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ABSTRACT 

José Ángel Ochoa Martínez: Computational analysis of intracellular calcium elevations related 

to morphology changes in astrocytes 

Master’s thesis 

Tampere University 

Master’s Degree Program in Biomedical Engineering 

July 2020 
 

Astrocytes, an essential type of glial cells, seem to be part of many neuropathologies, such as 
in Alzheimer's, where the astrocyte's soma and processes swells up. Astrocytes use intracellular 
calcium (Ca2+) elevations to encode information and generate main functional chores of the cell. 
The increase of the astrocytic Ca2+ levels could be related to the synaptic activity in the brain. 
There is a lack of understanding of the detailed spatiotemporal Ca2+ dynamics in astrocytes, and 
computational modeling can help us to comprehend this phenomenon better. In this work, we will 
study how morphological changes in the astrocytes affect their intracellular Ca2+. 

 
This thesis proposes a 2D single-cell astrocyte model, simulated with the finite elements 

method (FEM) in COMSOL Multiphysics based on the previous study by Khalid et al. (2018). The 
mathematical model that describes the IP3 and calcium phenomena is based on the model by De 
Pittà et al. (2009). This model was implanted in FEM and extended to cover the diffusion inside 
the astrocyte. Additionally, the influence of four different Ca2+ buffering models was examined. 
MATLAB and Minitab softwares were used for analyzing the data. Two different geometrical mod-
els were evaluated in order to analyse the influence of different geometrical parameters as the 
thickness of a process, the angle between subprocesses or the stimulus distribution to the calcium 
behaviour in the astrocyte.  

 
The results showed that the frequency and propagation distance of the Ca2+ events are higher 

in narrow processes compared to wider ones while having the same stimulus. Also, my analysis 
showed that the angle between subprocesses and the stimulus distribution does not significantly 
affect the Ca2+ events, suggesting a possibility to to simplify future geometries. Finally, promising 
results showed the significant influence of the local geometry and the possibility of clustering the 
data by the geometrical shape. It has been statically proved how the distance between clusters 
is more significant when the astrocyte geometries present bigger differences between them. Fur-
thermore, the Ca2+ buffers were studied, and the intracellular Ca2+ was affected differently de-
pending on the buffering model, parameters, and complexity. 

 
This work forms a base for the analysis of the Ca2+ in astrocytes. It also improves our under-

standing of the impact of morphological changes in Ca2+ signaling, like the thickening of astrocyte 
processes in different pathologies. 
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1. INTRODUCTION 

Two hundred thousand years have passed since the first human brain evolved. In this 

time, we have been able to discover the main governing laws of our planet, travelled 

outside of the earth, and started to understand the laws that govern the universe. How-

ever, since the beginning of humanity, there has been something that makes all of us 

what we are, and its complete understanding is far from been known. We are talking 

about the brain, 1.5kg, with more than 170 billion cells, creating the most unknown ma-

chinery of our planet (Herculano-Houzel, 2009). Also, the most unknown organ of the 

human body, far from being transplanted, and in a lot of cases, irreparable.  

The main communication event inside the brain is called synaptic event, and it is the way 

of exchanging information between neurons (Swanson et al., 1999). Apart from neurons, 

recent studies pointed out some glia cells called astrocytes are a crucial piece in the 

synaptic event. Responding to the synaptic activity through calcium ion (Ca2+) elevations 

inside the cell, they are able to decrypt the neuronal signal, release gliotransmitters and 

thus affect the neuronal synaptic event (Hirrlinger, Hülsmann and Kirchhoff, 2004; 

Agulhon et al., 2008; Di Castro et al., 2011; Gordleeva et al., 2019). This is the environ-

ment where this thesis was developed. 

Synaptic activity can lead to the activation of Gq-protein-coupled receptors (GPCR), 

which leads to an activation of the inositol 1,4,5-trisphosphate (IP3) signaling cascade 

and results in a rise of the intracellular Ca2+ concentrations, mainly via the IP3 receptor 

type 2 activation (IP3R2). There is a lack of understanding of the detailed spatiotemporal 

Ca2+ dynamics in astrocytes and how the cell morphology affects them.  Many astrocyte 

models have been published in the recent years, from mathematical as De Pittà et al. 

(2009), to the most complex 3D models as the one published by Savchenko et al. (2018) 

This thesis proposes a 2D single-cell astrocyte model, simulated with the finite elements 

method (FEM) in COMSOL Multiphysics 5.4 based in previous the previous study Khalid 

et al., 2018. The computational model that describes the calcium phenomena in 2D as-

trocyte FEM is based on the model by De Pittà et al. (2009), a mathematical model of 

the pathway described before. Our model describes spatiotemporally the Ca2+ pathway 

defined before and includes the diffusion of Ca2+ and IP3. Calcium behavior is also af-
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fected by the calcium buffering of the cell, where different structures inside the cell cap-

ture and reduce the amount of free intracellular Ca2+ (Verkhratsky and Butt, 2013), which 

will be another topic in this thesis. Four computational buffering models in astrocytes will 

be analysed and tested into our model.  

Results will come from simulations run in simple geometries that will let us evaluate 

In order to undertested better the astrocytes behaviour and its roll in neurodegenerative 

diseases, it is important to analyse how simple changes in the geometry affect the intra-

cellular Ca2+. For example, the thickening of a process, the angle between subprocesses, 

the stimulus distribution, and also the differences between geometries. It is expected to 

obtain the differences between the simulation models and the influence of the geometry 

analytically. The last step would be to relate the equations and predictions calculated 

statistically with published experimentation and bibliography and finalize the thesis with 

the conclusions extracted. 
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2. BIOLOGICAL AND THEORETICAL BACK-

GROUND 

Glia cells, in general, are the main supportive structures and the most abundant cell 

types in the central nervous system. They do not produce electrical impulses, but they 

are fundamental for the correct performance of neurons and the whole brain in general, 

carrying out numerous vital chores like maintaining homeostasis, taking care of the my-

elin, support, and protection of the brain. The main types are oligodendrocytes, astro-

cytes, ependymal cells, and microglía (Verkhratsky and Butt, 2013). 

2.1 Introduction to astrocytes 

A great part of the human brain’s tissue is cover by astrocytes (Verkhratsky and Butt, 

2013). The traditional view shows them basically as supportive cells, providing metabolic 

and structural support to the neuronal network. However, recent studies have corrobo-

rated that these cell types have a significant direct and active role in the synaptic events, 

neuronal activation, and regulation of brain microcirculation. As astrocytes participate in 

information processing and cognitive functions in the brain, they also participate in neu-

rodegenerative diseases and numerous brain disorders (Almad and Maragakis, 2018). 

This star-shaped glia cells also connect the cells controlling vasculature by vascular end-

feet and by the glial sheet at brain surfaces, defining the cytoarchitecture of the grey 

matter of the brain. Numerous functions of vital importance in the Central Nervous Sys-

tem (CNS) are involved by astrocytes, including aging, development, and experience-

dependent adaptation (Verkhratsky and Nedergaard, 2018). 

In the mid of the 1990s, scientists recognized that astrocytes are also involved in the 

dynamic modulation of synaptic functions, where they are able to modulate synaptic ac-

tivity releasing gliotransmitters (Parpura and Zorec, 2010). An astrocyte, a presynapse, 

and a postsynapse build the so-called tripartite synapse and the information travel be-

tween them with the release of gliotransmitters like glutamate and adenosine triphos-

phate (ATP), and it is known as the way of exchanging information between neurons 

(Araque et al., 1999; Perea, Navarrete, and Araque, 2009; Di Castro et al., 2011). These 

are some of the reasons to understand why astrocytes have become new novel targets 
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for therapeutic strategies in neuropathologies like epilepsy, ischemia, Alzheimer’s, and 

Parkinson’s diseases. 

2.1.1 Astrocyte types 

There exist numerous subgroups where astrocytes can be divided; the literature de-

scribes more than fourteen subtypes of different astrocytes characterized by having their 

own qualities. Furthermore, fibrous and protoplasmic astrocytes are the two main groups 

(Verkhratsky and Butt, 2013). 

Fibrous astrocytes are mainly found in the white matter in the brain, in the spinal cord, 

and in the nerve fiber layer of the retina. Few of them can also be found in grey mather 

like in the thalamus of humans. Fibrous astrocytes have processes longer (up to 300 

µm) and less elaborate than protoplasmic astroglia (Pfaff, D. W., & Volkow, 2016). 

Protoplasmic astrocytes are mainly in the grey matter and in the spinal cord. The density 

of protoplasmic astrocytes in the cortex varies between 10,000 and 30,000 per mm3. 

Their primary processes can be 50µm long, and also, they can extend in high elaborated 

branches to form complex process arborizations (Pfaff, D. W., & Volkow, 2016). 

Then there are some important subtypes like surface-associated astrocytes, velate as-

trocytes, interlaminar astrocytes, solarized astrocytes, and varicose projection astro-

cytes. (Verkhratsky and Nedergaard, 2018). 

2.1.2 Astrocytes in diseases 

As astrocytes perform numerous vital functions for the correct performance of the brain 

and nervous system, they are also involved in numerous neurological diseases like Epi-

lepsy, Alexander disease, Rett syndrome, and Alzheimer's, which are directly related to 

an anomer behavior of the astrocytes (Almad and Maragakis, 2018). 

Alzheimer's disease (A.D.) can cause problems with memory, thinking, and behavior. 

Nowadays is a major cause of death for the elderly and the most common form of de-

mentia. It results from the deposition of amyloid-β (Aβ) plaques and neurofibrillary twist. 

A.D. involves reactive astrocytes and microglia causing neuroinflammation, loss of neu-

rons, and dysfunction of synapses. Reactive astrocytes in A.D. are characterized by the 

swelling of astrocytic processes and upregulation of glial fibrillary acidic protein (GFAP), 

especially close to the Aβ plaques. Also, one of the multiple astrocytes roles is to regulate 
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the Aβ concentrations in the brain. When they turn into pathological phenotypes, there 

is a defective functionality in this role (Almad and Maragakis, 2018). The hypertrophy of 

astrocytic processes is visible with immunoreactivity images (Figure 1) (Wilhelmsson et 

al., 2006). 

 

   Astrocytes change morphology and functionality under brain lesion 
in GFAP immunoreactivity. These reactive astrocytes can be related to reactive 
Alzheimer's astrocytes. The picture on the left shows a nonreactive group of as-
trocyte, and a picture on the right shows an image of reactive astrocyte when is 

appreciable the morphology change in them and the swollen geometry 
(Wilhelmsson et al., 2006). 

2.2 Calcium events in astrocytes 

In astrocytes, Ca2+ elevations are known as the most important hallmark of their behav-

ior. They play an essential role in signal transduction and response to the environment, 

as well as functionality indicators. In astrocytes, information and responses to the sur-

rounding inputs do not travel through them with an electric potential as they are electri-

cally non-excitable and is mainly done by Ca2+ transient through the cell (Verkhratsky 

and Nedergaard, 2018). 

Numerous studies prove that intracellular Ca2+ elevations with their detailed spatial and 

temporal properties might be a result of the synaptic activity (Guerra-Gomes et al., 2018). 

The glutamate release in the extracellular space between two neurons can induce the 

stimulation of the G-protein coupled metabotropic glutamate receptors (mGluRs), which 
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activates phospholipase C-beta (PLCβ) enzyme in the astrocyte membrane. In the mem-

brane, PLCβ and phospholipase C-delta (PLCδ) hydrolyze phosphatidylinositol 4,5-

bisphosphate (PIP2) into inositol 1,4,5-trisphosphate (IP3). However, PLCδ, instead of 

being controlled by the surface receptors of the cell, it is driven by the intracellular Ca2+ 

concentration, and it is the beginning of the calcium-induced-calcium-release (CIRC) 

system of the cell. Then the rising of IP3 concentration promotes the IP3 receptor (IP3R) 

channels opening, which slightly increases the intracellular Ca2+. The opening probability 

of IP3R channels depends nonlinearly on the Ca2+ concertation, and the IP3R channels 

control the sarco-endoplasmic reticulum (SR) Ca2+ -ATPase (SERCA) pumps, which re-

lease the Ca2+ stored in the endoplasmic reticulum (ER) to the cytosol of the astrocyte. 

When the Ca2+ concentration in the cytosol rises significantly, the IP3R channels start to 

deactivate, and the SERCA pumps drive the Ca2+ back from the cytosol to the ER. Also, 

the rise of Ca2+ concentration in the cytosol leads to the phosphorylation of IP3 into ino-

sitol 1,3,4,5-tetrakisphosphate (IP4), catalyzes by IP3 3-kinase (3K) which is controlled 

by the Ca2+ concentration, and the dephosphorylation by inositol polyphosphate 5-phos-

phatase (IP-5P) into PIP2. Finally, the cycle feeds back itself (Communi et al., 2001; De 

Pittà et al., 2009).  

As it was said, Ca2+ elevations can directly affect the synaptic event through the gliotrans-

mitters release, and they also influence circuit outputs like sensory plasticity and network 

synchronization (Guerra-Gomes et al., 2018; Gordleeva et al., 2019). However, there are 

many calcium pathways in astrocytes, another important one, a part of the mGluR-de-

pendent is the glutamate transporter (GluT)-dependent pathway, in which the activity of 

glutamate, sodium ion (Na+) and potassium ion (K+) transport Ca2+ between the extra-

cellular and the intracellular space (Oschmann et al., 2017). Ca2+ wave propagation can 

also be transmitted between cells by two pathways; one involves second messengers 

from the cytosol of two adjoining astrocytes over gap junction in the intracellular chan-

nels, and the other through the activation of membrane receptors as a result of extracel-

lular diffusion of agonists (Scemes et al., 2006). 

It is essential to highlight that the Ca2+ wave is not an ordinary propagating wave that 

moves through the cell with the common spatio-temporal ion diffusion concepts. The 

propagation of the Ca2+ wave is mainly a result of the release events associated with the 

opening of Ca2+ release channels through the ER membrane to the cytosol of the cell. 

And the calcium concentration is also drastically restricted by cytoplasmic Ca2+ buffering 

(Verkhratsky and Nedergaard, 2018). 
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2.3  Astrocyte imaging 

2.3.1 Identification and morphology of astrocytes 

Since the beginning, visualization and identification of astrocytes have been a task far 

from trivial, particularly in the in-situ preparations and much more in the in vivo brain 

imaging. The lack of a universal marker that may label astrocytes and the morphological 

heterogeneity of them has made it a difficult chore. Here is a summary of the most well-

known markers used in different techniques for astrocyte’s morphology studies. 

Glutamine synthetase is a specific enzyme from astroglia that converts ammonia and 

glutamate into glutamine. It is situated in the cytosol, and with the immunostaining tech-

nique, it reveals the full structure of the cell (Anlauf and Derouiche, 2013). For the same 

purpose, it is also very extended to use the GFAP as it is an intermediate filament protein 

expressed in a subpopulation of astrocytes in the CNS, and also, exists an upregulated 

expression of GFAP in reactive astroglia (Eng, Ghirnikar and Lee, 2000). Vimentin is an 

intermediate filament protein also used for identifying astrocyte’s morphology. It is pre-

sent in immature astrocytes, in subpopulations of protoplasmic and fibrous astrocytes, 

and in tanycytes. In reactive astrocytes, Vimentin expression is upregulated. Finally, the 

connexins Cx43 and Cx30, are expressed mainly in astrocytes and Cx30 is mostly found 

in the grey matter and primarily concentrated in the astroglia end-feet (Nagy et al., 2011; 

Verkhratsky and Nedergaard, 2018). 

S100B protein is a Ca2+- binding protein that acts as Ca2+ buffer for Ca2+ sensing (Donato 

et al., 2012). Moreover, glutamate transporters like excitatory amino acid transporter 1 

(EAAT-1), also known as glutamate aspartate transporter 1 (GLAST) and excitatory 

amino acid transporter 1 (EAAT-2) also known as glutamate transporter 1 (GLT-1) are 

specific glutamate transporters in astroglia that show regional variability. EAAT2 is the 

main transporter type, except in the cerebellum, where EAAT1 is predominantly ex-

pressed (Jungblut et al., 2012). Finally, aquaporin (AQP4) is expressed in astrocytes and 

ependymocytes. AQP4 can be found in the end-feet staining the structure of healthy 

astrocytes (Nagelhus and Ottersen, 2013). 

The transcriptional factor SOX9 labels the nucleus of astrocytes out of the neurogenic 

niches (Sun et al., 2017). Also, Aldehyde dehydrogenase 1 family, member L1 

(ALDH1L1), is a specific astroglial marker, although its expression changes with age. 

ALDH1L1 is an enzyme that contributes to the nucleotide biosynthesis and also in the 

cell division in folate metabolism (Cahoy et al., 2008). 
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2.3.2 Calcium imaging of astrocytes 

Ca2+ imaging is a potent tool to study astrocytes, the behavior of these cells and their 

response to events and cell signaling in a neighboring and local environment (McIver, 

Faideau and Haydon, 2013). Nevertheless, detailed spatio-temporal imaging of Ca2+ dy-

namics in astrocytes has not a trivial answer when it comes to providing enough infor-

mation about the ionic functions from a local resolution to the whole-cell level, and now-

adays it is still a situation to be solved. One of the biggest problems in calcium imaging 

results from the fact that spatial and temporal resolution used to be mutually exclusive in 

the majority of the cases. Wherefore, detecting the whole-cell calcium event turns into 

the main use if calcium imaging in astrocytes. (Losi et al., 2017). 

