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Abstract In this paper, we consider the concept of extended
Choquet integral generalized by a copula, called CC-integral.
In particular, we adopt a CC-integral that uses a copula de-
fined by a parameter α, which behavior was tested in a pre-
vious work using different fixed values. In this contribution,
we propose an extension of this method by learning the best
value for the parameter α using a genetic algorithm. This new
proposal is applied in the fuzzy reasoning method of fuzzy
rule-based classification systems in such a way that, for each
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class, the most suitable value of the parameter α is obtained,
which can lead to an improvement on the system’s perfor-
mance. In the experimental study, we test the performance
of 4 different so called CαC-integrals, comparing the results
obtained when using fixed values for the parameter α against
the results provided by our new evolutionary approach. From
the obtained results, it is possible to conclude that the genetic
learning of the parameter α is statistically superior than the
fixed one for two copulas. Moreover, in general, the accuracy
achieved in test is superior than that of the fixed approach in
all functions. We also compare the quality of this approach
with related approaches, showing that the methodology pro-
posed in this work provides competitive results. Therefore,
we demonstrate that CαC-integrals with α learned geneti-
cally can be considered as a good alternative to be used in
fuzzy rule-based classification systems.

Keywords Aggregation functions · Choquet integral ·
Fuzzy Rule-Based Classification Systems · Fuzzy Reasoning
Method · Genetic Algorithms · Evolutionary fuzzy systems

1 Introduction

Fuzzy Rule-Based Classification Systems (FRBCSs) are
widely studied (Ishibuchi et al. (2005)) and also a powerful
tool commonly used to tackle classifications problems (Duda
et al. (2001)). Since this kind of systems have a good classifi-
cation rate and provide interpretable models by using linguist
labels in their antecedent rules, FRBCSs have been applied in
severals real world problems, including industry (Samantaray
et al. (2010)), health (Sanz et al. (2014)), economy (Sanz et al.
(2015)) and many others.

The Fuzzy Reasoning Method (FRM) (Cordón et al.
(1999)) is applied to classify new examples using the fuzzy
rules of Fuzzy Rule-Based Classification Systems (FRBCSs).
A key component of the FRM is the aggregation stage, where
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different aggregation functions have been considered in the
specialized literature. In Lucca et al. (2016c), an aggregation
function generalizing the expanded form of the Choquet in-
tegral was proposed. Specifically, the product between the
value to be aggregated and the difference of fuzzy measures
is distributed and it is generalized by a copula. Copulas link
(two-dimensional) probability distribution functions to their
one-dimensional margins, playing an important role in the
theory of probabilistic metric spaces and statistics (Alsina
et al. (2006)). As a consequence of this generalization, the au-
thors introduced a family of Choquet-based non-associative
aggregation functions named CC-Integrals.

In Lucca et al. (2015), CC-integrals were applied in the
FRM of FRBCSs, in order to improve the quality of the
system. In that work, a copula that is directly related to a
parameter αwas proposed. The authors tested in this function
5 different fixed values for this parameter, showing that the
copula using the value 0.1 for the parameter α presented a
good classification rate.

In the work presented at BRACIS 2016, Lucca et al.
(2016a), instead of considering fixed values for the parameter
α, presented a method to learn the most suitable value for
this parameter in each class, using an evolutionary algorithm.

In this present paper, we extend the work in Lucca et al.
(2016a), by conducting a deeper study on the use of copulas
considering the parameter α, defining the family of CαC-
integrals. Specifically, we study the performance of the family
of copulas related to parameters α defined in Alsina et al.
(2006). Furthermore, we also consider the application of
the genetic approach to learn the most suitable value of the
parameter α. Regarding the work presented in Lucca et al.
(2016a), we broaden the study as follows:

– We use four different functions that consider the parame-
ter α in the family CαC-integrals.

– SinceCαC-integrals are related to a fuzzy measure (Muro-
fushi et al. (1994)), we adopt a method for building
fuzzy measures based un fuzzy sets derived form FR-
BCS, which was introduced recently by Paternain et al.
(2016).

– We analyse the results obtained with the values learned by
the evolutionary method for the parameters α among the
considered CαC-integrals, also performing a compara-
tive study including other methods found in the literature.

In order to demonstrate the quality of the approach, 30
datasets, that are available in the KEEL 1 database repos-
itory (Alcalá-Fdez et al. (2009)), are selected. The FARC-
HD (Alcalá-Fdez et al. (2011)) is applied to accomplish the
fuzzy rule learning process. Finally, our conclusions are sup-
ported by the statistical Wilcoxon signed-rank test (Wilcoxon
(1945)).

1 http://www.keel.es

The paper is organized as follows. Section 2 presents
some preliminary concepts that are necessary to develop the
paper, also explaining the process to build fuzzy measures
based on fuzzy sets, which we adopt in this work. The defi-
nition of the CαC-integral is presented in Section 3. In Sec-
tion 4 the proposed FRM is presented, including the method-
ology to construct the fuzzy measure and the approach to
genetically learn the value for the parameter α. We describe
the experimental framework, introduce the results achieved in
testing by the application of the generalized Choquet integral
in FRBCSs besides the quality analysis of the best function
in Section 5. The main conclusions are drawn in Section 6.

2 Preliminaries

This section aims at introducing the background necessary to
understand the paper.

Definition 1 (Zadeh (1965)) A fuzzy set F defined on a
finite and non-empty referential set (or universe) U is given
by:

F = {(u, µF (u)) | u ∈ U}

where µF : U → [0,1] is the membership function.

The family of fuzzy sets on U is denoted by FS(U).
Let F1, F2 ∈ FS(U). Then B j C if and only if, for all

u ∈ U , it holds that µF1
(u) ≤ µF2

(u).

2.1 Aggregation and Pre-aggregation Functions

One important class of fuzzy operators are the aggregation
operators (Beliakov et al. (2007); Mayor and Trillas (1986)).

