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1 Introduction

Throughout the paper we will use the standard definition of the generalized hypergeometric function
pFq as the sum of the series

pFq

(
a
b

∣∣∣∣ z) = pFq (a; b; z) =
∞∑
n=0

(a1)n(a2)n · · · (ap)n
(b1)n(b2)n · · · (bq)nn!

zn (1)

if p ≤ q, z ∈ C. If p = q + 1 the above series only converges in the open unit disk and pFq(z) is
defined as its analytic continuation for z ∈ C\[1,∞). Here (a)n = Γ(a+n)/Γ(a) denotes the rising
factorial (or Pochhammer’s symbol) and a = (a1, . . . , ap), b = (b1, . . . , bq) are (generally complex)
parameter vectors, such that −bj /∈ N0, j = 1, . . . , q. This last restriction can be easily removed
by dividing both sides of (1) by

∏q
k=1 Γ(bk). The resulting function (known as the regularized

generalized hypergeometric function) is entire in b. One useful tool in the study hypergeometric
functions is their integral representations. Probably, the earliest such representation is given by
Euler’s integral

2F1 (σ, a; b;−z) =
Γ(b)

Γ(a)Γ(b− a)

∫ 1

0

ta−1(1− t)b−a−1

(1 + zt)σ
dt,
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that is finite for z ∈ C \ (−∞,−1], <(b − a) > 0 and <(a) > 0. This formula can be interpreted
as the generalized Stieltjes transform of the beta density ta−1(1 − t)b−a−1. In a recent paper [27],
Koornwinder generalized this formula and related it to fractional integration formulas and trans-
mutation operators. See also references in [27] for the history of the subject. Similar formulas with
the generalized Stieltjes transform replaced by the Laplace and cosine Fourier transforms are valid
for 1F1 and 0F1, respectively. It seems surprising that for p > 1 the generalized Stieltjes transform
representation of p+1Fp (as well as the Laplace and cosine Fourier transform representations for
pFp and p−1Fp) has been only derived in 1994 by Kiryakova in her book [25, Chapter 4] and the
article [26] by the same author. Her method of proof involves consecutive fractional integrations
and requires the restrictions bj > aj > 0 on parameters in (2). We rediscovered similar representa-
tion using a different method in [23] and utilized it to derive various inequalities and monotonicity
results for p+1Fp. Next, we relaxed the restrictions bj > aj > 0 by demonstrating in [19, Theorem 2]
that, for an arbitrary complex σ, the representation

p+1Fp

(
σ,a
b

∣∣∣∣− z) =

1∫
0

ρ(s)ds
(1 + sz)σ

(2)

holds with a summable function ρ and | arg(1 + z)| < π if and only if <ai > 0 for i = 1, . . . , p and
<ψp > 0, where ψp :=

∑p
j=1(bj − aj). In the affirmative case

ρ(s) =
Γ(b)
Γ(a)

Gp,0p,p

(
s

∣∣∣∣b− 1
a− 1

)
, (3)

where Gp,0p,p is Meijer’s G-function defined in (34) below. Further details about this function can be
found in [5, Section 12.3], [12, Section 5.3], [24, Chapter 1], [40, Section 8.2] and [3, Section 16.17]. In
(3) we have used the abbreviated notation Γ(a) to denote the product

∏p
i=1 Γ(ai). This convention

will also be used in the sequel. The sums like b + α for a scalar α and inequalities like a > 0 will
always be understood element-wise, i.e. b + α = (b1 + α, . . . , bp + α) and a > 0 means ai > 0 for
all elements of a. Using term-by-term integration and some properties of the G function, it is also
straightforward to derive the following formulas to be used below [17, (11), (12)]:

pFp

(
a
b

∣∣∣∣− z) =
Γ(b)
Γ(a)

1∫
0

e−ztGp,0p,p

(
t

∣∣∣∣ba
)
dt

t
(4)

for <(a) > 0 and <(ψp) > 0; and

p−1Fp

(
a
b

∣∣∣∣− z) =
Γ(b)√
πΓ(a)

1∫
0

cos(2
√
zt)Gp,0p,p

(
t

∣∣∣∣ba, 1/2
)
dt

t
(5)

for <(a) > 0 and <(
∑p

j=1 bj −
∑p−1

j=1 aj) > 1/2. Representations (2), (4) and (5) have been unified
and generalized in [17, Theorem 1].

Although formulas (2), (4) and (5) may be useful under the above restrictions on parameters in
some contexts, most of the interesting applications appear for the values of parameters that ensure
nonnegativity of the weight ρ(s). The weakest known condition sufficient for the function in (3) to
be nonnegative is given by

va,b(t) =
p∑
j=1

(taj − tbj ) ≥ 0 for all t ∈ [0, 1], (6)
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as explained in [17, Theorem 2]. Further details regarding inequality (6) are collected in Property 9
found in the Appendix of this paper. It follows from [19, Theorem 3] combined with [16, Lemma 2.1]
(see also [11, Theorem 6.4]) that conditions (6) and a > 0 are sufficient for the representation

p+1Fp

(
σ,a
b

∣∣∣∣− z) =

1∫
0

µ(ds)
(1 + sz)σ

(7)

to hold with a nonnegative measure µ supported on [0, 1]. Hence, in contrast to (2), representation
(7) may hold when the parametric excess ψp = 0, since this condition is compatible with (6) (in fact
necessary for it). This shows that the measure µ(ds) is not absolutely continuous with respect to
the Lebesgue measure if ψp = 0. We have demonstrated in [19, p. 353] that for p = 1, 2 this measure
has an atom at s = 1 and an absolutely continuous part (vanishing for p = 1). The same result was
discovered two years earlier by Dufresne in [11, Theorem 6.2] in a probabilistic context. The first
aim of this paper is to generalize this result to arbitrary p ≥ 1 and supply explicit expressions for
both the atom and the absolutely continuous part. This is done in Section 2, which further studies
the limit of the measure ρ(s)ds, with ρ(s) given in (3), as min(a) → 0, and representations of the
Kummer and Gauss type functions for ψp equal to a negative integer. Such representations can be
easily derived with the help of some subtle characteristics of G function (due to Nørlund) outlined
in Property 7 in the Appendix.

Next, we present three new applications of the integral representations (2), (4) and (5) and
their limiting cases in Section 3. They are: convergent inverse factorial series expansion for p+1Fp
for general complex parameters (subsection 3.1), new information about zeros of the Bessel and
Kummer type functions and inequalities for the former (subsection 3.2) and an investigation of
hypergeometric functions as radial positive definite functions (subsection 3.3).

Section 4 is devoted to the case of unrestricted complex parameters. Straightforward decom-
position of the series (1) combined with integral representations for the remainders leads to repre-
sentations of generalized hypergeometric functions as sums of Taylor polynomials and generalized
Stieltjes, Laplace or cosine Fourier transforms of a complex density, see Theorem 11. An impor-
tant feature of these representations is that for any real parameters a and b taking sufficiently
large degree of the Taylor polynomial makes this density nonnegative. We show further that such
decomposed representations can be seen as examples of regularizations of the divergent integrals
containing Meijer’s G function (3). The regularization theory is developed in subsection 4.2, where
the relation to the Hadamard finite part integrals is also observed. Finally, subsection 4.3 contains
an application of the decomposition theorem to the extension of Luke’s inequalities to arbitrary
real parameters for the Kummer and Gauss type functions. The properties of Meijer’s G function
used throughout the paper are collected in the Appendix.

2 The parametric excess is a non-positive integer

2.1 Limits as ψp → 0 and min(a)→ 0

In this section we assume that the parameter vectors a and b are real. Denote the unbounded
closed set in R2p defined by inequalities (6) by D. It follows from [20, (19)] that the boundary of D
contains points of the hyperplane ψp =

∑p
i=1(bi−ai) = 0. The expression ψp → 0 will mean that ψp

is approaching the points of ∂D belonging to the hyperplane ψp = 0 along any curve lying entirely
in D. The next lemma is elementary and probably well-known. We found it easier, however, to
give a proof than to locate one in the literature.
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Lemma 1 Suppose that f(t), with f(0) = 0, is continuous on [0, 1) and absolutely integrable
on (0, 1). Then

lim
β↓0

1
Γ(β)

∫ 1

0
tβ−1f(t)dt = 0.

Proof. Take an arbitrary ε > 0. Since f(t) is continuous on [0, 1) and f(0) = 0 there exists
λ ∈ (0, 1) such that |f(η)| < ε/4 for all η ∈ [0, λ]. Further, for this λ, and according to the mean
value theorem we have:∣∣∣∣ 1

Γ(β)

∫ λ

0
tβ−1f(t)dt

∣∣∣∣ =
∣∣∣∣ f(η)
Γ(β)

∫ λ

0
tβ−1dt

∣∣∣∣ ≤ |f(η)|
Γ(β)

∫ 1

0
tβ−1dt =

|f(η)|
Γ(β + 1)

< 2|f(η)| < ε/2,

where we have used the fact that 1/2 < Γ(β+ 1) for β ∈ (0, 1). The above estimate is independent
of β. Since [Γ(0)]−1 = 0 we can choose δ such that for all 0 < β < δ:∣∣∣∣ 1

Γ(β)

∫ 1

λ
tβ−1f(t)dt

∣∣∣∣ ≤ 1
Γ(β)

∫ 1

λ
|f(t)|dt

t
<
ε

2
.

Hence, for all 0 < β < δ we get |[Γ(β)]−1
∫ 1
0 t

β−1f(t)dt| < ε which completes the proof. �
The following theorem extends [11, Theorem 6.2] and [19, Remark on p.354].

Theorem 1 The family of the probability measures

ρ(ds) =
Γ(b)
Γ(a)

Gp,0p,p

(
s

b
a

)
ds

s
,

supported on [0, 1], converges weakly to the measure

Γ(b∗)
Γ(a∗)

{
δ1 +Gp,0p,p

(
s

b∗

a∗

)
ds

s

}
as ψp → 0 in D,

where δ1 denotes the unit mass concentrated at the point s = 1, and (a∗,b∗) is a point on the
hyperplane

∑p
i=1(a∗i − b∗i ) = 0 such that a∗ = limψp↓0 a, b∗ = limψp↓0 b; the Gp,0p,p function in the

last formula is given by the integral (34) with L = L− and can be computed by expansion (41).