Inside the imaging techniques, wide-field microscopy was a pioneer in the new imaging 

techniques of astrocytes, but major improvement came in the 1980s with the confocal 

microscopy or confocal laser scanning microscopy (CLSM) and is the most widely used 

one. The refined technique and new microscopes let combine it with more tools like the 

immunostaining labeling to study different properties in the astrocytes (Loaiza, Porras 

and Barros, 2003; Perez-Alvarez, Araque and Martin, 2013). There are 2-photon and 3-

photon microscopy, which are useful tools that were used, for example, in cortical and 

subcortical astrocytes in awake animals (1 mm depth). However, they are not useful for 

imaging deep structures (Horton et al., 2013; Perea et al., 2014). Furthermore, for imag-

ing of deep brain (>1 mm depth) areas, it is possible to use optical microendoscopy or 

micro prisms. It is an invasive technique and it produces inflammation and potential dam-

age to the imaged grain region (Chia and Levene, 2009). 

In imaging with fluorescence microscopy, the main and most challenging task lies in the 

selection of appropriated fluorescence dyes, there are multiple of them that can be used 

simultaneously, and they must be carefully designed for the assignment. Furthermore, it 

can be a useful tool for trying to understand the functionality of the astrocyte-neuron 

network (Verkhratsky et al., 2010). Due to their high affinity for Ca2+, fluorophores can 

also be used to study the general effect of the neuronal activity on astrocytes and like-

wise to study the event of IP3 release simultaneously with Ca2+ induced release. For this, 

a more accurate procedure is necessary without disrupting the Ca2+ signal. In that case, 

they are recommended to be used smaller molecule fluorophores and lower affinity ones 

like cationic mitochondrial dye 4-Di-2-ASP, sulforhodamine 101 (SR101) or β-Ala-Lys-

Nε-AMCA, among others. (Preston, Cervasio and Laughlin, 2019). 
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New sensitive Ca2+ dyes, for example, genetically-encoded calcium indicators (GECIs), 

can monitor Ca2+ activity at the distal fine astrocytic processes, and several tools like 

viral vectors can be used to express GECIs in specific brain areas, they are able to bind 

Ca2+ and induce a change in fluorescence signal. The main disadvantages of GECIs are 

the potential cytotoxicity and expression techniques, and promoter sequences are critical 

for a good signal to noise signal (Srinivasan et al., 2015). 

The latest studies of the Ca2+ dynamics in astrocytes consider novel techniques like the 

three-dimensional(3D) Ca2+ transient thought time in the GECI GCaMP6f-expressing as-

trocytes with promising results due to its high sensitivity to detect Ca2+ waves in pro-

cesses and microdomains with high-frequency Ca2+ transients (Losi et al., 2017;  Ye et 

al., 2017). 

2.4 Computational modeling of astrocytes 

There is a lack of comprehension of the calcium dynamics in astrocytes. Furthermore, 

the fact that having detailed spatio-temporal imaging of Ca2+ dynamics in astrocytes is a 

hard task not completely solved. This makes computational modeling an exciting tool to 

study this cell type. 

2.4.1 Computational modeling of biology 

Computational Modeling of Biology, also known as Computational Biophysics, consists 

of “the use of numerical algorithms to study the physical principles underlying biological 

phenomena and processes. It provides a means of approximating solutions for theoreti-

cal biophysical problems lacking closed-form solutions, and simulating systems for which 

experiments are deemed infeasible.” (Computational Biophysics, nature.com). 

Computational models are also used in industry since the beginning of computing sci-

ence. They can be used to corroborate laboratory results and understand the system 

that is being simulated. Furthermore, if a computational model of a system is developed 

successfully and is able to simulate the event that is being studied in the laboratory, it 

can reduce the laboratory experimentation and, as a consequence, reduce substantially 

the cost of the study. 



10 
 

2.4.2 Computational models of astrocytes 

In biophysics, the main use of computational models is to improve the understanding of 

cell dynamics. There are many different types of computational cell models, including, 

mechanical, diffusion, electrical models, and combinations of them. However, as this 

thesis focus on the calcium events in astrocytes, our model will be governed mainly by 

diffusion equations. In the following, we highlight some models that are the bases of most 

of the actual studies related to the topic. Furthermore,, at the end of the section is pre-

sented a summary table with the characteristics and differences between the following 

models (Table 1). 

Model by De Pittà et al. (2009) 

De Pittà et al. (2009) propose a mathematical model to describe the pathway inside an 

astrocyte that links the synaptic event through the activation of Gq-protein-coupled re-

ceptors, with the intracellular Ca2+ release from the ER of the cell. 

Based on Li and Rinzel et al. (1994), the model describes the activating and inactivating 

intracellular Ca2+ binding sites and the activating IP3 receptors for calcium-induced cal-

cium release. De Pittà et al. (2009) additionally incorporate the regulation of IP3 produc-

tion and phosphorylation, turning the model in a three-variable one. 

The three-variable model is composed by the variable C, which refers to the Ca2+ con-

centration, h is a parameter used to account for the kinetics of IP3Rs and variable I that 

refers to the IP3 concentration; that compose the ChI model. Finally, this model also 

added the IP3 production by external glutamate signals. In the G-ChI model, G represents 

the extracellular glutamate concentration that could come from the synaptic event and 

interact with the astrocyte. Compared with previous models, De Pittà et al. (2009) include 

a more detailed and realistic description of the IP3 dynamics with complex equations for 

the production and degradation pathways of the molecule. It is the model used in this 

thesis. 

For the ChI model, Ca2+ flow through the ER and the cytosol is governed by different 

equations that can be summarized in three variables: 

 𝐶̇ = 𝐽𝑆𝐸𝑅𝐶𝐴 + 𝐽𝑐ℎ𝑎𝑛 + 𝐽𝑙𝑒𝑎𝑘 (1) 
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The ER calcium transport through the SERCA pump, JSERCA, is defined by vER, which is 

the maximal rate of Ca2+ uptake by the pump, and KER is the SERCA Ca2+ affinity. The 

Hill rate expression takes the exponent 2: 

 𝐽𝑆𝐸𝑅𝐶𝐴(𝐶) = 𝑣𝐸𝑅  ∙ 𝐻𝑖𝑙𝑙(𝐶2, 𝐾𝐸𝑅) (2) 

The Ca2+ leak current, Jleak, is described by rL, which is the maximal rate of Ca2+ leak 

from the ER. C0 is the total free Ca2+ concentration in relation to the cytosol volume, and 

c1 in the ER-to-cytosol volume ratio: 

 𝐽𝑙𝑒𝑎𝑘(𝐶) = 𝑟𝐿 (𝐶0 − (1 + 𝑐1)𝐶) (3) 

In the model, it is assumed that kinetic rates of binding reactions are ordered, such as 

the IP3-binding leads to the Ca2+ -activation and then to the Ca2+ -inactivation. In the 

equation, parameters m and n follow the Hill equation (m∞ = Hill(I,d1), n∞ = Hill (C, d5)), 

where d1 is the IP3 dissociation constant, and d5 is the Ca2+ activation dissociation con-

stant. rc is the maximal calcium-induced calcium-release (CICR) rate. 𝑚∞
3  represent the 

IP3-binding and 𝑛∞
3  theactivating Ca2+-binding (Li and Rinzel, 1994). 

 𝐽𝑐ℎ𝑎𝑛(𝐶, ℎ, 𝐼) = 𝑟𝑐𝑚∞
3 𝑛∞

3 ℎ3(𝐶0 − (1 + 𝑐1)𝐶) (3) 

The h parameter is used to account for the kinetics of IP3Rs and represent the fraction 

of channels not yet inactivated by Ca2+. h attends the following equations, where d1 is the 

IP3 dissociation constant, d2 the Ca2+ inactivation dissociation constant, d3 the is the IP3 

dissociation constant and a2 the IP3R binding rate for Ca2+ inhibition. 

 ℎ̇ =
ℎ∞ − ℎ

𝜏ℎ
 (4) 

 

 ℎ∞ =
𝑄2

𝑄2 + 𝐶
     𝜏ℎ =

1

𝑎2(𝑄2 + 𝐶)
     𝑄2 = 𝑑2

𝐼 + 𝑑1

𝐼 + 𝑑3
 (5) 

The equation that describes the dynamics of IP3 production and degradation is the cen-

tral component of the model, due to a great number of metabolic reactions that it de-

scribes. As a consequence of the coupling with intracellular Ca2+ dynamics, the equation 

is determinate by a complex feedback mechanism. The following equation 6, was divided 
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into two models, a model for the production and degradation of IP3 governed by the CICR 

pathway and another model for the glutamate-dependent IP3 production. 

 

 

(6) 

Fist model describes the group of equations for the production and the degradation of 

IP3, which is also divided into three different variables. 

 𝑣𝛿  (𝐶, 𝐼 ) + 𝑣5𝑃 (𝐼) + 𝜈3𝐾 (𝐶, 𝐼) (7) 

The production of IP3 is driven in the equation by the variable “𝑣𝛿  (𝐶, 𝐼 )”: 

 𝑣𝛿  (𝐶, 𝐼 )  =  𝑣′𝛿  (𝐼 )  ·  𝐻𝑖𝑙𝑙 (𝐶2, 𝐾𝑃𝐿𝐶) (8) 

Where the maximal PLCδ-dependent IP3 production follows. Also parameter KPLC is the 

Inhibition constant of PLCδ activity, kδ is the Ca2+ affinity of PLCδ, and 𝑣̅𝛿 in the maximal 

rate of IP3 production by PLCδ. 

 
𝑣′𝛿  (𝐼)  =

𝑣̅𝛿

1 +
1

kδ

 
(9) 

IP3 degradation can be considered as of the Michaelis–Menten equation, which includes 

the rate of both IP-5P dephosphorylation (𝑣5𝑃) and IP3-3K phosphorylation (𝜈3𝐾) of IP3. 

𝑟̅3𝐾 is the maximal rate of degradation by IP3-3K, 𝑟̅5𝑝 is the maximal rate of degradation 

by IP-5P and 𝐾𝐷 the Ca2+ affinity of IP3-3K. 

 
𝑣5𝑃 (𝐼)  ≈ 𝑟̅5𝑃 ∙ 𝐼 (10) 

 

 
𝑣3𝐾 (𝐶, 𝐼) = 𝑟̅3𝐾 ∙ 𝐻𝑖𝑙𝑙(𝐶4, 𝐾𝐷) ∙ 𝐼 (11) 

The second model of the equation describes the glutamate excitation event and the glu-

tamate-dependent IP3 production. 
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 𝑣𝑔𝑙𝑢(𝛾, 𝐶) = 𝑣̅β ∙ 𝑅(𝛾, 𝐶) (12) 

where R(γ, C ) is the fraction of activated (bound) mGluRs, and 𝑣̅β the maximal rate of 

IP3 production by PLCβ. 

 𝑅(𝛾, 𝐶) = 𝐻𝑖𝑙𝑙(𝛾0.7, 𝐾𝛾(𝛾, 𝐶)) (13) 

Kγ (γ, C), can be neglected to a fist approximation and simplified as Kγ (C) (De Pittà et 

al., 2009). Kγ (C) defines the effective Hill midpoint of R(γ, C) increased as PLCβ termi-

nation takes over, where 𝐾𝑅is the glutamate affinity of the receptor, 𝐾𝑝the Ca2+/protein 

kinase C (PKC)-dependent inhibition factor, and 𝐾𝜋 the Ca2+ affinity of PKC. 

 𝐾𝛾(𝐶) ≈ 𝐾𝑅(1 +
𝐾𝑝

𝐾𝑅
𝐻𝑖𝑙𝑙(𝐶, 𝐾𝜋)) (14) 

The parameters of the De Pittà et al. (2009) model can be found in the appendix (Table 

A1). 

The model can be set to the amplitude modulation (AM) or frequency modulation (FM) 

values. As stated in the De Pittà et al. (2009) paper, the IP3 model responds to a mixed 

amplitude and frequency modulation (AFM) encoding of the synaptic activity and Ca2+ 

oscillations/pulsations are inherently frequency modulation (FM) encoded. Therefore, in 

this study, the FM parameters will be considered due to the predominant information 

encoded in the instantaneous frequency of the model (Alan Bloom, 2010). 

Model by Oschmann et al. (2017) 

Oschmann et al. (2017) present a mathematical model based on De Pittà et al. (2009) 

that extends the model for mGluR-dependent pathway signals in astrocytes with the glu-

tamate transporter (GluT)-dependent pathway. The GluT-dependent pathway is describ-

ing how GluT, Na+ and K+ transport Ca2+ between the extracellular and the intracellular 

space; both pathways can be seen in Figure 2. Furthermore, the model includes the 

volume ratio between the internal Ca2+ store and the intracellular space applied to the 

geometry, and the membrane voltage (Vm). It makes it possible to analyze better the 

differences between Ca2+ signals in the soma an also close to the synapse (Oschmann 

et al., 2017). 
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   Schematics of the GluT-dependent pathway and the mGluR-de-
pendent pathway (in grey color), with the three different compartments that the 
model used, the intracellular space, the internal Ca2+ stores in the ER and the 

extracellular space. The picture was taken from Oschmann et al. (2017). 

Model by Savtchenko et al. (2018) 

Savtchenko et al. (2018) developed a multi-compartmental 3D cell model, which is inte-

grated into the NEURON environment. NEURON is a simulation platform mainly in-

tended for computational simulations of neurons and networks of neurons. With this 

study, the authors were able to check the astroglial internal connectivity between the 

different tubular compartments where the 3D model was divided, in the experiment ver-

sus modeled one. Also, this model simulates the passive electrical properties of astro-

cytes, the voltage-current landscape driven by glutamate uptake, potassium uptake, and 

redistribution inside astroglia, the gap junctions, and hemichannels. They also probe the 

influence of calcium buffering on calcium waves and relate it to assessing calcium-buff-

ering capacity in vivo.  

For the Ca2+ model, they use CICR controlled by IP3; The IP3 model comes from De Pittà 

et al. (2009). The IP3R model from Fink et al., (2000), which uses a reduced version of 

Li&Rinzel model with simplified “h”.  

With their study and simulations, they concluded that fluxes generated by GluT or K+ 

channels have insignificant distant effects on membrane potential. Furthermore, the 

model proves that single astrocytes can effectively deal and interact with extracellular K+ 

places of significant activity. Furthermore, they explain how intracellular Ca2+ buffers af-

fect Ca2+ dynamics and why the Ca2+ highly localized Ca2+ release from the ER machin-

ery is theoretically compatible with the results of astroglial Ca2+ imaging after analyzing 

the statistical correlations between the simulations and the laboratory experimentation. 
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 Main characteristics and differences between the computational models of astro-
cytes. 

Model Ca2+ IP3 Glutamate K+ Na+ Vm Geometry 
Ca2+ 

Buffer 
Cytosol E.R 

De Pittà et al. 

(2009) 
✔ ✔ ✔ ✖ ✖ ✖ ✖ ✖ ✔ ✖ 

Oschmann et 

al. (2017) 
✔ ✔ ✔ ✔ ✔ ✔ 

Compart-

mental 
✖ ✔ ✔ 

Savtchenko 

et al. (2018) 
✔ ✔ ✔ ✔ ✖ ✔ 3D ✔ ✔ ✔ 

 

2.4.3 Calcium Buffering 

The main distinction of a molecule or process to be considered as a calcium-buffer is the 

ability to bind Ca2+ ions. However, only the Ca2+ binding proteins that contain acidic side-

chain residues can be referred to as Ca2+ buffers (Gilabert, 2012). 

Just a minority of the Ca2+ ions inside the cell are freely dissociated; most of them are 

bound to intracellular proteins. This effect in which the cell stabilizes the concentration 

of free Ca2+ ions is described as Ca2+ buffering. By binding or releasing Ca2+ from intra-

cellular proteins, Ca2+ buffers minimize the effect of changes in cytoplasmic free Ca2+ 

concentration when Ca2+ is added to or removed from the cytoplasm by transport across 

the ER or cell membrane. Ca2+ sequestration into the intracellular Ca2+ stores represents 

a much more powerful process than the Ca2+ buffering. The Ca2+ buffering can be con-

sidered as a rapid process in the sub-second scale. This process determines Ca2+ diffu-

sion and spatiotemporal Ca2+ signaling in the cell. (Gilabert, 2012). Also, buffers are used 

in many experiments because they have the ability to reduce evoked transmitter release 

in laboratory experiments, for example, when they injected them in the terminal of a giant 

squid synapse (E. M. Adler et al., 1991). 

There are many parameters for which it is crucial to know their role in Ca2+ signaling, for 

example, concentration, affinity for Ca2+ or Ca2+ binding and releasing kinetics of the 

buffer. Also, depending on their molecular weight and the diffusion characteristics, it is 

possible to do a buffer classification between mobile or immobile. Therefore, their rate 

constants of Ca2+ binding and dissociation cover a wide range in which is possible to 

distinguish between slow buffers (with constants values about 1 s−1) and fast buffers 



16 
 

(constant values about 100 s−1). The majority of cellular Ca2+ binding sites are immobile. 

(Falcke, 2003). 

There are numerous equations that describe the Ca2+ buffering phenomena in the astro-

cyte. Here is a small summary of the different types proposed in diverse studies. 