Definition 2 A function A : [0, 1]n → [0, 1] is said to be an
n-ary aggregation operator if the following conditions hold:

(A1) A is increasing 2 in each argument: for each i ∈
{1, . . . , n}, if xi ≤ y, then
A(x1, . . . , xn) ≤ A(x1, . . . , xi−1, y, xi+1, . . . , xn);

(A2) A satisfies the Boundary conditions: A(0, . . . , 0) = 0

and A(1, . . . , 1) = 1.

Let r = (r1, . . . , rn) be a real n-dimensional vector, r 6=
0. A function F : [0, 1]n → [0, 1] is directionally increas-
ing (Bustince et al. (2015)) with respect to r (r-increasing,
for short) if for all (x1, . . . , xn) ∈ [0, 1]n and c > 0 such
that (x1 + cr1, . . . , xn + crn) ∈ [0, 1]n it holds that

F (x1 + cr1, . . . , xn + crn) ≥ F (x1, . . . , xn). (1)

Similarly, one defines an r-decreasing function.

2 In this paper, a increasing (decreasing) function does not need to
be strictly increasing (decreasing).
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Definition 3 (Lucca et al. (2016b)) A function F : [0, 1]n →
[0, 1] is said to be an n-ary pre-aggregation function if the
following conditions hold:

(PA1) F is r-increasing, for some r ∈ Rn, r 6= 0;
(PA2) F satisfies the boundary conditions: F (0, . . . , 0) = 0,

F (1, . . . , 1) = 1.

If F is a pre-aggregation function with respect to a vector
r we just say that F is an r-pre-aggregation function. See also
the works by Mesiar et al. (2016) and Dimuro et al. (2016b).

Definition 4 An aggregation function T : [0, 1]2 → [0, 1] is
a t-norm if, for all x, y, z ∈ [0, 1], it satisfies the following
properties:

(T1) Commutativity: T (x, y) = T (y, x);
(T2) Associativity: T (x, T (y, z)) = T (T (x, y), z);
(T3) Boundary condition: T (x, 1) = x.

If T satisfies only the property (T3) of a t-norm (but also
its symmetric T (1, x) = x), then it is called a semi-copula.
Some examples of t-norms are presented in Table 1.

Table 1 Examples of t-norms

Name Definition
Minimum TM (x, y) = min{x, y}
Algebraic Product TP (x, y) = xy
Lukasiewicz TL(x, y) = max{0, x+ y − 1}

Hamacher Product THP (x, y) =

{
0 if x = y = 0

xy
x+y−xy otherwise

Definition 5 (Alsina et al. (2006)) A bivariate function C :

[0, 1]2 → [0, 1] is a copula if it satisfies the following condi-
tions, for all x, x′, y, y′ ∈ [0, 1] with x ≤ x′ and y ≤ y′:

(C1) C(x, y) + C(x′, y′) ≥ C(x, y′) + C(x′, y);
(C2) C(x, 0) = C(0, x) = 0;
(C3) C(x, 1) = C(1, x) = x.

In this paper, we consider 4 different commutative, non-
associative copulas, that were defined at. Alsina et al. (2006)
(appendix A (A.2.1)). These four functions are shown in
Table 2, where we have to take into account the following
notation:

•Max = max{x, y}
•Min = min{x, y}
•W = max{0, x+ y − 1}
• P = xy

2.2 Fuzzy measures and the Choquet integral

For the following, consider N = {0, . . . , n}.

Definition 6 (Choquet (1953–1954); Murofushi et al. (1994))
A function m : 2N → [0, 1] is a discrete fuzzy measure if,
for all X,Y ⊆ N , it satisfies properties:

(m1) Increasing: if X ⊆ Y , then m(X) ≤ m(Y );
(m2) Boundary conditions: m(∅) = 0 and m(N) = 1.

Definition 7 (Choquet (1953–1954)) Let m : 2N → [0, 1]

be a discrete fuzzy measure. The discrete Choquet integral
for m is defined as a function Cm : [0, 1]n → [0, 1], given by

Cm(x) =

n∑
i=1

(
x(i) − x(i−1)

)
·m
(
A(i)

)
, (2)

where (x(i), . . . , x(n)) is an increasing permutation on the
input x, that is, 0 ≤ x(1) ≤ . . . ≤ x(n), with the convention
that x(0) = 0, and A(i) = {(i), . . . , (n)} is the subset of
index of n− i+ 1 largest components of x.

Observe that the Equation (2) can be also written as:

Cm(x) =

n∑
i=1

(
x(i) ·m

(
A(i)

)
− x(i−1) ·m

(
A(i)

))
, (3)

which we call the Choquet integral in its expanded form.
The Choquet integral combines the inputs in such a way

that not only the importance of individual inputs or of their
magnitude are taken into account, but also the importance of
their groups (or coalitions in which it takes part), allowing to
assign importance to all possible groups of criteria (Grabisch
and Labreuche (2010)).

2.3 Overlap functions, overlap indexes and the construction
of fuzzy measures

Overlap functions (Bedregal et al. (2013); Bustince et al.
(2010); Dimuro and Bedregal (2014, 2015); Dimuro et al.
(2016a,c)) are special aggregation functions proposed to deal
with the overlap problem and/or when the associativity prop-
erty is not strongly required, as in image processing (Jurio
et al. (2013)) and decision making based on fuzzy preference
relations (Bustince et al. (2012)). In particular, they play an
important role in classification problems (Elkano et al. (2015,
2016); Lucca et al. (2015, 2016c)).

In this paper, overlap functions are used to derived over-
lap indexes (Bustince et al. (2009); Garcia-Jimenez et al.
(2015)), which are used to build links among the fuzzy sets
defining the input data. In the following, we show how to
use overlap indexes to define fuzzy measures, as proposed by
Paternain et al. (2016).