Proof. According to the definition of weak convergence of measures [8, Section 10.3], we need to
show that, for any continuous function ϕ(s) on [0, 1],

lim
ψp→0

1∫
0

ϕ(s)ρ(ds) =
Γ(b∗)
Γ(a∗)

{
ϕ(1) +

∫ 1

0
ϕ(s)Gp,0p,p

(
s

b∗

a∗

)
ds

s

}
.

Rewrite (37) as

Gp,0p,p

(
z

b
a

)
=
zak(1− z)ψp−1

Γ(ψp)
[1 + Γ(ψp)(1− z)Gk(a,b; z)] , (8)
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where Gk(a,b; z) is regular around z = 1 and around ψp = 0. Set φ(t) = ϕ(1 − t) and φ̃(t) =
φ(t)− φ(0), so that φ̃(t) is continuous on [0, 1] and φ̃(0) = 0. Next, compute:

lim
ψp→0

1∫
0

ϕ(s)ρ(ds) =
Γ(b∗)
Γ(a∗)

lim
ψp→0

1∫
0

sak−1(1− s)ψp−1

Γ(ψp)
[1 + Γ(ψp)(1− s)Gk(a,b; s)]ϕ(s)ds

=
Γ(b∗)
Γ(a∗)

lim
ψp→0

1∫
0

(1− t)ak−1tψp−1

Γ(ψp)
[1 + Γ(ψp)tGk(a,b; 1− t)]φ(t)dt

=
Γ(b∗)
Γ(a∗)

{
lim
ψp→0

1∫
0

(1− t)ak−1tψp−1

Γ(ψp)
(φ(0) + φ̃(t))dt+ lim

ψp→0

1∫
0

(1− t)ak−1tψpGk(a,b; 1− t)φ(t)dt
}

=
Γ(b∗)
Γ(a∗)

{
lim
ψp→0

φ(0)
Γ(ψp)

1∫
0

(1− t)ak−1tψp−1dt+ lim
ψp→0

1
Γ(ψp)

1∫
0

(1− t)ak−1tψp−1φ̃(t)dt

+ lim
ψp→0

1∫
0

(1− t)ak−1tψpGk(a,b; 1− t)φ(t)dt
}

=
Γ(b∗)
Γ(a∗)

{
lim
ψp→0

φ(0)
Γ(ψp)

Γ(ak)Γ(ψp)
Γ(ak + ψp)

+ 0 +

1∫
0

φ(t) lim
ψp→0

(1− t)ak−1Gk(a,b; 1− t)dt
}

=
Γ(b∗)
Γ(a∗)

{
φ(0) +

1∫
0

φ(t) lim
ψp→0

(1− t)ak−1Gk(a,b; 1− t)dt
}

=
Γ(b∗)
Γ(a∗)

{
ϕ(1) +

1∫
0

ϕ(s)
s

lim
ψp→0

sakGk(a,b; s)ds
}
.

Further, from (8):

lim
ψp→0

sakGk(a,b; s) = lim
ψp→0

1
(1− s)ψp

[
Gp,0p,p

(
s

b
a

)
− sak(1− s)ψp−1

Γ(ψp)

]
= Gp,0p,p

(
s

b∗

a∗

)
.

We applied Lemma 1 in the fifth equality of the above chain. �
Remark. The above theorem has been extended in our recent paper [22, Theorem 3] to Fox’s

H function. However, the above proof is different and more direct than the one given in [22]. In
view of this fact and for the sake of completeness, we decided to present a full proof here.

Setting ϕ(s) = (1 + zs)−σ in the above theorem, we get the representation

p+1Fp

(
σ,a
b

∣∣∣∣− z) =
Γ(b)
Γ(a)

{
1

(1 + z)σ
+
∫ 1

0

ds

s(1 + sz)σ
Gp,0p,p

(
s

b
a

)}
valid for ψp =

∑
(bi−ai) = 0. The restriction (6) is removed by analytic continuation. All we need

is the condition <(a) > 0 for the above integral to converge. Similarly, setting ϕ(s) = e−zs, we get
(again for ψp = 0):

pFp

(
a
b

∣∣∣∣− z) =
Γ(b)
Γ(a)

{
e−z +

∫ 1

0
e−zsGp,0p,p

(
s

b
a

)
ds

s

}
.
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Finally if ϕ(s) = cos(2
√
zs) and ψp = 1/2, then

p−1Fp

(
a
b

∣∣∣∣− z) =
Γ(b)√
πΓ(a)

{
cos(2

√
z) +

∫ 1

0
cos(2

√
zs)Gp,0p,p

(
s

∣∣∣∣ba, 1/2
)
ds

s

}
.

Note that the above representations are particular, ψp = 0, cases of Theorem 3 below.

Theorem 2 Set a = min(a1, a2, . . . , ap). The family of probability measures

ρ(ds) =
Γ(b)
Γ(a)

Gp,0p,p

(
s

b
a

)
ds

s
,

supported on [0, 1], converges weakly to the Dirac measure δ0 (unit mass at zero) as a→ 0 staying
in D.

Proof. Indeed, (42) shows that ρ is indeed a probability measure for parameters in D. According
to the definition of weak convergence [8, Section 10.3] we need to show that for any continuous
function φ(s) on [0, 1]

lim
a→0

1∫
0

φ(s)ρ(ds)− φ(0) = lim
a→0

1∫
0

φ̃(s)ρ(ds) = 0,

where φ̃(s) = φ(s) − φ(0). Choose an arbitrary δ > 0. We will prove that there exists λ > 0 such
that for all 0 < a < λ, ∣∣∣∣∣∣

1∫
0

φ̃(s)ρ(ds)

∣∣∣∣∣∣ < δ. (9)

Since φ̃(s) is continuous on [0, 1) with φ̃(0) = 0, there exits ε > 0 such that |φ̃(η)| < δ/2 for all
η ∈ [0, ε]. Further, for this value of ε the mean value theorem yields:∣∣∣∣∣∣

ε∫
0

ρ(s)φ̃(s)ds

∣∣∣∣∣∣ =

∣∣∣∣∣∣φ̃(η)

ε∫
0

ρ(s)ds

∣∣∣∣∣∣ ≤ |φ̃(η)|
1∫

0

ρ(s)ds < δ/2.

The above estimate is independent of a. Now choose λ such that for all 0 < a < λ:∣∣∣∣∫ 1

ε
φ̃(s)ρ(ds)

∣∣∣∣ =
Γ(b)
Γ(a)

∣∣∣∣∫ 1

ε
Gp,0p,p

(
s

b
a

)
φ̃(s)

ds

s

∣∣∣∣ < δ

2
.

This is possible because [Γ(a)]−1 → 0 as a→ 0 and the integrand is bounded on s ∈ [ε, 1] uniformly
in a. Hence, for all 0 < a < λ we get (9), which completes the proof. �

2.2 The parametric excess ψp is a negative integer

In this subsection we explore the consequences of Nørlund’s formula (43) valid for non-positive in-
teger values of ψp. We will use the notation a[k] = (a1, . . . , ak−1, ak+1, . . . , ap). New representations
derived from this formula are presented in the next theorem.
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Theorem 3 Suppose −ψp = m ∈ N0 and a > 0. Then

Γ(a)
Γ(b)p+1Fp

(
σ,a
b

∣∣∣∣− z) =
Γ(ak)

(1 + z)σ

m∑
j=0

gj(a[k]; b)
Γ(ak + j −m)2F1

(
σ, j −m
ak + j −m

∣∣∣∣ z

1 + z

)

+

1∫
0

(1 + zs)−σGp,0p,p

(
s

b− 1
a− 1

)
ds (10)

for z ∈ C\(−∞,−1] and arbitrary complex σ; for all complex z,

Γ(a)
Γ(b)p

Fp

(
a
b

∣∣∣∣− z) = e−zΓ(ak)
m∑
j=0

gj(a[k]; b)
Γ(ak + j −m)1F1

(
j −m

ak + j −m

∣∣∣∣ z)

+

1∫
0

e−zsGp,0p,p

(
s

b− 1
a− 1

)
ds. (11)

If ψp =
∑p

j=1 bj −
∑p−1

j=1 aj = −m+ 1/2, m ∈ N0, then

√
πΓ(a)
Γ(b) p−1Fp

(
a
b

∣∣∣∣− z) =
m∑
j=0

(−1)j(1/2)jgm−j(a; b)0F1

(
−

1/2− j

∣∣∣∣− z)

+

1∫
0

cos
(
2
√
zs
)
Gp,0p,p

(
s

b− 1
a− 1,−1/2

)
ds, (12)

for all complex z. Formulas (10) and (11) are valid for each k = 1, . . . , p. The coefficients gj(a[k]; b)
are defined by the recurrence (38) and the connection formula (39), or explicitly in (40).

Proof. For the proof, substitute the power series expansions of (1 + zs)−σ, e−zs and cos (2
√
zs)

into (10), (11) and (12), respectively and integrate term by term using (43). Then apply Pfaff’s
transformation [2, formula 2.2.6] to the the resulting 2F1 in (10) and Kummer’s transformation [2,
formula 4.1.11] to the resulting 1F1 in (11). �
Remark. Note that the functions 2F1 and 1F1 in (10) and (11), respectively, are finite sums.
Furthermore, the 0F1 in (12) can be expressed as cos(2

√
z) times a combination of Lommel poly-

nomials.
For p = 2 and −ψp /∈ N0 we have [40, 8.4.49.22]:

G2,0
2,2

(
t
b1, b2
a1, a2

)
=
ta2(1− t)ψp−1

+

Γ(ψp)
2F1

(
b1 − a1, b2 − a1

ψp
1− t

)
, (13)

where a1 and a2 may be interchanged on the right hand side. If ψp = −m, m = 0, 1, . . ., an easy
calculation based on (13) leads to

G2,0
2,2

(
t
b1, b2
a1, a2

)
=
ta2(b1 − a1)m+1(b2 − a1)m+1

(m+ 1)! 2F1

(
b1 − a1 +m+ 1, b2 − a1 +m+ 1
m+ 2

1− t
)
,

where again a1 and a2 may be interchanged. The last formula holds for t ∈ (0, 1), see Property 3.
Hence, in view of Nørlund’s formula for gn(a[k]; b) for p = 2 (see [21, page 12]), identities (10)-(12)
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take the form:

Γ(a)
Γ(b)3F2

(
σ,a
b

∣∣∣∣− z) =
Γ(a2)

(1 + z)σ

m∑
j=0

(b1 − a1)j(b2 − a1)j
j!Γ(a2 + j −m) 2F1

(
σ, j −m
a2 + j −m

∣∣∣∣ z

1 + z

)

+
(b1 − a1)m+1(b2 − a1)m+1

(m+ 1)!