Buffering model by Hadfield et al. (2013) 

The most simple buffering model would be the one proposed by Hadfield, Plank, and 

David in 2013. Their model behaves like a constant in front of the Ca2+ equation that 

reduces the Ca2+ concentration around 33%. Buffering in the cytosol performs likewise 

to the low-affinity Ca2+ buffering in many mammalian cells (Gonzalez-Fernandez and 

Ermentrout, 1994). The model used a modification of the model proposed by Gonzalez- 

Fernandez, and Ermentrout (1994), and parameters are calculated experimentally from 

astrocytes cultures (Wang et al., 1997). The Ca2+ and IP3 come from Ullah et al. (2006). 

 𝐶̇ = 𝜌(𝐽𝑆𝐸𝑅𝐶𝐴 + 𝐽𝑐ℎ𝑎𝑛 + 𝐽𝑙𝑒𝑎𝑘) (15) 

 

 𝜌 =
(𝐾𝑑 + 𝐶)2

(𝐾𝑑 + 𝐶)2 + 𝐾𝑑𝐵𝑇
 (16) 

In the equation parameter, “ρ” represents the fraction of cytosolic Ca2+ that is in the un-

buffered form, and C is the free Ca2+ in the cytosol. Kd represents the buffer disassocia-

tion constant with a value of 20 µM, and BT represents the total buffer concentration with 

a value of 10 µM. 

Buffering model by Lopez-Caamal et al. (2014) 

Lopez-Caamal et al. (2014) proposed a model based on Korngreen, Gol’shtein, and 

Priel, (1997). The model has a simple IP3R model, with a constant rate of IP3. Where cc 

is the Ca2+ concentrations in the cytosol, and b is the concentration of free Ca2+ buffer 

(Lopez-Caamal et al., 2014). Parameters for the equations can be found in Table 2. 

 𝐶̇ = 𝐽𝑆𝐸𝑅𝐶𝐴 + 𝐽𝑐ℎ𝑎𝑛 + 𝐽𝑙𝑒𝑎𝑘 − 𝐽𝑜𝑛 + 𝐽𝑜𝑓𝑓 (17) 

 
𝑑

𝑑𝑡
𝑏 = −𝐽𝑜𝑛 + 𝐽𝑜𝑓𝑓 (18) 
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 𝐽𝑜𝑛 = 𝑘2𝑐𝑐𝑏 (19) 

 𝐽𝑜𝑓𝑓 = 𝑘𝑚2(𝑏𝑇 − 𝑏) (20) 

 Parameters for the buffering model by Lopez-Caamal et al. (2014). 

k2 601 (µMs)-1 Rate of Ca2+ associated with the buffer 

km2 97 s-1 Rate of Ca2+ dissociation from the buffer 

bT 300 µM Total concentration of the Ca2+ buffer. 

 

Buffering model by Skupin et al. (2010) 

Based on De Young & Keizer (IP3R) model, the model by Skupin et al. has no IP3 dy-

namics but a constant value of [IP3]. B represents the immobile buffers and Bi the mobile 

ones (Skupin, Kettenmann, and Falcke, 2010). The parameters for the formulas can be 

found in Table 3.  

 Parameters for the buffering model by Skupin et al. (2010) 

DB 95 µm2/s diffusion coefficient of mobile buffer. 

[B]T 50 µM total mobile buffer concentration 

k+
B 1.5 (µMs)-1 capture rate of EGTA 

k-
B 0.3 s-1 dissociation rate of EGTA 

k+
B 600 (µMs)-1 capture rate of BAPTA [3] 

 
𝐶̇ = 𝐽𝑆𝐸𝑅𝐶𝐴 + 𝐽𝑐ℎ𝑎𝑛 + 𝐽𝑙𝑒𝑎𝑘 − 𝑘+[𝐵][𝐶] + 𝑘−([𝐵]𝑇 − [𝐵]) − 𝑘𝑖

+[𝐵𝑖][𝐶]
+ 𝑘𝑖

−([𝐵𝑖]𝑇 − 𝐵𝑖) 
(21) 

 
𝑑𝐵𝑖

𝑑𝑡
= −𝑘𝑖

+[𝐵𝑖][𝐶] + 𝑘𝑖
−([𝐵𝑖]𝑇 − 𝐵𝑖) (23) 

 
𝑑[𝐵]

𝑑𝑡
= 𝐷𝐵∇2[𝐵] − 𝑘+𝑘+[𝐵][𝐶] + 𝑘−([𝐵]𝑇 − [𝐵]) (22) 
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k-
B 100 s-1 dissociation rate of BAPTA 

[Bi]T 30 µM total immobile buffer concentration 

k+
Bi 1 (µMs)-1 capture rate of the immobile buffer 

k-
Bi 2 s-1 dissociation rate of the immobile buffer 

 

Buffering model by Komin et al. (2015) 

The model by Komin et al. uses the De Young & Keizer (IP3R) model and adds separately 

the mobile buffer to the cytosol and immobile to the ER. Parameters for the buffer equa-

tions can be found in Table 4. 

 𝐶̇ = 𝐽𝑆𝐸𝑅𝐶𝐴 + 𝐽𝑐ℎ𝑎𝑛 + 𝐽𝑙𝑒𝑎𝑘 − 𝑘𝑖
+[𝐵𝑖][𝐶] + 𝑘𝑖

−([𝐵𝑖]𝑇 − 𝐵𝑖) (24) 

 

 
𝑑𝐵𝑖

𝑑𝑡
= −𝑘𝑖

+[𝐵𝑖][𝐶] + 𝑘𝑖
−([𝐵𝑖]𝑇 − 𝐵𝑖) (25) 

 Parameters for the buffering model by Komin et al. (2015) 

DB 95 µm2/s Diffusion coefficient of mobile buffer 

[B]T 52 µM Total mobile buffer concentration (EGTA) 

k+
B 0.3 (µMs)-1 On rate of the mobile buffer 

k-
B 1.5 s-1 Dissociation rate of the mobile buffer 

 

Buffering model by Savtchenko et al. (2018) 

Buffering equations in Savtchenko et al. (2018) are the same as the one used in the 

Skupin et al. model, equations 21, 22, and 23. The parameters were calculated from 

experiments with in vivo images of astrocytes using a virus-transduced Ca2+ indicator 

expressed under a GFAP promoter were recorded (Savtchenko et al., 2018). Parameters 

for the buffer equations can be found in Table 5. 
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 Parameters for the buffering model by Savtchenko et al. (2018) 

DB 5 µm2/s diffusion coefficient of mobile buffer. 

[B]T 10 µM total mobile buffer concentration 

kf 600(µMs)-1 capture rate of mobile buffer 

kD 500 s-1 dissociation rate of mobile buffer 

[Bi]T 200 µM total immobile buffer concentration 

kfi 1000(µMs)-1 capture rate of the immobile buffer 

KDi 20 s-1 dissociation rate of the immobile buffer 

 

2.4.4 FEM for calcium dynamics in astrocytes 

An algorithm that describes a process can be written in partial differential equations 

(PDEs). The finite element method is one way to solve them and perform a Finite Ele-

ments Analysis (FEA), obtaining a quite well-approximated solution. 

Engineers have been using FEM modeling to reduce the number of experiments and 

physical prototypes, also to optimize components in their designs. There is a shift from 

the industrial point of view of the FEM, which is the Computational Modeling of Biology. 

It is possible to simulate biological algorithms with the FEM technique and obtain good 

predictions of what is happening in the system, which can be a cell, a group of them, a 

complete tissue, or a prosthesis. In this area, the use of FEM is more related to the 

understanding of biology, which sometimes is difficult to see and predict in laboratory 

experiments. 

It is essential to know that the differential form of the equation is considered as a strong 

form, and the integral form is the weak form of the equation. First, it should come from 

the differential equation u(x) that describes the physical phenomena and then integrate 

it, using, for example, integration of parts. A trial function v(x) used to be added in the 

procedure, that will be removed in the nodal interpolation. 

 𝑢′′(𝑥) = 𝑓(𝑥) (26) 
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 ∫ 𝑢′′(𝑥) 𝑣(𝑥) = ∫ 𝑓(𝑥) 𝑣(𝑥) (27) 

 

 𝑢′(𝑥) 𝑣(𝑥) |
1
0

− ∫ 𝑢′(𝑥) 𝑣′(𝑥) = ∫ 𝑓(𝑥) 𝑣(𝑥) (28) 

Once the integral or weak form has been structured, it is time to perform a discretization 

of it. The first step in the discretization consists of transforming the integral into a set of 

matrix equations. With this, it can be turned into a summarization that can be solved 

numerically. 

 [([𝑀]𝑇 [𝑀′]) |
1
0

− ∫[𝑀′]𝑇 ∙ [𝑀′]] {𝑢} = ∫[𝑀]𝑇 [𝑀′] {𝑓} (29) 

 

 ([𝑀]𝑇 [𝑀′]) |
1
0

− ∫[𝑀′]𝑇 [𝑀′] = [𝐾] (30) 

 

 ∫[𝑀]𝑇 [𝑀′] {𝑓} = {𝑅} (31) 

 

 [𝐾]{𝑢} = {𝑅} (32) 

In the matrixial equation, {u} is known as the nodal vector, [K] is the stiffness matrix, and 

{R} is the residual vector. 

The next step is to divide the domain where the equation is going to be solved in small 

pieces known as “elements”. This procedure is known as the “Meshing process”. It is 

named “node” to the corner point of each element, and this nodal point is where the 

unknown function u(x) will be calculated. Then an interpolation will be done to calculate 

the equation in all the space of nodal points, which can be one-dimensional, two-dimen-

sional, and three-dimensional in most common cases. Moreover, not all the nodes follow 

the same equations; there are “boundary conditions” that define different behavior of 

some nodes (for example, a no-flow condition in a wall). 
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There is a complex mathematical methodology under the interpolation method and exist 

different techniques optimized depending on the study's purpose. Furthermore, ones the 

matrix equations have been established, we can use direct or iterative solvers depending 

on the type of problem. 

2.4.5 FEM modeling of astrocytes 

FEM modeling has been used for modeling astrocytes. For example, Khalid et al., (2018) 

implemented the model by De Pittà et al., (2009) in COMOSOL Multiphysics. They com-

putationally demonstrated that different geometries were affecting the Ca2+ signaling in 

the astrocyte. 

Apart from this study, there are more of them that corroborate the use of FEM as an 

interesting tool for studying different parameters in single-cell computational modeling of 

astrocytes. Jha, and Adlakha (2014) proposed a 2D FEM model in MATLAB to test the 

exogenous buffers EGTA and BAPTA in an astrocyte shape, corroborating the important 

role of buffers in Ca2+ concentration. Then the same was done with EGTA and voltage-

gated calcium channel (VGCC) buffers in Jha, Adlakha and Mehta, (2019). However, 

there is a lack of geometry in numerous models and the attentiveness in its influence 

could lead into different results after running the models in more complex astrocytic mor-

phologies. This thesis will focus on the influence of the geometry in the astrocytic Ca2+ 

FEM model. 
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3. METHODS 

3.1 FEM model of an astrocyte 

As it was shown, after De Pittà et al. (2009), new models had come. Nevertheless, most 

of them used De Pittà et al. (2009) equations as the bases for the intracellular Ca2+ dy-

namics models. New studies added more complexity to this model and took into account 

more parameters and variables. For example, the ER distribution through the cell, the 

membrane potential, 3D distribution, or other Ca2+ events also important in the cell, like 

Sodium/ Ca2+ exchanger in astroglia Ca2+ signaling. Notwithstanding, implementing and 

studying them would exceed the amount of work and time significantly for a master’s 

thesis. Finally, only De Pittà et al. (2009) model with the analysis of the buffering equa-

tions has been implemented. 

Furthermore, the diffusion coefficients to the molecules were added. In this case, for IP3, 

a diffusion coefficient of 300 µm2/s was used (Kang and Othmer, 2009). Ca2+ has a dif-

fusion coefficient of 13 µm2/s in the buffered form and 223µm2/s in the free ion form 

(Allbritton, Meyer and Stryer, 1992; Dickinson et al., 2016).  

For the geometrical analysis, as the majority of the Ca2+ in the cells is in the buffered 

form, the diffusion coefficient of 13 µm2/s was used for the computations. Moreover, 

since the De Pittà et al. (2009) model only calculates the Ca2+ dynamics in the astrocyte 

cytosol, the immobile buffer in the model by Komin et al. (2015) has not been considered, 

as it affects only Ca2+ in the ER. 

Inside the FEM simulations, a new variable (J_buff) was calculated and implemented to 

the Ca2+ model for the derivation of the Ca2+ affected by the buffer with respect to time, 

and be computed inside the model; It was done for the buffering model by Skupin et al. 

(2010), the buffering model by Komin et al. (2015) and the buffering model by 

Savtchenko et al. (2018): 

 𝐽_𝑏𝑢𝑓𝑓 = −𝑘+[𝐵][𝐶] + 𝑘−([𝐵]𝑇 − [𝐵]) − 𝑘𝑖
+[𝐵𝑖][𝐶] + 𝑘𝑖

−([𝐵𝑖]𝑇 − 𝐵𝑖) (33) 

COMSOL Multiphysics 5.4 is a software developed for finite element analysis, solver, 

and multiphysics simulations. The Coefficient Form PDE was used to integrate the De 
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Pittà et al. (2009) astrocyte model. The simplified time-dependent equation for one de-

pendent variable “u” was the following one: 

 
𝑑𝑢

𝑑𝑡
− ∇ ∙ (𝑐∇𝑢) = 𝑓 (34) 

 

 𝑢 = [𝐶, 𝐼, ℎ]𝑇 (35) 

 

 ∇= [
𝑑

𝑑𝑥
,

𝑑

𝑑𝑦
] (36) 

The parameter “u” represented the dependent variable to study. In our case, we have a 

three-variable problem, which is “C” that represents Ca2+, “I” which represents IP3 mole-

cule and “h” which is the parameter used to account IP3Rs kinetics. The equation con-

tains the diffusion coefficient (c) of the different molecules, which is isotropic. The equa-

tions from the De Pittà et al. (2009) model are implemented in the source term (f), and 

they describe the behavior of the different dependent variables (C, I, h). Finally, the Nabla 

operator (∇) is a common mathematical operator that turns a function into a vector from 

the spatial domain of the problem. 

There is an additional source term (equation 12) in the domain that only affects to the 

glutamate stimulation area and will be defined as a “stimulus area” thought the thesis. 

This is a geometrical 2D area inside the 2D geometrical model that represent computa-

tionally the domain affected by the glutamate released in synaptic activity. For compara-

bility, the area of stimulation in all geometries was 10µm2. The glutamate concentration 

was constant through time with a value of 6µM. The applied parameters for the model 

come from De Pittà et al. (2009), and they can be found in the appendix (Table A1).  

3.1.1 Meshing 

The models were developed in 2D geometries. A triangular 2D Delaunay´s Tessellation 

method was applied as default. The extremely fine element was used for the mesh, alt-

hough it would have been possible to run most of the simulations with bigger size ele-

ments without losing quality in the results. The extremely fine size assured convergence 

when the simulations were run under a parametric sweep (the variable was run for all 

the specified equidistant values inside a specified range of values). 
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3.1.2 Solver 

The hierarchy under the process of solving a problem in COMSOL Multiphysics 5.4 starts 

with the predefined Study and Study Step Types. Default Time Dependent study was 

used in our case. This solver type computes the solution over time and is used when 

field variables change with time. The solver uses the implicit time-stepping methods 

backward differentiation formula (BDF) or generalized-α or an explicit method from a 

family of Runge-Kutta methods depending on the convergence in the simulation. Each 

simulation in this study was run for 200 seconds. 

 

3.1.3 Boundary conditions 

For this model, two different boundary conditions were defined. The first one was the 

Zero Flux across the boundary that was defined for the nodes in the outline of the geom-

etries. The boundary equation was the following one, where “n” represented the nodal 

vector and are specified coefficients c, α, γ, β. 

 −𝑛 ∙ (−𝑐∇𝑢 − 𝛼𝑢 + 𝛾) = 0 (37) 

The second one was a Flux/Source condition, where the outline of selected nodes was 

not affecting the dynamics of the variables. It can also be named as an out-flow condition.  

 −𝑛 ∙ (−𝑐∇𝑢 − 𝛼𝑢 + 𝛾) = 𝑐(𝑛 ∙ 𝑢) (38) 

 

3.1.4 Geometries 

For this thesis, two geometries were evaluated. They had been decided due to the pa-

rameters that were of interest to study.  

For the rectangular geometry, these parameters were the length and width of a process 

(Figure 3). For their evaluation, a rectangular geometry was used. In this geometry 1, it 

was also evaluated if the shape of the stimulus area morphology affects the measure-

ments, and finally, the maximum propagation distance was related to the geometry width. 
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In the bifurcation geometry with the shape of a “Y”, we evaluated the influence of the 

angle between the process bifurcation (Figure 4). Furthermore, we investigated, differ-

ences between using just one synapse location with an area of 10µm2 or distributed it 

between the areas in the bifurcated subprocesses of 5µm2 size each. Also, in this second 

geometry, we compared if changing the length of the body (domain defined by points 

“a,b,e,f” Figure 4) affected the results differently as changing the length of just one pro-

cess. The two geometries are discussed below in detail. 

Geometry 1: Rectangular geometry 

   Example of geometry 1 for a width of 1µm and 50µm in length. 
Three probes (red) were placed within the process. Letters from “a” to “f” in 

green color define the points that made the geometry. 