Definition 8 (Bustince et al. (2010)) An overlap function is
a mapping GO : [0, 1]2 → [0, 1] such that:

(GO1) GO(x, y) = GO(y, x) for every x, y ∈ [0, 1];
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Table 2 Example of copulas used in this paper

Copula ID Functions Property
(a) Cα(x, y) = xy[1 + α(1− x)(1− y)] -1 ≤ α ≤ 1 (α 6= 0)
(b) Cα(x, y) =

1
1+α

Max[x+ y − 1 + α− α|x− y|, 0] 0 < α < 1
(c) Cα = (1− α)W + αMin 0 < α < 1
(d) Cα = α2(1−α)

2
W + (1− α2)P + α2(1+α)

2
Min -1 < α < 1 (α 6= 0)

(GO2) GO(x, y) = 0 if and only if xy = 0;
(GO3) GO(x, y) = 1 if and only if xy = 1;
(GO4) GO is increasing;
[(GO5) GO is continuous.

Definition 9 (Sola et al. (2006)) An overlap index is a map-
ping O : FS(U)× FS(U)→ [0, 1] such that

(O1) O(A,B) = 0 if and only if A and B have disjoint
supports; that is, A(i)B(i) = 0 for every i ∈ U ;

(O3) O(A,B) = O(B,A);
(O4) If B j C, then O(A,B) ≤ O(A,C).

An overlap index such that

(O2’) O(A,B) = 1 if there exists i ∈ U such that A(i) =
B(i) = 1

is called a normal overlap index.

Let E ∈ FS(U) be a fixed non-empty fuzzy set (that
is, with at least one membership different from zero). Given
Ã ∈ 2U , let us define a fuzzy setEÃ induced byE as follows:

EÃ(i) =

{
E(i) if i ∈ Ã;
0 otherwise.

Observe that EÃ is the fuzzy intersection of the fuzzy set
E and the crisp set Ã (the membership degree of all the
elements to the fuzzy set A is always 1), since

EÃ(i) = min(1Ã(i), E(i)) .

Therefore, any aggregation function with no zero divisors
could also be used instead of the minimum in this definition
for the subsequent developments.

If E ∈ FS(U) is a fixed, non-empty fuzzy set, then the
mapping mO,E : 2U → [0, 1] given by

mO,E(Ã) =
1

O(E,E)
O(E,EÃ) (4)

is a capacity or fuzzy measure for every overlap index O.

3 Defining the Class of CαC-integrals

Definition 10 Let m : 2N → [0, 1] be a fuzzy measure and
Cα : [0, 1]2 → [0, 1] be a family of copulas indexed by α.
The family of discrete CαC-integrals with respect to m is

defined as the function CCαm : [0, 1]n → [0, 1], given, for all
x ∈ [0, 1]n, by

CCαm (x) =

n∑
i=1

Cα
(
x(i),m

(
A(i)

))
− Cα

(
x(i−1),m

(
A(i)

))
,

(5)

where (x(i), . . . , x(n)) is an increasing permutation on the
input x and A(i) = {(i), . . . , (n)} is the subset of indexes of
n − i + 1 largest components of x, and α having different
ranges, according to adopted the function.

Theorem 1 For anyα ∈ [−1, 1], bivariate copulaC : [0, 1]2

→ [0, 1] and fuzzy measure m : 2N → [0, 1], CCαm is an aver-
age aggregation function.

Proof It follows directly from Lucca et al. (2016c, Thorem
4).

Applying the functions proposed in Table 2 in Equa-
tion (5), the definition of the family of discreteCαC-integrals
with respect to a fuzzy measure m (in this paper we build a
measure based on overlap indexes (see Section 2.3)) is pre-
sented in Table 3, also considering the the notation introduced
before (Min, W and P).

4 A proposal of a fuzzy reasoning method using the
Choquet integral generalized by copulas and genetic
algorithms

This section aims at introducing in detail the proposal of
this paper. We start by describing the main components of
FRBCSs. Then we present the methodology to build the
fuzzy measure (Section 4.1), the FRM using the generalized
Choquet integral (Section 4.2) and, finally, we present the
genetic algorithm for determining the value of the parameter
α (Section 4.3).

In what follows, consider that a classification problem
consists of m training examples xp = (xp1, . . . , xpn, yp),
with p = 1, . . . ,m, where xpi, with i = 1, . . . , n, is the
value of the i-th variable and yp ∈ Y = {Y1, . . . , YM} is
the label of the class of the p-th training example. Among
the different existing approaches to deal with classification
problems, we adopt FRBCSs. These kind of system has two
main components:
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Table 3 Choquet-α Copula-based integral (CαC − integral)
ID Functions Range
(a) Cαm(x, y) = (xiy[1 + α(1− xi)(1− y)])− (xi−1y[1 + α(1− xi−1)(1− y)]) -1≤ α ≤ 1 (α 6= 0)
(b) Cαm(x, y) = ( 1

1+αMax[xi + y − 1 + α− α|xi − y|, 0])− ( 1
1+αMax[xi−1 + y − 1 + α− α|[xi−1 − y|, 0]) 0< α < 1

(c) Cαm = ((1− α)Wi + αMini)− ((1− α)Wi−1 + αMini−1) 0< α < 1

(d) Cαm = (
α2(1−α)

2 Wi + (1− α2)Pi +
α2(1+α)

2 Mini)− (
α2(1−α)

2 Wi−1 + (1− α2)Pi−1 +
α2(1+α)

2 Mini−1) -1< α < 1 (α 6= 0)

1. Knowledge Base: it contains the Rule Base and the Data
Base. The fuzzy rules used in this work have the follow-
ing form:

Rule Rj : Ifx1 isAj1 and . . . andxn isAjn
then Class isYj withRWj ,

where Rj is the label of the jth rule, Aji is an antecedent
fuzzy set modeling a linguistic term, Yj is the class la-
bel and RWj ∈ [0, 1] is the rule weight (Ishibuchi and
Nakashima (2001)).