1∫
0

ta2−1

(1 + zt)σ 2F1

(
b1 − a1 +m+ 1, b2 − a1 +m+ 1
m+ 2

1− t
)
dt,

where −ψ2 = a1 + a2 − b1 − b2 = m ∈ N0. Similarly,

Γ(a)
Γ(b)2F2

(
a
b

∣∣∣∣− z) = e−zΓ(a2)
m∑
j=0

(b1 − a1)j(b2 − a1)j
j!Γ(a2 + j −m) 1F1

(
j −m

a2 + j −m

∣∣∣∣ z)

+
(b1 − a1)m+1(b2 − a1)m+1

(m+ 1)!

1∫
0

e−ztta2−1
2F1

(
b1 − a1 +m+ 1, b2 − a1 +m+ 1
m+ 2

1− t
)
dt,

and, for ψ2 = b1 + b2 − a = −m+ 1/2,

√
πΓ(a)
Γ(b) 1F2

(
a
b

∣∣∣∣− z) =
m∑
j=0

(−1)j
(1/2)j(b1 − a)m−j(b2 − a)m−j

(m− j)! 0F1

(
−

1/2− j

∣∣∣∣ z)

+
(b1 − a)m+1(b2 − a)m+1

(m+ 1)!

1∫
0

cos
(

2
√
zt
)
t−1/2

2F1

(
b1 − a+m+ 1, b2 − a+m+ 1
m+ 2

1− t
)
dt.

The first two formulas still hold with a1 and a2 interchanged. These representations are presumably
new.

3 Applications of the integral representations

3.1 Inverse factorial series for p+1Fp

By factoring the generalized Stieltjes transform (2) into repeated Laplace transforms according to
[18, Theorem 8] and applying (4), we obtain (see also [17, Theorem 4]):

1
zm

p+1Fp(m,a; b;−1/z) =
Γ(b)

Γ(m)Γ(a)

∫ ∞
0

e−zuum−1du

∫ 1

0
e−uxGp,0p,p

(
x

∣∣∣∣ba
)
dx

x

=
1

Γ(m)

∫ ∞
0
e−zuum−1

pFp(a; b;−u)du =
1

Γ(m)

∫ 1

0
tz−1(− log t)m−1

pFp(a; b; log t)dt

=
(−1)m−1

Γ(m)

∫ 1

0
tz−1

 ∞∑
j=0

(a)j
(b)jj!

(log t)m−1+j

 dt.

This formula is valid for any m > 0, although for our purposes we only need to confine ourselves
to m ∈ N. Further, according to [7, Theorem 8.3] we have

(log t)m−1+j = (m− 1 + j)!
∞∑

n=m−1+j

s(n,m− 1 + j)
(t− 1)n

n!
,
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where s(n, k) stands for the Stirling number of the first kind [7, Section 8.2]. Substituting this into
the integrand above, we get:

∞∑
j=0

(a)j
(b)jj!

(log t)m−1+j =
∞∑
j=0

(a)j(m− 1 + j)!
(b)jj!

∞∑
n=m−1+j

s(n,m− 1 + j)
(t− 1)n

n!

=
∞∑

n=m−1

(t− 1)n

n!

n−m+1∑
j=0

(a)j(m− 1 + j)!
(b)jj!

s(n,m− 1 + j) =
∞∑

n=m−1

bn(1− t)n,

where

bn :=
(−1)n

n!

n−m+1∑
j=0

(a)j(m− 1 + j)!
(b)jj!

s(n,m− 1 + j),

and the series converges in the disk |1− t| < 1. Convergence follows from the fact that the repeated
series on the right hand side of the first equality is easily seen to be absolutely convergent for
|1− t| < 1. Substitution yields:

1
zm

p+1Fp(m,a; b;−1/z) =
(−1)m−1

Γ(m)

∫ 1

0
tz−1

[ ∞∑
n=m−1

bn(1− t)n
]
dt

=
(−1)m−1

Γ(m)

∞∑
n=m−1

bn

∫ 1

0
tz−1(1− t)ndt =

(−1)m−1

Γ(m)

∞∑
n=m−1

bnn!
(z)n+1

.

The inverse factorial series on the right converges for <(z) > 0. This follows from the absolute
convergence of the integral on the right hand side of the first equality or from the general theory of
inverse factorial series, see [36, Theorems III and IV] and [35, §94 I,II]. The idea of inverse factorial
series expansion of Stieltjes transform is also contained in the survey [42] by Weniger. Rewriting
the above formula with w = 1/z we arrive at the following theorem.

Theorem 4 For arbitrary complex vectors a, b and m ∈ N, the inverse factorial expansion

p+1Fp(m,a; b;−w)
Γ(b)

=
(−1)m−1

Γ(m)wm

∞∑
n=m−1

(−1)n

(1/w)n+1

n−m+1∑
j=0

(a)j(m− 1 + j)!
Γ(b + j)j!

s(n,m− 1 + j)

converges for <w > 0.

Remark. For general p+1Fp(a′; b′;−w) we can use the above theorem with m = 1 by writing
a = (1,a′), b = (1,b′). We prefer to formulate it for general natural m as the presence of a positive
integer among the components of a′ eliminates the need to extend the vectors a′ and b′.

Remark. In the recent preprint [9] O. Costin and R.D. Costin introduced an extension of
inverse factorial series convergent in domains larger than half-planes.

3.2 Zeros of the Kummer and Bessel type functions

In this section we show how (4) and (5) can be used to draw certain conclusions about zeros of pFp
and p−1Fp and derive some bounds for the latter for negative argument. We start with an auxiliary
fact that might be of independent interest.
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Lemma 2 Suppose that ak ≤ min{0, bs − 1} for some indexes k, s ∈ {1, . . . , p} and va[k],b[s]
(t)

defined in (6) is nonnegative on [0, 1] (this holds, in particular, if b[s] + α ≺W a[k] + α for some
α ∈ R). Then the function

t→ Gp,0p,p

(
t

∣∣∣∣ba
)

is positive and decreasing on (0, 1).

Proof. Set γ = ak ≤ 0, β = bs − ak ≥ 1, η = −β − γ, b′ = b[s], a′ = a[k]. Then according to [40,
2.24.2.2] and in view of Properties 2 and 3 found in the Appendix to this paper, we have:

Gp,0p,p

(
x

∣∣∣∣ b
a

)
= Gp,0p,p

(
x

∣∣∣∣β + γ,b′ + β + η + γ
γ,a′ + β + η + γ

)
= xγGp,0p,p

(
x

∣∣∣∣β,b′ + β + η
0,a′ + β + η

)
=

xγ

Γ(β)

∫ 1

x
tη(t− x)β−1Gp−1,0

p−1,p−1

(
t

∣∣∣∣b′a′

)
dt.

By the hypotheses of the lemma va′,b′(t) ≥ 0 on [0, 1], so that by Property 9 (see Appendix), the
G function in the integrand is nonnegative. Combined with the conditions β ≥ 1 and γ ≤ 0 this
implies that the rightmost term in the above chain is decreasing and so does the leftmost term. �

Theorem 5 Let a, b be positive vectors. Suppose that ak ≤ min{1, bs − 1} for some indexes
k, s ∈ {1, . . . , p} and va[k],b[s]

(t) ≥ 0 on [0, 1] (in particular, b[s] ≺W a[k] is sufficient). Then
pFp(a; b; z) has no real zeros and all its zeros lie in the open right half plane <(z) > 0.

Proof. Indeed, under the hypotheses of the theorem formula (4) is applicable. After the change
of variable t = 1− u we get:

ezpFp

(
a
b

∣∣∣∣− z) =
Γ(b)
Γ(a)

∫ 1

0
ezuGp,0p,p

(
1− u

∣∣∣∣b− 1
a− 1

)
du.

By Lemma 2, the G function in the integrand is positive and increasing on (0, 1) and is clearly not
a step function. The claim now follows by [41, Theorem 2.1.7]. �

Theorem 6 Let a′ ∈ Rp−1, b ∈ Rp be positive vectors. Set a = (a′, 1/2) and assume that
va,b(t) ≥ 0 on [0, 1] (it suffices that b ≺W a). Then for any x > 0,∣∣∣∣p−1Fp

(
a′

b

∣∣∣∣− x)∣∣∣∣ < 1.

In particular, the functions p−1Fp (a′; b;x)± 1 have no real zeros other than x = 0 (in case of the
”minus” sign).

Proof. Set t = u2 and replace z → z2/4 in (5) to get:

p−1Fp

(
a′

b

∣∣∣∣− z2/4
)

=
2Γ(b)√
πΓ(a′)

∫ 1

0
cos(zu)Gp,0p,p

(
u2

∣∣∣∣b− 1/2
a′ − 1/2, 0

)
du. (14)

From this formula, for any real z we obtain the estimate (recall that a = (a′, 1/2))∣∣∣∣p−1Fp

(
a′

b

∣∣∣∣− z2/4
)∣∣∣∣ ≤ 2Γ(b)

Γ(a)

∫ 1

0

∣∣∣∣Gp,0p,p(u2

∣∣∣∣b− 1/2
a− 1/2

)∣∣∣∣du = 1,

where the last equality follows from nonnegativity of the G function as indicated in Property 9 in
the Appendix of this paper. Hence, to compute the last integral we can drop the absolute value,
substitute t = u2 and use (42). The inequality is in fact strict for all real z 6= 0 as can be seen from
(14) by the mean value theorem. �
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Theorem 7 Let a′ ∈ Rp−1, b ∈ Rp be positive vectors. Set a = (a′, 3/2) and suppose that
ak ≤ min{1, bs−1} for some indexes k, s ∈ {1, . . . , p} while va[k],b[s]

(t) ≥ 0 on [0, 1] (or b[s] ≺W a[k]).
Then 0 < p−1Fp(a′; b;x) < 1 for all x < 0. In particular, p−1Fp(a′; b;x) has no real zeros.