In the rectangular geometry, the different points (a to f in Figure 3) positions are deter-

mined by the combination of three parameters: L (length of the process), W (width of the 

process), and Asy (stimulus area). The location of the geometry points and probes can 

be found in Table 6. The stimulus area where the constant glutamate stimulus of 6 µM 

happened was the area enclosed by the points: a,b,e,f. Three probes were placed within 

the process to measure the Ca2+ and IP3 concentration, and the h variable every 0.01s 

of simulation, and the same role for the probes in the bifurcation geometry. Flux/Source 

condition defined in equation 38 was applied to the external nodes between points “c” 

and “d”, and the Zero Flux across the boundary (equation 37) for the rest of the nodes 

that delimit the geometry. Simulations were run in a parametric sweep where L took 

values from 30µm to 180µm, and W ranged from 0.5µm to 3.5µm, representative values 

of in-vivo astrocytic processes (Vasile, Dossi and Rouach, 2017; Savtchenko et al., 

2018).  
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 definition of the Rectangular geometry points and probes location 

Point x position y position 

a 0 0 

b 0 𝑊 

c 𝐿 𝑊 

d 𝐿 0 

e 𝐴𝑠𝑦 

𝑊
 𝑊 

f 
𝐴𝑠𝑦 

𝑊
 0 

Probe 1 𝐴𝑠𝑦

𝑊
 

𝑊

2
 

Probe 2 𝐿

2
+

𝐴𝑠𝑦

2𝑊
 

𝑊

2
 

Probe 3 𝐿 
𝑊

2
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Geometry 2: Bifurcation geometry  

   Example of geometry 2: bifurcation geometry. Four probes (red) 

were placed within the process. Letters from “a” to “m” in green color define the 
points that made the geometry. 

In this second geometry, the different point (a to m in Figure 4) positions were determined 

by the combination of six parameters: L (process length), leg1 (x-axis length of subpro-

cess 1), leg2 ( x-axis length of subprocess 2), W (subprocesses width), Asy (stimulus 

area), and alpha (angle between subprocesses). The definition of the geometry points 

can be found in Table 7. Flux/Source condition defined in equation 38 was applied to the 

external nodes between points “b” and “a”, and the Zero Flux across the boundary (equa-

tion 37) for the rest of the nodes that delimit the geometry. The stimulus area where the 

constant glutamate stimulus of 6 µM was applied, was an area distributed in two sides 

enclosed by points j,k,d,e, and l,m,g,h, in case the stimulus was distributed in two sub-

processes. If the stimulus is only in one subprocess, the whole stimulated area Asy was 

enclosed by j,k,d,e in subprocess 1 and enclosed by l,m,g,h in subprocess 2. 

 definition of the Bifurcation geometry points and probes locations 

Point x position y position 

a 0 −𝑊 

b 0 𝑊 
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c 𝐿 𝑊 

d 𝑙𝑒𝑔1 ∗ cos (𝑎𝑙𝑝ℎ𝑎/2) + 𝐿 𝑊 ∗ cos (𝑎𝑙𝑝ℎ𝑎/2) + 𝑙𝑒𝑔1 ∗ sin (𝑎𝑙𝑝ℎ𝑎/2) 

e 𝑙𝑒𝑔1 ∗ cos (𝑎𝑙𝑝ℎ𝑎/2) + 𝐿 + 𝑊

∗ sin(𝑎𝑙𝑝ℎ𝑎/2) 

𝑙𝑒𝑔1 ∗ sin (𝑎𝑙𝑝ℎ𝑎/2) 

f 𝐿 + 𝑊  0 

g 𝑙𝑒𝑔2 ∗ cos (𝑎𝑙𝑝ℎ𝑎/2) + 𝐿 −𝑊 ∗ cos (𝑎𝑙𝑝ℎ𝑎/2) − 𝑙𝑒𝑔2

∗ sin(𝑎𝑙𝑝ℎ𝑎/2) 

h 𝑙𝑒𝑔2 ∗ cos (𝑎𝑙𝑝ℎ𝑎/2) + 𝐿 + 𝑊

∗ sin(𝑎𝑙𝑝ℎ𝑎/2) 

−𝑙𝑒𝑔2 ∗ sin (𝑎𝑙𝑝ℎ𝑎/2) 

i 𝐿 −𝑊 

j 
𝑙𝑒𝑔1 ∗ cos (𝑎𝑙𝑝ℎ𝑎/2) + 𝐿 −

𝐴𝑠𝑦

𝑊

∗ cos(𝑎𝑙𝑝ℎ𝑎/2) 

𝑊 ∗ cos (𝑎𝑙𝑝ℎ𝑎/2) + 𝑙𝑒𝑔1 ∗ sin (𝑎𝑙𝑝ℎ𝑎/2)

−
𝐴𝑠𝑦

𝑊
∗ sin (𝑎𝑙𝑝ℎ𝑎) 

k 
𝑙𝑒𝑔1 ∗ cos (

𝑎𝑙𝑝ℎ𝑎

2
) + 𝐿 ∗ sin (

𝑎𝑙𝑝ℎ𝑎

2
)

− 
𝐴𝑠𝑦

𝑊

∗ cos(𝑎𝑙𝑝ℎ𝑎/2) 

𝑙𝑒𝑔2 ∗ sin (
𝑎𝑙𝑝ℎ𝑎

2
) −

𝐴𝑠𝑦

𝑊
∗ sin (𝑎𝑙𝑝ℎ𝑎/2) 

l 
𝑙𝑒𝑔2 ∗ cos (𝑎𝑙𝑝ℎ𝑎/2) + 𝐿 −

𝐴𝑠𝑦

𝑊

∗ cos(𝑎𝑙𝑝ℎ𝑎/2) 

𝐴𝑠𝑦

𝑊
∗ sin(𝑎𝑙𝑝ℎ𝑎/2) − 𝑊 − 𝑙𝑒𝑔

∗ sin(𝑎𝑙𝑝ℎ𝑎/2) 

m 𝑙𝑒𝑔2 ∗ cos (𝑎𝑙𝑝ℎ𝑎/2) + 𝐿 + 𝑊

∗ sin(𝑎𝑙𝑝ℎ𝑎/2) −
𝐴𝑠𝑦

𝑊

∗ cos(𝑎𝑙𝑝ℎ𝑎/2) 

𝐴𝑠𝑦/𝑊 ∗ sin (𝑎𝑙𝑝ℎ𝑎/2) − 𝑙𝑒𝑔2

∗ sin (𝑎𝑙𝑝ℎ𝑎/2) 

Probe 1 
𝐿 +

𝑙𝑒𝑔1

2
cos(𝑎𝑙𝑝ℎ𝑎/2) 

𝑙𝑒𝑔1

2
∗ sin (

𝑎𝑙𝑝ℎ𝑎

2
) +

𝑊

2
∗ tan (𝑎𝑙𝑝ℎ𝑎/2) 

Probe 2 𝐿 0 

Probe 3 0 + 1 ∗ 10−6 0 
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Probe 4 
𝐿 +

𝑙𝑒𝑔2

2
cos(𝑎𝑙𝑝ℎ𝑎/2) −

𝑙𝑒𝑔2

2
∗ sin (

𝑎𝑙𝑝ℎ𝑎

2
) −

𝑊

2
∗ tan (𝑎𝑙𝑝ℎ𝑎/2) 

For both geometries, we obtained the values of the IP3 concertation, Ca2+ concentration, 

and h parameter in the different point probe locations for every simulation. 

3.2 Calculation of geometry and activity describing features 

Form COMSOL Multiphysics 5.4 simulations we got a “.txt” file with: the value of the 

simulation time, the parameter value in the sweep, the Ca2+and IP3 concentrations and 

the value of h variable for every prove in every simulation. Then this files were run in 

MATLAB (R2017b) to organize the data for the different simulations, and calculate, more 

parameters for the study; these parameters were the area of the geometry in the simu-

lation, the average amplitude and average width at half maximum height of the Ca2+ 

peaks, and Ca2+ peak frequency in the simulation. 

Using MATLAB’s peak function [pks, locs, widths, proms] = findpeaks (C, 'MinPeak-

Height', 0.3) it was possible to obtain from the Ca2+ signals the location and value of the 

local peaks (locs and pks), the threshold was selected due to all the Ca2+ peaks had 

values higher than 0.3. Based on that, we calculated the following parameters for each 

probe, respectively: “peaksavg” the average amplitude of the peaks. “frecuency” comes 

from the division of the number of peaks by the simulation time. “widthavg” represents 

the average full width of the peaks at half-maximum (FWHM). Then with the different 

parameters of the sweep simulations, we calculated the area of the whole geometry. A1 

referred to the area of geometry 1 and A2 in the case of the second geometry. 

 𝐴1=𝐿∗𝑊 (39) 

 𝐴2 = 𝐿 ∗ 2𝑊 +
𝑙𝑒𝑔1 + 𝑙𝑒𝑔2

cos (
𝑎𝑙𝑝ℎ𝑎

2 )
∗ 𝑊 (40) 
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3.3 Statistical analysis of the geometry and activity describing 

features 

Minitab 19.1 is a statistical software, focused on the analysis of data and the interpreta-

tion of results. Following a statistical procedure, it is possible to find trends and patterns 

in the results and uncover hidden relationships between the variables.  

3.3.1 ANOVA test 

The first step came from doing an ANOVA test between the different simulations and 

looking over if there were significant differences in their means and data dispersion. If 

their means were significantly different in two simulations, the regression analysis of the 

simulations was done separately. If their means and dispersion did not represent enough 

differences (5% significance), the simulations were studied under the same regression 

analysis. 

Tukey's range test or Tukey's honest significance test was used in ANOVA. This test is 

a very useful tool for analyzing differences between means. Tukey's honest significance 

test creates confidence intervals for all the combinations and controls the family error 

rate to a specified level. Tukey's method adjusts the confidence level in all the intervals, 

and simultaneously the confidence level is equal to a specified value; in our case, it has 

been 95% of significance (Minitab 19).  

3.3.2 Regression analysis 

The first step in the regression analysis was to do a matrix representation of all the pos-

sible combinations between the variables and check at first sight if there could be any 

linear relation between the variables.  

Then before going to a predictive analysis was important to identify a possible correlation 

between the parameters. The Pearson’s coefficient describes how strong the relation 

between two variables is: 

 𝜌𝑋,𝑌 =
𝐸[(𝑋 − µ𝑋)(𝑌 − µ𝑌)]

𝜎𝑋𝜎𝑌
 (41) 
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ρX,Y is the Pearson coefficient. X and Y are the variables that we want to study. σX is 

the standard deviation of X and σY, the standard deviation of Y. µx is the mean of X and 

µY, the mean of Y. E denotes the expectation. In case that the Pearson’s coefficient ρ is 

equal to zero, there is not linear relation between the parameters, but it could be non-

linear. In the case of 1> ρ > 0, there is a positive linear relationship between the param-

eters. If -1 < p < 0 the linear relation is negative for which Y decreases as X increases. 

Moreover, if the values are equal to 1 or -1 there is a perfect linear correlation direct and 

inverse, respectively. 

For our study, we built a multiple linear regression model for investigating the dependent 

variables, the frequency of the Ca2+ event, the average width of the Ca2+ signal, and its 

average amplitude. The independent variables of the study were the width, length, area, 

angle, stimulus position, or geometry. The mean of the dependent variable Y was a linear 

function of the independent variables X: 

 𝐸(𝑌 𝑋1⁄ = 𝑥1, … , 𝑋𝑘 = 𝑥𝑘) = 𝛽0 + 𝛽1𝑥1 + 𝛽2𝑥2 + ⋯ + 𝛽𝑘𝑥𝑘 (42) 

Finally, the dependent variable was related to the independent ones, where ε repre-

sented the aleatory term of the error and E(ε)=0: (Weisberg, S., 2005). 

 𝑌 = 𝐸(𝑌) + 𝜀 (43) 

For every combination of the values x1,x2…xk from the independent variables, the vari-

ance σ2 of ε was constant. The probability distribution of ε has to be normal, and the 

aleatory error was associated with the different observations independent (Minitab 19). 

Furthermore, Minitab19’s multiple linear regression analysis calculates the variance in-

flation factor (VIF) for the different coefficients in the regression. If the VIF of the coeffi-

cients presents values higher than 10, you are facing multicollinearity problems in your 

multiple linear regression. VIF measures how much the variance calculated with the 

square of the standard deviation estimation of an estimated regression coefficient is in-

creased because of collinearity. There are different ways to solve this issue; however, in 

this thesis, it had been chosen to make a Best Subsets Regression and check which 

variables explain better our model with the least number of them, to avoid multicollinear-

ity problems. 

In the Best Subsets Regression, it is recommended to choose the model that has the 

highest value adjusted of the coefficient of determination (R2) with the fewer predictor 

parameters and also the smaller Mallows’ Cp that compares the precision and bias of 
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the full model to models with a subset of the predictors. Models, where Mallows' Cp is 

small, use to have more significant prediction potential. If the Mallows' Cp is close to the 

number of predictors in the model, the regression analysis will have many possibilities of 

having a good prediction potential and no multicollinearity problems. These rules assure 

that the chosen model is the best combination of the prediction parameters explaining 

the study variable (Minitab 19; Eddison, J., 2000). 

After checking the best subset of parameters for our model without multicollinearity be-

tween them, the multiple linear regression will be done for them and analyzed in detail. 
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4. RESULTS 

Every simulation in COMSOL Multiphysics 5.4 gives results for the IP3 and Ca2+ concen-

trations, as well as the gating variable h at several probe points (Figure 5). For each 

simulation, the average FWHM, the average amplitude, and frequency of the Ca2+ wave 

were calculated. These features were calculated for every probe in the two geometries.  

 
   a) Represent the rectangular geometry where the simulation was 

run. IP3 concentration (red line), Ca2+ concentration (blue line), and variable h 
(green line) for three different probes b) for probe 1 to d) for probe 3) located in 
the geometry 1, geometrical values come from Figure 3. The simulation time is 
100 seconds. The stimulation area had a size of 10 µm2, and glutamate concen-
tration was 6 µM. The x-axis shows the time in seconds and the y-axis the con-

centration in µM.  

After the simulations in COMSOL Multiphysics 5.4 and the data treatment in MATLAB 

(R2017b), we proceed to analyze the results. Finally, every simulation represents one 

point with different associated values. Table 8 represents an example of the simulation 

results for geometry 1 with constant width. In each row in the table, the length of the 

astrocyte process was changed, and a new simulation was run. 
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 example of the simulation results for geometry 1 after calculations in MATLAB (R2017b) 

In Table 8, the parameter “peaks_s2” counts the number of peaks in the 200 seconds 

simulation in probe 1, and “peaksavg_s2” the average amplitude of the peaks for this 

simulation in probe 1. “frecuency_s2” Comes from the division of the number of peaks 

under the simulation time. “widthavg_s2” represents the average FWHM. The area is the 

domain area that, in this case, comes from the multiplication of the length and the width 

as it is a rectangular geometry. Furthermore, the rest of the terms represent the param-

eters for the probe 3 location. In the following, the calculated features will be compared 

for different topological characteristics in both geometries. 

4.1 Geometry 1: Rectangular geometry 

Using geometry 1, we analyzed how the length (L) and the width (W) of a process affect 

the Ca2+ dynamics of an astrocyte. Simulations were run in a parametric sweep where L 

took values from 30µm to 180µm, and W ranged from 0.5µm to 3.5µm, fitting reasonable 

configurations of an astrocyte’s process (Vasile, Dossi and Rouach, 2017; Savtchenko 

et al., 2018). 

The Ca2+ frequency decreased with a larger width of the astrocytic process (Figure 6a). 

At the investigated measurement probes 1 and 3, the Ca2+ frequency declined for L be-

tween 30 and 60 or 70 µm. At probe 1 for W= 1 µm (Figure 6a left) and L between 70 

and 180 µm, the frequency stabilized. However, at probe 3 for W=1 µm, the frequency 

plateaued in-between and then decreased further (Figure 6a right). For W= 2 µm, at both 

probes, similar behavior was visible. At both probes 1 and 3, the frequency was zero for 

W=3 µm and L between 70 and 180 µm (Figure 6a). The average amplitude of the Ca2+ 

event does not change between the 3 different widths (Figure 6b) and stays at a constant 

value of ≈ 0.9 µM. However, the average amplitude of the Ca2+ event decrease from ≈1 

µM to ≈ 0.4 µM, when Probe 3 increase his distance from the stimulus area (Figure 6d 

right). The values of the average FWM of the Ca2+ event does not change between the 

3 different widths (Figure 6c) and stay at a constant value of ≈ 3s. However, the average 

L (µm) W (µm) peaksavg_s2 (µM) frecuency_s2 (Hz) widthsavg_s2 (s) area_s2 (µm²) peaksavg_s3 (µM) frecuency_s3 (s) widthsavg_s3 (s)

50.00 0.50 1.01 0.08 2.82 25.00 0.95 0.08 2.55

60.00 0.50 0.98 0.07 2.95 30.00 0.86 0.07 2.65

70.00 0.50 0.95 0.07 3.02 35.00 0.69 0.07 3.52

80.00 0.50 0.93 0.07 2.98 40.00 0.60 0.07 4.95

90.00 0.50 0.92 0.07 3.02 45.00 0.64 0.06 4.27

100.00 0.50 0.92 0.07 2.97 50.00 0.61 0.06 4.40

110.00 0.50 0.92 0.07 2.98 55.00 0.56 0.06 4.29

120.00 0.50 0.92 0.07 2.99 60.00 0.54 0.06 4.43

130.00 0.50 0.91 0.07 2.99 65.00 0.54 0.05 4.27

140.00 0.50 0.91 0.07 2.98 70.00 0.54 0.05 3.86
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FWM of the Ca2+ event change when Probe 3 increase his distance from the stimulus 

area, starting from 2.5 s at 30µm rising till 4.5 at ≈ 30µm and going back till 3 s at 180 

µm (Figure 6c right). Is possible to appreciate different values under the same area in 

the Ca2+ frequency for the 3 different widths in the geometry, higher frequency values for 

smaller widths (W=1 µm) than in the wider ones (W=3 µm) This evidences how the mor-

phology of the area affects the Ca2+ event frequency (Figure 7). 