2. Fuzzy Reasoning Method: it is the mechanism used to
classify examples using the information available in the
knowledge base.

The Fuzzy Association Rule-based Classification model
for High Dimensional problems (FARC-HD – Alcalá-Fdez
et al. (2011)) is the fuzzy classifier considered in this paper.
As mentioned before, we adopt this classifier since it is the
same fuzzy classifier considered in the previous work (Lucca
et al. (2016a)). The main steps of this classifier to build the
fuzzy rules are:

– Fuzzy association rule extraction for classification: This
step is aimed at obtaining the fuzzy rule base. To do so, a
search tree (Agrawal and Srikant (1994)) is constructed
for each class. The confidence and support degrees are
calculated for each class considering each item (the item
is a linguistic label). The fuzzy rules are generated by the
most frequent itemsets and the number of linguistic terms
for each rule is limited to the depth of the tree, which is a
parameter of the model.

– Candidate rule prescreening: This step considers a weight-
ing instances scheme (Kavšek et al. (2003)) to preselect
the best generated rules.

– Genetic rule selection and lateral tuning: This stage uses
an evolutionary algorithm to perform the lateral tuning
of the fuzzy sets (Alcalá et al. (2007)) and select the best
rules that were generated in the previous steps.

4.1 A method to build fuzzy measures based on fuzzy rules

In this subsection, we describe how the fuzzy measure is
built, having in mind the construction method introduced in
Section 2.3. Observe that Paternain et al. (2016) adopted the
Choquet integral to aggregate the local information given by
each fuzzy rule of the system. In this paper, however, we use
the CαC-integral, given by Equation (5)).

The basis for this construction method is the generation of
the fuzzy sets, which are subsequently processed by overlap
functions so that a fuzzy measure can be obtained. In our
case, we construct a different fuzzy measure for each class of
the problem. Specifically, for each class, the fuzzy measure
is constructed using the rule weights of the fuzzy rules that
are fired when classifying a new example, that is, when
bpj (xp) > 0 (see Equation (9) for details). The fuzzy set of
the k-th class, Ek, is obtained as:

Ek = {(Rj , RW k
j )|Rj such that Class(Rj) = k and

bkj (xq) > 0}
(6)

Initially the fuzzy set ÃEk is equal to Ek. Then, after
aggregating an element with the CαC-integral, the fuzzy set
ÃEk is changed so that the rule weight associated to the
element that has been aggregated is substituted by 0. Conse-
quently, the monotonicity is guaranteed with this method of
constructing the fuzzy sets.

Observe that, in Equation (6), the fuzzy sets used to
construct the associated fuzzy measure are the rule weights
and, consequently, expressing the interaction among the rules
of the different classes. The fuzzy measure for each class is
computed using Equation (4), considering the corresponding
sets Ek and subsets ÃEk , as well as a given overlap index O.

In particular, Paternain et al. (2016) showed that the func-
tion GAOv (Equation (7)) achieved the best results in their
study. Then, we also select this function for our proposal,
which is defined, for all A,B ∈ FS(U), as:

GAOv(A,B) =
n

max
i=1

(A(i), B(i))
p
. (7)

Observe that this function is defined using a parameter
p, which model the relation among the rules of different
classes. This value may be adapted to each class and, so, it
may have different values. Paternain et al. (2016) used the
CHC (Eshelman (1991)) evolutionary method to accomplish
this task. In this paper, we adopt the same methodology but,
additionally, we use this evolutionary algorithm to tune the
values of the parameters α, which will be described in details
in Subsection 4.3.

4.2 A fuzzy reasoning method using the extended Choquet
integral generalized by copulas

We present in this subsection the combination of the CαC-
integral and the FRM of FRBCSs. We apply the concepts
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presented in Section 2, for example, the product t-norm for
the matching degree and the extended Choquet integral to
aggregate the information, considering different copulas to
define the CαC-integrals.

In the following consider that x = (x1, . . . , xn) is a new
example to be classified, L is the number of rules in the rule
base and M is the number of classes of the problem. The
FRM used in this paper consists of four steps:

1. Matching degree: it is the strength of the activation of
the if-part of the rules for the example to be classified x,
which is computed using a t-norm T : [0, 1]2 → [0, 1],
for j = 1, . . . , L:

µAj (x) = T (µAj1(x1), . . . , µAjn(xn)). (8)

2. Association degree: it is the association degree of the
example x with the class of each rule in the rule base:

bkj (x) = µAj (x) ·RW k
j , (9)

with k = Class(Rj) and j = 1, . . . , L.
3. Example classification soundness degree for all classes:

here the local information given by the fired fuzzy rules
is aggregated by classes. In this step, we use the proposed
family of CαC-integrals (see Table 3), and the fuzzy
measure that is built using the rule weights of the fired
fuzzy rules (the ones resulting in positive value for Equa-
tion (9), i.e., bkj > 0). Using these values, we construct
the fuzzy sets as introduced in Equation (6), and the fuzzy
measures for each class, applying Equation (4). Then, the
aggregation of the information is computed as follows:

Sk(x) = CCαmGAOv

(
bk1(x), . . . , b

k
L(x)

)
, (10)

with k = 1, . . . ,M .
4. Classification: A decision function F : [0, 1]M → {1,
. . . ,M} defined over the example classification sound-
ness degrees of all classes and determining the class cor-
responding to the maximum soundness degree is applied:

F (S1), . . . , SM ) = arg max
k=1,...,M

(Sk). (11)

4.3 A Genetic Approach to learn the parameter α for each
class

In this paper, we propose the usage of an evolutionary algo-
rithm to learn the value of the parameter α. This section is
aimed at explaining the main features of this genetic algo-
rithm.

The main idea is to use the model that Paternain et al.
(2016) applied to learn the exponent p and also to apply the
same method to learn the parameter α for each class of the
problem. The configuration of the evolutionary model is as
follows:

1. Coding Scheme: The chromosome is composed of as
many genes as classes and its structure is as follows:

C = [V1, . . . , Vn·t, P1, . . . , PM , αl, . . . , αM ].

