

MATLAB SIMULATION FOR
DIFFERENT NUMBER OF PILLARS OF

A MICROFLUIDIC ROTATIONAL
MOTOR DRIVEN BY CIRCULAR

VIBRATIONS

Student: Iker Ruiz de Esquide Crespo

Student program: Engineering in industrial technologies, specialization in
industrial electronics, Erasmus+ international exchange program.

Mentor: Prof. Dr. Riko Šafarič

Co-mentor: Assist. Prof. Dr. Suzana Uran

Maribor, August 2020

II

MATLAB SIMULATION FOR
DIFFERENT NUMBER OF PILLARS OF

A MICROFLUIDIC ROTATIONAL
MOTOR DRIVEN BY CIRCULAR

VIBRATIONS

Student: Iker Ruiz de Esquide Crespo

Student program: Engineering in industrial technologies, specialization in
industrial electronics, Erasmus+ international exchange program.

Mentor: Prof. Dr. Riko Šafarič

Co-mentor: Assist. Prof. Dr. Suzana Uran

III

MATLAB SIMULATION FOR DIFFERENT NUMBER OF
PILLARS OF A MICROFLUIDIC ROTATIONAL MOTOR
DRIVEN BY CIRCULAR VIBRATIONS

Abstract: The purpose of this bachelor thesis is to create a MATLAB code able to
simulate the velocity distribution of the liquid of a microfluidic rotational motor for a
changeable number of pillars and parameters, so the results of different configurations
of the motor can be theoretically shown.

The main idea of this microfluidic rotational motor is inducing a circular vibration to a
glass plate with two perpendicular piezoelectric devices, so a circular flux is created in
the liquid around the pillar that is glued perpendicular to the plate. This rotational
movement is used to drive a rotor floating in the liquid. This motor has already been
experimentally tested, but a possible improvement is searched by the change of the
individual pillar for a “pot”.

It is especially interesting to observe the velocity distribution of the fluid when there are
enough pillars creating a circle, so they overlap and create a pot shape configuration.
This is interesting because the pot shape reduces the evaporation of the droplet which
has been a persistent problem in the laboratory experimentation and could present
improvements with respect to the pillar-motor. With this MATLAB code, it is possible to
observe the velocity distribution for different changeable parameters of the motor, such
as amplitude and frequency of the circular vibrations, distance between pillars and liquid
chosen for the microfluidic motor.

In this bachelor thesis it has been shown that the microfluidic rotational motor with a
“pot” has satisfactory theoretical velocity distribution results. A MATLAB code is
provided so the user can calculate by itself which will be the theorical velocity
distribution for different configurations of the motor.

Key words:

Microfluidic rotational motor, MATLAB code, velocity distribution, micro-size motor, pot
shaped microfluidic motor.

MATLAB simulation for different number of pillars of a microfluidic rotational motor driven by circular vibrations

IV

INDEX

1 INTRODUCTION ... 1

 Previous work ... 1

 Motivation for the creation of the code ... 2

 Objectives ... 3

2 THEORETICAL MODEL ... 4

3 EXPLANATION OF THE CODE ... 8

 Explanation of the Main code ... 9

3.1.1 Initial configuration and simulation of the motor with one pillar 9

3.1.2 Calculation of the position of the pillar/s .. 11

3.1.3 Calculation of the position of the origin of the velocity vectors 11

3.1.4 Calculation of the components of the velocity vectors for the previously
calculated positions .. 12

3.1.5 Interpolation of tangential and rotational velocity values and creating a
mesh grid .. 13

3.1.6 Sum of the velocity components in the mesh grid and calculation of the
magnitude of the vectors .. 13

3.1.7 Plots of tangential and rotational velocities .. 15

3.1.8 User Interface .. 15

 Explanation of the parameter updating functions .. 16

4 PROBLEMS OF THE CODE AND POSSIBLE IMPROVEMENTS 17

5 SIMULATIONS ... 20

 1 pillar (f=1kHz, a=40um, A=8um, Water) .. 20

 2 pillars (D=120um, f=1kHz, a=40um, A=8um, Water) 21

 3 pillars (D=120 um, f=1kHz, a=40um, A=8um, Water) 22

 Comments of simulations for 2 and 3 pillars .. 23

 6 pillars – not accurate result (D=120 um, f=1kHz, a=40um, A=8um, Water) . 24

 6 pillars (D=220 um, f=1kHz, a=40um, A=8um, Water) 25

 Comments of simulations for 6 pillars .. 26

MATLAB simulation for different number of pillars of a microfluidic rotational motor driven by circular vibrations

V

 Pot1 (50 pillars) (D=120 um, f=1kHz, a=40um, A=8um, Water) 27

 Pot2 (50 pillars) (D=200 um, f=1kHz, a=40um, A=8um, Water) 28

 Pot3 (50 pillars) (D=120 um, f=1kHz, a=40um, A=192nm, Water) 29

 Pot4 (50 pillars) (D=150 um, f=800Hz, a=40um, A=8um, Water) 30

 Pot5 (50 pillars) (D=120 um, f=1kHz, a=40um, A=8um, Hg) 31

 Comments of simulations for the “pot” (50 pillars) .. 32

6 CONCLUSIONS ... 34

 Effects of parameter alteration in the pot shaped motor 34

7 BIBLIOGRAPHY .. 35

8 APPENDIX 1: MAIN FILE .. 37

9 APPENDIX 2: SIMULATION ONE PILLAR ... 45

10 APPENDIX 3: UPDATE D... 48

11 APPENDIX 4: UPDATE D1 ... 50

12 APPENDIX 5: UPDATE N .. 52

13 APPENDIX 6: UPDATE A ... 54

14 APPENDIX 7: UPDATE AA .. 55

15 APPENDIX 8: UPDATE F ... 56

16 APPENDIX 9: UPDATE LIQUID .. 57

17 APPENDIX 10: UPDATE POT ON .. 58

18 APPENDIX 11: REPEAT CALCULATIONS ... 59

MATLAB simulation for different number of pillars of a microfluidic rotational motor driven by circular vibrations

VI

List of figures

Figure 1-1: The microfluidic motor: (a) the scheme; (b) the photo. [1] 1

Figure 1-2: Pot shape example for 9 and 50 pillars ... 2

Figure 1-3: Graph type objective - Calculated flow velocity distribution [2] 3

Figure 2-1: Vibration-induced local whirling flow around the micropillar [3] 4

Figure 3-1: UI window example .. 8

Figure 3-2: SimulationOnePillar – Rotational speed against distance from the pillar -
example .. 10

Figure 3-3: SimulationOnePillar – Tangential speed against distance from the pillar -
example .. 10

Figure 3-4: Calculation of the position of the origin of the velocity vector 11

Figure 3-5: Calculation of the components of the velocity vectors for the previously
calculated positions .. 12

Figure 3-6: Sum of the velocity components in the mesh grid and calculation of the
magnitude of the vectors .. 13

Figure 3-7: Sum of the velocity vectors for 2 pillars – example 14

Figure 4-1: Problem representation – not neglectable .. 18

Figure 4-2: Problem representation – neglectable ... 18

Figure 5-1: Rotational speed distribution - One pillar ... 20

Figure 5-2: Tangential speed distribution - One pillar ... 20

Figure 5-3: Rotational speed distribution - Two pillars ... 21

Figure 5-4: Tangential speed distribution - Two pillars ... 21

Figure 5-5: Rotational speed distribution - Three pillars .. 22

Figure 5-6: Tangential speed distribution - Three pillars .. 22

Figure 5-7: Rotational speed distribution. Not accurate - Six pillars........................... 24

Figure 5-8: Tangential speed distribution. Not accurate - Six pillars 24

Figure 5-9: Rotational speed distribution - Six pillars .. 25

Figure 5-10: Tangential speed distribution - Six pillars .. 25

Figure 5-11: Rotational speed distribution - Pot1 (50 pillars) 27

Figure 5-12: Tangential speed distribution - Pot1 (50 pillars) 27

MATLAB simulation for different number of pillars of a microfluidic rotational motor driven by circular vibrations

VII

Figure 5-13: Rotational speed distribution - Pot2 (50 pillars) 28

Figure 5-14: Tangential speed distribution - Pot2 (50 pillars) 28

Figure 5-15: Rotational speed distribution - Pot3 (50 pillars) 29

Figure 5-16: Tangential speed distribution - Pot3 (50 pillars) 29

Figure 5-17: Rotational speed distribution - Pot4 (50 pillars) 30

Figure 5-18: Tangential speed distribution - Pot4 (50 pillars) 30

Figure 5-19: Rotational speed distribution - Pot5 (50 pillars) 31

Figure 5-20: Tangential speed distribution - Pot5 (50 pillars) 31

MATLAB simulation for different number of pillars of a microfluidic rotational motor driven by circular vibrations

VIII

List of symbols

A= amplitude of vibration

a= diameter of the pillar

D= distance between pillars

f= frequency of vibration

N= number of pillars

Ni= kinematic viscosity

List of abbreviations

CCW= counterclockwise

CW= clockwise

UI= user interface

MATLAB simulation for different number of pillars of a microfluidic rotational motor driven by circular vibrations

1

1 INTRODUCTION

 Previous work

This bachelor thesis is based on a microfluidic rotational motor developed by Suzana
Uran, Božidar Bratina, Riko Šafarič and several students. The idea of this motor and the
results of its experiments are explained in the paper called Microfluidic Rotational Motor
Driven by Circular Vibrations [1]. The abstract of this article explains:

“The paper presents a rotational micro-sized motor (the diameter of the rotor is 350 µm) driven
by low frequency (200–700 Hz) circular vibrations, made by two piezoelectric actuators,
through the medium of a water droplet with diameter of 1 mm (volume 3.6 µL). The theoretical
model presents how to produce the circular streaming (rotation) of the liquid around an
infinitely long pillar with micro-sized diameter. The practical application has been focused to
make a time-stable circular stream of the medium around the finite long vibrated pillar with
diameter of 80 µm in the presence of disturbances produced by the vibrated plate where the
pillar is placed. Only the time-stable circular stream in the water droplet around the pillar
produces enough energy to rotate the micro-sized rotor. The rotational speed of the rotor is
controlled in both directions from −20 rad/s to +26 rad/s. 3D printed mechanical amplifiers of
vibrations, driven by piezoelectric actuators, amplify the amplitude of the piezoelectric actuator
up to 20 µm in the frequency region of 200 to 700 Hz.” [1]

Since the aim of this bachelor thesis is to create a MATLAB code for the simulation of
the microfluidic rotational motor for N number of pillars, the computer simulation will
be based on the theoretical model presented in the paper Microfluidic Rotational Motor
Driven by Circular Vibrations [1]. That it is to say, a theoretical model of the motor for
an infinitely long pillar with micro-sized diameter.

 Figure 1-1: The microfluidic motor: (a) the scheme; (b) the photo. [1]

MATLAB simulation for different number of pillars of a microfluidic rotational motor driven by circular vibrations

2

 Motivation for the creation of the code

The main motivation of the creation of the MATLAB code for the simulation of the
microfluidic vibrational motor for a changeable number of pillars is observing the
velocity distribution of the motor’s fluid when there are enough pillars so they overlap
and create a pot shape. This pot shape is achieved when it is not possible for the fluid to
go between pillars. Obviously, for a greater number of pillars, a more precise pot shape
will be obtained, but more computation time will be needed for the simulation.

In Figure 1-2 it is compared the pot shape for two different amounts of pillars. The left
configuration shows 9 pillars and the right one shows 50. This figure is shown just as an
example where the distance between pillars is 120 µm and the radius of the pillars is 40
µm. The number of pillars from which the pot shape starts to be created depends on the
distance between pillars and the radius of these.

This pot shape is especially interesting for the motor configuration because it reduces
the evaporation of the water droplet which has been a persistent problem in the
laboratory when testing the motor experimentally and could present improvements with
respect to the pillar-motor.