Proof. Note first that p−1Fp(a′; b;x) has no zeros for x ≥ 0 as it is obvious from the series
representation (1). Second, a short reflection shows that the hypotheses of this theorem imply the
hypotheses of Theorem 6 and hence p−1Fp(a′; b;x) < 1. It remains to prove that p−1Fp(a′; b;x)
has no zeros for negative x. This fact will be derived from the following representation:

zp−1Fp

(
a′

b

∣∣∣∣− z2/4
)

=
4Γ(b)√
πΓ(a′)

∫ 1

0
sin(zu)Gp,0p,p

(
u2

∣∣∣∣b− 1
a′ − 1, 1/2

)
du. (15)

To prove (15) substitute t = u2 and exchange the order of summation and integration to get:∫ 1

0
sin(zu)Gp,0p,p

(
u2

∣∣∣∣b− 1
a′ − 1, 1/2

)
du =

∫ 1

0
sin(z

√
t)Gp,0p,p

(
t

∣∣∣∣b− 3/2
a′ − 3/2, 0

)
dt

2

=
∞∑
k=0

(−1)kz2k+1

2(2k + 1)!

∫ 1

0
tk−1Gp,0p,p

(
t

∣∣∣∣ba′, 3/2
)
dt =

z

2

∞∑
k=0

(−z2/4)k

(3/2)kk!
Γ(a′ + k)Γ(3/2 + k)

Γ(b + k)

=
zΓ(a′)Γ(3/2)

2Γ(b)

∞∑
k=0

(a′)k(−z2/4)k

(b)kk!
=
z
√
πΓ(a′)

4Γ(b) p−1Fp

(
a′

b

∣∣∣∣− z2/4
)
.

According to Lemma 2 (applied with a, b replaced with a − 1 and b − 1), the hypotheses of the
theorem imply that the G function in the integrand of (15) is positive and decreasing. We are now
in the position to apply [41, Theorem 2.1.5] (the English translation has am important omission in
the formulation, so we prefer to refer to the Russian original), which states that

∫ 1
0 sin(zu)f(u)du

has no real zeros apart from z = 0 if f is positive and decreasing on (0,1) and is not a step function
with rational jump points. Clearly, the G function is not a step function on (0, 1) since it is a
combination of powers and analytic functions by (35) and the claim follows. �

Remark. By renumbering parameters any function satisfying Theorem 7 can be written as
p−1Fp(α,a;β1, β2,b;x), where 0 < α ≤ 1, β1 ≥ α+ 1, β2 ≥ 3/2, a > 0 and va,b(t) ≥ 0 on [0, 1].

Remark. For arbitrary j ∈ {1, . . . , p} we can use the representation [17, Remark on page 124]

p−1Fp(a; b;−z) =
Γ(b[j])
Γ(a)

1∫
0

0F1(−; bj ;−zt)Gp−1,0
p−1,p−1

(
t

∣∣∣∣b[j]

a

)
dt

t

=
z(1−bj)/2Γ(b)

Γ(a)

1∫
0

Jbj−1(2
√
zt)Gp−1,0

p−1,p−1

(
t

∣∣∣∣b[j] − (bj + 1)/2
a− (bj + 1)/2

)
dt

to improve Theorem 6. Here Jν is the Bessel function of the first kind. Using |Jν(x)| ≤ 1 for all
real x if ν ≥ 0 [3, 10.14.1] we obtain:

|p−1Fp(a; b;−x)| ≤ x−bj/2+1/2Γ(b)Γ(a− (bj − 1)/2)
Γ(b[j] − (bj − 1)/2)Γ(a)

for x > 0, (16)

if bj ≥ 1, a − (bj + 1)/2 > 0 and b[j] ≺W a for some j ∈ 1, . . . , p. The constant can be further
improved by employing the result of Landau [28]: |Jν(x)| ≤ αν−1/3 for all real x if ν ≥ 0, where
α ≈ 0.674885. This gives an improvement over (16) if bj ≥ 1.31. It follows from Properties 5
and 6 (see Appendix) that we can relax the conditions on parameters to a − (bj + 1)/2 > 0 and
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∑
k 6=j bk −

∑
k ak > 0 at the price of losing the exact expression for the constant in (16), i.e. we

get a bound of the form Cx(1−bj)/2. Furthermore, we can use another bound due to Landau in
[28]: |Jν(x)| ≤ β|x|−1/3 valid for all real x and ν ≥ 0 with β ≈ 0.785747. This allows the reduction
of the power factor in (16) to x−bj/2+1/3, at the expense of slightly increasing the constant factor.
These bounds can also be combined with the well known estimate |Jν(x)| ≤ 2−νxν/Γ(ν + 1) (see
[3, 10.14.4]), valid for ν ≥ −1/2, to get improved inequalities for |p−1Fp(a; b;−x)| in different x
regions.

Remark. For positive x, a two-sided bound for p−1Fp(x) was found in [17, Theorems 10, 11].

3.3 Radial positive definite functions

The purpose of this section is to demonstrate that the generalized hypergeometric functions pro-
vide a plethora of examples of radial positive definite functions well suited for formulating and/or
verifying hypotheses about such functions. It is worth mentioning that hypergeometric examples
of radial positive definite functions have been considered recently in [39]. Let us remind the reader
that a continuous function f on (0,∞) is called n-RPDF (radial positive definite in dimension n)
if for each m ∈ N

m∑
i,j=1

f(‖ti − tj‖n)ξiξj ≥ 0, ∀{t1, . . . , tm} ⊂ Rn, ∀{ξ1, . . . , ξm} ⊂ C.

The class of n-RPD functions is denoted by Φn. The above definition and many further details can
be found, for instance, in the two recent papers [14, 15]. The class Φn has been characterized by
Schoenberg in 1938: f ∈ Φn with f(0) = 1 iff f(r) =

∫∞
0 Ωn(rt)νf (dt), where νf is a probability

measure on [0,∞) uniquely determined by f and

Ωn(s) :=
∞∑
j=0

(−s2/4)j

(n/2)jj!
= 0F1(−;n/2;−s2/4).

Classes Φn are known to be nested: Φn+1 ⊂ Φn, and the inclusion is proper. The class

Φ∞ :=
⋂
n≥1

Φn

has been also characterized by Schoenberg as follows: f ∈ Φ∞ with f(0) = 1 iff f(r) =
∫∞
0 e−tr

2
νf (dt),

where νf is a probability measure on [0,∞). These characterizations allow us to give sufficient con-
ditions on the parameters of the generalized hypergeometric functions which guarantee that they
are radial positive definite for a certain dimension. The results for the Gauss and Kummer type
functions are simple and complete.

Theorem 8 Suppose σ,a,b > 0 and va,b(t) ≥ 0 on [0, 1]. Then

pFp

(
a
b

∣∣∣∣− r2) ∈ Φ∞ and p+1Fp

(
σ,a
b

∣∣∣∣− r2) ∈ Φ∞.

Proof. Indeed, the representation

pFp

(
a
b

∣∣∣∣− r2) =
Γ(b)
Γ(a)

∫ 1

0
e−tr

2
Gp,0p,p

(
t

b
a

)
dt

t

is a rewriting of (4), while the representation

p+1Fp

(
σ,a
b

∣∣∣∣− r2) =
Γ(b)

Γ(a)Γ(σ)

∫ ∞
0

e−tr
2
Gp+1,0
p,p+1

(
t

b
σ,a

)
dt

t
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is given in [17, formula (10)]. The function Gp,0p,p in the first representation is nonnegative by
Property 9. Nonnegativity of the weight function in the second representation follows from the
formula [40, 2.24.3.1]:

Gp+1,0
p,p+1

(
t

∣∣∣∣bσ,a
)

= tσ
∞∫
1

e−tyyσ−1Gp,0p,p

(
1
y

∣∣∣∣ba
)
dy. �

For the Bessel type functions we begin with the following monotonicity theorem.

Theorem 9 Suppose that 0 < a′ ≤ a, b′ ≥ b > 0 (understood element-wise) and p−1Fp
(
a; b;−r2

)
∈

Φn for some n ∈ N. Then p−1Fp
(
a′; b′;−r2

)
∈ Φn.

Proof. As linear combination of positive definite matrices is positive definite, it is easy to see
from the definition of RPDF that g(y) =

∫ 1
0 f(yx)k(x)dx ∈ Φn if f ∈ Φn and k(x) ≥ 0. Assume

that a′ = (a′1, a2, . . . , ap) with 0 < a′1 < a1 and b′ = b. Then an easy calculation using termwise
integration yields:

p−1Fp
(
a′; b′;−r2

)
=

2
B(a′1, a1 − a′1)

∫ 1

0
t2a
′
1−1(1− t2)a1−a′1−1

p−1Fp
(
a; b;−(rt)2

)
dt,

and the claim follows. General a′ ≤ a and b′ ≥ b can be treated similarly, taking each pair of non
equal components one by one. �

Theorem 10 Suppose that a,b > 0. If p−1Fp
(
a; b;−r2

)
∈ Φn, then

ψp =
p∑
j=1

bj −
p−1∑
j=1

aj ≥
n

2
.

The Schoenberg measure is supported on [0, 2] and is given by

ν(dt) =
2Γ(b)

Γ(a)Γ(n/2)
Gp,0p,p

(
t2

4
b
a, n/2

)
dt

t

for ψp > n/2 and by ν̃(dt) = ν(dt) + δ2, where δ2 is the Dirac measure concentrated at 2, for
ψp = n/2. In particular, p−1Fp

(
a; b;−r2

)
/∈ Φ∞ for any a,b > 0.

Conversely, set a′ = (n/2,a) and suppose va′,b(t) ≥ 0 on [0, 1] (which implies ψp ≥ n/2). Then
p−1Fp

(
a; b;−r2

)
∈ Φn. If ψp = n/2, then p−1Fp

(
a; b;−r2

)
∈ Φn \ Φn+1.