It can be observed that the chromosome is divided in
three parts, which are devoted to the three following
optimization tasks:

– Lateral tuning (Martı́nez et al. (2015)): in this part
each gene, Vj with j ∈ {1, ..., nt}, represents the
lateral displacement of an specific label. Therefore
the total number of genes of this part is the number
of variables (n) times the number of labels (t), where
each gene is encoded in [-0.5, 0.5].

– Learning of the exponent of each measure: in this
part each gene, Pj with j ∈ 1, ...,M , is encoded
in the range [0.01, 1.99] although they need to be
decoded in the real range [0.01, 100] as described in
the original proposal (Barrenechea et al. (2013)). The
number of genes equals the number of classes.

– Tuning of the α parameter: in this part there are as
many genes, aj with j ∈ {1, . . . ,M}, as classes
and they are encoded in different ranges according
to the copula function considered as shown in the
column named Range in Table 3. If the value is 0
(these functions are not defined for this value), we
assign 0.1 to the parameter α, since it is the best
solution achieved in Lucca et al. (2015).

Consequently, the total number of genes is the number
of variables times the number of labels plus the number
of classes times two. We have to point out that a rule
selection is also performed in the evolutionary algorithm
as proposed in the FARC-HD algorithm (Alcalá-Fdez
et al. (2011)).

2. Chromosome Evaluation: The fitness function considered
in this paper is the standard accuracy rate.

3. Initial Gene Pool: Our population is composed by 50
individuals, where we have initialized one chromosome
setting the value of all the genes to perform the lateral
tuning to 0, those used to learn the exponent of the fuzzy
measure to 1.0 and the ones for tuning the parameter α
to 0.1.

4. Crossover Operator: We use the Parent Centric BLX
(PCBLX) crossover operator (Herrera et al. (2003)). Two
parents are crossed if their hamming distance divided by
2 is superior than a predetermined threshold L. We also
use the Gray Code to convert each gene to binary code
with a fixed number of bits for each gene (BITSGENE).3

L = (#Genes ·BITSGENE)/4.0

where #Genes is the total length of the chromosome.

3 For more information see Barrenechea et al. (2013); Sanz et al.
(2010).
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5. Restarting Approach: Aiming to increase the convergence
of the algorithm, when the threshold value is smaller than
zero, we use the best chromosome (elitist scheme) and
reset all the population considering the range appropriate
for each gene.

5 Experimental Framework and Results

In this section, firstly we present the classification problems
and the configuration for the considered approaches (Section
5.1). After that, the study of the obtained results is made in
three mains parts:

1. Subsection 5.2 presents the obtained results in test by the
four aggregation functions, including for each function
the results obtained when the parameter α is fixed to 0.1
as well as when it is genetically learnt.

2. In the Subsection 5.3, we analyze the quality of the ap-
proach by comparing the best CαC-integral versus clas-
sical FRMs and our previous approaches.

3. The analysis of the different values provided by the evo-
lutionary algorithm for the parameter α is presented in
Subsection 5.4.

5.1 Experimental Framework

This study considers 30 datasets selected from the KEEL
dataset repository (Alcalá-Fdez et al. (2009)). The properties
of the datasets, containing for each dataset, the identifier
(Id.), along with the name (Dataset), the number of instances
(#Inst), the number of attributes (#Att) and the number
of classes (#Class) are summarized in Table 4. The magic,
page-blocks, penbased, ring, shuttle, satimage and twonorm
datasets have been stratified sampled at 10% in order to
reduce their size for training. Examples with missing values
have been removed, e.g., in the wisconsin dataset.

As made in Lucca et al. (2016b); Sanz et al. (2013), we
adopt the 5-fold cross-validation model. A dataset is split
in five random partitions, where each partition have 20% of
the examples, and a combination of four of them is used
for training and the remainder one is used for testing. This
process is repeated five times by using a different partition
to test the created system each time. In order to measure the
quality of each partition, the accuracy rate is calculated, that
is, we divide the number of correctly classified examples by
the total number of examples for each partition. Then, as the
final result of the algorithm we consider the average of the
achieved accuracy in these five partitions.

In relation to the features of the classifier FARC-HD, we
consider the standard configuration, that is:

– Conjunction operator: product t-norm.
– Rule weight: Certainty factor.

Table 4 Summary of the properties of the considered datasets

Id. Dataset #Inst #Att #Class
App Appendiciticis 106 7 2
Bal Balance 625 4 3
Ban Banana 5300 2 2
Bnd Bands 365 19 2
Bup Bupa 345 6 2
Cle Cleveland 297 13 5
Eco Ecoli 336 7 8
Gla Glass 214 9 6
Hab Haberman 306 3 2
Ion Ionosphere 351 33 2
Iri Iris 150 4 3
Mag Magic 1,902 10 2
New Newthyroid 215 5 3
Pag Pageblocks 5,472 10 5
Pen Penbased 10,992 16 10
Pho Phoneme 5,404 5 2
Pim Pima 768 8 2
Rin Ring 740 20 2
Sat Satimage 6,435 36 7
Seg Segment 2,310 19 7
Shu Shuttle 58,000 9 7
Spe Spectfheart 267 44 2
Tit Titanic 2,201 3 2
Two Twonorm 740 20 2
Veh Vehicle 846 18 4
Vow Vowel 990 13 11
Win Wine 178 13 3
Wqr Winequality-red 1599 11 11
Wis Wisconsin 683 11 2
Yea Yeast 1,484 8 10

– Five linguistic labels per class.
– Minimum support: 0.05.
– Confidence limit: 0.8.
– Depth of the tree: 3.

Regarding the parameters of the genetic algorithm we
consider the following ones:

– Population size: 50 individuals
– Number of evaluations: 20.000
– Number of bit for each gene in the gray codification: 30

bits.