With the development of this code it will be possible to modify some parameters of the
pot shaped motor such as the fluid used, the diameter of the “pot” and the frequency
and amplitude of the circular vibrations. This will allow to choose some proper
configurations for the experimentation in the laboratory.

In addition, it is also interesting the developing of this code to observe which is the
velocity distribution of the motor’s fluid when several non-overlapped pillars are
implemented in the motor, but this is not the main objective because its practical
application it is not interesting in this case.

Figure 1-2: Pot shape example for 9 and 50 pillars

MATLAB simulation for different number of pillars of a microfluidic rotational motor driven by circular vibrations

3

 Objectives

The objective of this bachelor thesis is to create a MATLAB code which can show the
velocity distribution of the microfluidic rotational motor`s fluid for a changeable number
of pillars and changeable parameters. This code is based on the mathematical model
descripted in the paper Microfluidic Rotational Motor Driven by Circular Vibrations [1]
and the solution of this mathematical model is calculated with the code written by Prof.
Dr. Riko Šafarič that it is attached to this document in the function SimulationOnePillar.

The changeable parameters are the following ones:

1. Liquid used in the microfluidic rotational motor.
2. Number of pillars.
3. Radius of the pillar/s.
4. Distance between pillars.
5. Frequency of the circular vibrations.
6. Amplitude of the circular vibrations.

The response of the motor is represented by two figures showing the velocity
distribution of the fluid: one represents the tangential velocity and the other one the
rotational velocity. The objective is to obtain similar figures to the shown in the article
of Takeshi Hayakawa, Shinya Sakuma and Fumihito Arai: On-chip 3D rotation of oocyte
based on a vibration-induced local whirling flow [2] – but in this case for a changeable
number of pillars and changeable parameters.

Additionally, the MATLAB code must be efficient so the user can change the parameters
of the motor and obtain a smooth update of velocity distribution figures.

Figure 1-3: Graph type objective - Calculated flow velocity distribution [2]

MATLAB simulation for different number of pillars of a microfluidic rotational motor driven by circular vibrations

4

2 THEORETICAL MODEL

The theoretical model used for the simulation of the microfluidic rotational motor of a
unique pillar has been the one presented in the paper Microfluidic Rotational Motor
Driven by Circular Vibrations [1], which it is based on Hayakawa, Sakuma, Fukuhara,
Yokoyama and Arai’s article [3]. The theorical model represents the induced flow around
a micropillar when circular vibration is applied.

They develop the model from the basic differential equations for the motion of an
incompressible viscous fluid in two-dimensional space that can be written as:

∇4Ψ −
1
η
∂
∂t
ψ =

1
η

V ⋅ ∇(∇2ψ) =
u
η
∂
∂x
∇2ψ +

v
η
∂
∂y
∇2ψ (1)

∂u
∂x

+
∂v
∂y

= 0 (2)

Here, 𝛹𝛹 is a stream function, η is the kinematic viscosity, v is the velocity vector, u and v
are the velocity components in the x and y directions, respectively. [3]

If the equation is solved by assuming the convection term in the right side is smaller than
the other terms:

∇4ψ(0) −
1
η
∂
∂t
ψ(0) = 0

(3)

Where 𝜓𝜓(0) indicates the solution of zeroth order Equation (3). [3]

Figure 2-1: Vibration-induced local whirling flow around the micropillar [3]

MATLAB simulation for different number of pillars of a microfluidic rotational motor driven by circular vibrations

5

For a circular vibration 𝐴𝐴0[cos𝜔𝜔𝜔𝜔𝑥𝑥� + cos(𝜔𝜔𝜔𝜔 ± 𝜋𝜋)𝑦𝑦�] , the boundary conditions at the
exterior part of the pillar and at an infinite distance from it can be written as:

vr|r=a = vθ|r=a = 0 (4)

vr|r→∞ = ωA0 [cos θ cos ωt + sin θ cos(ωt ± π)] (5)

vθ|r→∞ = −ωA0 [sin θ cos ωt − cos θ cos(ωt ± π)] (6)

In these equations, 𝑣𝑣𝑟𝑟 and 𝑣𝑣𝜃𝜃 are the velocity components in the r and 𝜃𝜃 directions,
respectively, a is the radius of the micropillar, 𝐴𝐴0 is the amplitude of vibration and ω is
the angular frequency of the vibration. The positive (negative) sign of the phase indicates
anticlockwise (clockwise) circular vibration. [3]

Solving the previous equation, the following zeroth order solution is obtained:

ψ(0) = ωA0a�sinθ𝐞𝐞−𝐢𝐢ωt − cos θ𝐞𝐞−𝐢𝐢(ωt±π)� �
2Y
ϵ
−

r
a
−

a
r

C� + Complex conjugate (7)

Then, the method of successive approximation is used to treat the nonlinear convection
term in Equation (1). By substituting the solution of Equation (7) into the right side of
Equation (1), it is possible to obtain the first order equation:

∇4ψ(1) −
1
η
∂
∂t
ψ(1) =

1
η

v(0) · ∇(∇2ψ(0)) (8)

MATLAB simulation for different number of pillars of a microfluidic rotational motor driven by circular vibrations

6

Developing this equation, it can be obtained the mathematical model of the velocity of
the circular flux depending on the distance to the pillar. The model is descripted by the
following equations:

ψst = r4 �
1

48
�

1
x
ρ(x)dx + C1

r

a
� + r2 �−

1
16

� xρ(x)dx + C2
r

a
�

+�
1

16
� x3ρ(x)dx + C3
r

a
� +

1
r2
�−

1
48

� x5ρ(x)dx + C4
r

a
�

Where:

(9)

ρ(x) =
2π3 f3A2

η2
�2Y + 2Y∗ − 2

a2

r2
CD − 2

a
r2

2
C∗Z − 4YY∗ + 4ZZ∗� (10)

C1 = −
1

48
�

1
x
ρ(x)dx

∞

a
 (11)

C2 =
1

16
� xρ(x)dx
∞

a
 (12)

C3 =
a4

16
�

1
x
ρ(x)dx

∞

a
−

a2

8
� xρ(x)dx
∞

a
 (13)

C4 = −
a6

24
�

1
x
ρ(x)dx

∞

a
−

a4

16
� xρ(x)dx
∞

a
 (14)

Where the Y, D, C and Z abbreviation functions are expressed by Hankel functions of the
first kind H(1) and second kind H(2) with the next equations:

Y =
H0

(1)(ε. x)

H0
(1)(ε. a)

, Z =
H2

(1)(ε. x)

H0
(1)(ε. a)

, C =
H2

(1)(ε. a)

H0
(1)(ε. a)

, D =
H2

(2)(εz. x)

H0
(1)(ε. a) (15)

Where

ε = �i
2πf
η
�
1
2

, εz = �−i
2πf
η
�
1
2

(16)

With these equations, the tangential velocity vt and a rotational velocity vr of the
rotational flux around the pillar can be calculated as:

vt =
δψ
 δr

, vr =
1
r
δψ
 δr (17)

MATLAB simulation for different number of pillars of a microfluidic rotational motor driven by circular vibrations

7

The equations of this mathematical model can be solved with MATLAB in the function
SimulationOnePillar and it is used for the simulation of the velocity distribution of the
motor`s fluid in the MATLAB code created for this bachelor thesis. The code of this
function has been written by Prof. Dr. Riko Šafarič based on the mathematical model’s
equations that had been exposed.

The function SimulationOnePillar has as inputs:

• Number of calculations (j)
• Differential radial distance for the calculations (dr)
• Frequency of circular vibrations (f)
• Radius of the pillar (a)
• kinematic viscosity (ni)
• Amplitude of circular vibrations (A)

And as outputs:

• Distance from the pillar (vr1)
• Tangential speed vector depending on distance vr1 (vv)

Then, with the function SimulationOnePillar it is possible to quickly calculate
theoretically the tangential and rotational velocity of the liquid stream around the pillar
against the distance from the pillar of the microfluidic rotational motor of a unique pillar
with some specific parameters: frequency and amplitude of the circular vibrations,
radius of the pillar and the kinematic viscosity of the fluid.

MATLAB simulation for different number of pillars of a microfluidic rotational motor driven by circular vibrations

8

3 EXPLANATION OF THE CODE

The code creates two figures that represent the velocity distribution of the circular flux
of the fluid around the pillar/s of the motor: one for the tangential velocity and the other
one for the rotational velocity. The pillars are illustrated with a white circle, the “pot”
with a white annulus and the circular flux of the fluid is represented in two different
ways:

1. Colored backwound showing the magnitude of the velocity vector in each
position. The value of each color is written in the colormap.

2. Vectors that show the sense, direction and magnitude (bigger or smaller arrow)
of the velocity for each position represented.

A third figure is created for the user interface. The UI enables the user to change the
following characteristics for the simulation of the motor:

7. Liquid used for the simulation (Liquid) - changes the kinematic viscosity used
for the calculations. Water, Mercury or Galinstan can be chosen.

8. Number of pillars.
9. Distance between pillars (D) - diameter of the circumcircle of a regular polygon

formatted by the vertices located in the central part of each pillar minus two
times the radius of the pillar. Values from 0 to 400 µm can be chosen with the
slider bar or an exact number can be written in the textbox. Units: µm.

10. Frequency of the circular vibrations (f). Units: Hz.
11. Radius of the pillar/s (a). Units: µm.
12. Amplitude of the circular vibrations (A). Units: nm.
13. Pot mode ON – It is the mode of display (PotOn). If selected, a “pot” will be

displayed instead of the pillars.

Figure 3-1: UI window example

MATLAB simulation for different number of pillars of a microfluidic rotational motor driven by circular vibrations

9

 Explanation of the Main code

The main code is structured in the following sections:

1. Initial configuration and simulation of the motor with one pillar.
2. Calculation of the position of the pillar/s.
3. Calculation of the position of the origin of the velocity vectors.
4. Calculation of the components of the velocity vectors for the previously

calculated positions.
5. Interpolation of tangential and rotational velocity values and creating a mesh

grid.
6. Sum of the velocity components in the mesh grid and calculation of the

magnitude of the vectors.
7. Plots of tangential and rotational velocities.
8. User Interface.

3.1.1 Initial configuration and simulation of the motor with one pillar

Different necessary variables are defined and the calculations for the simulation of the
motor with one pillar are done. These calculations can be represented in two plots:
rotational velocity against distance from the pillar and tangential velocity against
distance from the pillar. This graphs are not plotted by the original program because it
is not considered necessary. The code for plotting these functions is commented inside
the function SimulationOnePillar.

As an example, these two plots are represented for the following characteristics:

- Liquid: water.
- Frequency of the circular vibrations: 1 kHz.
- Amplitude of the circular vibrations: 8 µm.
- Radius of the pillar: 40 µm.
- 300 µm of simulation.

MATLAB simulation for different number of pillars of a microfluidic rotational motor driven by circular vibrations

10

Figure 3-2: SimulationOnePillar – Rotational speed against distance from the pillar - example

Figure 3-3: SimulationOnePillar – Tangential speed against distance from the pillar - example

MATLAB simulation for different number of pillars of a microfluidic rotational motor driven by circular vibrations

11

3.1.2 Calculation of the position of the pillar/s

The x and y coordinates of the position of the center of the pillars are calculated for the
number N of pillars selected by the user. For N>2, this is achieved with the position of
the vertices of the regular polygon created by the MATLAB’s function nsidedpoly [4].

This function has as inputs for creating the regular polygon: the number of vertices, the
position of the center of the polygon (for this code it will always be [0,0]) and the length
of the sides of the polygon. Since we are interested in having and specific diameter of
the circumcircle, the side of the polygon must be determined by the following relation:

Where:

 s = side of the regular polygon.

 D1 = diameter of the circumcircle.

 N = Number of pillars.

3.1.3 Calculation of the position of the origin of the velocity vectors

The x and y coordinates of the position of the origin of the velocity vectors are calculated
based in the previously defined position of the center of the pillar/s, the angle φ (phi)
and the distance vr1 (distance from the center of the pillar to the velocity vector).