 

   Ca2+ dynamics independence of the process length, L, and three 
different widths, W. Blue circle, represents the geometry with W= 1µm, orange 

triangle W= 2µm, and grey diamond W=3µm. a) Ca2+ frequency in Hz , b) ampli-
tude in µM and c) the FWHM in seconds [s] at probe 1 (left, respectively) and 3 
(right, respectively) are presented. In the simulations, probe 1 does not change 
its position, and probe 3 is located at the opposite boundary and 1µm from the 
boundary (For a better explanation, check the tables of the geometries in the 

methods section: Table 6 and 7).  
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   Following the same markers codification as in Figure 6. This figure 
represents the Ca2+ frequency independence of the geometry 1 area [µm2], and 
three different widths, W. It is possible to appreciate different values under the 
same area. This evidences how the morphology of the area affects the Ca2+ event 
frequency (the wider the area, the lower frequency in the Ca2+ event ). 

 

4.1.1 Stimulus area morphology test 

For testing, if the stimulus area morphology was affecting our results, new simulations in 

geometry 1 under the parametric sweep were run. In this simulation, the stimulus area 

in the domain was a rectangle of 0.2µm width (Wsy) and 50µm (Lsy) of constant length 

values for the simulations. The width of geometry 1 was varied from 0.2µm to 1.8µm and 

the length was a constant value of 130 µm. Results showed similar behavior to the ones 

in the simulations where the stimulus area was defined by the width of the geometry 1 

(W=Wsy and the length of stimulation area was Lsy=W/Asy), Figure 8. Glutamate con-

centration and area of stimulation were always constant 6µm and 10µm2, respectively.  

In Figure 8a, it is possible to observe a schematic representation of the most important 

geometrical parameters. The Ca2+ frequency in Probe 2, located in the middle of the 

geometry, present similar values for W < 1 µm and Ca2+ frequency for W ≥ 1 µm is higher 

in simulations where W=Wsy, (Figure 8b left). Geometry with W=Wsy is able to induce 

the propagation of a Ca2+ event in W < 1.6 µm, while simulations were the stimulus area 

was a constant rectangle (0.2 x 50 µm) could not (Figure 8b). The Ca2+ frequency in 

Probe 3, located at the end of the geometry, present differences in values around W = 

0.6 µm, values 50% high in simulations were the stimulus area was a constant rectangle 

(0.2 x 50 µm), which decrease with the width meeting same value for both simulations in 

W = 1.6 µm (Figure 8b right). The linearity behavior of the Ca2+ frequency with W was 

higher in simulations were the stimulus area was a constant rectangle (0.2 x 50 µm). 

Results for the average amplitude and the average FWM of the Ca2+ event could be 

assumed the same for both simulations (Figure 8 c,d). 
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   Ca2+ dynamics independence of the process width, W. Orange cir-

cle, represents results in rectangular geometry were the stimulus area in the do-
main was a rectangle of 0.2µm width (Wsy) and 50µm (Lsy) of constant length 
values for the simulations. The width of the geometry 1 was varied from 0.2µm 

to 1.8µm, and the length was a constant value of 130 µm. The blue triangle rep-
resents simulations where the stimulus area was defined by the width of the ge-
ometry 1 (W=Wsy and the length of stimulation area was Lsy=W/Asy) a) Rec-

tangular geometry, geometrical parameters scheme b) Ca2+ frequency in Hz , c) 
amplitude in µM and d) the FWHM in seconds [s] at probe 2 (left, respectively) 

and 3 (right, respectively) are presented.  
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4.1.2 Maximum propagation distance 

Maximum propagation distance calculations come from selecting the last simulations in 

the parametric sweep (L and W) in geometry 1 that has a Ca2+ event traveling through 

all the geometry. These results show the geometrical limitations in a subprocess (geom-

etry 1) to propagate the Ca2+ event. 

Ca2+ events that travel through the whole geometry 1 and arrive Probe 3 are the only 

ones that were considered here. Thus, the propagation distance is the same length as 

the length of geometry 1 for those simulations. 

 
   Represents the maximum width and length combinations that gen-

erate a Ca2+ event that is able to travel through the whole geometry. The gluta-
mate stimulus was 6µM and stimulation area 10µm2. 

Figure 9 defines the geometries in which the Ca2+ event will go through all the domains. 

Above the line defined by the different points, there is no Ca2+ event appearing (simula-

tions run in geometries wither than 3.5 µm and longer than 45 µm), or the Ca2+ event 

disappears before reaching the last probe (narrow processes of 1 µm and longer than 

180 µm).  

4.2 Geometry 2: Bifurcation geometry 

The second geometry schematically represents an astrocyte process and two subpro-

cesses. With this geometry, it is possible to study how the angle between subprocesses, 

stimulus distribution, and differences between the local and general area changes affect 

the Ca2+. 
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In this geometry, there are two different geometrical changes. They are treated as two 

different simulations in two different geometries inside geometry 2. The first one is a 

parametric sweep for the main process length. As the main process (domain enclosed 

between points a,b,c,i in Figure 4 ) has twice more width than the subprocesses in our 

model, this simulation has a big area change on it. The second simulation inside this 

geometry consists of changing the length of one of the subprocesses, first the one with 

the stimulus, and then the one without the stimulus area on it. 

All the simulations were run two times in the parametric sweep with the process length, 

and three times in the parametric sweep with the length of one of the subprocesses, tying 

like this all the combination possible with the Probe 3 location as the out-put of the sys-

tem without the stimulus area at this location.  

4.2.1 Angle test 

In the angle test, parameter alpha represents the angle between the two processes (Fig-

ure 10a). Ten simulations for ten equidistant values between 10º and 190º were run for 

200 seconds. 

Figure 10 shows that the angle does not affect the Ca2+ dynamics of the astrocyte in De 

Pittà et al. (2009) model. Something that was also possible to intuit due to the physics 

under the model equations. At Probe 1 the frequency of the Ca2+ event was ≈ 0.5 Hz with 

the not distributed stimulus, variations in the value come from the fact, that the last Ca2+ 

event appearing in the geometry at 200s did not reach the probe on time to be computed, 

in the angles between 50º – 150º, and ≈ 0.3 Hz with the distributed stimulus (Figure 10b 

left), and it comes from the configuration of the geometry where the thickness of the 

subprocesses rise slightly but enough to generate a small difference in the time that the 

last Ca2+ event reaches the probe. The frequency of the Ca2+ event was constant in 

Probe 3 ≈ 0.3 Hz, (Figure 10b right). The average amplitude of the Ca2+ event does not 

change between the not distributed and distributed stimulus in Probe 1 and 3 and stays 

at a constant value of ≈ 0.7 µM (Figure 10c).The values of the average FWM of the Ca2+ 

event change in Probe 1 between the not distributed and distributed stimulus (Figure 10d 

left) and stay at a constant value of ≈ 3.5s and ≈ 4.5s, respectively. However, the average 

FWHM of the Ca2+ event did not change in Probe 3, staying in A value of ≈ 3.5s for both 

stimulus configurations (Figure 10d right). Differences between Probe 1 and Probe 3 in 

the Ca2+ frequency and FWHM between the distributed and not distributed stimulus, 
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comes from the fact that this probe is located in one subprocess in the proximity with the 

stimulus area (Figure 10b and 10d). 

 

 Result from simulations run in geometry 2 for different angle values 
between the two subprocesses in the bifurcation geometry a). Red circle 

matches the results for simulations run with the stimulus area distributed in the 
two different subprocesses, and the green square represents the values for the 
simulations where the stimulus area was only in one of the subprocesses. It is 
represented the values of frequency b), amplitude c), and FWHM of the Ca2+ 

events d) for different angles between the subprocesses. 
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4.2.2 Process length change 

With the process length test (L parametric sweep), probe 3 distance change and the area 

of the astrocyte also change significantly, but without changing the process width (Figure 

11a). It is possible to see how does affect the behavior of the Ca2+ ion when Ca2+ event 

was produced in the same conditions or similar ones in probe 1, but the diffusion area 

next to the probe 3 change significantly. 

 

  Following the same markers codification as Figure 12. These sim-
ulations were run under a parametric sweep in the length of the process (L) in 

geometry 2.  

After simulations, it is possible to observe in Figure 11 larger differences in the frequency 

values and general behavior between results in probe 1 and probe 3 (left and right side, 

respectively in Figure 11). In probe 1, the two simulations bring different Ca2+ frequency; 

meanwhile, in probe 3 there are small differences (Figure 11a). 
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4.2.3 Subprocess length test 

The last simulations come from changing the length of one subprocess in the bifurcation 

geometry (leg2). First, with the stimulus area distributed between the two subprocesses, 

then all the stimulus area was located in the upper subprocess (Figure 4) and the lower 

subprocess changed its length (leg2), in the last one the stimulus area was located in 

the lower subprocess which was changing is the length. Now the shape is changing 

without changing the area significantly, and it was possible to study how this affected the 

Ca2+ dynamics.  

 

 Results from the parametric sweep in the length of a single subpro-
cess in geometry 2. Red circle matches the results for simulations run with the 
stimulus area distributed in the two different subprocesses, the green square 
represents the values for the simulations where the stimulus area was only in 
the process of probe 1, and the other process was growing, and grey diamond 
marker represent the values when the stimulus area was located in the subpro-

cess where its length was growing. 
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It is possible to observe in Figure 12, similar behavior in probe 1 and 3, as in Figure 11. 

Ca2+ frequency in Probe 1 presents more significant differences between the stimulus 

configurations, while Probe 3 does not (Figure 12a). Moreover, the FWHM and amplitude 

of the Ca2+ present any known pattern with the studied variables in this thesis. With the 

statistical analysis, it will be possible to test if it is possible to accept same behavior in 

probe 3 for the 3 different stimulus position, and this would be suggesting that the Ca2+ 

event properties strongly depend on the morphology of the area that surrounds the 

measuring probe, even though the origin of the Ca2+ presented significant variability. 

4.3 Buffering tests 

This part of the thesis analyzes the simulations using our model with the rectangular 

geometry and the added buffering models. The diffusion coefficient of Ca2+ in the equa-

tion is changed for the unbuffered form of Ca2+ to 223µm2/s (equation 33) (Allbritton, 

Meyer and Stryer, 1992). 

4.3.1 Buffering model by Hadfield et al. (2013) 

In Figure 13, it is possible to compare our model without buffer, with Hadfield et al. (2015) 

buffer model implemented in De Pittà et al. (2009). Simulations were run with the para-

metric sweep length (L) for three different widths. Figure 13 shows simulations run in 

section 4.1Geometry 1: Rectangular geometry and same simulations run with the Had-

field et al. (2015) buffer implemented in our model. It is possible to observe a reduction 

of the Ca2+ frequency in the model with the buffer implemented and in both probes and 

the reduction is more significant for lengths higher than 80 µm, with a reduction of ≈30% 

(Figure 13a), changes are less significative in the amplitude and FWHM of the Ca2+event, 

with reductions of 1- 4% in the amplitude (Figure 13b) and increasing the FWHM around 

15% (Figure 13c). 
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 Results from De Pittà et al. (2009) model and De Pittà et al. (2009) 
model with the buffering model of Hadfield et al. (2015). The blue circle repre-
sents the geometry with a width of 1µm, orange triangle geometry with a width 
of 2µm and grey diamond the 3µm one for De Pittà et al. (2009) model. Under 
these markers are located the ones for results of De Pittà et al. (2009) model 

with the buffering model of Hadfield et al. (2015), Small yellow circle represents 
the geometry with a width of 1µm, red one geometry with a width of 2µm and 

green one the 3µm width. a) Ca2+ frequency in Hz, b) amplitude in µM, and c) 
the FWHM in seconds [s] at probe 1 (left, respectively), and 3 (right, respec-

tively) are presented. 
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4.3.2 Buffering model by Lopez- Caamal et al. (2015) 

The buffer model by Lopez-Caamal et al. (2015) contains more complex equations 

(equations number 17-20). These equations describe the buffering phenomenon in de-

tail. As this buffering model was calculated to fit in the Ca2+ equation that the study was 

using, when it is added to De Pitta et al. (2009) model with the original parameters that 

Lopez-Caamal et al. (2015), was using, the buffer parameters result too big for our 

model, and Ca2+ dynamics disappear from the results.  

In Figure 13 it is possible to observe the results after one simulation run for Lopez-

Caamal et al. (2015) buffering model implemented in De Pitta et al. (2009) in the Geom-

etry 1, with 80µm of length, 1µm width and 10µm2 of stimulation area with 6µM of gluta-

mate stimulus. In Figure 13c is plotted b variable from equation 18, which is the concen-

tration of free Ca2+ buffer, it can also be seen as the Ca2+ buffer concentration that binds 

Ca2+, and (bT - b) as the Ca2+ buffer concentration that unbinds Ca2+, equations 19-20. 

 
 Results from Lopez-Caamal et al. (2015) buffering model imple-

mented in De Pittà et al. (2009). In plots a) and b) are represented the Ca2+ 
concentration in the blue line, IP3 concentration with a green line, and the or-
ange line is the value of h parameter; for probe 1 in a) and probe 3 in b). Rec-
tangular geometry of 80µm length and 1µm width, under the same stimulus as 
all the simulation, is this thesis was used. Finally, in plot “c”, it is represented 
the buffer parameter that matches the ‘’ 𝑏 ’’ variable in Lopez – Caamal et al. 
2015 model that counts the concentration of buffer associated with the Ca2+, 
purple line for the measurement in probe 1 (b1) and grey for probe 3 (b3). 
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4.3.3 Buffering model by Skupin et al. (2010) 

The same problem as it was named before is appreciable in this model, Skupin et al. 

(2010) buffer are less potent than the one used in Lopez-Caamal et al. (2015) model, 

and it let appear some of the Ca2+ waves on the model. However, they are profoundly 

affected by the damping of the buffer, and the system reaches a stationary concentration 

after 100s, even though the glutamate stimulus continues continuously. Focusing on the 

Ca2+ concentration of buffer associated with the Ca2+, it is possible to appreciate in Figure 

15c the blinding and unblinding phenomena with ups and downs in the concentration, 

respectively. The concentration of buffer associated with the Ca2+ in immobile buffers 

presents more variations over time than the mobile one. The response from the buffer to 

the Ca2+ concentration highly depends on the parameters that compose it, equations 21- 

23. It is also possible to observe a higher IP3 concentration in Probe 1, because it is 

located close to the glutamate stimulus area, where the IP3 is produced mainly by the 

glutamate-dependent IP3 production, equation 12. 

 
 Results from Skupin et al. (2010) buffering model implemented in 

De Pittà et al. (2009). In plots a) and b) are represented the Ca2+ concentration 
in the blue line, IP3 concentration with a green line, and the orange line is the 

value of h parameter; for probe 1 in a) and probe 3 in b). Rectangular geometry 
of 80µm length and 1µm width, under the same stimulus as all the simulation, is 

this thesis was used. Finally, in plot c), it is represented the buffer parameter 
“B” and “Bi”, that matches the concentration of buffer associated with the Ca2+ in 
Skupin et al. 2010 model, for the mobile and immobile buffers respectively. Pur-
ple and red line for the measurement in probe 1, and grey and yellow for probe 

3. 
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4.3.4 Buffering model by Savchenko et al. (2018) 

Finally, the last buffer model tested was the one used in Savchenko et al. (2018). Even 

though in his study they were using De Pittà et al. (2009) equations under the IP3 - Ca2+ 

dynamics, parameters that they used for the buffering equation does not fit our model 

correctly, as shown in Figure 16. It is possible to observe the behavior of the buffer with 

the blinding and unblinding phenomena because it cut down all the Ca2+ dynamics in our 

model. 

 

 Results from Savchenko et al. (2018) buffering model implemented 
in De Pittà et al. (2009). In plots a) and b) are represented the Ca2+ concentra-
tion in the blue line, IP3 concentration with a green line, and the orange line is 
the value of h parameter; for probe 1 in a) and probe 3 in b). Rectangular ge-

ometry of 80µm length and 1µm width, under the same stimulus as all the simu-
lation, is this thesis was used. Finally, in plot c), it is represented the buffer pa-
rameter “B” and “Bi”, that matches the concentration of buffer associated with 
the Ca2+ in Savchenko et al. (2018) model, for the mobile and immobile buffers 
respectively. Purple and red line for the measurement in probe 1, and grey and 

yellow for probe 3. 
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4.4 Statistical Analysis 

After checking the possibility of representative trending lines in the data, it is essential to 

correlate our result with the morphology changes in the geometries; for this reason, a 

multiple linear regression analysis of the parametric sweep in geometry 1 and geometry 

2 was done. Looking for linear correlations between the Ca2+ event frequency, average 

amplitude or width, with the different geometrical parameters. 