5.2 Analysis of the results provided by the genetic learning
of the parameter α

This subsection is aimed at analyzing the behavior of the
different functions considered in this study (see Table 3),
using a fixed or a genetically learnt value for the parameter
α in the FRM. We remark that, for the case of the fixed value
for α, the system also applies a genetic algorithm to learn
both the lateral position of the fuzzy sets and the values of
the parameter p of the fuzzy measure. The main objective of
this study is to analyze whether our proposal for tuning the
parameter α worths being applied or not.
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The results achieved in testing by the different CαC-
integrals are presented in Table 5 by columns, in which our
new proposal for tuning the parameter α is underscored by
the tag Gen. In each line, we show the mean of accuracy
obtained in the five partitions of the current dataset in testing,
where, the best global result for each dataset is highlighted
in boldface.

From the results shown in Table 5, it is possible to notice
that the behavior of the different CαC-integrals related to
the four functions with the fixed α value are quite similar
among themselves, having a mean accuracy with no great
differences, except for the function c that provides better re-
sults. However, when using the genetic approach, the results
related to the functions a and d are clearly enhanced whereas
the ones related to the functions b and c remains similar to
those provided when using the fixed values. Specifically, the
CαC-integral related to the function a, with α genetically
learnt (aGen), achieves the greatest mean accuracy among all
functions and approaches.

In fact, this function achieves the best accuracy for 7
datasets whereas the function a, with the α fixed in 0.1,
achieves the best result in only 2 datasets (without consider-
ing ties). If we exclusively compare these methods among
themselves, the function aGen achieves the best accuracy in
18 datasets, while the function a obtains the best result in 10
datasets.

Regarding the function b, the fixed approach achieves the
best result in 2 datasets, while the genetic approach achieves
the best result in 4 datasets. Comparing these methods among
themselves, the function bGen has vantage in 16 datasets, the
fixed α (function b), has the best result in 13 datasets.

The function c having the genetic value learnt to the pa-
rameter α (cGen), is the unique case in this study in which the
achieved accuracy mean is inferior than the fixed one. How-
ever, both functions achieved the best global accuracy mean
in 3 dataset. Comparing these functions among themselves,
the genetic method achieves the best result in 15 dataset,
having the fixed methodology the best result in 13 datasets.
We believe that these functions have a similar behavior since
they are based on the Lukasiewicz t-norm (see Table 1). Con-
sequently, as we aggregate small values, the result of this
function is in general zero, being this function basically rep-
resented by α multiplying the minimum (which can be the
same number in many cases). For this reason, the influence
of α in this function is not very relevant.

Regarding the function d, the genetic approach provides
the largest accuracy mean. In fact, the function dGen has the
second greatest mean in the study. More precisely, it achieves
the best accuracy mean in 5 datasets. The fixed approach
has 2 best global results. Comparing exclusively these two
functions, the dGen achieves a good advantage, since in 20
cases, it obtains a superior accuracy and the function d has
superiority in 8 datasets.

Observing that the genetic methodology to learn the most
suitable value for the parameter α in different functions
achieves the best accuracy in a superior number of datasets
is not enough to confirm that this approach has an advantage
versus the fixed one. In order to support our conclusions we
conduct an statistical study in order to compare each function
against the related genetic approach.

Specifically, we have carried out a set of pair-wise statisti-
cal comparisons using the well-known Wilcoxon signed-rank
test (Wilcoxon (1945)), setting at 0.1 (10%) the level of con-
fidence in all cases. In Table 6, we show the results of these
comparisons, where R+ indicates the ranks achieved by the
functions having a fixed value for the parameter α and theR−

indicates the ranks obtained by the functions that consider
the genetic approach.

From the results obtained in the statistical test, we can
confirm that there are statistical differences between the two
approaches when the functions a and d are considered. In
the remaining cases, there are not statistical differences be-
tween the methodologies. All in all, the obtained ranks are
always superior in favor to the genetic method and the ob-
tained accuracy are also superior when the genetic approach
is considered. Consequently, we conclude that the genetic
approach to learn the parameter α is a good alternative with
respect to the fixed one.

5.3 Analyzing the quality of the CαC-integrals

As presented before, to adopt CαC-integrals in the FRM of
the FARC-HD could be an interesting alternative, since it
achieves satisfactory results. In this subsection, we present
a study to compare the best CαC-integral against several
related methods, namely the FRM of the Winning Rule
(WR) (which uses the maximum as aggregation), the stan-
dard Choquet integral (Cho), the best pre-aggregation func-
tion obtained in Lucca et al. (2016b), which is based on
the Hamacher t-norm, (HamPA), and the best CC-integral
achieved in Lucca et al. (2016c), which is based on the mini-
mum t-norm (CCMin).

In order to test the quality of our approach, we consider
the function aGen as the best representative function of the
CαC-integrals. We have taken into consideration that this
function achieves the best accuracy mean and it also provides
the best result in the largest number of datasets.

We show the results of these approaches by columns
in Table 7, highlighting in boldface the best result for each
dataset. Moreover, we also present a comparison of the CαC-
integral aGen against each method, where #Wins is the num-
ber of datasets in which aGen achieves a superior accuracy
to the compared method, and #Loses represents the opposite
case.