𝑠𝑠 = 𝐷𝐷1 ∗ sin
𝜋𝜋
𝑁𝑁

 [5]

Figure 3-4: Calculation of the position of the origin of the velocity vector

MATLAB simulation for different number of pillars of a microfluidic rotational motor driven by circular vibrations

12

3.1.4 Calculation of the components of the velocity vectors for the previously
calculated positions

Firstly, the row vector that contains the magnitude of the velocity depending on the
distance from the pillar is converted into a matrix in which this vector in column form is
repeated for each value of the angle phi. In this way we have a magnitude of the velocity
for each position previously calculated (obviously the values of the rows of this matrix –
values of the magnitude of the velocity for the same distance and different angle – will
be equal, but this will be useful when the sum of velocity components of different pillars
is needed).

Then, the values of the x and y components of the velocity are calculated for each
element of the previously created matrix. Since the velocity vector (Vtan in Figure 3-5)
is always tangent to the radial distance from the center of the pillar and the sense of the
flow will be CW, x and y components – Ut and Vt respectively – are calculated in the
following way:

As it can be appreciated in Figure 3-5, the calculations are firstly done for the tangential
velocity and after, the velocity components are divided by the radial distance, so the
components of the rotational velocity are achieved.

Figure 3-5: Calculation of the components of the velocity vectors for the previously calculated positions

MATLAB simulation for different number of pillars of a microfluidic rotational motor driven by circular vibrations

13

3.1.5 Interpolation of tangential and rotational velocity values and creating a
mesh grid

The MATLAB’s function scatteredInterpolant [6] is used for the linear interpolation of
the components of the velocity. This function is descripted in MathWorks’ page as: “Use
scatteredInterpolant to perform interpolation on a 2-D or 3-D data set of scattered data.
scatteredInterpolant returns the interpolant F for the given data set. You can evaluate F
at a set of query points, such as (xq,yq) in 2-D, to produce interpolated values vq =
F(xq,yq)” [6].

Then, a mesh grid is created with the MATLAB’s function meshgrid [7], where x and y
minimum and maximum limits depend on the distance between pillars – a bigger mesh
grid is created when a bigger distance between pillars is selected. These values had been
chosen so they are big enough to have a proper mesh grid when velocities are summed.
Additionally, 100 subdivisions per dimension had been chosen in this code. The number
of subdivisions per dimension can be increased so the calculations are more precise, but
the code will be slower, and the change will not be noticeable.

3.1.6 Sum of the velocity components in the mesh grid and calculation of the
magnitude of the vectors

The value of the velocity (tangential and rotational) components are calculated in each
point of the mesh grid for each pillar and then the velocity components of different
pillars in the same position of the mesh grid are summed.

When the velocity components are calculated, these are used to calculate the
magnitude of the rotational and tangential velocities for every position of the mesh grid.

Figure 3-6: Sum of the velocity components in the mesh grid and calculation of the magnitude of the vectors

MATLAB simulation for different number of pillars of a microfluidic rotational motor driven by circular vibrations

14

Figure 3-7 is depicted as an example of the correct result of the vector sum. In this figure,
(Xc,Yc) are the points created by the mesh grid and N the number of pillars of the motor.

The sum of velocity vectors of different pillars for the same position of the mesh grid
can be easily seen in the Figure 3-7. This example shows the motor with two pillars and
a distance (D) of 130 µm between them. The colormap is different from the one of the
original code so the vectors can be seen more easily.

Figure 3-7: Sum of the velocity vectors for 2 pillars – example

MATLAB simulation for different number of pillars of a microfluidic rotational motor driven by circular vibrations

15

3.1.7 Plots of tangential and rotational velocities

The figures representing the rotational and tangential velocities are mainly formed of
four different plots based on MATLAB’s functions. These are plotted in the next order:

1. Contourf function, which is a “filled 2-D contour plot” [8] – creates the
background colors that represent the magnitude of the velocity.

2. Quiver function, which “plots vectors as arrows at the coordinates specified in
each corresponding pair of elements in x and y” [9].

3. Circles that represent the pillars and had been created through the function
rectangle that “creates rectangle with sharp or curved corners” [10].

4. Annulus that represent the “pot” and has been created through the function
patch that “plots one or more filled polygonal regions” [11] and the function
line [12] that draws the inner circumference of the annulus.

3.1.8 User Interface

The user interface has been created fully with the MATLAB’s function uicontrol [13]. It is
composed of:

1. One pop up menu for choosing the liquid.
2. One slider bar for choosing the distance between pillars.
3. Five editable text fields for choosing the values of the distance between pillars,

the radius of the pillar, the amplitude and frequency of the circular vibrations
and the number of pillars.

4. One checkbox for activating or deactivating the “Pot mode”.

When some of these values are changed by the user in the UI, one specific callback
function is called for updating the variable changed.

MATLAB simulation for different number of pillars of a microfluidic rotational motor driven by circular vibrations

16

 Explanation of the parameter updating functions

The functions created for updating a variable (a, A, D, f, liquid, N and PotOn) are just
callback functions that make possible to update the value of the variable modified by
the user in the UI.

This type of function works as follows:

1. Declares as global variables the variables that are going to be updated.
2. Reads the variable introduce by the user.
3. Loads necessary variables from the workspace.
4. Updates other variables if needed.
5. Runs the function RepeatCalculations that it is a code that repeats the

calculations for the new parameter introduced by the user.
6. Updates the UI if needed.

MATLAB simulation for different number of pillars of a microfluidic rotational motor driven by circular vibrations

17

4 PROBLEMS OF THE CODE AND POSSIBLE IMPROVEMENTS

The main problem of this code it is that the simulations are not accurate enough when
the distance of the pillars is too small for some specific parameters of the motor. This is
because the sum of the velocities of different pillars is done in the complete mesh grid
regardless of which are the positions of the pillars. In other words, the circular flux of
the fluid around each pillar interacts with the other circular fluxes caused by the other
pillars but not with the pillars themselves. Since the flux does not interact with them,
some velocities will appear inside the pillars and that is obviously incorrect.

If the pillars are separated the enough distance for the selected parameters, this effect
will be neglectable. This is because the velocity of the stream will be small at the distance
where it should interact with the pillar.

The distance at which that effect starts to be neglectable it is different for every
alternative configuration of the motor set by user in the UI. Despite that, it is simple for
the user to identify if the simulation works well or not: the flux must be circular around
each pillar - excluding when there are plotted so many pillars that there is not space
between them so a circular flux can appear around each pillar. When the pillars overlap
– the “pot” is formatted – the velocities in the surface of the “pot” must be zero or at
least, small to consider valid the results. Even more, the same must happen in the
surface of the pillars when the “pot” is not created.

Some non-null velocities appear inside the pillars also because of the interpolation, but
this velocities are very small and neglectable.

The white circles are always plotted above the quiver (plot of the arrows in the figure)
so the small velocities that appear inside the pillars - that obviously should not exist -
cannot be seen because the white circle that represents the pillar is above them. This
velocities are not erased in the code because it is much more efficient for it just to hide
them below the pillars than setting that velocities to zero. The same happens when “Pot
mode” is selected. Just to represent graphically this problem, the pillars had been
plotted below the vector field (quiver) for the following two simulations:

MATLAB simulation for different number of pillars of a microfluidic rotational motor driven by circular vibrations

18

Figure 4-1: Problem representation – not neglectable

Figure 4-2: Problem representation – neglectable

MATLAB simulation for different number of pillars of a microfluidic rotational motor driven by circular vibrations

19

As it can be seen in Figure 4-1, a circular flux is not present around each pillar, so this
shows that the distance between the pillars is too small to obtain an accurate simulation.
It can also be seen that big velocities appear inside the pillars, which it is not neglectable
and shows that this simulation is not precise.

On the other hand, Figure 4-2 clearly shows a circular flux around each pillar and the
velocities inside of the pillars are very small and neglectable. Because of that, it can be
said that this is a valid simulation.

Known this problem, these are the possible improvements suggested for the presented
code:

• Set to zero all the velocities that are inside any pillar. This is not implemented in
the original code because it is inefficient in this case, is better just to hide that
velocities below the pillars. These can be useful only if more accurate numerical
results are needed. This will obtain better numerical results but will not fix the
problem previously exposed.

• Increase the number of calculations done per dimension. This will lead to more
precise results, but the simulation will be slower. This is not necessary for the
purpose of the original code because more precise calculations will not lead
into noticeably better graphic representations of the velocity distribution of the
circular flux. However, this will not fix the problem that has been previously
exposed.

• Simulate the impact of the fluid with the pillars so more accurate simulations
are achieved and even small distances between pillars and low frequencies
would be simulated precisely.

• If more accurate results are needed for the pot simulations, it could probably
be necessary to develop a mathematical model specific for the rotational flow
inside the pot due to the circular vibrations.

MATLAB simulation for different number of pillars of a microfluidic rotational motor driven by circular vibrations

20

5 SIMULATIONS

Different significant simulations will be shown so the response of the microfluid
rotational motor can be displayed for different configurations of 1, 2, 3, 6 and 50 pillars.

 1 pillar (f=1kHz, a=40um, A=8um, Water)

These figures show graphically the results of the mathematical model of the
microfluidic rotational motor.

Figure 5-1: Rotational speed distribution - One pillar

Figure 5-2: Tangential speed distribution - One pillar

MATLAB simulation for different number of pillars of a microfluidic rotational motor driven by circular vibrations

21

 2 pillars (D=120um, f=1kHz, a=40um, A=8um, Water)

Figure 5-3: Rotational speed distribution - Two pillars

Figure 5-4: Tangential speed distribution - Two pillars

MATLAB simulation for different number of pillars of a microfluidic rotational motor driven by circular vibrations

22

 3 pillars (D=120 um, f=1kHz, a=40um, A=8um, Water)

Figure 5-5: Rotational speed distribution - Three pillars

Figure 5-6: Tangential speed distribution - Three pillars

MATLAB simulation for different number of pillars of a microfluidic rotational motor driven by circular vibrations

23

 Comments of simulations for 2 and 3 pillars

In the simulations for 2 pillars and 3 pillars it can be observed that the velocity is much
smaller in the middle part of the distance between pillars. This is because the velocity
components are cancelled due to the presence of the other pillars.

As expected, the rotational velocity and the tangential velocity vectors only differ in its
magnitude.

It can also be shown that the maximum velocities increase slightly when the number of
pillars is increased, but also some low velocity zones are created. Because of this not-
uniform velocity distribution, these configurations are not a good choice for the design
of the motor.

Nevertheless, these results show that the code simulates the velocity distribution
correctly.

MATLAB simulation for different number of pillars of a microfluidic rotational motor driven by circular vibrations

24

 6 pillars – not accurate result (D=120 um, f=1kHz, a=40um, A=8um, Water)

Figure 5-8: Tangential speed distribution. Not accurate - Six pillars

Figure 5-7: Rotational speed distribution. Not accurate - Six pillars

MATLAB simulation for different number of pillars of a microfluidic rotational motor driven by circular vibrations

25

 6 pillars (D=220 um, f=1kHz, a=40um, A=8um, Water)

Figure 5-9: Rotational speed distribution - Six pillars

Figure 5-10: Tangential speed distribution - Six pillars

MATLAB simulation for different number of pillars of a microfluidic rotational motor driven by circular vibrations

26

 Comments of simulations for 6 pillars

It can be clearly seen in Figure 5-7 and in Figure 5-8 that the simulated velocity
distribution is not correct. This is because the velocity in the surface of the pillar should
be zero or at least very small to consider the simulation valid, and in this case the velocity
is high in the surface of the pillar.

The reason of this error is explained in PROBLEMS OF THE CODE AND POSSIBLE
IMPROVEMENTS section.

For showing a valid simulation of the motor with 6 pillars, the distance between pillars
had been increased 100 µm in Figure 5-9 and Figure 5-10.

These last two figures show a more precise simulation. It can be extracted the same
conclusions as in the simulations for 2 pillars and 3 pillars . Additionally, in this
simulation, it can be seen a hexagon form velocity distribution between the pillars. This
is a satisfactory result because it shows that if the number of pillars is infinite (a “pot”)
a circular velocity distribution will be obtained inside the “pot”.