Proof. Indeed, suppose that p−1Fp
(
a; b;−r2

)
=
∫∞
0 Ωn(rt)ν(dt). The argument used in the proof

of [29, Theorem 2.1.1] shows mutatis mutandis that existence of all derivatives at r = 0 of the
function on the left hand side implies that all moments of the measure ν(dt) are finite. Power series
(1) and definition of Ωn then show that the even moments of ν are given by

ν2k =

∞∫
0

t2kν(dt) = 4k
(a)k(n/2)k

(b)k
, k = 0, 1, . . .

Next, changing variable t = 2u in the above integral, we get

ν2k =

∞∫
0

(2u)2kν̃(du) = 4k
(a)k(n/2)k

(b)k
or ν̃2k =

∞∫
0

u2kν̃(du) =
(a)k(n/2)k

(b)k
,
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where ν̃ is the image measure of ν under this change of variable. If ψp < n/2, then the sequence
ν̃2k ∼ kn/2−ψp as k →∞. However, it is easy to see that a Stieltjes moment sequence, either tends
to the atom of the representing measure at 1 (if the support of the measure is contained in [0, 1])
or grows at least exponentially (if the support of the measure contains points outside [0, 1]), see a
related result in [6, Lemma 2.9]. Therefore, the sequence (a)k(n/2)k/(b)k is not a Stieltjes moment
sequence for ψp < n/2, proving our first claim. For ψp > n/2 the expression for ν(dt) follows from
formula (42) found in Property 7 contained in the Appendix. If ψp = n/2 the expression for ν̃(dt)
follows from Theorem 1 or from (43).

The first claim in the converse statement for ψp > n/2 is immediate from the representation
(verified by termwise integration)

p−1Fp

(
a
b

∣∣∣∣− r2) =
2Γ(b)

Γ(a)Γ(n/2)

∫ 2

0
Ωn(rt)Gp,0p,p

(
t2

4
b
a, n/2

)
dt

t

and Property 9 given in the Appendix. To establish the second claim, p−1Fp
(
a; b;−r2

)
∈ Φn\Φn+1

for ψp = n/2, we invoke [15, Theorem 3.1] which implies that a function belongs to Φn \Φn+1 if its
Schoenberg measure contains an atom. By Theorem 1 the representing measure of p−1Fp indeed
has an atom at t = 2 when ψp = n/2. �

Remark. Leonid Golinskii observed that the membership [Ωn(r)]2 ∈ Φ2n−1\Φ2n proved in [15,
Theorem 1.3(ii)] also follows directly from Theorem 10. Indeed, using the formula for the product
of Bessel functions [2, Exercise 16, p.237] we conclude that

[Ωn(r)]2 = 2F3

(
n/2, n/2− 1
n/2, n/2, n− 1

∣∣∣∣− r2) .
Here ψ3 = (2n− 1)/2 so that by the last statement of Theorem 10 [Ωn(r)]2 ∈ Φ2n−1\Φ2n.

Remark. We mention further connections of hypergeometric functions with two more func-
tional classes considered in [14]. For nonnegative, monotone decreasing functions f , normal-
ized by f(0) = 1 the authors proved that the Schoenberg operator associated with the matrix
[f(‖ti − tj‖n)]mi,j=1, m ≤ ∞, is bounded on l2 under the additional condition td−1f ∈ L1(R+),
where d is the dimension of the linear span of t1, . . . , tm. Representations for the Gauss and
Kummer type functions p+1Fp(a; b;−r2) and pFp(a; b;−r2) exhibited in the proof of Theorem 8
show that both are nonnegative, monotone decreasing and properly normalized. Asymptotic for-
mulas [3, 16.11.6,16.11.7] show that the condition td−1f ∈ L1(R+) is satisfied for dimensions
d < min(a). Finally, [14, Theorem 1.7] shows that under the conditions of Theorem 8, the functions
p+1Fp(a; b;−r2) and pFp(a; b;−r2) are strongly X positive definite for any separated set X. The
definition of strongly positive definite functions is found in [14, Definition 1.5], their importance is
also explained in [14] and references therein.

4 General complex parameters

4.1 Representations of GHF

The following decomposition is straightforward:

pFq

(
a
b

∣∣∣∣ z) =
n−1∑
k=0

(a)k
(b)kk!

zk +
(a)nzn

(b)nn! p+1Fq+1

(
a + n, 1

b + n, n+ 1

∣∣∣∣ z) . (17)

The new parameter vectors a′ = (a + n, 1) and b′ = (b + n, n + 1) clearly satisfy <(a′) > 0 and
for p = q also <(ψ′p) > 0 for sufficiently large n, where ψ′p :=

∑p+1
k=1(b′k − a′k). This observation

immediately leads to
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Theorem 11 For arbitrary a,b ∈ Cp choose an n ∈ N0 satisfying <(a)+n > 0 and <(ψp)+n >
0, where ψp :=

∑p
k=0(bk − ak). Then

1
Γ(b)p+1Fp

(
σ,a
b

∣∣∣∣− z) =
n−1∑
k=0

(σ)k(a)k(−z)k

Γ(b + k)k!
+

(σ)n(−z)n

Γ(a)

∫ 1

0

G̃n(t)dt
(1 + zt)σ+n

(18)

for all σ ∈ C and z ∈ C\(−∞,−1], and

1
Γ(b)p

Fp

(
a
b

∣∣∣∣− z) =
n−1∑
k=0

(a)k(−z)k

Γ(b + k)k!
+

(−z)n

Γ(a)

∫ 1

0
e−ztG̃n(t)dt (19)

for all z ∈ C, where

G̃n(t) := Gp+1,0
p+1,p+1

(
t

∣∣∣∣b− 1 + n, n
a− 1 + n, 0

)
. (20)

If a,b ∈ Rp, then there exists n ∈ N0 such that G̃n(t) ≥ 0 for t ∈ (0, 1). In particular, this n can
be chosen from the condition (b + n, n+ 1) ≺W (a + n, 1).

Furthermore, for a ∈ Cp−1, b ∈ Cp and n ∈ N0 satisfying <(a)+n > 0 and <(ψ̂p)+2n−1/2 > 0,
where ψ̂p :=

∑p
k=1 bk −

∑p−1
k=1 ak, we have

1
Γ(b)p−1Fp

(
a
b

∣∣∣∣− z) =
n−1∑
k=0

(a)k(−z)k

Γ(b + k)k!
+

(−z)n√
πΓ(a)

∫ 1

0
cos(2

√
zt)Ĝn(t)dt, (21)

for all z ∈ C, where

Ĝn(t) := Gp+1,0
p+1,p+1

(
t

∣∣∣∣b− 1 + n, n
a− 1 + n,−1/2, 0

)
. (22)

If a ∈ Rp−1, b ∈ Rp, then there exists n ∈ N0 such that Ĝn(t) ≥ 0 for t ∈ (0, 1). In particular, this
n can be chosen from the condition (b + n, n+ 1) ≺W (a + n, 1/2, 1).

Proof. For complex parameters satisfying the conditions of the theorem, formulas (18), (19)
and (21) follow from (17) combined with (2), (4) and (5). Suppose now that a ∈ Rp, b ∈ Rp are
arbitrary. To prove that (b+n, n+1)≺W (a+n, 1) for some n ∈ N0, assume that

∑k
j=1 aj >

∑k
j=1 bj

for some k. Then, clearly, 1+
∑k−1

j=1 aj +(k−1)n ≤
∑k

j=1 bj +kn for a sufficiently large n. The sum
on the left has the form shown since 1 ≤ min(a1 + n, . . . , ap + n) for sufficiently large n. Similarly,
for a ∈ Rp−1, (b +n, n+ 1) ≺W (a +n, 1/2, 1) for sufficiently large n. Nonnegativity of G̃n and Ĝn
now follow by Property 9 in the Appendix. �

Remark. As before the condition b′ = (b + n, n+ 1)≺W (a + n, 1) = a′ in the above theorem
can be replaced by the weaker condition

va′,b′(t) =
∑p

k=1
(tak+n − tbk+n) + t− tn+1 ≥ 0 for t ∈ [0, 1].

4.2 Regularization of the integrals containing Gp,0
p,p

Decomposition formulas (18), (19) and (21) can be viewed as manifestations of a more general
phenomenon. Define CB∞[0, 1] to be the class of functions on [0, 1] that have bounded derivatives
of all orders. If ϕ ∈ CB∞[0, 1] then the integral∫ 1

0
G0(t)ϕ(t)dt, where G0(t) = Gp,0p,p

(
t

∣∣∣∣b− 1
a− 1

)
, (23)

15



converges (i.e. exists as an improper integral) if the next two conditions are satisfied:

<(a) > 0 and <ψp = <
[∑p

k=1
(bk − ak)

]
> 0. (24)

This is implied by Properties 5 and 6 found in Appendix. Furthermore, according to (41), it exists if
ψp = 0,−1,−2, . . . The purpose of this section is to define a regularization of the integral (23) valid
for arbitrary complex parameters. Choosing ϕ to be the generalized Stieltjes or the exponential
kernel will naturally lead representations of generalized hypergeometric functions equivalent to (18)
and (19) above. Curiously enough, taking ϕ to be equal to the cosine Fourier kernel leads to the
representation of the Bessel type function that is different from (21).

To convert the set CB∞[0, 1] into a test function space, we introduce the following definition of
convergence in CB∞[0, 1]: the sequence ϕj converges to an element ϕ ∈ CB∞[0, 1] if

max
x∈[0,1]

|ϕ(k)
j (x)− ϕ(k)(x)| → 0 as j →∞

for each nonnegative integer k. This space can be viewed as a space of restrictions of smooth
periodic functions (say with period 2) considered in [4, Chapter 3, paragraph 2] to the interval
[0, 1]. Then it follows from [4, Theorem 2.1] that this space is complete.

Definition 1. For arbitrary complex a and b, −b /∈ N0, choose a nonnegative integer n satisfying
<(a) + n > 0 and <(ψp) + n > 0. Define a regularization of the integral (23) as the distribution G0

acting on a test function ϕ ∈ CB∞[0, 1] according to the formula

〈G0, ϕ〉 =
n−1∑
k=0

(a)k
(b)kk!