From the obtained results it is noticeable that our ap-
proach is the one that reaches the best global accuracy (80.14).
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Table 5 Accuracy rate achieved in testing for the different CαC-integrals

Dataset a aGen b bGen c cGen d dGen
App 82.16 ± 8.80 84.89 ± 5.25 82.12 ± 5.97 86.75 ± 4.09 84.98 ± 5.84 83.03 ± 7.17 83.07 ± 5.11 80.22 ± 9.06
Bal 81.60 ± 3.58 83.52 ± 1.66 81.28 ± 3.23 81.76 ± 4.29 82.24 ± 2.15 81.44 ± 2.36 81.76 ± 3.17 82.88 ± 3.47
Ban 85.11 ± 1.59 85.85 ± 1.15 85.19 ± 1.01 84.55 ± 1.10 84.83 ± 0.46 85.57 ± 1.75 85.11 ± 1.46 85.34 ± 1.34
Bnd 69.38 ± 8.21 69.93 ± 6.15 69.61 ± 5.63 68.03 ± 5.13 67.15 ± 6.47 67.16 ± 5.03 67.76 ± 5.57 67.77 ± 6.73
Bup 61.16 ± 6.43 64.35 ± 4.30 63.19 ± 6.03 62.90 ± 3.92 63.48 ± 6.01 62.61 ± 4.96 62.03 ± 8.16 62.32 ± 5.02
Cle 56.56 ± 0.70 56.24 ± 4.47 56.24 ± 3.32 56.21 ± 4.52 56.23 ± 2.85 52.85 ± 3.07 56.57 ± 2.65 55.87 ± 5.20
Eco 77.38 ± 6.53 80.67 ± 4.87 75.31 ± 6.15 77.38 ± 7.10 77.98 ± 6.52 78.29 ± 6.28 78.59 ± 6.95 77.98 ± 2.39
Gla 62.61 ± 1.69 66.36 ± 5.07 64.47 ± 5.64 68.19 ± 6.06 65.40 ± 4.32 67.26 ± 3.97 62.15 ± 3.44 64.97 ± 4.17
Hab 72.86 ± 3.32 72.21 ± 2.72 74.51 ± 2.53 71.88 ± 2.83 72.54 ± 2.75 72.22 ± 2.60 72.21 ± 2.17 74.50 ± 3.47
Ion 88.90 ± 5.35 90.03 ± 3.33 88.33 ± 4.60 89.47 ± 4.07 90.31 ± 4.45 88.05 ± 5.35 88.61 ± 2.45 89.75 ± 4.88
Iri 93.33 ± 3.33 94.00 ± 4.35 93.33 ± 4.71 93.33 ± 5.27 94.00 ± 4.35 94.00 ± 4.35 94.00 ± 4.35 93.33 ± 4.08
Mag 79.86 ± 1.74 79.39 ± 2.38 80.23 ± 2.64 80.02 ± 2.45 78.91 ± 3.15 80.39 ± 1.98 79.44 ± 2.39 79.65 ± 2.42
New 93.49 ± 4.47 93.49 ± 3.45 94.42 ± 2.65 92.56 ± 5.04 94.42 ± 4.82 94.42 ± 5.35 94.88 ± 3.03 95.35 ± 2.85
Pag 94.16 ± 1.07 94.34 ± 1.20 93.61 ± 0.67 94.52 ± 1.13 94.16 ± 1.23 93.97 ± 1.06 93.79 ± 2.20 93.79 ± 1.52
Pen 90.91 ± 1.29 91.09 ± 2.05 89.27 ± 1.59 92.09 ± 1.35 91.09 ± 1.59 89.64 ± 3.54 91.18 ± 3.43 90.91 ± 2.27
Pho 80.90 ± 1.05 81.98 ± 1.77 81.05 ± 1.04 82.09 ± 1.06 81.49 ± 1.68 81.85 ± 1.57 82.85 ± 1.24 83.14 ± 0.95
Pim 75.52 ± 2.02 73.17 ± 2.78 73.56 ± 3.22 73.82 ± 2.30 73.82 ± 3.56 74.73 ± 3.96 75.00 ± 2.65 74.60 ± 1.68
Rin 89.05 ± 2.84 89.05 ± 2.26 89.19 ± 2.95 88.78 ± 3.66 90.27 ± 4.42 89.32 ± 4.26 88.65 ± 4.20 89.32 ± 2.41
Sat 79.78 ± 1.21 79.01 ± 1.93 79.16 ± 1.71 78.85 ± 1.43 79.78 ± 1.85 79.31 ± 2.56 78.54 ± 0.49 79.32 ± 2.21
Seg 92.55 ± 0.60 92.34 ± 1.38 91.86 ± 0.64 92.68 ± 1.49 91.65 ± 1.59 92.90 ± 1.36 93.07 ± 1.34 91.95 ± 1.54
Shu 97.20 ± 0.44 97.01 ± 0.76 96.87 ± 0.84 97.01 ± 0.67 96.97 ± 0.79 97.20 ± 0.73 97.29 ± 0.70 97.29 ± 1.06
Spe 76.37 ± 5.56 76.00 ± 5.22 76.38 ± 6.96 77.14 ± 5.42 77.89 ± 2.58 76.36 ± 6.76 77.49 ± 6.79 75.62 ± 6.26
Tit 78.87 ± 1.48 78.87 ± 1.48 78.87 ± 1.48 78.87 ± 1.48 78.87 ± 1.48 78.87 ± 1.48 78.87 ± 1.48 78.87 ± 1.48
Two 83.51 ± 2.97 84.19 ± 2.46 83.24 ± 3.32 84.05 ± 2.51 84.32 ± 1.54 85.54 ± 3.08 84.19 ± 2.81 85.54 ± 2.73
Veh 67.50 ± 3.73 67.50 ± 4.33 67.02 ± 1.11 67.37 ± 4.15 68.32 ± 2.17 68.91 ± 3.61 66.55 ± 0.95 69.98 ± 3.05
Vow 69.09 ± 3.20 69.29 ± 1.76 66.57 ± 1.80 66.87 ± 3.92 66.97 ± 1.62 68.18 ± 2.79 68.28 ± 3.70 68.59 ± 2.12
Win 94.40 ± 4.38 97.19 ± 1.96 96.03 ± 4.77 92.70 ± 4.21 96.57 ± 4.69 96.60 ± 3.70 93.25 ± 5.06 97.76 ± 3.62
Wqr 58.60 ± 2.16 58.60 ± 3.42 59.28 ± 2.84 58.66 ± 2.34 58.91 ± 2.45 58.35 ± 2.48 58.66 ± 1.79 59.22 ± 2.69
Wis 96.34 ± 1.86 96.49 ± 1.58 96.49 ± 1.08 96.49 ± 0.94 95.90 ± 0.97 96.93 ± 0.94 96.49 ± 1.31 96.49 ± 1.30
Yea 55.73 ± 1.96 57.08 ± 2.30 55.79 ± 0.47 55.32 ± 2.73 56.54 ± 1.32 58.49 ± 1.85 55.52 ± 1.84 58.09 ± 1.52
Mean 79.50 ± 3.12 80.14 ± 2.93 79.42 ± 3.02 79.68 ± 3.22 79.87 ± 2.99 79.82 ± 3.33 79.53 ± 3.10 80.01 ± 3.12

Table 6 Wilcoxon Test to compare the two methods to obtain the pa-
rameter α in the copula Cα.