It is interesting to notice that the sense of the flow of the fluid in the zone between the
pillars (CCW) is opposite to the sense of flow outside that zone and to the sense of flow
of the liquid with a unique pillar (CW).

MATLAB simulation for different number of pillars of a microfluidic rotational motor driven by circular vibrations

27

 Pot1 (50 pillars) (D=120 um, f=1kHz, a=40um, A=8um, Water)

Figure 5-11: Rotational speed distribution - Pot1 (50 pillars)

Figure 5-12: Tangential speed distribution - Pot1 (50 pillars)

MATLAB simulation for different number of pillars of a microfluidic rotational motor driven by circular vibrations

28

 Pot2 (50 pillars) (D=200 um, f=1kHz, a=40um, A=8um, Water)

Figure 5-14: Tangential speed distribution - Pot2 (50 pillars)

Figure 5-13: Rotational speed distribution - Pot2 (50 pillars)

MATLAB simulation for different number of pillars of a microfluidic rotational motor driven by circular vibrations

29

 Pot3 (50 pillars) (D=120 um, f=1kHz, a=40um, A=192nm, Water)

Figure 5-15: Rotational speed distribution - Pot3 (50 pillars)

Figure 5-16: Tangential speed distribution - Pot3 (50 pillars)

MATLAB simulation for different number of pillars of a microfluidic rotational motor driven by circular vibrations

30

 Pot4 (50 pillars) (D=150 um, f=800Hz, a=40um, A=8um, Water)

Figure 5-17: Rotational speed distribution - Pot4 (50 pillars)

Figure 5-18: Tangential speed distribution - Pot4 (50 pillars)

MATLAB simulation for different number of pillars of a microfluidic rotational motor driven by circular vibrations

31

 Pot5 (50 pillars) (D=120 um, f=1kHz, a=40um, A=8um, Hg)

Figure 5-19: Rotational speed distribution - Pot5 (50 pillars)

Figure 5-20: Tangential speed distribution - Pot5 (50 pillars)

MATLAB simulation for different number of pillars of a microfluidic rotational motor driven by circular vibrations

32

 Comments of simulations for the “pot” (50 pillars)

The velocity distribution simulation in the “pot” has been done considering a big number
of pillars – 50 pillars – so the results can be as accurate as possible.

It is worth noticing that when simulating the pot shaped motor, the diameter of the pot
is equal to the distance between pillars. Even more, it is interesting to notice that if a big
enough number of pillars is chosen, the radius (a) of each pillar does not have any
influence on the simulation of the pot shaped motor.

It has been shown 5 different configurations of the motor with the “pot”. The first one
showing the shape of the velocity distribution and the others showing the impact of
changing each parameter:

 Pot1:

It shows a circular flow inside the “pot” like the one created with a unique pillar
but in the opposite sense (CCW) and with higher velocity values. The velocity is
null – actually, is nearly null – in the middle point and in the surface of the “pot”.
It is a satisfactory result.

 Pot2 – Change in the distance between pillars:

Basically, from a certain distance that depends on the parameters of the motor,
the bigger the distance between pillars, the bigger the central low velocity
circular shape zone and the smaller the maximum velocity.

 Pot3 – Change in the amplitude of the circular vibrations:

It affects only the magnitude of the velocity. The bigger the amplitude, the bigger
the magnitude of the velocity.

 Pot4 – Change in the frequency of the circular vibrations:

Increasing the frequency implies increasing the velocity and getting closer to the
surface of the “pot” the highest velocity circular zone.

* In this simulation the distance between pillars has been increased to 150 µm
because with a distance of 120 µm and the chosen parameters, the results
obtained were not precise due to the problem explained in PROBLEMS OF THE
CODE AND POSSIBLE IMPROVEMENTS section.

MATLAB simulation for different number of pillars of a microfluidic rotational motor driven by circular vibrations

33

 Pot5 – Change in the liquid:

The mercury compared to the water archives bigger velocities and gets closer to
the surface of the “pot” the highest velocity circular zone.

It can be observed that the velocity is not null in the surface of the “pot” like it
should. This shows that the simulation is not totally accurate, but the results are
good enough for getting a qualitative conclusion.

MATLAB simulation for different number of pillars of a microfluidic rotational motor driven by circular vibrations

34

6 CONCLUSIONS

It has been developed a valid MATLAB code for the qualitative representation of the
velocity distribution of the microfluidic rotational motor studied.

This code confirms theoretically that the “pot” is a good option to include in the motor
since it obtains similar results to the motor with a unique pillar but with higher velocity
and the opposite sense of the flow. The code can also be used as a tool for testing which
would be the best parameters for experimenting with this motor in the laboratory.

As it has been demonstrated previously in this thesis, the code is not totally accurate
and when the distance between pillars is too small (relative to the parameters of the
motor) the results can´t be taken as valid.

Nevertheless, it provides good qualitative results and it is an easy code to work with
thanks to the user interface. More accurate results need the developing of a
mathematical model specific for the rotational flow inside the pot due to the circular
vibrations, or another more accurate method of simulation of the velocity distribution.
However, the results obtained with the code presented in this thesis are valid as a
qualitative approximation of the velocity distribution of this microfluidic rotational
motor.

 Effects of parameter alteration in the pot shaped motor
 Distance between pillars:

Basically, from a certain distance that depends on the parameters of the motor, the
bigger the distance between pillars, the bigger the central low velocity circular shape
zone and the smaller the maximum velocity.

 Amplitude of the circular vibrations:

It affects only the magnitude of the velocity. The bigger the amplitude, the bigger the
magnitude of the velocity.

 Frequency of the circular vibrations:

Increasing the frequency implies increasing the velocity and getting closer to the surface
of the “pot” the highest velocity circular zone.

 Liquid:

The mercury compared to the water archives bigger velocities and gets closer to the
surface of the “pot” the highest velocity circular zone.

MATLAB simulation for different number of pillars of a microfluidic rotational motor driven by circular vibrations

35

7 BIBLIOGRAPHY

[1] B. B. a. R. Š. Suzana Uran, "A Microfluidic Rotational Motor Driven by Circular
Vibrations," Micromachines, 2019.

[2] S. S. a. F. A. Takeshi Hayakawa, "On-chip 3D rotation of oocyte based on a
vibration-induced local whirling flow," Nature, 2015.

[3] S. S. T. F. Y. Y. a. F. A. Takeshi Hayakawa, "A Single Cell Extraction Chip Using
Vibration-Induced Whirling Flow and a Thermo-Responsive Gel Pattern,"
Micromachines, 2014.

[4] MathWorks, "MATLAB Documentation - nsidedpoly," 2020. [Online]. Available:
https://es.mathworks.com/help/matlab/ref/nsidedpoly.html. [Accessed 02 08
2020].

[5] M. E. Lemonis, "Calcresource," 24 04 2020. [Online]. Available:
https://calcresource.com/geom-ngon.html. [Accessed 02 08 2020].

[6] MathWorks, "MATLAB Documentation - scatteredinterpolant," 2020. [Online].
Available: https://es.mathworks.com/help/matlab/ref/scatteredinterpolant.html.
[Accessed 02 08 2020].

[7] MathWorks, "Matlab documentation - meshgrid," 2020. [Online]. Available:
https://es.mathworks.com/help/matlab/ref/meshgrid.html?lang=en. [Accessed
02 08 2020].

[8] MathWorks, "Matlab Documentation - contourf," 2020. [Online]. Available:
https://es.mathworks.com/help/matlab/ref/contourf.htm. [Accessed 02 08
2020].

[9] MathWorks, "Matlab Documentation - quiver," 2020. [Online]. Available:
https://es.mathworks.com/help/matlab/ref/quiver.html?lang=en. [Accessed 02
08 2020].

MATLAB simulation for different number of pillars of a microfluidic rotational motor driven by circular vibrations

36

[10] MathWorks, "Matlab Documentation - rectangle," 2020. [Online]. Available:
https://es.mathworks.com/help/matlab/ref/rectangle.html. [Accessed 02 08
2020].

[11] MathWorks, "Matlab Documentation - patch," 2020. [Online]. Available:
https://es.mathworks.com/help/matlab/ref/patch.html. [Accessed 02 08 2020].

[12] MathWorks, "Matlab Documentation - line," 2020. [Online]. Available:
https://es.mathworks.com/help/matlab/ref/line.html?s_tid=srchtitlel. [Accessed
02 08 2020].

[13] MathWorks, "Matlab Documentation - uicontrol," 2020. [Online]. Available:
https://es.mathworks.com/help/matlab/ref/uicontrol.html. [Accessed 02 08
2020].

MATLAB simulation for different number of pillars of a microfluidic rotational motor driven by circular vibrations

37

8 APPENDIX 1: MAIN FILE

MATLAB simulation for different number of pillars of a microfluidic rotational motor driven by circular vibrations

38

MATLAB simulation for different number of pillars of a microfluidic rotational motor driven by circular vibrations

39

MATLAB simulation for different number of pillars of a microfluidic rotational motor driven by circular vibrations

40

MATLAB simulation for different number of pillars of a microfluidic rotational motor driven by circular vibrations

41

MATLAB simulation for different number of pillars of a microfluidic rotational motor driven by circular vibrations

42

MATLAB simulation for different number of pillars of a microfluidic rotational motor driven by circular vibrations

43

MATLAB simulation for different number of pillars of a microfluidic rotational motor driven by circular vibrations

44

MATLAB simulation for different number of pillars of a microfluidic rotational motor driven by circular vibrations

45

9 APPENDIX 2: SIMULATION ONE PILLAR

MATLAB simulation for different number of pillars of a microfluidic rotational motor driven by circular vibrations

46

MATLAB simulation for different number of pillars of a microfluidic rotational motor driven by circular vibrations

47

MATLAB simulation for different number of pillars of a microfluidic rotational motor driven by circular vibrations

48

10 APPENDIX 3: UPDATE D

MATLAB simulation for different number of pillars of a microfluidic rotational motor driven by circular vibrations

49

MATLAB simulation for different number of pillars of a microfluidic rotational motor driven by circular vibrations

50

11 APPENDIX 4: UPDATE D1

MATLAB simulation for different number of pillars of a microfluidic rotational motor driven by circular vibrations

51

MATLAB simulation for different number of pillars of a microfluidic rotational motor driven by circular vibrations

52

12 APPENDIX 5: UPDATE N

MATLAB simulation for different number of pillars of a microfluidic rotational motor driven by circular vibrations

53

MATLAB simulation for different number of pillars of a microfluidic rotational motor driven by circular vibrations

54

13 APPENDIX 6: UPDATE A

MATLAB simulation for different number of pillars of a microfluidic rotational motor driven by circular vibrations

55

14 APPENDIX 7: UPDATE AA

MATLAB simulation for different number of pillars of a microfluidic rotational motor driven by circular vibrations

56

15 APPENDIX 8: UPDATE F

MATLAB simulation for different number of pillars of a microfluidic rotational motor driven by circular vibrations

57

16 APPENDIX 9: UPDATE LIQUID

MATLAB simulation for different number of pillars of a microfluidic rotational motor driven by circular vibrations

58

17 APPENDIX 10: UPDATE POT ON

MATLAB simulation for different number of pillars of a microfluidic rotational motor driven by circular vibrations

59

18 APPENDIX 11: REPEAT CALCULATIONS

MATLAB simulation for different number of pillars of a microfluidic rotational motor driven by circular vibrations

60

MATLAB simulation for different number of pillars of a microfluidic rotational motor driven by circular vibrations

61

MATLAB simulation for different number of pillars of a microfluidic rotational motor driven by circular vibrations

62

MATLAB simulation for different number of pillars of a microfluidic rotational motor driven by circular vibrations

63

MATLAB simulation for different number of pillars of a microfluidic rotational motor driven by circular vibrations