4.4.1 Differences between simulations, ANOVA test 

First, it was studied if there was any difference in the means of the results from geometry 

1 and geometry 2, also between the different simulations in geometry 2. For this, the 

procedure was to analyze the frequency of the Ca2+ event. Ca2+ frequency presents a 

serious relation with the area of the geometry, as the different simulations had values of 

areas that are not present in all of them, Figure 17. The data was taken where areas 

ranged from 90µm2 to 190µm2 that were values found in every simulation. Also, as the 

sweep in the parametric simulations had a constant distance between every parameter 

of the simulation, the results were equidistantly distributed in these areas, and it makes 

it a representative measurement and comparison between the means distribution of the 

models. 

Then a boxplot of the values for the different groups was done in Figure 18; in this case, 

there are 3 groups to study (R - Simulations run in the rectangular geometry (geometry 

1), A - Bifurcation geometry (geometry 2) with the main process length change. B - Ge-

ometry 2 with the subprocess length change; and tested if there were significant differ-

ences between their means and dispersion. 
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 Results from all the simulations, separated into 3 groups. Simula-
tions run in the rectangular geometry (geometry 1) are represented with a grey 

triangle (R). In the astrocyte bifurcation geometry (geometry 2) with the pro-
cess, length change is represented by a blue circle (A). Geometry 2 with the 
subprocess length change is represented by an orange square marker (B). A 

red square encompassed the points that will be used for the comparisons.  

 

  Boxplot of the three different groups A, B, R (Rectangular geome-
try (R), astrocyte bifurcation geometry (geometry 2) with the process length 

change (A), and bifurcation geometry with the subprocess length change (B) ). 
The graph represents the values of dispersion, median, mean for the frequency, 

and rare values of the Ca2+ event frequency recorded in Probe 3. 

It is possible to see differences between the three different groups and its Ca2+ frequency 

values, but as it is also possible to see some values as shared between the groups, 

Figure 18. For proving that the A, B, R groups are statistically different or not, an ANOVA 

test was done. 
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 Minitab 19 residual analysis of ANOVA test for the frequency of the 
Ca2+ event. 

Taking a look in Figure 19 the upper left corner plot represented the Normal probability 

graphic with the percent of the standardized residuals. In most of the cases the data was 

close to the trending line, which represents the normal distribution. In the two graphics 

on the right side of the figure, it was possible to check the constant variance and inde-

pendence of the data. Values were clustered at both sides of the zero line with similar 

dispersion, and they did not follow a pattern. 

 Variance analysis for ANOVA residuals. 

Source DF1 Adj SS2 Adj MS3 F_vaule4 p_value5 

Group 2 0.005857 0.002928 48.08 0.000 

Error 117 0.007127 0.000061     

Total 119 0.012983       

 
 
1 DF : degrees of freedom 
2 Adj SS : adjusted sums of squares 
3 Ad MS: adjusted mean squares 
4 F_value: statistic test to determine whether the term is associated with the response 
5 p_value: probability that measures the evidence against the null hypothesis 
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 Means analysis in ANOVA test.  

Group N6 Mean StDev7 95% CI8 

A 27 0.02259 0.00764 (0.01962; 0.02557) 

B 38 0.02842 0.00679 (0.02591; 0.03093) 

R 55 0.03936 0.00850 (0.03728; 0.04145) 

 

The clustered standard deviation from the ANOVA analysis was 0.0078045. In Table 9, 

it is possible to observe the variance analysis for ANOVA residuals, focusing in the 

p_value which is <0.05, the residual analysis confirms that there is at least one significa-

tive difference between the three clustered groups: A, B, R (Rectangular geometry (R), 

astrocyte bifurcation geometry (geometry 2) with the process length change (A) and bi-

furcation geometry with the subprocess length change (B). In Table 10 the mean for the 

Ca2+ frequency, its Confidence Interval, and the standard deviation were analyzed in the 

three groups. Deviation in the rectangular geometry is significative higher that in the bi-

furcation geometry, and the simulations with the main process length change contain 

higher deviation than the one with the subprocess change even though this one had one 

more stimulus configuration and the number of samples is higher (N) (Table 10).  

This gives the conclusion that the effect of shape changes in the geometry brings high 

variability to the values in the Ca2+ frequency, even though they are evaluated under the 

same domain area, and the more significant are the shape changes, the bigger disper-

sion will be found in the Ca2+ frequency. Moreover, the three clustered groups (A, B, R) 

do not share any value for their Confidence Interval (95%) in the means, which is already 

suggesting that they are significative different between each other. This will be confirmed 

after the Tukey's range test, which is a test statically adapted to answer this question 

and will compare the mean and data distribution between all the groups.  

 
 
6  N: sample size 
7 StDev: standard deviation 
8 CI: confidence intervals 
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 Means differences with confidence intervals of 95% with the Tukey 
method for the frequency of the Ca2+ event in the 3 groups of study. Rectangu-
lar geometry (geometry 1, R). In the astrocyte bifurcation geometry (geometry 
2) with the process length change (A). Geometry 2 with the subprocess length 

change (B). 

Tukey's range test did not contain the 0 in its interval, which means that there were sig-

nificant differences in their means, taking into account the dispersion of the data (Figure 

20).  

 Minitab Tukey’s range test result for the means in R, B, A. 

Group N Mean Clusters 

R 55 0.03936 A     

B 38 0.02842   B   

A 27 0.02259     C 

The means that not share the same cluster letter after Tukey’s range test will be treated 

as significantly different (Table 11). Finally, as there were significant differences between 

the three simulations, I will be needed at least three different linear regression analyses, 

one for each group. 

Inside simulations in geometry 2, there were different stimulus configurations, two for the 

body length sweep and three for the process’s length sweep. It is important to study if 

there were differences between the simulations, or they could be assumed with the same 

behavior and study them with only one linear regression.  
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Main process length change in bifurcation geometry. 

After knowing that there were different stimulus configurations, two for the body length 

sweep and three for the process’s length sweep, it was essential to check if the stimulus 

position affects the model and another ANOVA test to the results in the two stimulus 

positions obtained in Probe 3 was done. 

After the ANOVA test, we obtained a p_value of 0.972 > 0.05 in the variance analysis 

and the 0 value in the Tukey’s range test, among other indicators that confirm that the 

two configuration does not present enough differences in their Ca2+ frequency values to 

be considered significative different. Results for the ANOVA test done here can be found 

in the appendix section (Table A2 – A4, Figure A1 - A3). Both stimulus configurations 

can be assumed with the same behavior and will be studied with only one linear regres-

sion. 

Subprocess length change in bifurcation geometry 

The Ca2+ frequency values for the three stimulus positions obtained in Probe 3 in the 

subprocess length change will be analyzed thought an ANOVA test, results from the 

ANOVA test with Minitab19 can be consulted in the appendix section (Table A5 – A7, 

Figure A4). Stimulus position “1” refers to the model where the stimulus area was located 

in one of the subprocesses, and the opposite one is growing its length, stimulus position 

“2” refers to the model where the synaptic area was distributed by the two subprocesses, 

and stimulus position “3” is the one where the synaptic area was located in the subpro-

cess that changed its length. 

As happened with the stimulus configuration in the main process length change in the 

bifurcation geometry, here, the three stimulus configurations do not present significative 

differences between them for the Ca2+ frequency. They will be assumed with the same 

behavior and studied with only one linear regression 

4.4.2 Regression analysis 

Rectangular geometry 

The first step in the regression analysis was looking into the matrix that correlates all our 

study variables (Figure 21). In the case of Geometry 1, geometrical parameters were 

divided between answer variables (studied parameters): Ca2+ peaks frequency, Ca2+ av-

erage amplitude, Ca2+ average FWHM; And continuous predictors that were the length, 
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width, and area of the geometry. Two hundred twelve simulations were run for the anal-

ysis of geometry 1, and only values in probe 3 are going to be studied as the location of 

probe 3 corresponds with a possible system output. 

 

 Matrix graph of the different possible relations between the param-
eters in simulations for geometry 1. 

Then, it is necessary to do a Pearson’s correlation analysis of the parameters and make 

a first sight of the possible relations between them. Table 12 shows strong relations be-

tween the answer variables and the continuous predictors, with values of -0.9 between 

the area and the frequency of the calcium event, among others.  

 Pearson’s correlations table 

 L W area amplitude frequency 

W -0.034         

area 0.630 0.726       

amplitude -0.759 -0.333 -0.720     

frequency -0.478 -0.801 -0.917 0.622   

FWHM 0.434 -0.135 0.143 -0.722 -0.067 

After perceiving possible good correlations between the answer variables and the con-

tinuous predictors, we will proceed to analyze the variance inflation factor (VIF) in Table 
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13 for the linear regression between the Ca2+ frequency and the continuous predictors. 

VIF with values higher than 10, indicates multicollinearity problems. 

 Linear Regression coefficients for three parameters (L, W, area) multiple linear regres-
sion analysis. 

Parameter Coef9 SE Coef10 t_value p_value VIF 

Constante 2.261 0.403 5.61 0.000   

L 0.01905 0.00444 4.29 0.000 10.83 

W 0.689 0.330 2.09 0.038 13.79 

area -0.0097 0.00369 -2.63 0.009 22.85 

In the case of the Best Subsets Regression analysis of peaks frequency, amplitude and 

FWHM, the best subgroup was the one made by two variables (L, W) (Table 14). How-

ever, in the case of the width, the prediction potential is very low, smaller than 20% (Ap-

pendix Table A8 – A9, Figure A5 ). When it happens, it means that the study variable 

cannot be analyzed thought a multiple linear regression, at least, with this prediction 

variables and data. For the average amplitude of the calcium event, the regression equa-

tion presents a bigger prediction potential, around 68% (Table A10 – 12, Figure A6). 

Nevertheless, the Ca2+ frequency is the parameter that was described better by the mul-

tiple regression analysis and presented more significant relations with the geometrical 

changes; for this reason, this study will focus on it. 

 Best subgroups linear regression analysis in the Ca2+ frequency. 

Vars R2 R2(adjust) R2 (pred.) Cp Malows L W area 

1 84.1 84.0 83.6 76.8   X 

1 64.1 63.8 63.3 352.2  X  

2 89.7 89.5 89.0 2.7 X X  

2 88.0 87.8 87.2 26.0  X X 

3 89.7 89.5 88.7 4.0 X X X 

 
 
9 Coef: coefficient 
 
10 SE Coef: standard error of the coefficient 
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After testing the best subgroups, it has been preceded to make a multiple linear regres-

sion of the one that describes better the study variable, in this case, was the two param-

eters one, made by the length parameter (L) and the width (W) parameter. 

Frequency model in the rectangular geometry 

In a multiple linear regression, it is fundamental to check that the model meets the con-

ditions for the analysis: 

• Data used in the study must be normally distributed in its majority. 

• Independence of cases (the sample cases must be independent of each other in 

its majority). 

• Homogeneity of variance (variance between the groups must be approximately 

equal). (Solutions, 2013) 

 
  Residual analysis for the multiple linear regression in the fre-

quency of the Ca2+ event in geometry 1. 

Takin a look in Figure 22, the upper left corner plot represent the Normal probability 

graphic with the percent of the standardized residuals, it was possible to appreciate that 

in most of the cases the figure was close to the trending line, but extreme cases did not 

let assume normality with more than a 95% of accuracy after testing it with the standard-

ized residuals in an Anderson-Darling normality test. Even though checking the nature 

of the problem and due to the number of cases analyzed is high, it has been taken a 

normality assumption, also taking a look in the lower-left subfigure is possible to assume 

a normal shaped graphic in the frequency of the residual. In the two graphics on the right 
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side of the figure, it was possible to observe values clustered at both sides of the cero 

line with similar dispersion, and they do not follow a known pattern; therefore, we as-

sumed constant variance and independence of the data.  

 Multiple linear regression coefficients 

Term. Coef SE Coef11 T_value p_value VIF 

Constante 0.09724 0.00158 61.65 0.000   

Parameter_L -0.00023 0.000012 -18.77 0.000 1.00 

Parameter_W -0.0248 0.000818 -30.33 0.000 1.00 

In Table 15, each VIF of every variable was < 10; it has been possible to assume that 

there were no multicollinearity problems.  

 Multiple linear regression, analysis of the variance 

Source DF Adj SS Adj MS F_vaule p_value 

Regression 2 0.027439 0.013720 617.41 0.000 

 Parameter_L 1 0.007828 0.007828 352.27 0.000 

 Parame-

ter_W 

1 0.020445 0.020445 920.04 0.000 

Error 142 0.003155 0.000022     

 Adjust Error 120 0.002993 0.000025 3.38 0.001 

 Pure Error  22 0.000162 0.000007     

Total 144 0.030595       

After the variance analysis table, it was possible to comment on the significance of the 

model and the individual significance of the coefficients from the regression variables 

that appear in the model.  

For global significance, Minitab 19.1 calculates a p-value < 0.05 (Table 16). This p-value 

is the result of a test where the null hypothesis is that all the coefficients of the predicting 

 
 
11 SE Coef: standard error of the coefficient 
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variables are 0, which is the same that any predicting variable has a linear relation with 

the answer variable. Moreover, the alternative hypothesis is that at least one of the pre-

dicting coefficients is different to 0, and at least one of the variables has a linear relation 

with the frequency of the Ca2+ event. As p-values are smaller than 0.05, the null hypoth-

esis is rejected, and the alternative one is accepted (Eddison, J., 2000). 

In Table 17 is assumed a representative correlation of the regression model and the 

results obtained from the simulations, with a significative prediction power (R2 (pred)). 

This prediction power was calculated by the Minitab 19 program, doing and elimination 

of singular points from the data and trying to predict them by the regression equation. 

 Multiple linear regression, model summary 

S R2 R2 (adjust) R2 (pred) 

0.0047139 89.69% 89.54% 88.96% 

 

Finally, the width (W) and the length (L) of the process can relate to the calcium fre-

quency by equation 43, with a prediction potential (R2 (pred)) for the equation of 88.96% 

(Table 17). 

Regression equation 

 𝐶𝑎2+𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦 (𝑝𝑟𝑜𝑏𝑒 3) = 0.09724 − 0.00023 ∗ 𝐿 − 0.0248 ∗ 𝑊 (43) 
 

Amplitude model in the rectangular geometry 

The same procedure was done for the amplitude of the Ca2+ frequency. The multiple 

linear regression can predict it on this geometry in a two-parameter regression model, 

and the prediction potential of this equation is 68.85%. 

 Multiple linear regression, model summary 

S R2. R2 (adjust) R2 (pred) 

0.0660875 70.51% 70.10% 68.85% 

Regression equation. 

 𝐶𝑎2+𝑐𝑜𝑛𝑐𝑒𝑛𝑡𝑟𝑎𝑡𝑖𝑜𝑛 (𝑝𝑟𝑜𝑏𝑒 3) = 0.09503 − 0.002949 ∗ 𝐿 − 0.0904 ∗ 𝑊 (44) 
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Bifurcation geometry 

Remembering that there were two different geometrical changes inside geometry 2. The 

first one was the main process length change, with two different stimulus positions, the 

second ones were the simulations where the length of one subprocess was changing 

and three different options for the synaptic position. All the results are obtained from 

probe 3, the one located at the end of the main astrocyte process. 

Main process length change in the bifurcation geometry 

The first step as before was to take a look at the relations matrix (Figure 23). 

 

 Matrix graphic of the different possible relations between the pa-
rameters in geometry 2 simulations with a body length parametric sweep. 

In Figure 23, the area of the geometry and the body length parameter was directly cor-

related, both compute as the same parameter and affect the same the study parameters 

(frequency of the Ca2+ event, width, and amplitude). It was possible so see certain linear 

relation between the area and the frequency of the event, less significant with the ampli-

tude and nonexistent with the width. 

Finally, as the stimulus positions did not affect our model significantly, only one linear 

regression analysis that relates the area with the different study variables for this geom-

etry was done. A Pearson’s analysis has been done first to check which variables have 

a linear relation with the area changes, and in this case, a simple linear regression will 

have a good potential for describing the  Ca2+ frequency. 
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 Pearson’s correlations table 

 area_s2 peaksavg_s3 frecuency_s3 

peaksavg_s3 -0.667     

frequency_s3 -0.921 0.489   

widthsavg_s3 -0.078 0.034 0.106 

 

As it is shown in Table 19, the area could have good predictive power for the Ca2+ fre-

quency event due to its high Pearson coefficient close to -1, while it has not a very good 

linear relation with the width and the peak amplitude. After doing a linear regression with 

these parameters, the prediction power of the trending lines is less than 50% in the case 

of the Ca2+ full-width at half-maximum and average amplitude (Appendix Table A14 and 

A17). Finally, only the relationship with the frequency will be shown in the results (Figure 

24).  

 

 Residual analysis for multiple linear regression of frequency of the 
Ca2+ event in geometry 2 in the body length changing simulation. 

Residual analysis confirms that the regression meets the conditions for the analysis (Fig-

ure 24). Coefficients and VIF analysis in Table 20.  
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 Multiple linear regression coefficients 

Parameter Coef SE Coef. t_value p_value VIF 

Constant 0.04585 0.000504 42.65 0.000   

area_s2 -0.00014 0.000512 -13.20 0.000 1.00 

 

 Multiple linear regression model summary 

S R2 R2 (adjust) R2 (pred) 

0.0028977 84.90% 84.42% 82.20% 

In this analysis, using only the shape and the area, it is possible to have a prediction 

potential of 82%, with equation 45, for the Ca2+ frequency (Table 21). 