ϕ(k)(0) +
Γ(b)
Γ(a)

∫ 1

0
G̃n(t)ϕ(n)(t)dt, (25)

where

G̃n(t) := Gp+1,0
p+1,p+1

(
t

∣∣∣∣b− 1 + n, n
a− 1 + n, 0

)
, n = 0, 1, . . . (26)

Clearly, G̃0 = G0 as defined in (23). Furthermore, if n = 0 the finite sum in (25) is understood to
be empty, so that (25) reduces to a multiple of (23). The asymptotic behavior of G̃n(t) (as t → 0
and t→ 1), contained in Properties 5 and 6 in the Appendix, shows that the integral in (25) exists
(as a finite number) for all ϕ ∈ CB∞[0, 1] under the conditions stated in Definition 1. Note that
if <(ψp) > 0, the function G̃n(t) can be computed as the n−th primitive of G0(x) that satisfies
G̃

(k)
n (1) = 0 for k = 1, 2, . . . , n [40, 2.24.2.2]:

G̃n(t) =
1

(n− 1)!

∫ 1

t
G0(x)(x− t)n−1dx. (27)

When n > 0, Definition 1 is motivated by the following argument. Replace ϕ(t) in (23) by its
Taylor expansion at t = 0:

ϕ(t) =
n−1∑
k=0

ϕ(k)(0)
k!

tk + ϕn(t),

where ϕn(t) is the Taylor remainder. Then assume <(a),<(ψp) > 0 and use (42) to obtain the
right hand side of (25), but with the second term replaced by

Γ(b)
Γ(a)

∫ 1

0
G0(t)ϕn(t)dt.
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Integrating by parts n times and using ϕ(n)
n (t) = ϕ(n)(t), ϕ(k)

n (0) = G̃k+1(1) = 0 for k = 0, 1, . . . , n−
1 and Properties 5 and 6, we obtain (25). Alternatively, use the integral form of the Taylor
remainder ϕn(t) and exchange the order of integrals. Therefore, (23) equals the right hand side of
(25) when <(a) > 0 and <(ψp) > 0. Moreover, the right hand side of (25) is an analytic function
of the parameters a and meromorphic function of the parameters b with simple poles at −bi ∈ N0,
so that the right hand side of (25) gives an expression for the analytic continuation of (23) in a
to the domain <(a) > −n and the meromorphic continuation in b to the domain <(ψp) > −n.
Hence, the family of distributions G0 = G0(a,b) is analytic in the parameters a and meromorphic
in b with simple poles at −bi ∈ N0 in the above domain.

Remark. The regularization defined in (25) can be easily seen to equal the Hadamard finite
part of the divergent integral (23), see [10, 13] for details. However, we observe a new phenomenon
here. In general, the Hadamard finite part constructed to overcome divergence at zero does not
alter the situation at other points, while formula (25) regularizes the integral (23) at both points, 0
and 1, simultaneously.

Theorem 12 G0 is a continuous linear functional on CB∞[0, 1] and its definition is independent
of n.

Proof. Linearity is obvious. For continuity, assume that ϕj → ϕ in CB∞[0, 1] and estimate

|〈G0, ϕj〉 − 〈G0, ϕ〉| = |〈G0, ϕj − ϕ〉| ≤
n−1∑
k=0

|(a)k|
|(b)k|k!

|ϕ(k)
j (0)− ϕ(k)(0)|

+ max
x∈[0,1]

|ϕ(n)
j (x)− ϕ(n)(x)|

∣∣∣∣Γ(b)
Γ(a)

∣∣∣∣ ∫ 1

0
|G̃n(t)|dt→ 0 as j →∞

by definition of convergence in CB∞[0, 1], and because the last integral in finite by Properties 5
and 6 in the Appendix. Finally, write G0,n for the distribution G0 with n terms in the sum (25)
and G0,m for m 6= n terms. By definition we must choose n,m > −<(a). Assume, without loss of
generality, n > m and let ϕ be an arbitrary test function. Integration by parts yields

〈G0,n, ϕ〉 − 〈G0,m, ϕ〉 =
n−1∑
k=m

(a)k
(b)kk!

ϕ(k)(0) +
Γ(b)
Γ(a)

∫ 1

0
G̃n(t)ϕ(n)(t)dt− Γ(b)

Γ(a)

∫ 1

0
G̃m(t)ϕ(m)(t)dt

=
n−1∑
k=m

(a)k
(b)kk!

ϕ(k)(0) +
Γ(b)
Γ(a)

∫ 1

0
G̃n(t)ϕ(n)(t)dt

+
Γ(b)
Γ(a)

G̃m+1(t)ϕ(m)(t)
∣∣∣∣1
0

− Γ(b)
Γ(a)

∫ 1

0
G̃m+1(t)ϕ(m+1)(t)dt

=
n−1∑

k=m+1

(a)k
(b)kk!

ϕ(k)(0) +
Γ(b)
Γ(a)

∫ 1

0
G̃n(t)ϕ(n)(t)dt− Γ(b)

Γ(a)

∫ 1

0
G̃m+1(t)ϕ(m+1)(t)dt,

where we have used G̃′m+1(t) = −G̃m(t), G̃m+1(1) = 0 by (27) and

G̃m+1(0) =

1∫
0

G̃m(t)dt =
Γ(a +m)

Γ(b +m)m!
(by Property 7).

Repeating integration by parts (n−m) times yields 〈G0,n, ϕ〉 − 〈G0,m, ϕ〉 = 0. �
The action of the distribution G0 on the Laplace, generalized Stieltjes and cosine kernel ex-

pectedly leads to the generalized hypergeometric functions of the Kummer, Gauss and Bessel type,
respectively.
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Theorem 13 Suppose complex a and b, −b /∈ N0, satisfy <(a) > −n, <(ψp) > −n for some
n ∈ N0, where ψp is defined in (24). Then for all σ ∈ C

〈G0, (1 + zt)−σ〉 = p+1Fp

(
σ,a
b

∣∣∣∣− z) , (28)

〈G0, e
−zt〉 = pFp

(
a
b

∣∣∣∣− z) , (29)

〈G0, cos(2
√
zt)〉 = p−1Fp

(
a[p]

b

∣∣∣∣− z) , (30)

where in the last formula it is assumed that ap = 1/2. Formulas (29), (30) are valid for all complex
z, while (28) is true for z ∈ C\(−∞,−1].

Proof. As we explained below Definition 1, 〈G0, ϕ(t)〉 is a representation of the analytic continua-
tion in parameters a and b. Further, formulas (28)-(30) are true for <(a),<(ψp) > 0 as they reduce
to (2),(4) and (5), respectively, while the the right hand sides are analytic in a and b save the poles.
This proves (28)-(30). Alternatively, an application of G0 to ϕz(t) = (1 + zt)−σ is immediately seen
to lead to the right hand side of (18), while taking ϕz(t) = exp(−zt) yields the right hand side of
(19). For the Bessel type function we will use that

cos
(

2
√
zt
)

= 0F1(−; 1/2;−zt), so that
∂n

∂tn
cos
(

2
√
zt
)

=
(−z)n

(1/2)n
0F1(−;n+ 1/2;−zt).

Setting ap = 1/2, we obtain:

〈G0, cos(2
√
zt)〉

=
n−1∑
k=0

(a)k(−z)k

(b)k(1/2)kk!
+

Γ(b)(−z)n

Γ(a)(1/2)n

∫ 1

0
Gp+1,0
p+1,p+1

(
t

∣∣∣∣b− 1 + n, n
a− 1 + n, 0

)
0F1

(
n+ 1/2

∣∣∣∣− zt)dt
=

n−1∑
k=0

(a)k(−z)k

(b)k(1/2)kk!
+

Γ(b)(−z)n

Γ(a)(1/2)n

∞∑
j=0

Γ(a + n+ j)Γ(j + 1)(−z)j

Γ(b + n+ j)Γ(n+ j + 1)j!(n+ 1/2)j

=
n−1∑
k=0

(a)k(−z)k

(b)k(1/2)kk!
+
∞∑
j=0

(a)n+j(−z)n+j

(b)n+j(1/2)n+j(n+ j)!
= p−1Fp

(
a[p]

b

∣∣∣∣− z) . �

Remark. Representations (28) and (29) are, of course, just different ways of writing (18) and
(19), respectively. Nevertheless, representation (21) is essentially different from (30), as seen from
the proof.

4.3 An application: extended Luke’s inequalities

In [30, Theorem 16] Luke found two-sided bounds for the functions pFp(a; b;x) and p+1Fp(σ,a; b;x)
under the restrictions bi ≥ ai > 0, i = 1, 2, . . . , p. The bounds were presented without proofs, but
mentioning that they ”can be easily proved”. In [17] the first author gave two different proofs of
Luke’s inequalities valid for different sign of x and relaxed the conditions on parameters. Using the
decompositions (18) and (19) and mimicking the proof from [17], we can extend Luke’s inequalities
to arbitrary real parameter values. Before formulating the result, let us remind the reader that
inequalities like a > −3 and sums like a + 1 are understood element-wise and (a + n) denotes the
product

∏p
j=1(aj + n).
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Theorem 14 Suppose that a,b ∈ Rp are such that b does not contain non-positive integers.
Choose n ∈ N0 satisfying a, ψp ≥ −n such that va′,b′(t) ≥ 0 for t ∈ [0, 1], where a′ = (a + n, 1),
b′ = (b + n, n + 1) and va′,b′ is defined in (6) (in particular, it is sufficient that b′≺W a′). Then
for all real x,

∑n−1

j=0

(a)jxj

(b)jj!
+ (−1)α

(a)nxn

(b)nn!
exp
(

x(a + n)
(n+ 1)(b + n)

)
≤ pFp

(
a
b

∣∣∣∣x)

≤
∑n−1

j=0

(a)jxj

(b)jj!
+ (−1)α

(a)nxn

(b)nn!

(
(ex − 1)(a + n)
(n+ 1)(b + n)

+ 1
)
, (31)

where

α :=

{
0, if Γ(a)Γ(b)xn ≥ 0,
1, if Γ(a)Γ(b)xn < 0.

If some elements of a are non-positive integers then equality holds on both sides of (31) regardless
of the value of α.

Proof. Denote

fn(x) :=
∞∑
k=n

(a)kxk

(b)kk!
= pFp

(
a
b

∣∣∣∣x)− n−1∑
k=0

(a)kxk

(b)kk!