64

	1 INTRODUCTION
	1.1 Previous work
	1.2 Motivation for the creation of the code
	1.3 Objectives

	2 THEORETICAL MODEL
	3 EXPLANATION OF THE CODE
	3.1 Explanation of the Main code
	3.1.1 Initial configuration and simulation of the motor with one pillar
	3.1.2 Calculation of the position of the pillar/s
	3.1.3 Calculation of the position of the origin of the velocity vectors
	3.1.4 Calculation of the components of the velocity vectors for the previously calculated positions
	3.1.5 Interpolation of tangential and rotational velocity values and creating a mesh grid
	3.1.6 Sum of the velocity components in the mesh grid and calculation of the magnitude of the vectors
	3.1.7 Plots of tangential and rotational velocities
	3.1.8 User Interface

	3.2 Explanation of the parameter updating functions

	4 PROBLEMS OF THE CODE AND POSSIBLE IMPROVEMENTS
	5 SIMULATIONS
	5.1 1 pillar (f=1kHz, a=40um, A=8um, Water)
	5.2 2 pillars (D=120um, f=1kHz, a=40um, A=8um, Water)
	5.3 3 pillars (D=120 um, f=1kHz, a=40um, A=8um, Water)
	5.4 Comments of simulations for 2 and 3 pillars
	5.5 6 pillars – not accurate result (D=120 um, f=1kHz, a=40um, A=8um, Water)
	5.6 6 pillars (D=220 um, f=1kHz, a=40um, A=8um, Water)
	5.7 Comments of simulations for 6 pillars
	5.8 Pot1 (50 pillars) (D=120 um, f=1kHz, a=40um, A=8um, Water)
	5.9 Pot2 (50 pillars) (D=200 um, f=1kHz, a=40um, A=8um, Water)
	5.10 Pot3 (50 pillars) (D=120 um, f=1kHz, a=40um, A=192nm, Water)
	5.11 Pot4 (50 pillars) (D=150 um, f=800Hz, a=40um, A=8um, Water)
	5.12 Pot5 (50 pillars) (D=120 um, f=1kHz, a=40um, A=8um, Hg)
	5.13 Comments of simulations for the “pot” (50 pillars)

	6 CONCLUSIONS
	6.1 Effects of parameter alteration in the pot shaped motor

	7 BIBLIOGRAPHY
	8 APPENDIX 1: MAIN FILE
	9 APPENDIX 2: SIMULATION ONE PILLAR
	10 APPENDIX 3: UPDATE D
	11 APPENDIX 4: UPDATE D1
	12 APPENDIX 5: UPDATE N
	13 APPENDIX 6: UPDATE A
	14 APPENDIX 7: UPDATE AA
	15 APPENDIX 8: UPDATE F
	16 APPENDIX 9: UPDATE LIQUID
	17 APPENDIX 10: UPDATE POT ON
	18 APPENDIX 11: REPEAT CALCULATIONS

MAIN FILE
Simulation for different number of pillars of a microfluidic rotational motor driven by circular vibrations.

Authorship

% Code created by Iker Ruiz de Esquide.
% Code from the function 'SimulationOnePillar' created by Prof. Dr. Riko Safaric.

User information

%-----------------IMPORTANT INFORMATION FOR THE USER-----------------------
% - CHECK THE OPTION "Pot mode ON" IN THE USER INTERFACE WHEN
% THE SIMULATION OF A POT IS SEARCHED - WHEN PILLARS OVERLAP - SO THE
% SCALE CAN BE ADJUSTED PROPERLY. THE BIGGER THE NUMBER OF PILLARS, THE
% BETTER SIMULATION OF THE POT.
%
% *If a big number of pillars is going to be selected to simulate the
% pot, it is better to check first "Pot mode ON" and select later
% the number of pillars. In this way, we avoid calculating twice the
% simulation for that big number of pillars. This happens because when
% checking the option "Pot mode ON" the simulation for the
% configuration in that moment is recalculated.
%
% - UNCHECK "Pot mode ON" IF THE PILLARS DO NOT OVERLAP.
%
% - There are not maximun limits for the parameters in the user
% interface, a very big value of the number of pillars can lead to a
% very slow code execution.
%--
%
%Variables plotted in the graphic simulation and in the UI:
% D => Distance between the exterior part of the pillars - Diameter of
% the circumcircle of a regular polygon formated by the vertices
% located in the central part of each pillar minus two times the
% radius of the pillar.
% f => Frequency of circular vibrations
% a => Radius of the pillar
% A => Amplitude of circular vibrations
% Liquid => Liquid used for the simulation - Changes the kinematic
% viscosity used.
% Number of pillars
%
%Important variable names in the code:
% --------For the simulation of the motor for one pillar--------
% vr1 => Radial distance to the vector from the center of the pillar
% vv => Tangential speeed vector depending on radial distance
%
% --------For the simulation of the motor for several pillars--------
% Utc,Vtc => x and y components of the tangential velocity for the
% positions defined by the mesgrid
% Urc,Vrc => x and y components of the rotational velocity for the
% positions defined by the mesgrid

1

% Vrot => magnitude of the rotational velocity vector for the positions
% defined by the mesgrid
% Vtan => magnitude of the tangential velocity vector for the positions
% defined by the mesgrid

Initial configuration and simulation of the motor with one pillar

clc; clear; close all;

%Declaration of global variables
global N;global D;global D1;global f;global ni;global Liquid;global a;
global A;global a_plot;global A_plot;global PotOn; global jj;

%Variables for the simulation of one pillar:
f=1000; %Frequency (change in the UI)
a=0.000040; %Radius of the pillar/s (change in the UI)
ni=1.0e-6; %Kinematic viscosity of water (change in the UI)
Liquid='water'; %Water is selected in the simulation of one pillar (change
 %in the UI)
A=0.000008; %Amplitude of circular vibrations (change in the UI)

N=1; %Number of pillars (change in the UI)
D=200; %Distance D between the exterior part of the pillars (change in
 %the UI)

dr=0.000001; %Differential radial distance in the simulation of one pillar
%Number of calculations in the simulation of one pillar. More calculations
if D<300 %are needed if the distance is bigger.
 jj=600;
elseif D<1000
 jj=600*3;
else
 jj=600*6;
end

[vr1,vv]=SimulationOnePillar(jj,dr,f,a,ni,A); %Simulates the vibrational
 %motor for one pillar

a_plot=a*10^6; %Change units of the raidus from m to um
A_plot=A*10^9; %Change units of the raidus from m to nm

D1=D+2*a_plot; %Distance D1 between the center of the pillars (change in
 %the UI)

n=50; %Number of vectors/circle before interpolation
subdiv=100; %Number of subdivisions per dimension of the meshgrid

PotOn=0; %The scale is not adjusted to the simulation of a pot
 %(pot <-> overlap of pillars)(change in the UI)

2

Calculation of the postion of the pillar/s

%Coordinates of the position of the pillars
if N>2
 s=D1*sin(pi/N); %Relation between the side of the regular polygon and
 %the diameter of its circumcircle
 pgon=nsidedpoly(N,'Center',[0 0],'SideLength',s); %creates a polygon
 %defined by 2-D vertices
 xp=pgon.Vertices(:,1); %x-coordiantes of the vertices of the polygon
 yp=pgon.Vertices(:,2); %y-coordinates of the vertices of the polygon
elseif N==2
 xp(1)=-D1/2;yp(1)=0;
 xp(2)=D1/2;yp(2)=0;
elseif N==1
 xp=0;yp=0;
end

Calculation of the position of the velocity vectors

phi=0+360/n:360/n:360; %Values for angle phi in degrees (angle between
 %x-axis and the radial distance to the vector)
phi=phi*pi/180; %Convert phi to radians

%Preallocation of variables (increase efficiency)
X=cell(length(vr1),length(phi));
Y=cell(length(vr1),length(phi));
Xcol=cell(length(vr1),length(phi));
Ycol=cell(length(vr1),length(phi));

%Coordiantes of the velocity vectors
for k=1:N
 for i=1:length(vr1)
 for j=1:length(phi)
 X{k}(i,j)=xp(k)+vr1(i)*cos(phi(j)); %x-coordiante of the
 %velocity vector
 Y{k}(i,j)=yp(k)+vr1(i)*sin(phi(j)); %y-coordinate of the
 %velocity vector
 end
 end
 %Reshape matrices in a column vector
 Xcol{k}=reshape(X{k},[],1);
 Ycol{k}=reshape(Y{k},[],1);
end

3

Calculation of the components of the velocity vectors for the previously
calculated positions

Vtan=repmat(vv',1,length(phi)); %Tangential speeed vector depending on
 %radial distance and angle phi.
 %Rows depend on radial distance.
 %Colums depend on phi angle.

%Preallocation of variables (increase efficiency)
Ut=zeros(length(vr1),length(phi));
Vt=zeros(length(vr1),length(phi));

%u and v components of the tangential velocity (CW rotation)
for i=1:length(vr1)
 for j=1:length(phi)
 Ut(i,j)=Vtan(i,j)*cos(pi/2-phi(j));
 Vt(i,j)=-Vtan(i,j)*sin(pi/2-phi(j));
 end
end

%u and v components of the rotational velocity (CW rotation)
Vr1_ext=repmat(vr1',1,length(phi));
Ur=Ut./Vr1_ext;
Vr=Vt./Vr1_ext;

Interpolation of tangential and rotational velocity values and creating a
meshgrid

%Reshape matrices in a column vector
Ut=reshape(Ut,[],1);
Vt=reshape(Vt,[],1);
Ur=reshape(Ur,[],1);
Vr=reshape(Vr,[],1);

%Preallocation of variables (increase efficiency)
FUt=cell(length(Ut),1);
FVt=cell(length(Vt),1);
FUr=cell(length(Ur),1);
FVr=cell(length(Vr),1);

%Interpolation of the velcocity components (rotational and tangential
%velocity)
for k=1:N
 FUt{k}=scatteredInterpolant(Xcol{k},Ycol{k},Ut,'linear','none');
 FVt{k}=scatteredInterpolant(Xcol{k},Ycol{k},Vt,'linear','none');
 FUr{k}=scatteredInterpolant(Xcol{k},Ycol{k},Ur,'linear','none');
 FVr{k}=scatteredInterpolant(Xcol{k},Ycol{k},Vr,'linear','none');
end

%Meshgrid creation
if PotOn==1 %meshgrid created only for the inner part of the pot (when
 %pillars overlap)

4

 [Xc,Yc]=meshgrid(linspace(-D/2,D/2,subdiv),linspace(-D/2,D/2,subdiv));
elseif PotOn==0 %meshgrid created for a bigger zone (when pillars do not
 %overlap)- bigger for bigger distances
 if D<300
 low=-300; high=300;
 elseif D<500
 low=-300*2; high=300*2;
 else
 low=-300*3; high=300*3;
 end
 [Xc,Yc]=meshgrid(linspace(low,high,subdiv),linspace(low,high,subdiv));
end

Sum of the velocity components in the meshgrid and calculation of the
magnitude of the vectors

%Sum of the components of the tangential and rotational velocity
Utc=0;Vtc=0;Urc=0;Vrc=0;
for k=1:N
 Utc=FUt{k}(Xc,Yc)+Utc;
 Vtc=FVt{k}(Xc,Yc)+Vtc;
 Urc=FUr{k}(Xc,Yc)+Urc;
 Vrc=FVr{k}(Xc,Yc)+Vrc;
end

%Magnitude of the tangential and rotational velocity vectors
Vtan=sqrt(Utc.^2 + Vtc.^2);
Vrot=sqrt(Urc.^2 + Vrc.^2);

Plots of tangential and rotational velocities

%Plot configuration of the rotational velocity
figure(1);
clf
hold on
linkdata on
grid off
%Axes limits - depends on the "Pot mode ON" checkbox
if PotOn==1
 xlim([-D/2-5 D/2+5])
 ylim([-D/2-5 D/2+5])
elseif PotOn==0 && N==1
 xlim([-200 200])
 ylim([-200 200])
elseif PotOn==0 && N>1
 xlim([-(D+2*a_plot) D+2*a_plot])
 ylim([-(D+2*a_plot) D+2*a_plot])
end
%Labels and title
xlabel('x [um]')
ylabel('y [um]')
ylabel(colorbar, 'v_r [rad/s]')
%Title configuration