Regression equation 

 𝐶𝑎2+(𝐻𝑧) = 0.04585 − 0.00014 ∗ 𝑎𝑟𝑒𝑎 (𝑔𝑒𝑜𝑚𝑒𝑡𝑟𝑦 2 𝑝𝑟𝑜𝑐𝑒𝑠𝑠 𝐿 𝑐ℎ𝑎𝑛𝑔𝑒) (45) 

 

Subprocess length change in the bifurcation geometry 

After the results of the ANOVA test, it was possible to confirm that there were significant 

differences in the average value of the Ca2+ frequency for the two different simulations; 

group A was the main process length change and group B where a single subprocess 

length was changing. There were no significant differences in the result between the 

three synaptic positions, and as before, the area is the best parameter for describing the 

Ca2+ frequency response of the model. With this, another linear regression analysis as 

before has been done in this geometry (Figure 29, Table 22-24). This new linear regres-

sion model will predict the Ca2+ frequency in Probe 3, having as prediction variable the 

area of the domain, and the data that was used were the results obtained in Probe 3 for 

the subprocess length change in the bifurcation geometry. 



62 
 

 

 Residual analysis for multiple linear regression of frequency of the 
Ca2+ event in geometry 2 in the single process length change simulation. 

 

 Multiple linear regression coefficients 

Parameter Coef SE Coef. t_value p_value VIF 

Constante 0.0502 0.000486 55.37 0.000   

area_s2 -0.000183 0.000489 -16.94 0.000 1.00 

 

 Multiple linear regression, analysis of the variance 

Source GL SC Adjust MC Adjust F_vaule p_value 

Regresión 1 0.006174 0.006174 287.00 0.000 

 area_s2 1 0.006174 0.006174 287.00 0.000 

Error 89 0.001915 0.000022     

 Ajust. error 51 0.001640 0.000032 4.44 0.000 

 Pure error 38 0.000275 0.000007     

Total 90 0.008088       
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Regression equation. 

 𝐶𝑎2+(𝐻𝑧) = 0.0502 − 0.000183
∗ 𝑎𝑟𝑒𝑎 (𝑔𝑒𝑜𝑚𝑒𝑡𝑟𝑦 2 𝑠𝑢𝑏𝑝𝑟𝑜𝑐𝑒𝑠𝑠 𝐿 𝑐ℎ𝑎𝑛𝑔𝑒) 

(46) 

 Multiple linear regression model summary 

S R2 R2 (adjust) R2 (pred) 

0.0046381 76.33% 76.06% 75.17% 
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5. DISCUSSION  

Converting the mathematical model by De Pittà et al. (2009) to a FEM model imple-

mented in COMSOL Multiphysics 5.4 and introducing the diffusion coefficient of the dif-

ferent molecules makes our model behave differently than the original one. Furthermore, 

it allows us to study the diffusion within a well-defined geometry, hence increasing the 

complexity of the study, thus moving one step closer to the reality of the cell. 

The model presented by De Pittà et al. (2009) was run with a rectangular 60 seconds 

pulse of glutamate stimulus, and it showed a stationary response after some fluctuations 

inside this 60s. After introducing the diffusion coefficient of the molecules and implement-

ing the model in a FEM model including geometry and astrocyte dimensions, the behav-

ior of the calcium (Ca2+) changes presenting a pulsatile behavior. Experiments showed 

that Ca2+ wave often has a pulsatile behavior, characterized by the frequency of the Ca2+ 

event. (Wu et al., 2019). Looking at the amplitude and values of the concentration of the 

different molecules, it shows great similarities in the general behavior of the system, as 

it can be seen on Figure 5.  

Figure 5 shows, in several probes, how the production and degradation of inositol 1,4,5-

trisphosphate (IP3) leads to the Ca2+ release from the endoplasmic reticulum (ER) and 

control the gating variable h. Finally, the system controls itself, degrading the IP3, gath-

ering up the Ca2+ back into the ER, and re-starting the circle as the stimulus is always 

constant in our simulations. This process fits the behavior described by the original model 

De Pittà et al. (2009) and the literature about the intracellular release of Ca2+ from the 

ER due to the stimulation of metabotropic glutamate receptors (mGluRs) and IP3 pro-

duction and degradation (Communi et al., 2001; Verkhratsky and Butt, 2013; Guerra-

Gomes et al., 2018).  

Furthermore, trying to compare our study and results with more recent astrocyte models, 

is not trivial. Reason being every model proposed in a paper runs under the conditions 

inherent to that particular study. In order to directly compare two different systems, it is 

essential so simulate them under the same conditions, for results to be compared. Even 

though, as there will be explained later on, our model, with its simple relative complexity, 

can explain phenomena studied in other models and be compared with results in the 

experimentation done in other published studies.  
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5.1 Geometry 1: Rectangular geometry 

From the result shown in Figure 6, it is possible to identify different behaviors between 

the geometries with three different widths. Having a thicker process results generally in 

a lower frequency in the Ca2+ event. It is also possible to identify differences between 

the probe located next to the stimulus area (Probe 1) and the one on the opposite side 

of the geometry (Probe 3). This shows the effect of the propagation speed of the Ca2+ 

wave. These differences are very visible in the 1 µm width geometry, where there is a 

continuous Ca2+ frequency in Probe 1 next to the glutamate stimulus area for all the 

lengths larger than 60 µm, and Ca2+ frequency decrease in Probe 3 which is distancing 

from the stimulus. It is the last Ca2+ wave does not reach Probe 3 in time to be calculated 

by the program in lengths larger than 100 µm; this phenomenon was possible to be ap-

preciated in the simulation videos.  

With lengths larger than 160 µm, not all the Ca2+ waves that are produced travel the 

same length, and some are not able to travel such long distances; even though, the 

stimulus was constant during all the simulations. The capability of the Ca2+ wave to prop-

agate large distances has more relation with the IP3 production and degradation through 

the geometry than the diffusion potential of Ca2+; this effect is more visible and explained 

on the discussion of the results extracted from the bifurcation geometry. One conclusion 

that can be drawn from the results is that the average amplitude and average full width 

at half-maximum (FWHM) of the Ca2+ wave does not depend on the width of the process. 

Still, it depends on the length of the process and also on the position of the measuring 

probe in the case of the average amplitude of the Ca2+ concentration, this simulation 

shows clear differences between probe 1 and 3. The amplitude of the Ca2+ wave con-

centration decrease with the distance from the stimulus position. 

The behavior of the average FWHM of the Ca2+ wave cannot be explained by any of the 

parameters used in this study at first sight in Figure 6; neither it is possible to explain it 

through a multiple linear regression with the parameters used in this study, as it was 

analyzed in the Appendix “Regression analysis of the Ca2+ width at half-maximum” with 

p_values > 0.05 in the variance analysis (Table A8 ) and a prediction potential of 15.6% 

(Table A9). 

Finally, in Figure 7, it is possible to see different Ca2+ frequency values from the three 

different widths under the same area, which highlights the effect of the domain shape on 

the Ca2+ event frequency. There are significantly higher Ca2+ frequency values in narrow 

processes than in the wider ones. 
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Taking a look into the results extracted from the stimulus area morphology test; we can 

conclude that, the stimulus area morphology does not affect the Ca2+ behavior in our 

model significantly, for large diffusion areas. The stimulus domain morphology is not di-

rectly related to the Ca2+ release, but it is with the IP3 production, as its diffusion coeffi-

cient is ten times bigger than the diffusion of the Ca2+. The effect of the shape of the 

stimulus and early production of IP3 do not contribute to make big differences between 

the simulations, with geometries wider than 1 µm. Notwithstanding, it is important to 

highlight that it can affect the Ca2+ frequency in geometries were the stimulus area rep-

resented between the 7 - 16%; in these cases, the differences were present in Probe 3. 

These changes can come from the fact that the distance to the centroid of the stimulus 

area, divided by the whole domain area was very different between the simulations at 

this geometrical configuration. This affirmation could be inaccurate as the differences are 

not so clear in Probe 2, as we will confirm later, the propagation of the Ca2+ wave is not 

a diffusion problem at all, and more simulations focused in the glutamate stimulus without 

changing the astrocyte geometry should be taken into account to describe accurately 

how the stimulus morphology could affect our system output. 

Studying how the centroid position of the stimulation domain could affect the results was 

not a topic deeply investigated in this thesis and need more future work on it. However, 

it would be interesting to study if it can be used as a prediction variable from the system 

and if it could give us some clues about the general Ca2+ behavior in astrocytes. The fact 

that the shape of the stimulus area could or not affect the Ca2+ dynamics does not say 

that the area of the stimulus does not affect. The bigger the stimulus area, the bigger the 

early production of IP3, which strongly affects the Ca2+ dynamics, but it was neither eval-

uated in this study, and these questions leave promising research lines open for upcom-

ing master's students that would like to continue researching in this topic. 

5.1.1 Maximum propagation distance 

From the results shown in Figure 9, it is possible to evaluate the maximum distance that 

a Ca2+ wave can travel through a process under specified conditions and relate it with 

the width of the process. The narrow process can keep the Ca2+ traveling long distances 

(up to 180µm), and the propagation distance is reduced with the thickening of the pro-

cess. In narrow areas the diffusion takes mainly the direction towards the long axis, as 

well the early production of IP3 rises its concentration faster than in wider ones. 

Furthermore, Figure 9 makes it possible to categorize the widths that would be able to 

propagate the Ca2+ through all the processes with an already known length and which 
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widths would be too wide for generating a successful Ca2+ event able to reach Probe 3. 

These results generate an approximate boundary, which is the line presented in Figure 

9, connecting the simulation results. Geometries that are not able to propagate the Ca2+ 

wave through all the domain are located above the line. This result could be useful to 

categorize which hypertrophied processes with an already known stimulation will be able 

to propagate or not the Ca2+ event through them.  

5.1.2 Statistical analysis in the rectangular geometry  

Trying to understand the behavior of the Ca2+ dynamics in the proposed rectangular ge-

ometry and provide a conclusion and statistical support, a regression analysis was done 

for the simulations run in this geometry. Regression analysis is an efficient procedure 

when one tries to understand how much the prediction parameters affect the answer 

variable. From the results, the Ca2+ frequency is the variable being more affected by the 

geometrical changes, and the one that is explained better by the regression analysis. 

Starting with the regression analysis done to the Ca2+ frequency in geometry 1, the width 

(W) and the length (L) of the process can be connected with the Ca2+ frequency by equa-

tion 43. The prediction potential for equation 43 is 89%. When the prediction potential is 

close to 100%, the regression analysis suggests how much these parameters are defin-

ing the answer variable and how strong is the relation between them is. Also, it is im-

portant to examine how significant is the effect of the width of a swollen astrocyte process 

is, as it might be in Alzheimer’s disease. Increasing 1µm in length reduces the Ca2+ fre-

quency by 0.00023 Hz, and 1µm in width reduces it by 0.024 Hz. Therefore, the effect of 

the width of a process is 100 times bigger than the length regarding to the Ca2+ fre-

quency.  

The effect of the thickening of a process was evidenced before in Wu et al. (2019), where 

they contrasted the effect of the thickening of processes in the frequency of the Ca2+ 

events. The effect of growing 1µm reduced the frequency around 0.02Hz in the compu-

tational model and also in the experiments, which makes this thesis result reasonable. 
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5.2 Geometry 2: Bifurcation geometry 

5.2.1 Angle test 

As it is possible to observe in Figure 10, the angle between the subprocesses does not 

affect the Ca2+ events in our model. Modifying the angle does not generate significant 

variations on the frequency, average amplitude, or average FWHM of Ca2+ events. The 

cause of the small variation appreciable in angles between 50º – 150º is explained in 

more detail in the results and it came from a small variation in the thickening of the sub-

processes due to the configuration of the geometry. This variation can increase the thick-

ness of the process in the bifurcation side √2 times between these angles (following the 

geometrical configuration of the model, Table 7 ), it could be reflected in a decrease of 

the Ca2+ frequency around 0.0016 Hz in most extreme cases (following the results in the 

regression analysis in the rectangular geometry), and fits the variations showed in Figure 

10b left. It would have been possible to look for a triangular configuration where the 

hypotenuse in the bifurcation would be reoriented in every angle, and we would have 

avoided these small changes in the thickness, however other geometrical configurations 

that were tested generated bigger area differences and convergence problems.  

The effect of the angle is very significant in fluidics simulation due to the kinetic energy 

of a fluid mass that travels, its inertial forces and its interactions with the boundaries, and 

also is very important in electromagnetic simulations, due to the importance of the orien-

tation of the magnetic field (Rubenstein, D. A. et al, (2012); Fundamentals of Magnetic 

Fields. (2002)). As the system being analyzed is not considering  any magnetic field and 

any mass, the angle should not affect our model, and it is corroborated with the simula-

tions.  

Future implementation of geometries that would use the De Pittà et al. (2009) model 

cloud be simplified, saving time in computing the simulations and making the geometries. 

5.2.2 Geometrical changes and statistical analysis in the bifur-
cation geometry 

After results showed in Figure A4, it was demonstrated statistically thought an ANOVA 

test, that there were no significative differences in probe 3 between the distributed and 

not distributed stimulus in the subprocesses.  
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Figure 10 illustrates the effect of the shape of the local geometry, and this phenomenon 

is also shown in Figure 11. Differences in the Ca2+ frequency between probe 1 and probe 

3 and similarities between data collected by the same probe in different geometries, for 

example, comparing the results in figures 10 and 11. These results confirm the significant 

importance in the location of the measuring point and, for the same reason, the geometry 

surrounding it. 

Another important effect very present in the literature is that the Ca2+ wave is mainly a 

result of the release events associated with the opening of Ca2+ release channels through 

the endoplasmic reticulum membrane to the cytosol of the cell (Verkhratsky and Butt, 

2013). This can be seen in Figure 10 and Figure 11, where not all the Ca2+ waves that 

appear, travel from probe 1 to 3, and some look like they disappear on the way. It is not 

a diffusion property of the Ca2+ or a particular way of traveling of this ion. Local cytosolic 

Ca2+ concentration has more to do with the release of Ca2+ from the ER stores and de-

pends strongly on the geometry surrounding the measuring point than on the diffusion of 

the Ca2+ ion. This effect can be seen in Figure 10 on probe 1, with the not distributed 

stimulus area at 40 µm of main process length, the frequency of the Ca2+ event is around 

0.045 Hz, and in probe 3 is 0.02 Hz. 

Recent studies have confirmed this phenomenon where the local shape that surrounds 

the measuring location has big relevance in the frequency of the Ca2+ event. For exam-

ple, the differences found between the Ca2+ frequency measured experimentally in sub-

regions of the process and the one measured in the entire expanded process. Signifi-

cantly higher values were recorded in the subregion measurements (Di Castro et al., 

2011). Similar results are visible in the experiments comparing the frequency in the 

soma, processes, and end-foot, showing the highest Ca2+ frequency in the processes, 

then in the end-foot and finally very deceased in the soma (Bindocci et al., 2017), which 

can be related directly with our result obtained from Geometry 2 with an equivalence 

between the subprocesses and the main process (Probe 1 and Probe 2 in Figure 11, not 

distributed simulation). Subprocesses in Geometry 2 presented higher Ca2+ frequency 

than the main process, thickness of the main process is twice the thickness of the sub-

processes, and it is equivalent to the results found between the processes and the soma 

in Bindocci et al. (2017). 

Furthermore, Wu et al. (2019) relate the frequency of the Ca2+ event with the volume 

fraction (VF) of the local geometry of the astrocyte. In their study, they found lower-fre-

quency values in the astrocyte regions with high VF like in the soma, and higher frequen-

cies in low VF values like in thin processes. The VF was calculated to represent the 
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surface-to-volume-ratio (SVR) between the different astrocyte sections inversely, as thin 

processes could not be seen accurately when they were recreating the 3D geometry of 

in-vitro astrocytes. It was calculated as the ratio between the fluorescence in the meas-

ured area and the fluorescence of the soma, under the expression of GCaMP2. These 

results were corroborated experimentally and computationally (Wu et al., 2019). This 

effect fits again the results showed in Figure 10, with the reduction of the Ca2+ frequency 

from the subprocesses to the main process that has a lager VF. 

Also, the result showed in Figure 11 corroborate what was said before, it is possible to 

appreciate the differences between probes and compare results between simulations. A 

statistical analysis was done, first an ANOVA test to check the possible significant differ-

ences between geometries and then a regression analysis to explain how the proposed 

geometrical variations in the simulation are affecting our results.  

It was also possible to appreciate in the simulations run in the bifurcation with the sub-

process length change, that the calcium event always started to travel from the largest 

subprocess, it travelled through it, and then goes to the main process and the second 

shorter subprocess. This behavior is not expected in a diffusion model where the stimu-

lation in both subprocesses is the same, and it is also happening simultaneously. How-

ever, biological experimentations with astrocytes have proved that the Ca2+ event mostly 

starts from distal astrocytic processes (Nett, Oloff and Mccarthy, 2002; Asada et al., 

2015; Bindocci et al., 2017). This phenomenon in the medical imaging use to be con-

nected with the ubication of the synapses in the astrocyte’s endfeet at the end of the 

astrocyte’s processes (Di Castro et al., 2011); it can also be related to the distribution of 

the content of the cell, the allocation of the receptors, and the ER distribution in the cell 

among others (Arizono et al., 2012). As our model does not take into account the distri-

bution of the cell organelles and the fact that both subprocesses have the same stimulus 

condition, this factors are removed from the equation and take sides studies that attribute 

this phenomenon to the geometrical configuration of the processes (Wu et al., 2019). 