Assume first that ψp > −n and a,b > −n. Then (19) can be rewritten as follows:

Γ(a)
Γ(b)

fn(x)
xn

=
∫ 1

0
φx(f(t))µ(dt), where µ(dt) = Gp+1,0

p+1,p+1

(
t

∣∣∣∣b + n, n+ 1
a + n, 1

)
dt

t
,

φx(t) = ext and f(t) = t. According to Property 9, the condition va′,b′(t) ≥ 0 is sufficient for the
measure µ(dt) to be nonnegative. Now we can apply the integral form of Jensen’s inequality [34,
Chapter I, formula (7.15)],

φx

(∫ 1

0
f(t)µ(dt)

/∫ 1

0
µ(dt)

)
≤
∫ 1

0
φx(f(t))µ(dt)

/∫ 1

0
µ(dt), (32)

valid for convex φx and f integrable with respect to a nonnegative measure µ. Computing∫ 1

0
µ(dt) =

Γ(a + n)
Γ(b + n)Γ(n+ 1)

,

∫ 1

0
f(t)µ(dt) =

Γ(a + n+ 1)
Γ(b + n+ 1)Γ(n+ 2)

,

we arrive at

exp
(

x(a + n)
(n+ 1)(b + n)

)
≤ fn(x)

xn
(b)nn!
(a)n

.

Multiplying this formula by the nonnegative number (−1)α(a)nxn/[(b)nn!] and recalling the defini-
tion of fn(x) we obtain the lower bound of (31). Further we apply the converse Jensen’s inequality
in the form [38, Theorem 3.37]∫ 1

0
φx(f(t))dµ(t)

/∫ 1

0
µ(dt) ≤ (φx(1)− φx(0))

∫ 1

0
f(t)dµ(t)

/∫ 1

0
µ(dt) + 1·φx(0)− 0·φx(1).

Substituting we get
(b)nn!
(a)n

fn(x)
xn

≤ (ex − 1)(a + n)
(n+ 1)(b + n)

+ 1.
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Again, multiplying this formula by the nonnegative number (−1)α(a)nxn/[(b)nn!] and recalling
the definition of fn(x) we obtain the uper bound of (31). Finally, if ψp = 0 and/or some of the
components of a are equal to −n, the inequality is still true by continuity. The components of b
cannot be equal to non-positive integers by the hypothesis of the theorem. �

Theorem 15 Suppose that σ ∈ R, a,b ∈ Rp are such that b does not contain non-positive
integers. Choose n ∈ N0 satisfying a, ψp ≥ −n such that va′,b′(t) ≥ 0 for t ∈ [0, 1], where a′ =
(a+n, 1), b′ = (b+n, n+1) and va′,b′ is defined in (6) (in particular, it is sufficient that b′≺W a′).
Then for x < 1

∑n−1

j=0

(σ)j(a)jxj

(b)jj!
+ (−1)α

(σ)n(a)nxn

(b)nn!

(
1− x(a + n)

(n+ 1)(b + n)

)−σ−n
≤p+1Fp

(
σ,a
b

∣∣∣∣x)

≤
∑n−1

j=0

(σ)j(a)jxj

(b)jj!
+ (−1)α

(σ)n(a)nxn

(b)nn!

(
(1− (1− x)σ+n)(a + n)

(1− x)σ+n(n+ 1)(b + n)
+ 1
)
, (33)

where

α :=

{
0, if Γ(σ)Γ(a)Γ(b)xn ≥ 0,
1, if Γ(σ)Γ(a)Γ(b)xn < 0.

If some elements of a are non-positive integers then equality holds on both sides of (33) regardless
of the value of α.

Proof. Start with representation (18) rewritten as follows:

Γ(a)fn(x)
Γ(b)(σ)nxn

=
∫ 1

0
Gp+1,0
p+1,p+1

(
t

∣∣∣∣b + n, n+ 1
a + n, 1

)
dt

(1− xt)σ+nt
,

where

fn(x) =
∞∑
k=n

(σ)k(a)kxk

(b)kk!
= p+1Fp

(
σ,a
b

∣∣∣∣x)− n−1∑
k=0

(σ)k(a)kxk

(b)kk!
,

and repeat the steps of the proof of the previous theorem with φx(t) = (1− x)−σ−n. �
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5 Appendix. Definition and properties of Meijer’s G-function

Suppose that 0 ≤ m ≤ q, 0 ≤ n ≤ p are integers and a, b are arbitrary complex vectors, such that
ai−bj /∈ N for all i = 1, . . . , n and j = 1, . . . ,m. Meijer’s G-function is defined by the Mellin-Barnes
integral of the form (see [5, section 12.3], [12, section 5.3], [24, chapter 1], [40, section 8.2] or [3,
section 16.17])

Gm,np,q

(
z

a
b

)
:=

1
2πi

∫
L

Γ(b1+s) · · ·Γ(bm+s)Γ(1− a1−s) · · ·Γ(1− an−s)z−s

Γ(an+1+s) · · ·Γ(ap+s)Γ(1− bm+1−s) · · ·Γ(1− bq−s)
ds, (34)
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where the contour L is a simple loop that separates the poles of the integrand of the form bjl =
−bj − l, l ∈ N0 leaving them on the left from the poles of the form aik = 1 − ai + k, k ∈ N0,
leaving them on the right [24, section 1.1]. The condition ai− bj /∈ N guarantees that the poles are
separable. The contour may have one of the three forms L−, L+ or Liγ described below. Choose
any

ϕ1 < min{−=b1, . . . ,−=bm,=(1− a1), . . . ,=(1− an)},

ϕ2 > max{−=b1, . . . ,−=bm,=(1− a1), . . . ,=(1− an)}

and arbitrary real γ. The contour L− is a left loop lying in the horizontal strip ϕ1 ≤ =s ≤ ϕ2. It
starts at the point −∞ + iϕ1, terminates at the point −∞ + iϕ2 and coincides with the sides of
the strip for sufficiently large |s|. Similarly, the contour L+ is a right loop lying in the same strip,
starting at the point +∞+ iϕ1 and terminating at the point +∞+ iϕ2. It coincides with the sides
of the strip for sufficiently large |s|. Finally, the contour Liγ starts at γ− i∞, terminates at γ+ i∞
and coincides with the line <s = γ for all sufficiently large |s|. The power function z−s is defined
on the Riemann surface of the logarithm, so that

z−s = exp(−s{log |z|+ i arg(z)})

and arg(z) is allowed to take any real value. Hence, Gm,np,q (z) is also defined on the Riemann surface
of the logarithm. Set [24, (1.1.10)]

µ :=
∑q

j=1
bj −

∑p

i=1
ai −

p− q
2

, a∗ := 2(m+ n)− (p+ q).

Specialization of [24, Theorem 1.1] (which deals with a more general Fox’s H-functions) to our
situation leads to the following conditions for convergence of the integral in (34):

(a) if L = L− the integral in (34) converges for 0 < |z| < 1 and arbitrary a, b and also for
|z| = 1 if <(µ) < −1;

(b) if L = L+ the integral in (34) converges for |z| > 1 and arbitrary a, b and also for |z| = 1
if <(µ) < −1;

(c) if L = Liγ the integral in (34) converges for | arg(z)| < a∗π/2, z 6= 0 if a∗ > 0 and arg(z) = 0,
z 6= 1, <(µ) < 0 if a∗ = 0.
The last condition has been proved in [24, Theorem 3.3] in a more general case and earlier in the first
author’s thesis for Gp,0p,p (see also [19, Lemma 1]). Note that [24, Theorem 1.1] requires a stronger
restriction <(µ) < −1. If the integral in (34) exists for several contours, the resulting functions
coincide in all known cases. A more detailed discussion of this issue can be found in our recent paper
[21]. A comprehensive overview of the properties of G-function is contained in [40, Section 8.2]
and in [33]. In this paper we mostly need the properties of Gp,0p,p found in the above references
as well as some of its new or less obvious properties for which we will supply detailed references
or explanations. In what follows we will write a[k1,k2,...,kr] for the vector a with the elements
ak1 , ak2 , . . . , akr removed. In particular, a[k] = (a1, . . . , ak−1, ak+1, . . . , ap). As before, Γ(a) stands
for
∏p
i=1 Γ(ai) and a + α with scalar α is an abbreviation for the vector (a1 + α, . . . , ap + α).

Property 1. The function Gm,np,q is real if the vectors a, b and the argument z are real. This
follows from the residue expansion, see [40, 8.2.2.3-4] or [3, 16.17.2].

Property 2. For any real α,

zαGm,np,q

(
z

b
a

)
= Gm,np,q

(
z

b + α
a + α

)
.

See [40, 8.2.2.15] or [3, 16.19.2]. The property also holds for complex α, but care must be taken in
choosing the correct branches.
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Property 3. According to [19, Lemma 1] and [20, Theorem 6],

Gp,0p,p

(
z

b
a

)
= 0 for |z| > 1.

The above G-function is well-defined for arbitrary values of a and b if the contour L is chosen to be
L+∞. Under the restriction <(ψp) > 0, it can also be deformed into Liγ , where ψp =

∑p
j=1(bj−aj).

Property 4. If none of the vectors a[k]−ak, k = 1, . . . , p, contains integers, Meijer’s G function
can be expanded in terms of generalized hypergeometric functions as follows

Gp,0p,p

(
z

b
a

)
=

p∑
k=1

zak
Γ(a[k] − ak)
Γ(b− ak)

pFp−1

(
1− b + ak
1− a[k] + ak

z

)
. (35)

See [31, (34)], [40, 8.2.2.3] or [3, 16.17.2].
Property 5. Note that the poles of the numerator of the integrand z−sΓ(a+s)/Γ(b+s) in the

definition of Gp,0p,p(z) may cancel out with the poles of the denominator. Suppose that bk = ai + q
for some k = 1, . . . , p and q ∈ Z. If q ≤ 0, then all the poles of the function Γ(ai + s) cancel out
with poles of Γ(bk + s). We will call the indices i and the corresponding components of a normal if
at least one pole of Γ(ai + s) does not cancel (if this pole is single then it is the rightmost pole) .
We say that a is normal if all its components are normal. In general situation we can ”normalize”
a by deleting the exceptional (not normal) components.