5

if N>1
 title(['Rotational speed v_r [rad/s] ',num2str(N), ...
 ' pillars; D = ',num2str(D),' um; Liquid: ',Liquid])
elseif N==1
 title(['Rotational speed v_r [rad/s] 1 pillar; Liquid: ',Liquid])
end
%Configuration of the annotation
str={['f = ',num2str(f),' (Hz)'];['a = ',num2str(a_plot),' (um)']; ...
 ['A = ',num2str(A_plot),' (nm)']};
an=annotation('textbox',[0.58 0.8 0.1 0.1],'String',str);
set(an,'BackgroundColor',[1 1 1],'edgecolor','none');
set(an,'FaceAlpha',0.8);

%Configuration of the contourf plot
contourf(Xc,Yc,Vrot,100,'edgecolor','none') %Filled 2-D contour plot
colorbar
colormap jet
MAX=max(max(Vrot));
caxis([0,MAX]) %Colormap maximun limit adjusted to the maximun value of the
 %velocity

%Configuration of the quiver plot
%Number of vectors plotted per dimension - depends on the state of the
if PotOn==1 %checkbox "Pot mode ON"
 N_v=20;
elseif PotOn==0
 N_v=50;
end
[lim1,lim2]=size(Xc);
N_v1=round(lim1/N_v);
quiver(Xc(1:N_v1:lim1,1:N_v1:lim2),Yc(1:N_v1:lim1,1:N_v1:lim2), ...
 Urc(1:N_v1:lim1,1:N_v1:lim2),Vrc(1:N_v1:lim1,1:N_v1:lim2),1,'k');
 %Plot of the vector field

%Plotting the pillars or the pot depending on the user
if PotOn==1
 %Plot of the annulus that represents the pot
 %Boundaries of the annulus
 alpha=linspace(0,02*pi);
 rin = D/2; rout = 3*D/2;
 xin = rin*cos(alpha); xout = rout*cos(alpha);
 yin = rin*sin(alpha); yout = rout*sin(alpha);
 %Plot of the filled polygonal region that forms the annulus and the inner
 %circunference
 patch([xout,xin],[yout,yin],'w','linestyle','none');
 line(xin,yin,'color','k');
elseif PotOn==0
 for k=1:N
 rectangle('Position',[xp(k)-a_plot yp(k)-a_plot 2*a_plot 2*a_plot], ...
 'Curvature',[1,1],'FaceColor',[1 1 1]);
 end
end
hold off

6

%Plot configuration of the tangential velocity
figure(2);
clf
hold on
linkdata on
grid off
%Axes limits - depends on the "Pot mode ON" checkbox
if PotOn==1
 xlim([-D/2-5 D/2+5])
 ylim([-D/2-5 D/2+5])
elseif PotOn==0 && N==1
 xlim([-200 200])
 ylim([-200 200])
elseif PotOn==0 && N>1
 xlim([-(D+2*a_plot) D+2*a_plot])
 ylim([-(D+2*a_plot) D+2*a_plot])
end
%Labels and title
xlabel('x [um]')
ylabel('y [um]')
ylabel(colorbar, 'v_0 [um/s]')
%Title configuration
if N>1
 title(['Tangential speed v_0 [um/s] ',num2str(N), ...
 ' pillars; D = ',num2str(D),' um; Liquid: ',Liquid])
elseif N==1
 title(['Tangential speed v_0 [um/s] 1 pillar; Liquid: ',Liquid])
end
%Configuration of the annotation
str={['f = ',num2str(f),' (Hz)'];['a = ',num2str(a_plot),' (um)']; ...
 ['A = ',num2str(A_plot),' (nm)']};
an=annotation('textbox',[0.58 0.8 0.1 0.1],'String',str);
set(an,'BackgroundColor',[1 1 1],'edgecolor','none');
set(an,'FaceAlpha',0.8);

%Configuration of the contourf plot
contourf(Xc,Yc,Vtan,100,'edgecolor','none') %Filled 2-D contour plot
colorbar
colormap jet
MAX=max(max(Vtan));
caxis([0,MAX]) %Colormap maximun limit adjusted to the maximun value of the
 %velocity

%Configuration of the quiver plot
quiver(Xc(1:N_v1:lim1,1:N_v1:lim2),Yc(1:N_v1:lim1,1:N_v1:lim2), ...
 Urc(1:N_v1:lim1,1:N_v1:lim2),Vrc(1:N_v1:lim1,1:N_v1:lim2),1,'k');
 %Plot of the vector field

%Plotting the pillars or the pot depending on the user
if PotOn==1
 %Plot of the annulus that represents the pot
 %Plot of the filled polygonal region that forms the annulus and the inner
 %circunference

7

 patch([xout,xin],[yout,yin],'w','linestyle','none');
 line(xin,yin,'color','k');
elseif PotOn==0
 for k=1:N
 rectangle('Position',[xp(k)-a_plot yp(k)-a_plot 2*a_plot 2*a_plot], ...
 'Curvature',[1,1],'FaceColor',[1 1 1]);
 end
end
hold off

User Interface

%User interface window configuration
f3=figure('name','UI','Position',[20 200 311 376]); clf; linkdata on
if N>1
 %Configuration of the slide bar and editable text field of variable D
 uicontrol(f3,'Style', 'slider','Min',0,'Max',400, ...
 'Value',D,'Position', [88 250 190 10],'Callback',{@updateD});
 uicontrol(f3,'Style','text','Position',[33 240 40 22],'String', ...
 'D (um): ');
 uicontrol(f3,'Style','text','Position',[78 220 35 22],'String','0');
 uicontrol(f3,'Style','text','Position',[250 220 42 22],'String','400');
 uicontrol(f3,'Style', 'edit','Position', [150 188 100 22],...
 'Callback',{@updateD1});
 uicontrol(f3,'Style','text','Position',[69 188 66 22],'String', ...
 'D (um): ');
end
%Configuration of the editable text field of variable N
uicontrol(f3,'Style','edit','Position',[150 288 100 22], ...
 'Callback',{@updateN});
uicontrol('Style','text','Position',[69 288 56 30], ...
 'String','Number of pillars:');
%Configuration of the editable text field of variable f
uicontrol(f3,'Style','edit','Position',[150 141 100 22], ...
 'Callback',{@updatef});
uicontrol('Style','text','Position',[69 141 66 22],'String','f (Hz): ');
%Configuration of the editable text field of variable a
uicontrol(f3,'Style','edit','Position',[150 94 100 22], ...
 'Callback',{@updatea});
uicontrol('Style','text','Position',[69 94 66 22],'String','a (um): ');
%Configuration of the editable text field menu of variable A
uicontrol(f3,'Style','edit','Position',[150 52 100 22], ...
 'Callback',{@updateAA});
uicontrol('Style','text','Position',[69 52 66 22],'String','A (nm): ');
%Configuration of the editable Pop-Up menu of variable Liquid
uicontrol(f3,'Style','popupmenu','Position',[150 330 100 22], ...
 'String',{'Water','Mercury','Galinstan'}, ...
 'Callback',{@updateLiquid});
uicontrol('Style','text','Position',[69 330 66 22],'String','Liquid: ');
%Configuration of the checkbox of variable PotOn
uicontrol(f3,'Style','checkbox','Position',[150 15 100 22], ...
 'Callback',{@updatePotOn});
uicontrol('Style','text','Position',[50 10 90 22],'String','Pot mode ON: ');

8

Function: RepeatCalculations
Calculations are repeated for the updated parameters.

Simulation of the vibrational motor for one pillar

function []=RepeatCalculations(A,A_plot,f,a,a_plot,ni,Liquid,dr,jj,N,D,D1,phi,PotOn,subdiv)
[vr1,vv]=SimulationOnePillar(jj,dr,f,a,ni,A);

Calculation of the postion of the pillar/s

%Coordinates of the position of the pillars
if N>2
 s=D1*sin(pi/N); %Relation between the side of the regular polygon and
 %the diameter of its circumcircle
 pgon=nsidedpoly(N,'Center',[0 0],'SideLength',s); %creates a polygon
 %defined by 2-D vertices
 xp=pgon.Vertices(:,1); %x-coordiantes of the vertices of the polygon
 yp=pgon.Vertices(:,2); %y-coordinates of the vertices of the polygon
elseif N==2
 xp(1)=-D1/2;yp(1)=0;
 xp(2)=D1/2;yp(2)=0;
elseif N==1
 xp=0;yp=0;
end

Calculation of the position of the velocity vectors

%Preallocation of variables (increase efficiency)
X=cell(length(vr1),length(phi));
Y=cell(length(vr1),length(phi));
Xcol=cell(length(vr1),length(phi));
Ycol=cell(length(vr1),length(phi));

%Coordiantes of the velocity vectors
for k=1:N
 for i=1:length(vr1)
 for j=1:length(phi)
 X{k}(i,j)=xp(k)+vr1(i)*cos(phi(j)); %x-coordiante of the
 %velocity vector
 Y{k}(i,j)=yp(k)+vr1(i)*sin(phi(j)); %y-coordinate of the
 %velocity vector
 end
 end
 %Reshape matrices in a column vector
 Xcol{k}=reshape(X{k},[],1);
 Ycol{k}=reshape(Y{k},[],1);
end

1

Calculation of the components of the velocity vectors for the previously
calculated positions

Vtan=repmat(vv',1,length(phi)); %Tangential speeed vector depending on
 %radial distance and angle phi.
 %Rows depend on radial distance.
 %Colums depend on phi angle.

%Preallocation of variables (increase efficiency)
Ut=zeros(length(vr1),length(phi));
Vt=zeros(length(vr1),length(phi));

%u and v components of the tangential velocity (CW rotation)
for i=1:length(vr1)
 for j=1:length(phi)
 Ut(i,j)=Vtan(i,j)*cos(pi/2-phi(j));
 Vt(i,j)=-Vtan(i,j)*sin(pi/2-phi(j));
 end
end

%u and v components of the rotational velocity (CW rotation)
Vr1_ext=repmat(vr1',1,length(phi));
Ur=Ut./Vr1_ext;
Vr=Vt./Vr1_ext;

Interpolation of tangential and rotational velocity values and creating a
meshgrid

%Reshape matrices in a column vector
Ut=reshape(Ut,[],1);
Vt=reshape(Vt,[],1);
Ur=reshape(Ur,[],1);
Vr=reshape(Vr,[],1);

%Preallocation of variables (increase efficiency)
FUt=cell(length(Ut),1);
FVt=cell(length(Vt),1);
FUr=cell(length(Ur),1);
FVr=cell(length(Vr),1);

%Interpolation of the velcocity components (rotational and tangential
%velocity)
for k=1:N
 FUt{k}=scatteredInterpolant(Xcol{k},Ycol{k},Ut,'linear','none');
 FVt{k}=scatteredInterpolant(Xcol{k},Ycol{k},Vt,'linear','none');
 FUr{k}=scatteredInterpolant(Xcol{k},Ycol{k},Ur,'linear','none');
 FVr{k}=scatteredInterpolant(Xcol{k},Ycol{k},Vr,'linear','none');
end

%Meshgrid creation
if PotOn==1 %meshgrid created only for the inner part of the pot (when
 %pillars overlap)

2

 [Xc,Yc]=meshgrid(linspace(-D/2,D/2,subdiv),linspace(-D/2,D/2,subdiv));
elseif PotOn==0 %meshgrid created for a bigger zone (when pillars do not
 %overlap)- bigger for bigger distances
 if D<300
 low=-300; high=300;
 elseif D<500
 low=-300*2; high=300*2;
 else
 low=-300*3; high=300*3;
 end
 [Xc,Yc]=meshgrid(linspace(low,high,subdiv),linspace(low,high,subdiv));
end

Sum of the velocity components in the meshgrid and calculation of the
magnitude of the vectors

