mi=1)

τ−1r̃21,k(τ, B
0
J , {A0

i,J}mi=1) r̃22,k(τ, B
0
J , {A0

i,J}mi=1)

 .

Therefore, by using this in (67), together with τ−1r̃21,k(τ, {A0
i,J}mi=1) = r21,k(τ, {A0

i,J}mi=1)B
0
J

and bounding adequately, we obtain

∥e[r]n,J∥J ≤ ∥(RJ − PJ)u(tn)∥J + ∥r̃11,n(τ, B0
J , {A0

i,J}mi=1)∥J∥(RJ − PJ)u(0)∥J

+τ∥r̃12,n(τ, B0
J , {A0

i,J}mi=1)∥J∥(RJ − PJ)u
′(0)∥J

+τ 2
m∑
k=1

∥r̃11,n−k(τ, B
0
J , {A0

i,J}mi=1)∥J∥
m∑

ℓ1,ℓ2=1

T (τ, βℓ1 ,Aℓ2 , {A0
i,J}mi=1)((I ⊗ Aℓ2)K̄

[r]
k−1 + fℓ2,k−1)∥J

+τ 2
m∑
k=1

∥r̃12,n−k(τ, B
0
J , {A0

i,J}mi=1)∥J∥
m∑

ℓ1,ℓ2=1

T (τ, bℓ1 ,Aℓ2 , {A0
i,J}mi=1)((I ⊗ Aℓ2)K̄

[r]
k−1 + fℓ2,k−1)∥J

+
m∑
k=1

∥r̃11,n−k(τ, B
0
J , {A0

i,J}mi=1)∥J

(
τ 2∥

m∑
ℓ=1

(βT
ℓ ⊗ (RJ − PJ))((I ⊗ Aℓ)K̄

[r]
k−1 + fℓ,k−1)∥J + ∥RJρ

[r]
k ∥J

)

+τ
m∑
k=1

∥r̃12,n−k(τ, B
0
J , {A0

i,J}mi=1)∥J

(
τ∥

m∑
ℓ=1

(bTℓ ⊗ (RJ − PJ))((I ⊗ Aℓ)K̄
[r]
k−1 + fℓ,k−1)∥J + ∥RJξ

[r]
k ∥J

)

and

∥ẽ[r]n,J∥J ≤ ∥(RJ − PJ)u
′(tn)∥J + ∥r21,n(τ, B0

J , {A0
i,J}mi=1)∥J∥B0

J(RJ − PJ)u(0)∥J

+∥r̃22,n(τ, B0
J , {A0

i,J}mi=1)∥J∥(RJ − PJ)u
′(0)∥J

+τ
m∑
k=1

∥r̃21,n−k(τ, B
0
J , {A0

i,J}mi=1)∥J∥
m∑

ℓ1,ℓ2=1

T (τ, βℓ1 ,Aℓ2 , {A0
i,J}mi=1)((I ⊗ Aℓ2)K̄

[r]
k−1 + fℓ2,k−1)∥J
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+τ 2
m∑
k=1

∥r̃22,n−k(τ, B
0
J , {A0

i,J}mi=1)∥J∥
m∑

ℓ1,ℓ2=1

T (τ, bℓ1 ,Aℓ2 , {A0
i,J}mi=1)((I ⊗ Aℓ2)K̄

[r]
k−1 + fℓ2,k−1)∥J

+
m∑
k=1

∥τ−1r̃21,n−k(τ, B
0
J , {A0

i,J}mi=1)∥Jτ 2∥
m∑
ℓ=1

(βT
ℓ ⊗ (RJ − PJ))((I ⊗ Aℓ)K̄

[r]
k−1 + fℓ,k−1)∥J

+
m∑
k=1

∥τ−1r̃21,n−k(τ, B
0
J , {A0

i,J}mi=1)∥J∥RJρ
[r]
k ∥J

+
m∑
k=1

∥τ−1r̃21,n−k(τ, B
0
J , {A0

i,J}mi=1)∥Jτ 2∥
m∑
ℓ=1

(βT
ℓ ⊗ (RJ − PJ))((I ⊗ Aℓ)K̄

[r]
k−1 + fℓ,k−1)∥J

+
m∑
k=1

∥r̃22,n−k(τ, B
0
J , {A0

i,J}mi=1)∥J∥RJξ
[r]
k ∥J .

By using the results obtained in [2], together with the stability bound (27), we obtain

that

∥r̃ij,k(τ, B0
J , {A0

i,J}mi=1)∥ ≤ C, 1 ≤ i, j,≤ 2.

Then, by using this result together with bounds (76) and (72-75), we get the result.
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