Suppose a = (a1, a2, . . . , ap′) is normal or normalized. In general, it may contain some groups
of equal elements (on the extreme all elements are allowed to be equal as well). Write r for the
cardinality of the largest group of equal elements for which min(<(a1), . . . ,<(ap′)) is attained.
Assume for a moment that there is only one such group and suppose, without loss of generality,
that this group is a1 = a2 = · · · = ar = a. Then

Gp,0p,p

(
z

b
a

)
= αza logr−1(z)(1 +O(log−1(z))) as z → 0, (36)

where

α =
(−1)r−1

∏p
i=r+1 Γ(ai − a)

(r − 1)!
∏p
i=1 Γ(bi − a)

.

For r = 1 the term O(log−1(z)) must be substituted with O(zδ logk(z)), where δ = <(ã − a) and
ã is the element with the second smallest real part while k stands for its multiplicity. If there
are several groups of equal elements of the same cardinality r for which min(<(a1), . . . ,<(a′p)) is
attained, then formula (36) remains valid with the constant α equal to the sum of the corresponding
constants for each group (computed as above). Note that α 6= 0 by normality of a. The asymptotic
approximation as z → 0 for a more general Fox’s H function is given in [24, Theorem 1.5]. However,
the computation of the constant in [24, formula (1.4.6)] seems to contain an error, corrected in (36)
using residue expansion [24, formula (1.2.22)].

Property 6. An important property used in this paper is the following representation:

Gp,0p,p

(
z

b
a

)
=
zak(1− z)ψp−1

Γ(ψp)

∞∑
n=0

gn(a[k]; b)
(ψp)n

(1− z)n, k = 1, 2, . . . , p, (37)

which holds in the disk |1 − z| < 1 for all −ψp = −
∑p

i=1(bi − ai) /∈ N0 and each k = 1, 2, . . . , p.
Several ways are known to compute the coefficients gn(a[k]; b). They satisfy two different recurrence
relations (in p and n). The simplest of them reads

gn(a[p+1]; b) =
n∑
s=0

(bp+1 − ap)n−s
(n− s)!

(ψp + s)gs(a[p,p+1]; b[p+1]), p = 1, 2, . . . , (38)
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with initial values g0(−; b1) = 1, gn(−; b1) = 0, n ≥ 1. The coefficient gn(a[k]; b) is obtained from
gn(a[p]; b) by exchanging the roles of ap and ak, or by using the connection formula

gn(a[k]; b) =
n∑
s=0

(ak − ap)n−s
(n− s)!

(ψp + s)gs(a[p]; b), k = 1, 2, . . . , p. (39)

The following explicit representation was derived in [37, (1.28), (2.7), (2.11)]:

gn(a[p]; b) =
∑

0≤j1≤j2≤···≤jp−2≤n

p−1∏
m=1

(ψm + jm−1)jm−jm−1

(jm − jm−1)!
(bm+1 − am)jm−jm−1 , (40)

where ψm =
∑m

i=1(bi − ai), j0 = 0, jp−1 = n. Expansion (37) using different notation and without
mentioning G-function was derived by Nørlund in [37, formulas (1.33), (1.35), (2.7)]. The history
and many further details regarding Nørlund’s results and methods to compute gn(a[k]; b) can be
found in our recent paper [21].

Taking limit ψp → −l, l ∈ N0 in (37) we obtain

Gp,0p,p

(
z

b
a

)
= zak

∞∑
n=0

gn+l+1(a[k]; b)
n!

(1− z)n, k = 1, 2, . . . , p, (41)

where ψp = −l, l ∈ N0 (see [37, formula (1.34)]). Hence, Gp,0p,p is analytic in the neighborhood of
z = 1 for non-positive integer values of ψp.

Property 7. The Mellin transform of Gp,0p,p exists if either <(ψp) > 0 or ψp = −m, m ∈ N0. In
the former case

∞∫
0

xs−1Gp,0p,p

(
x

b
a

)
dx =

1∫
0

xs−1Gp,0p,p

(
x

b
a

)
dx =

Γ(a + s)
Γ(b + s)

(42)

is valid in the intersection of the half-planes <(s + ai) > 0 for i = 1, . . . , p. If ψp = −m, m ∈ N0

then
∞∫
0

xs−1Gp,0p,p

(
x

b
a

)
dx =

1∫
0

xs−1Gp,0p,p

(
x

b
a

)
dx =

Γ(a + s)
Γ(b + s)

− q(s) (43)

in the same half-plane. Here q(s) is a polynomial of degree m given by

q(s) =
m∑
j=0

gm−j(a[k]; b)(s+ ak − j)j , k = 1, 2, . . . , p. (44)

The coefficients gi(a[k]; b) depend on k. The resulting polynomial q(s), however, is the same for
each k. See [37, (2.18), (2.29)] or [22, (4)].

Property 8. Given a nonnegative integer k suppose that <(ψp) > −k and <(ai) > 0 for
i = 1, . . . , p. Then we have

1∫
0

Gp,0p,p

(
x

b− 1
a− 1

)
(1− x)kdx =

Γ(a)
Γ(b)p+1Fp

(
−k,a

b

∣∣∣∣ 1) . (45)

Formulas (36) and (37) confirm that the integral converges for the specified range of parameters.
To demonstrate the validity of (45) we assume first that <(ψp) > 0. Then the binomial expansion
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of (1− x)k and an application of (42) yields (45). Analytic continuation in ψp extends the formula
to <(ψp) > −k. We emphasize that unlike Property 7 formula (45) remains true for non-positive
integer ψp > −k. This can also be seen directly from (43). Indeed, combination of this formula
with the binomial expansion of (1− x)k gives:

1∫
0

Gp,0p,p

(
x

b− 1
a− 1

)
(1− x)kdx =

Γ(a)
Γ(b)p+1Fp

(
−k,a

b

∣∣∣∣ 1)− k∑
j=0

(−1)j
(
k

j

)
q(j). (46)

Here
k∑
j=0

(−1)j
(
k

j

)
q(j) = ∆kq(0),

where ∆q(s) := q(s+ 1)− q(s), ∆kq(s) := ∆(∆k−1q(s)). But since q(s) has degree −ψp < k, then
∆kq(0) = 0 confirming (45). Note that an analogous formula holds for non-integer λ > −<ψp:

1∫
0

Gp,0p,p

(
x

b− 1
a− 1

)
(1− x)λdx =

Γ(a)
Γ(b)p+1Fp

(
−λ,a

b

∣∣∣∣ 1) .
Indeed, condition λ > −<ψp guarantees the convergence of the series on the right [3, Section
16.2(iii)], so that the formula holds for <ψp > 0 by the binomial theorem and termwise integration
and for <ψp > −λ by analytic continuation. Direct verification of the case ψp = −m leads to the
identity

1∫
0

Gp,0p,p

(
x

b− 1
a− 1

)
(1− x)λdx =

Γ(a)
Γ(b)p+1Fp

(
−λ,a

b

∣∣∣∣ 1)− ∞∑
j=0

(−1)j
(
λ

j

)
q(j).

But for each m < λ,
∞∑
j=0

(−1)j
(
λ

j

)
jm = 0.

Property 9. As we mentioned in the introduction, the inequality

Gp,0p,p

(
x

b
a

)
≥ 0 for 0 < x < 1

holds if va,b(t) =
∑p

j=1(taj − tbj ) ≥ 0 for t ∈ [0, 1]. See [17, Theorem 2] for a proof of this fact and
[20, section 2] for further details. Note also that va,b(t) ≥ 0 implies that ψp =

∑p
j=1(bj − aj) ≥ 0.

For given a, b the inequality va,b(t) ≥ 0 is not easy to verify other than numerically. However,
several sufficient conditions for va,b(t) ≥ 0 expressed directly in terms of a, b are known. In
particular, according to [1, Theorem 10] va,b(t) ≥ 0 on [0, 1] if

0 < a1 ≤ a2 ≤ · · · ≤ ap, 0 < b1 ≤ b2 ≤ · · · ≤ bp,
k∑
i=1

ai ≤
k∑
i=1

bi for k = 1, 2 . . . , p.
(47)

These inequalities are known as weak supermajorization [32, Definition A.2] and are abbreviated
as b≺W a. Different conditions have been found in [16, Theorems 1.1,1.2]. We slightly generalized
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the results of [16] and made a survey of other conditions sufficient for va,b(t) ≥ 0 on [0, 1] in [20,
section 2]. In particular, [20, Theorem 1] asserts that va,b(t) ≥ 0 on [0, 1] if p = 2n−1 and

a =
{∑
i∈J

αi +
∑

i∈In\J

βi : for all J ⊂ In = {1, 2, . . . , n} containing even number of terms
}
,

b =
{∑
i∈J

αi +
∑

i∈In\J

βi : for all J ⊂ In = {1, 2, . . . , n} containing odd number of terms
}
,

where αi ≥ βi ≥ 0 for i = 1, . . . , n. For example, for n = 3:

a =
(
β1 + β2 + β3, β1 + α2 + α3, α1 + β2 + α3, α1 + α2 + β3

)
,

b =
(
α1 + β2 + β3, β1 + α2 + β3, β1 + β2 + α3, α1 + α2 + α3

)
.

Furthermore, these conditions may be combined with (47), i.e. if a, b are given in the above
example while b1 ≺W a1 then va′,b′(t) ≥ 0 on [0, 1] for a′ = (a,a1), b′ = (b,b1).
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[38] J.E. Pečarić, F. Proschan, Y.L. Tong, Convex Functions, Partial Orderings, and Statistical
Applications, Volume 187, Mathematics in Science and Engineering, Academic Press Inc,
1992.

[39] E. Porcu and V. Zastavnyi, Generalized Askey functions and their walks through dimensions,
Expositiones Mathematicae, Volume 32, Issue 2, 2014, 190–198.

[40] A.P. Prudnikov, Yu.A. Brychkov and O.I. Marichev, Integrals and series, Volume 3: More Spe-
cial Functions, Gordon and Breach Science Publishers, 1990.

[41] A.M. Sedletskii, Analytic Fourier Transforms and Exponential Approximations. I, Journal of
Mathematical Sciences, Vol. 129, No. 6, 2005. Russian original: Sovremennaya mathematika.
Fundamentalnyie napravleniya. Volume 5 (2003), 3–152.

[42] E.J. Weniger, Summation of divergent power series by means of factorial series, Applied Nu-
merical Mathematics, 60(2010), 1429–1441.

27