%Sum of the components of the tangential and rotational velocity
Utc=0;Vtc=0;Urc=0;Vrc=0;
for k=1:N
 Utc=FUt{k}(Xc,Yc)+Utc;
 Vtc=FVt{k}(Xc,Yc)+Vtc;
 Urc=FUr{k}(Xc,Yc)+Urc;
 Vrc=FVr{k}(Xc,Yc)+Vrc;
end

%Magnitude of the tangential and rotational velocity vectors
Vtan=sqrt(Utc.^2 + Vtc.^2);
Vrot=sqrt(Urc.^2 + Vrc.^2);

Plots of tangential and rotational velocities

%Plot configuration of the rotational velocity
figure(1);
clf
hold on
linkdata on
grid off
%Axes limits - depends on the "Pot mode ON" checkbox
if PotOn==1
 xlim([-D/2-5 D/2+5])
 ylim([-D/2-5 D/2+5])
elseif PotOn==0 && N==1
 xlim([-200 200])
 ylim([-200 200])
elseif PotOn==0 && N>1
 xlim([-(D+2*a_plot) D+2*a_plot])
 ylim([-(D+2*a_plot) D+2*a_plot])
end
%Labels and title
xlabel('x [um]')
ylabel('y [um]')
ylabel(colorbar, 'v_r [rad/s]')
%Title configuration

3

if N>1
 title(['Rotational speed v_r [rad/s] ',num2str(N), ...
 ' pillars; D = ',num2str(D),' um; Liquid: ',Liquid])
elseif N==1
 title(['Rotational speed v_r [rad/s] 1 pillar; Liquid: ',Liquid])
end
%Configuration of the annotation
str={['f = ',num2str(f),' (Hz)'];['a = ',num2str(a_plot),' (um)']; ...
 ['A = ',num2str(A_plot),' (nm)']};
an=annotation('textbox',[0.58 0.8 0.1 0.1],'String',str);
set(an,'BackgroundColor',[1 1 1],'edgecolor','none');
set(an,'FaceAlpha',0.8);

%Configuration of the contourf plot
contourf(Xc,Yc,Vrot,100,'edgecolor','none') %Filled 2-D contour plot
colorbar
colormap jet
MAX=max(max(Vrot));
caxis([0,MAX]) %Colormap maximun limit adjusted to the maximun value of the
 %velocity

%Configuration of the quiver plot
%Number of vectors plotted per dimension - depends on the state of the
if PotOn==1 %checkbox "Pot mode ON"
 N_v=20;
elseif PotOn==0
 N_v=50;
end
[lim1,lim2]=size(Xc);
N_v1=round(lim1/N_v);
quiver(Xc(1:N_v1:lim1,1:N_v1:lim2),Yc(1:N_v1:lim1,1:N_v1:lim2), ...
 Urc(1:N_v1:lim1,1:N_v1:lim2),Vrc(1:N_v1:lim1,1:N_v1:lim2),1,'k');
 %Plot of the vector field

%Plotting the pillars or the pot depending on the user
if PotOn==1
 %Plot of the annulus that represents the pot
 %Boundaries of the annulus
 alpha=linspace(0,02*pi);
 rin = D/2; rout = 3*D/2;
 xin = rin*cos(alpha); xout = rout*cos(alpha);
 yin = rin*sin(alpha); yout = rout*sin(alpha);
 %Plot of the filled polygonal region that forms the annulus and the inner
 %circunference
 patch([xout,xin],[yout,yin],'w','linestyle','none');
 line(xin,yin,'color','k');
elseif PotOn==0
 for k=1:N
 rectangle('Position',[xp(k)-a_plot yp(k)-a_plot 2*a_plot 2*a_plot], ...
 'Curvature',[1,1],'FaceColor',[1 1 1]);
 end
end

hold off

4

%Plot configuration of the tangential velocity
figure(2);
clf
hold on
linkdata on
grid off
%Axes limits - depends on the "Pot mode ON" checkbox
if PotOn==1
 xlim([-D/2-5 D/2+5])
 ylim([-D/2-5 D/2+5])
elseif PotOn==0 && N==1
 xlim([-200 200])
 ylim([-200 200])
elseif PotOn==0 && N>1
 xlim([-(D+2*a_plot) D+2*a_plot])
 ylim([-(D+2*a_plot) D+2*a_plot])
end
%Labels and title
xlabel('x [um]')
ylabel('y [um]')
ylabel(colorbar, 'v_0 [um/s]')
%Title configuration
if N>1
 title(['Tangential speed v_0 [um/s] ',num2str(N), ...
 ' pillars; D = ',num2str(D),' um; Liquid: ',Liquid])
elseif N==1
 title(['Tangential speed v_0 [um/s] 1 pillar; Liquid: ',Liquid])
end
%Configuration of the annotation
str={['f = ',num2str(f),' (Hz)'];['a = ',num2str(a_plot),' (um)']; ...
 ['A = ',num2str(A_plot),' (nm)']};
an=annotation('textbox',[0.58 0.8 0.1 0.1],'String',str);
set(an,'BackgroundColor',[1 1 1],'edgecolor','none');
set(an,'FaceAlpha',0.8);

%Configuration of the contourf plot
contourf(Xc,Yc,Vtan,100,'edgecolor','none') %Filled 2-D contour plot
colorbar
colormap jet
MAX=max(max(Vtan));
caxis([0,MAX]) %Colormap maximun limit adjusted to the maximun value of the
 %velocity

%Configuration of the quiver plot
quiver(Xc(1:N_v1:lim1,1:N_v1:lim2),Yc(1:N_v1:lim1,1:N_v1:lim2), ...
 Urc(1:N_v1:lim1,1:N_v1:lim2),Vrc(1:N_v1:lim1,1:N_v1:lim2),1,'k');
 %Plot of the vector field

%Plotting the pillars or the pot depending on the user
if PotOn==1
 %Plot of the annulus that represents the pot
 %Plot of the filled polygonal region that forms the annulus and the inner

5

 %circunference
 patch([xout,xin],[yout,yin],'w','linestyle','none');
 line(xin,yin,'color','k');
elseif PotOn==0
 for k=1:N
 rectangle('Position',[xp(k)-a_plot yp(k)-a_plot 2*a_plot 2*a_plot], ...
 'Curvature',[1,1],'FaceColor',[1 1 1]);
 end
end

hold off
end

6

Function: SimulationOnePillar
Code created by Prof. Dr. Riko Safaric.

The resolution of the mathematical model of the microfluidic rotational motor with a unique pillar is done.

Resolution of the mathematical model

function [vr1,vv]=SimulationOnePillar(j,dr,f,a,ni,A)
format shortEng
%format compact
%[msg, id] = lastwarn;
%warning('off', id)
%j=70;
%dr=0.000001;
k=1;
Psistr=0;
dPsidr=0;
%ni=0.15e-4;%air
%ni=1.0e-6; %water
%ni=0.114e-6; %Hg
%ni=0.215e-6; %Ga
%f=1000;%frequency
%f=500;%frequency
%a=0.000040; % radius of coloumn
%A=0.000000058;amplitude of vibration in case of pzt vibrator 200 x 200 um
%A=3*0.000000064; %amplitude of vibration in case of pzt vibrator 1 x 1 x 0.5 mm
%A=0.000008;%amplitude of circular vibrations
eps=sqrt(1i*2*pi*f/ni);
epsz=sqrt(-1i*2*pi*f/ni);
r=a;
H01epsa=besselh(0,1,a*eps);
C=besselh(2,1,a*eps)./H01epsa;
Cconj=conj(besselh(2,1,a*eps)./H01epsa);
roxxm1=@(x) 2*pi^3*f^3*A^2/ni^2./x.*(2*besselh(0,1,x*eps)/H01epsa+ ...
 2*conj(besselh(0,1,x*eps)/H01epsa)-2*a^2./x.^2* ...
 C.*besselh(2,2,x*epsz)/conj(H01epsa)-2*a^2./x.^2.* ...
 Cconj.*besselh(2,1,x*eps)/H01epsa-4*besselh(0,1,x*eps)/ ...
 H01epsa.*conj(besselh(0,1,x*eps)/H01epsa)+ ...
 4*besselh(2,1,x*eps)/H01epsa.*conj(besselh(2,1,x*eps)/H01epsa));
roxx=@(x) 2*pi^3*f^3*A^2.*x/ni^2.*(2*besselh(0,1,x*eps)/H01epsa+ ...
 2*conj(besselh(0,1,x*eps)/H01epsa)-2*a^2./x.^2* ...
 C.*besselh(2,2,x*epsz)/conj(H01epsa)-2*a^2./x.^2.* ...
 Cconj.*besselh(2,1,x*eps)/H01epsa-4*besselh(0,1,x*eps)/...
 H01epsa.*conj(besselh(0,1,x*eps)/H01epsa)+ ...
 4*besselh(2,1,x*eps)/H01epsa.*conj(besselh(2,1,x*eps)/H01epsa));
%roxxc=@(x) x.*(2*besselh(0,1,x*eps)/H01epsa +2*conj(besselh(0,1,x*eps)/
 ... H01epsa)-2*a^2./x.^2*C.*conj(besselh(2,1,x*eps)/H01epsa)-
 ... 2*a^2./x.^2.*Cconj.*besselh(2,1,x*eps)/H01epsa-
 ... 4*besselh(0,1,x*eps)/H01epsa.*
 ... conj(besselh(0,1,x*eps)/H01epsa)+
 ... 4*besselh(2,1,x*eps)/H01epsa.*conj(besselh(2,1,x*eps)/H01epsa));
roxx3=@(x) 2*pi^3*f^3*A^2.*x.^3/ni^2.*(2*besselh(0,1,x*eps)/H01epsa+ ...
 2*conj(besselh(0,1,x*eps)/H01epsa)-2*a^2./x.^2* ...

1

 C.*besselh(2,2,x*epsz)/conj(H01epsa)-2*a^2./x.^2.* ...
 Cconj.*besselh(2,1,x*eps)/H01epsa-4*besselh(0,1,x*eps)/ ...
 H01epsa.*conj(besselh(0,1,x*eps)/H01epsa)+ ...
 4*besselh(2,1,x*eps)/H01epsa.*conj(besselh(2,1,x*eps)/H01epsa));
roxx5=@(x) 2*pi^3*f^3*A^2.*x.^5/ni^2.*(2*besselh(0,1,x*eps)/H01epsa+ ...
 2*conj(besselh(0,1,x*eps)/H01epsa)-2*a^2./x.^2* ...
 C.*besselh(2,2,x*epsz)/conj(H01epsa)-2*a^2./x.^2.* ...
 Cconj.*besselh(2,1,x*eps)/H01epsa-4*besselh(0,1,x*eps)/ ...
 H01epsa.*conj(besselh(0,1,x*eps)/H01epsa)+ ...
 4*besselh(2,1,x*eps)/H01epsa.*conj(besselh(2,1,x*eps)/H01epsa));
c1x3=-1/48*integral(roxx3,a,inf);
c1=-1/48*integral(roxxm1,a,inf);
%c1=-1/48*integral(roxxm1,a,0.000055,'RelTol',1.3e-13,'AbsTol',1.3e-13)
c2=1/16*integral(roxx,a,inf);
c3=a^4/16*integral(roxxm1,a,inf)-a^2/8*integral(roxx,a,inf);
c4=-a^6/24*integral(roxxm1,a,inf)+a^4/16*integral(roxx,a,inf);
%disp([' k r Psi dPsi/dr'])
vk=[1];
vr=[a];
vr1=[a];
vpsi=[0];
vv=[0]; % um/s
while k <j
%disp([k,r,Psistr,dPsidr])
k=k+1;
r=r+dr;
Psistrkm1=Psistr;
Psistr=abs(r^4*((1/48)*integral(roxxm1,a,r)+c1)+r^2* ...
 ((-1)/16*integral(roxx,a,r)+c2)+(1/16*integral(roxx3,a,r)+c3)+ ...
 r^(-2)*(((-1)/48)*integral(roxx5,a,r)+c4));
%dPsidr=abs((Psistr-Psistrkm1)/dr);
dPsidr=(Psistr-Psistrkm1)/dr;
vk=[vk,k];
vr=[vr,1e6*(r-a)];
%vr=[vr,1e6*r];
vr1=[vr1,1e6*r];
vpsi=[vpsi,Psistr];
vv=[vv,1e6*dPsidr];
end
k=1;
vr2=vv./vr1;
vv2=0;
while k <j
vv2=vv2+vr2(k+1);
k=k+1;
end
vk2=vv2/j;
k=1;
vk3=[vk2];
while k <j
vk3=[vk2,vk3];
k=k+1;
end

2

Plots of tangential and rotational speed against distance from the pillar

% ---------------------------NOT PLOTTED-----------------------------------
% figure(4)
% plot(vr,vv)
% grid
% xlabel('r [um]')
% ylabel('v_0 [um/s]')
% title('Tangential speed v_0 against distance from the pillar')
%
% figure(5)
% plot(vr,vv./vr1,'b', vr,vk3,'r')
% grid
% legend('v_r','average v_r');
% xlabel('r [\mum]')
% ylabel('v_r [rd/s]')
% title('Rotational speed v_r against distance from the pillar')
end

3

Function: updateAA
Parameter A is updated.