Taking a look on how the model is built and the mathematical equations behind, the fact 

that the shorter subprocess is closer to the main process makes the diffusion area next 

to the stimulation zone has a general smaller SVR than the one located in a larger sub-

process far from the main and thicker process. As it was evidenced in previous studies, 

astrocytes processes with high SVR are more likely to start the Ca2+ release (Wu et al., 

2019), and it was also evidenced in our model with the calcium event always starting to 

travel from the larger subprocess with the most distal stimulation from a wider area, even 

though, both subprocesses had the same thickness. 
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Different geometries bring different Ca2+ dynamics, as it was verified with an ANOVA 

analysis of the Ca2+ frequency. It was essential to compare the Ca2+ frequency in the 

different geometries under the same area, as the diffusion principle under molecular be-

havior depends strongly on the diffusion space (Figure 17).  

On Table 11, the ANOVA test demonstrates that Geometry 1 and Geometry 2 present 

significative different Ca2+ frequency under the same domain area, and even the two 

simulations inside Geometry 2 cannot get clustered together.  

Looking into Figure 20, that shows the means differences with the Tukey method for the 

frequency of the Ca2+ between the three geometrical models. it is possible to see that 

the two different geometrical changes simulations inside Geometry 2 (B – A) are closer 

to the 0 value in Tukey analysis than the comparisons (R – A or R - B). This result 

demonstrates that more significant changes in the morphology will bring bigger differ-

ences in the Ca2+ frequency. Moreover, even small changes inside the same geometry 

(geometry changes in geometry 2, simulations B and A) are enough to present significa-

tive differences in the Ca2+ frequency results, and simulations inside the same geometry 

can be clustered together even though their stimulus configurations could be different 

(Figure A3, A4). 

By discretizing the area and the different shapes, it is still possible to get good linear 

predictors of the Ca2+ frequency just using the area and shape as predictors, for example, 

in Table 21 with the linear regression analysis for the main process change in geometry 

2. In this analysis, using only the shape and the area of it, it is possible to have a predic-

tion potential of 82%, with equation 45. The fact of having different equations for every 

shape, and a great prediction potential in them, confirm the significant effect of the mor-

phology in the frequency of the Ca2+ event in astrocytes, and its strong relation with it.  

5.3 Buffer analysis 

Taking a look into the buffering model's results, the Hadfield et al. (2013) model is the 

only one that can be directly fitted to the De Pittà et al. (2009) model with the original 

parameters. Nonetheless, the Hatfield et al. (2013) model has a very simple equation 

(equation 16) that was calculated to fit the experiments described in their paper. It does 

not reproduce the Ca2+ buffering phenomena with the binding–unbinding behavior. It only 

partially reduces the Ca2+ frequency and amplitude. As Hadfield et al. (2013) as tested 

in its study, the Ca2+ buffer does not affect the morphology of the Ca2+ dynamics through 
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time significantly. It is equivalent to add a constant ρ that multiplies and reduces the Ca2+ 

concentration. It comes from the Hadfield et al. (2013) buffer equation, where parameter 

Kd is much bigger than physiological cytosolic Ca2+ concentrations (Wang et al., 1997). 

Finally, Hadfield et al. (2013) suggested that their buffering model could have been re-

duced to the following parameter multiplying the Ca2+ concentration, where Kd represents 

the buffer disassociation constant with a value of 20 µM, and BT represents the total 

buffer concentration with a value of 10 µM. 

 𝜌 =
𝐾𝑑

𝐾𝑑 + 𝐵𝑇
=

2

3
 (43) 

 

However, Lopez-Caamal et al. (2014), Skupin et al. (2010), Komin et al. (2015), and 

Savtchenko et al. (2018), used derivations of the same equations (equations 17 - 25 ). 

These equations reproduce the Ca2+ buffering behavior, with the mobile and immobile 

part and the binding–unbinding phenomena. All of them use different parameters for the 

same equations, most of them calculated to fit their Ca2+ models. As they are using dif-

ferent astrocyte’s calcium models, or modifications of the one used in this thesis, their 

Ca2+ buffering parameters do not fit our model, absorbing our intracellular Ca2+ dispro-

portionately. 

Notwithstanding, the study of a buffering equation that could fit the model should con-

tinue due to the importance of this phenomenon in the cell (Verkhratsky and Butt, 2013). 

Furthermore, most of the Ca2+ imaging techniques use Ca2+ buffers, and a model with 

the buffer implemented will make more accessible the validation of it and the linkage 

between the Ca2+ imaging and the computational simulations(Khakh and McCarthy, 

2015). Finally, it will also be closer to represent all the biological processes under the 

Ca2+ dynamics in the cell. 
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6. CONCLUSION 

The effect of morphology changes on the Ca2+ dynamics in astrocytes was already evi-

denced in previous publications (Khalid et al., 2018). Furthermore, biology is demonstrat-

ing that pathological astrocytes present morphological changes in neuropathologies like 

Alzheimer’s Disease. As Ca2+ defines most of the functional chores of astrocytes, studies 

that link the morphological changes to the astrocyte behaviour can be a crucial point in 

the understanding of many neuropathologies.  

With this master’s thesis, we have been able to decrypt the impact of many geometrical 

parameters to the intracellular Ca2+ behaviour in astrocytes. Parameters as the thickness 

of a process have demonstrated to have a crucial influence in the Ca2+ frequency. Fur-

thermore, we have been able to analyse the differences between regions inside an as-

trocyte, and to demonstrate statistically that Ca2+ frequency can be clustered inside a 

geometrical shape and the differences between the Ca2+ frequency in the geometries is 

bigger when their shapes present greater changes. Moreover, parameters like the angle 

between the subprocesses does not make significant differences in the intracellular Ca2+ 

for the used model.  

This study would help to simplify future models and simulations, giving the astrocyte 

morphology an essential role in the decryption of Ca2+ dynamics. Moreover, numerous 

paths have been open for future research, for example, to study deeply the effect of the 

glutamate stimulus in the model, comparing new astrocyte models, improving the buff-

ering model, etc… 
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8. APPENDIX 

Table A1: Parameters from De Pittà et al. (2009) used in this study 

  Value Description 

rC 6 s-1 Maximal CICR rate 

C0 2 µM 
Total cell free Ca2+ concentration referred to 

the cytosol volume 

c1 0.185 Ratio between cytosol volume and ER volume 

rL 0.11 s-1 Maximal rate of Ca2+ leak from the ER 

υER 0.9 µM s-1 Maximal rate of SERCA uptake 

KER 0.05 µM SERCA Ca2+ affinity 

d1 0.13 µM IP3 dissociation constant 

d2 1.049 µM Ca2+ inactivation dissociation constant 

d3 0.9434 µM IP3 dissociation constant 

d5 0.08234 µM Ca2+ activation dissociation constant 

a2 0.2 s-1 IP3R binding rate for Ca2+ inhibition 

Agonist-independent IP3 production 

ῦδ 0.05 Maximal rate of IP3 production by PLC 

KPLCδ 0.1 Inhibition constant of PLC activity 

kδ 1.5 Ca2+ affinity of PLC 

IP3 degradation 

r5P 0.05 Maximal rate of degradation by IP-5P 

ῦ3K 2 Maximal rate of degradation by IP3-3K 

KD 0.7 Ca2+ affinity of IP3-3K 

K3 1 IP3 affinity of IP3-3K 

Agonist-dependent IP3 production 

ῦβ 0.5 Maximal rate of IP3 production by PLC 

KR 1.3 Glutamate affinity of the receptor 

Kp 10 Ca2+/PKC-dependent inhibition factor 

Kπ 0.6 Ca2+ affinity of PKC 
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ANOVA test for the main process change in bifurcation geometry 

First, making a box-plot of the Ca2+ frequency to check if there was any significant differ-

ence between the two stimulus positions (Figure A1). 

 

Figure A1. Boxplot of the two different stimulus positions for the main process 
length change in geometry 2, position 1 represents the simulations where the stim-

ulus event was located in just one subprocess and position 2 when the stimulus 
area was divided between both subprocesses. 

There were no big differences between the simulations with the stimulus position located 

on one side and the ones with it located in both positions. For proving that mathematically 

and statistically, an ANOVA test was done to compare these two different simulations. 
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Figure A2. Residual analysis for ANOVA test of the frequency of the Ca2+ event, 
it is done in geometry 2 in the body length changing simulation for the different synaptic 
positions. 

Table A2.   Variance analysis for ANOVA residuals 

Source DF Adj SS Adj MS F_vaule p_value 

Sinapse 

Numb 

1 0.000000 0.000000 0.00 0.972 

Error 31 0.001724 0.000056     

Total 32 0.001724       

Table A3.  Means analysis in ANOVA test 

Stimulus Distri-

bution 

N Mean StDev CI de 95% 

1 16 0.02156 0.00598 (0.01776; 

0.02537) 

2 17 0.02147 0.00862 (0.01778; 

0.02516) 

Clustered Standard Errors = 0.00745778 

Tukey's range test contained the 0 in its interval, which means that there were no signif-

icant differences in their means, taking into account the dispersion of the data (Figure 

A3).  
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Figure A3.  Confidence intervals of 95% with the Tukey method for the mean 
differences between stimulus locations 1 and 2. If the interval contains the 0 value, It is 
not possible to assume that models offer significative differences in their means. 

Table A4.  Minitab Tukey’s range test result for the means 

Stimulus Dis-

tribution 

N Mean Clus-

ters 

2 16 0.02156 A 

1 17 0.02147 A 

Means that share the same cluster letter are not significantly different. 

ANOVA test for the subprocess length change in bifurcation geometry 

Analysis of differences between the stimulus positions in the subprocess length change. 

Stimulus position “1” refers to the model where the stimulus area was located in one of 

the subprocesses, and the opposite one is growing its length, stimulus position “2” refers 

to the model where the synaptic area was distributed by the two subprocesses, and stim-

ulus position “3” is the one where the synaptic area was located in the subprocess that 

changed its length. 
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Table A5.   Variance analysis for ANOVA residuals 

Source DF Adj SS Adj MS F_vaule p_value 

Sinapse 

Numb 

2 0.000020 0.000010 0.11 0.893 

Error 55 0.004830 0.000088     

Total 57 0.004850       

Table A6.  Means analysis in ANOVA test 

Stimulus Distri-

bution 

N Mean StDev CI de 95% 

1 21 0.02952 0.00740 (0.02543; 0.03362) 

2 21 0.02976 0.00782 (0.02566; 0.03386) 

3 16 0.03094 0.01294 (0.02624; 0.03563) 

Clustered standard deviation = 0.00937112 

 

Figure A4.   Confidence intervals of 95% with the Tukey method for the 
frequency of the Ca2+ event mean differences between the three synaptic positions in 
the second simulation configurations of geometry 2. 

Table A7  Minitab Tukey’s range test result for the means 

Stimulus Distri-
bution 

N Mean Clusters 

3 1
6 

0.0309
4 

A 

2 2
1 

0.0297
6 

A 

1 2
1 

0.0295
2 

A 
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In this case, there were no significant differences in the result between the three synaptic 

positions, and the 3 of them can be studied under the same multiple linear regression 

analysis.  

ANOVA test for the subprocess length change in bifurcation geometry  

Analysis of differences between the stimulus positions in the subprocess length change. 

Stimulus position “1” refers to the model where the stimulus area was located in one of 

the subprocesses, and the opposite one is growing its length, stimulus position “2” refers 

to the model where the synaptic area was distributed by the two subprocesses, and stim-

ulus position “3” is the one where the synaptic area was located in the subprocess that 

changed its length. 

Table A5.   Variance analysis for ANOVA residuals 

Source DF Adj SS Adj MS F_vaule p_value 

Sinapse 

Numb 

2 0.000020 0.000010 0.11 0.893 

Error 55 0.004830 0.000088     

Total 57 0.004850       

Table A6.  Means analysis in ANOVA test 

Stimulus 

Numb 

N Mean StDev CI de 95% 

1 21 0.02952 0.00740 (0.02543; 0.03362) 

2 21 0.02976 0.00782 (0.02566; 0.03386) 

3 16 0.03094 0.01294 (0.02624; 0.03563) 

Clustered standard deviation = 0.00937112 
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Regression analysis of the Ca2+ FWHM in the rectangular geometry in Probe 3 

 

Figure A5. Residual analysis of the FWHM of the Ca2+ event  

 

Table A8.   Multiple linear regression, analysis of the variance 

Source DF Adj SS Adj MS F_vaule p_value 

Regresion 2 9.8807 4.94036 18.07 0.000 

 Parameter_L 1 8.9898 8.98985 32.89 0.000 

 Parameter_W 1 0.7069 0.70695 2.59 0.110 

Error 142 38.8163 0.27335     

 Ajust error 120 38.6383 0.32199 39.79 0.000 

 Pure error 22 0.1780 0.00809     

Total 144 48.6970       

 

Table A8.  Multiple linear regression, model summary 

S R2 R2 (adjust) R2 (pred) 

0.522833 20.29% 19.17% 15.60% 

 

Table A9.  Multiple linear regression coefficients 

Term. Coef Coef_EE T_value p_value VIF 

Constant 3.220 0.175 18.41 0.000   

Parameter_L 0.00791 0.00138 5.73 0.000 1.00 

Parameter_W -0.1458 0.0907 -1.61 0.110 1.00 
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Regression equation 

widthsavg_s3 = 3.220 + 0.00791 Parameter_L - 0.1458 Parameter_W 

Regression analysis of the Ca2+ average amplitude in the rectangular geometry 
in Probe 3 

 

Figure A6. Residual analysis of the Ca2+ average amplitude 

Table A10.   Multiple linear regression, analysis of the variance 

Source DF Adj SS Adj MS F_vaule p_value 

Regresion 2 1.48307 0.74153 169.78 0.000 

 Parameter_L 1 1.24967 1.24967 286.13 0.000 

 Parameter_W 1 0.27149 0.27149 62.16 0.000 

Error 142 0.62019 0.00437     

 Ajust error 120 0.61958 0.00516 185.18 0.000 

 Pure error 22 0.00061 0.00003     

Total 144 2.10326       

 

Table A11.  Multiple linear regression, model summary 

S R-cuad. R-cuad. 

(adjust) 

R-cuad. 

(pred) 

0.0660875 70.51% 70.10% 68.85% 
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Table A12.  Multiple linear regression coefficients 

Term. Coef Coef_EE T_value p_value VIF 

Constant 0.9503 0.0221 42.97 0.000   

Parameter_L -0.002949 0.000174 -16.92 0.000 1.00 

Parameter_W -0.0904 0.0115 -7.88 0.000 1.00 

Regression equation 

peaksavg_s3 = 0.9503 - 0.002949 Parameter_L - 0.0904 Parameter_W 

Regression analysis of the Ca2+ FWHM in the bifurcation geometry 

 

Figure A7. Residual analysis of the Ca2+ FWHM in the bifurcation geometry 
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Table A13.   Multiple linear regression, analysis of the variance 

Source DF Adj SS Adj MS F_vaule p_value 

Regresion 1 0.1127 0.11268 0.19 0.664 

 area_s2 1 0.1127 0.11268 0.19 0.664 

Error 31 18.2101 0.58742     

 Ajust error 15 0.5840 0.03893 0.04 1.000 

 Pure error 16 17.6261 1.10163     

Total 32 18.3228       

 

Table A14.  Multiple linear regression, model summary 

S R-cuad. R-cuad. 

(ajustado) 

R-cuad. 

(pred) 

0.766435 0.61% 0.00% 0.00% 

 

Table A15.  Multiple linear regression coefficients 

Term. Coef Coef_EE T_value p_value VIF 

Constant 2.180 0.133 16.34 0.000   

area_s2 -0.059 0.135 -0.44 0.664 1.00 

Regression equation 

FWHM = = 2.394 - 0.00123 area_s2 
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Regression analysis of the Ca2+ average amplitude in the bifurcation geometry 

 

Figure A8. Residual analysis of the Ca2+ average amplitude in the bifurcation 
geometry 

 

Table A16.   Multiple linear regression, analysis of the variance 

Source DF Adj SS Adj MS F_vaule p_value 

Regression 1 0.1127 0.11268 0.19 0.664 

 area_s2 1 0.1127 0.11268 0.19 0.664 

Error 31 18.2101 0.58742     

 Ajust error 15 0.5840 0.03893 0.04 1.000 

 Pure error 16 17.6261 1.10163     

Total 32 18.3228       

 

Table A17.  Multiple linear regression, model summary 

S R-cuad. R-cuad. 

(ajustado) 

R-cuad. 

(pred) 

0.0254879 44.51% 42.72% 32.43% 
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Table A18.  Multiple linear regression coefficients 

Term. Coef Coef_EE T_value p_value VIF 

Constant 0.62574 0.00444 141.03 0.000   

area_s2 -0.02247 0.00451 -4.99 0.000 1.00 

Regression equation 

Amplitude= = 0.7066 - 0.000464 area_s2 

 