Declaration of global variables

function []=updateAA(h,~)
global A;global A_plot;

Read the amplitude of the circular vibrations introduced in the UI

A_plot=str2double(get(h,'String'));
A=A_plot*10^-9; %Change units of the raidus from nm to m

Load variables from base workspace

f=evalin('base','f');
a=evalin('base','a');
a_plot=evalin('base','a_plot');
ni=evalin('base','ni');
Liquid=evalin('base','Liquid');
dr=evalin('base','dr');
jj=evalin('base','jj');
N=evalin('base','N');
D=evalin('base','D');
D1=evalin('base','D1');
phi=evalin('base','phi');
PotOn=evalin('base','PotOn');
subdiv=evalin('base','subdiv');

Repeat calculations for the updated parameters

RepeatCalculations(A,A_plot,f,a,a_plot,ni,Liquid,dr,jj,N,D,D1,phi,PotOn,subdiv)
end

1

Function: updateD
Parameter D is updated through the slide bar.

Declaration of global variables

function []=updateD(h,~)
global D;global D1;global jj;

Read the distance between pillars introduced in the UI

D=get(h,'Value');

Load variables from base workspace

f=evalin('base','f');
a=evalin('base','a');
a_plot=evalin('base','a_plot');
ni=evalin('base','ni');
Liquid=evalin('base','Liquid');
A=evalin('base','A');
A_plot=evalin('base','A_plot');
N=evalin('base','N');
phi=evalin('base','phi');
PotOn=evalin('base','PotOn');
subdiv=evalin('base','subdiv');
dr=evalin('base','dr');

Update variables

D1=D+2*a_plot;
%Number of calculations in the simulation of one pillar. More calculations
%are needed if the distance is bigger.
if D<300
 jj=600;
elseif D<1000
 jj=600*3;
else
 jj=600*6;
end

Repeat calculations for the updated parameters

RepeatCalculations(A,A_plot,f,a,a_plot,ni,Liquid,dr,jj,N,D,D1,phi,PotOn,subdiv)

1

User Interface

%User interface window configuration
f3=figure(3);
%Configuration of the editable text field of variable D
uicontrol(f3,'Style', 'edit','Position', [150 188 100 22],...
 'Callback',{@updateD1});
end

2

Function: updateD1
Parameter D is updated through the text box.

Declaration of global variables

function []=updateD1(h,~)
global D;global D1;global jj;

Read the distance between pillars introduced in the UI

D=str2double(get(h,'String'));

Load variables from base workspace

f=evalin('base','f');
a=evalin('base','a');
a_plot=evalin('base','a_plot');
ni=evalin('base','ni');
Liquid=evalin('base','Liquid');
A=evalin('base','A');
A_plot=evalin('base','A_plot');
N=evalin('base','N');
phi=evalin('base','phi');
PotOn=evalin('base','PotOn');
subdiv=evalin('base','subdiv');
dr=evalin('base','dr');

Update variables

D1=D+2*a_plot;
%Number of calculations in the simulation of one pillar. More calculations
%are needed if the distance is bigger.
if D<300
 jj=600;
elseif D<1000
 jj=500*3;
else
 jj=600*6;
end

Repeat calculations for the updated parameters

RepeatCalculations(A,A_plot,f,a,a_plot,ni,Liquid,dr,jj,N,D,D1,phi,PotOn,subdiv)

1

User Interface

%User interface window configuration
f3=figure(3);
%Configuration of the slide bar
uicontrol(f3,'Style', 'slider','Min',0,'Max',400, ...
 'Value',D,'Position', [88 250 190 10],'Callback',{@updateD});
end

2

Function: updateLiquid
Parameter Liquid is updated.

Declaration of global variables

function []=updateLiquid(h,~)
global ni;global Liquid;

Read the liquid introduced in the UI and asign the corresponding kinematic
viscosity

h = get(h,'value');
if h==1
 ni=1.0e-6;
 Liquid='water';
elseif h==2
 ni=0.114e-6;
 Liquid='Hg';
elseif h==3
 ni=0.215e-6;
 Liquid='Ga';
end

Load variables from base workspace

f=evalin('base','f');
a=evalin('base','a');
a_plot=evalin('base','a_plot');
A=evalin('base','A');
A_plot=evalin('base','A_plot');
dr=evalin('base','dr');
jj=evalin('base','jj');
N=evalin('base','N');
D=evalin('base','D');
D1=evalin('base','D1');
phi=evalin('base','phi');
PotOn=evalin('base','PotOn');
subdiv=evalin('base','subdiv');

Repeat calculations for the updated parameters

RepeatCalculations(A,A_plot,f,a,a_plot,ni,Liquid,dr,jj,N,D,D1,phi,PotOn,subdiv)
end

1

Function: updateN
Parameter N is updated.

Declaration of global variables

function []=updateN(h,~)
global N;

Read the number of pillars introduced in the UI

N=str2double(get(h,'String'));

Load variables from base workspace

f=evalin('base','f');
a=evalin('base','a');
a_plot=evalin('base','a_plot');
ni=evalin('base','ni');
Liquid=evalin('base','Liquid');
A=evalin('base','A');
A_plot=evalin('base','A_plot');
dr=evalin('base','dr');
jj=evalin('base','jj');
D=evalin('base','D');
D1=evalin('base','D1');
phi=evalin('base','phi');
PotOn=evalin('base','PotOn');
subdiv=evalin('base','subdiv');

Repeat calculations for the updated parameters

RepeatCalculations(A,A_plot,f,a,a_plot,ni,Liquid,dr,jj,N,D,D1,phi,PotOn,subdiv)

User Interface

% User interface window configuration
% Deletes the option of changing distance between pillars if there is only one
% pillar and add the option if there is more than one pillar
f3=figure(3);
if N==1
 close(f3);
 f3=figure('name','UI','Position',[20 200 311 376]);
 linkdata on
 %Configuration of the editable text field of variable N
uicontrol(f3,'Style','edit','Position',[150 288 100 22], ...
 'Callback',{@updateN});
uicontrol('Style','text','Position',[69 288 56 30], ...
 'String','Number of pillars:');
%Configuration of the editable text field of variable f
uicontrol(f3,'Style','edit','Position',[150 141 100 22], ...
 'Callback',{@updatef});

1

uicontrol('Style','text','Position',[69 141 66 22],'String','f (Hz): ');
%Configuration of the editable text field of variable a
uicontrol(f3,'Style','edit','Position',[150 94 100 22], ...
 'Callback',{@updatea});
uicontrol('Style','text','Position',[69 94 66 22],'String','a (um): ');
%Configuration of the editable text field menu of variable A
uicontrol(f3,'Style','edit','Position',[150 52 100 22], ...
 'Callback',{@updateAA});
uicontrol('Style','text','Position',[69 52 66 22],'String','A (nm): ');
%Configuration of the editable Pop-Up menu of variable Liquid
uicontrol(f3,'Style','popupmenu','Position',[150 330 100 22], ...
 'String',{'Water','Mercury','Galinstan'}, ...
 'Callback',{@updateLiquid});
uicontrol('Style','text','Position',[69 330 66 22],'String','Liquid: ');
%Configuration of the checkbox of variable PotOn
uicontrol(f3,'Style','checkbox','Position',[150 15 100 22], ...
 'Callback',{@updatePotOn});
uicontrol('Style','text','Position',[50 10 90 22],'String','POT SCALE ON: ');
elseif N>1
 %Configuration of the slide bar and editable text field of variable D
 uicontrol(f3,'Style', 'slider','Min',0,'Max',400, ...
 'Value',D,'Position', [88 250 190 10],'Callback',{@updateD});
 uicontrol(f3,'Style','text','Position',[33 240 40 22],'String', ...
 'D (um): ');
 uicontrol(f3,'Style','text','Position',[78 220 35 22],'String','0');
 uicontrol(f3,'Style','text','Position',[250 220 42 22],'String','400');
 uicontrol(f3,'Style', 'edit','Position', [150 188 100 22],...
 'Callback',{@updateD1});
 uicontrol(f3,'Style','text','Position',[69 188 66 22],'String', ...
 'D (um): ');
end
end

2

Function: updatePotOn
Parameter PotOn is updated.

Declaration of global variables

function []=updatePotOn(h,~)
global PotOn;

Read the mode of the checkbox in the UI

PotOn=get(h,'value');

Load variables from base workspace

f=evalin('base','f');
a=evalin('base','a');
a_plot=evalin('base','a_plot');
ni=evalin('base','ni');
Liquid=evalin('base','Liquid');
A=evalin('base','A');
A_plot=evalin('base','A_plot');
dr=evalin('base','dr');
jj=evalin('base','jj');
N=evalin('base','N');
D=evalin('base','D');
D1=evalin('base','D1');
phi=evalin('base','phi');
subdiv=evalin('base','subdiv');

Repeat calculations for the updated parameters

RepeatCalculations(A,A_plot,f,a,a_plot,ni,Liquid,dr,jj,N,D,D1,phi,PotOn,subdiv)
end

1

Function: updatea
Parameter a is updated.

Declaration of global variables

function []=updatea(h,~)
global a;global a_plot;global D;global D1;

Read the radius of the pillar introduced in the UI

a_plot=str2double(get(h,'String'));
a=a_plot*10^-6; %Change units of the raidus from um to m

Load variables from base workspace

f=evalin('base','f');
ni=evalin('base','ni');
Liquid=evalin('base','Liquid');
A=evalin('base','A');
A_plot=evalin('base','A_plot');
dr=evalin('base','dr');
jj=evalin('base','jj');
N=evalin('base','N');
phi=evalin('base','phi');
PotOn=evalin('base','PotOn');
subdiv=evalin('base','subdiv');

Update variables

D1=D+2*a_plot;

Repeat calculations for the updated parameters

RepeatCalculations(A,A_plot,f,a,a_plot,ni,Liquid,dr,jj,N,D,D1,phi,PotOn,subdiv)
end

1

Function: updatef
Parameter f is updated.

Declaration of global variables

function []=updatef(h,~)
global f;

Read the frequency introduced in the UI

f=str2double(get(h,'String'));

Load variables from base workspace

a=evalin('base','a');
a_plot=evalin('base','a_plot');
ni=evalin('base','ni');
Liquid=evalin('base','Liquid');
A=evalin('base','A');
A_plot=evalin('base','A_plot');
dr=evalin('base','dr');
jj=evalin('base','jj');
N=evalin('base','N');
D=evalin('base','D');
D1=evalin('base','D1');
phi=evalin('base','phi');
PotOn=evalin('base','PotOn');
subdiv=evalin('base','subdiv');

Repeat calculations for the updated parameters

RepeatCalculations(A,A_plot,f,a,a_plot,ni,Liquid,dr,jj,N,D,D1,phi,PotOn,subdiv)
end

1