Comparison R+ R− p-value
a vs. aGen 127.5 337.5 0.02
b vs. bGen 188 277 0.33
c vs. cGen 224.5 240.5 0.93
d vs. dGen 147.5 317.5 0.09

Regarding the number of datasets where our new proposal
provides the best or the worst result, we have to stress its
competitive behavior since it provides a larger number of
wins than WR and CCMin, whereas the behavior is similar
when compared with Choquet and HamPA.

In order to support our previous results, we have per-
formed once again a set of pair-wise comparisons using the
Wilcoxon signed-rank test. The obtained results are available
at Table 8, where R+ indicates the ranks obtained by our
approach, aGen, and R− represents the ranks achieved by
the remainder methods.

The obtained results, as expected, demonstrate that our
approach performs similarly to the remainder approaches as
the obtained p-values are high, with the exception of the WR
method, where we can observe a relatively low p-value show-

ing a positive trend in favor to our proposal. Furthermore, it
is possible to observe that the obtained ranks are always su-
perior for our approach, reinforcing the idea that our method
is a new possibility of generalization of the Choquet integral,
presenting competitive results.

5.4 An analysis of the obtained parameter α

This subsection is aimed at analyzing the resulting values
learned for the parameter α in training, considering the 4
distinct functions that are used in the FRM of this study. The
results are available in Table 9, where each column represents
a different function that uses the genetically learnt parameter
α. For each dataset, we show the averaged α value for all
the classes and all the partitions along with the standard
deviation.

Observe that the obtained mean for the functions bGen
and cGen are quite similar, whereas this fact does not occur
for the functions aGen and dGen (these functions are the ones
that have the bests results according to the analysis provided
in the previous subsection). While the functions bGen and
cGen have α around 0.5, the functions aGen and dGen, have α
containing lowers values (close to 0.1 and -0.1, respectively),
being this an interesting topic for future studies.
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Table 7 Accuracy rate achieved in testing for different FRMs

Dataset aGen WR Cho CCMin HamPA
App 84.89 ± 5.25 83.03 ± 8.61 82.12 ± 5.97 83.98 ± 5.33 84.89 ± 4.03
Bal 83.52 ± 1.66 81.92 ± 2.57 84.16 ± 1.99 82.72 ± 2.69 81.92 ± 1.84
Ban 85.85 ± 1.15 83.94 ± 1.05 85.19 ± 2.20 86.09 ± 1.15 84.77 ± 2.03
Bnd 69.93 ± 6.15 69.40 ± 7.75 70.26 ± 7.22 68.87 ± 6.35 70.79 ± 6.99
Bup 64.35 ± 4.30 62.03 ± 5.46 63.77 ± 5.89 62.03 ± 5.74 62.32 ± 5.71
Cle 56.24 ± 4.47 56.91 ± 2.35 54.55 ± 2.57 54.55 ± 4.78 56.90 ± 2.60
Eco 80.67 ± 4.87 75.62 ± 7.37 77.70 ± 5.77 77.69 ± 4.54 78.28 ± 5.71
Gla 66.36 ± 5.07 64.99 ± 5.92 67.75 ± 4.20 65.43 ± 4.41 62.64 ± 4.76
Hab 72.21 ± 2.72 70.89 ± 4.70 72.54 ± 1.96 72.53 ± 3.68 72.54 ± 3.20
Ion 90.03 ± 3.33 90.03 ± 2.84 87.48 ± 4.15 89.18 ± 3.85 89.75 ± 3.91
Iri 94.00 ± 4.35 94.00 ± 4.35 94.00 ± 4.35 94.00 ± 4.35 94.00 ± 4.35
Mag 79.39 ± 2.38 78.60 ± 2.71 80.55 ± 2.02 79.60 ± 1.81 80.33 ± 2.85
New 93.49 ± 3.45 94.88 ± 4.47 93.49 ± 4.47 95.35 ± 4.03 94.42 ± 2.65
Pag 94.34 ± 1.20 94.16 ± 1.06 94.52 ± 1.84 94.34 ± 1.65 94.52 ± 1.32
Pen 91.09 ± 2.05 91.45 ± 2.21 91.09 ± 2.50 91.91 ± 2.24 91.36 ± 2.59
Pho 81.98 ± 1.77 82.29 ± 1.46 82.48 ± 1.45 82.40 ± 1.81 81.53 ± 1.66
Pim 73.17 ± 2.78 74.60 ± 3.55 75.26 ± 2.20 75.39 ± 2.17 74.60 ± 3.97
Rin 89.05 ± 2.26 90.00 ± 2.68 89.46 ± 2.46 90.00 ± 2.80 88.65 ± 2.50
Sat 79.01 ± 1.93 79.63 ± 2.42 78.85 ± 1.88 78.85 ± 0.94 79.62 ± 2.09
Seg 92.34 ± 1.38 93.03 ± 0.87 92.64 ± 1.15 92.12 ± 1.07 92.99 ± 0.86
Shu 97.01 ± 0.76 96.00 ± 1.92 97.15 ± 0.70 96.69 ± 1.32 97.29 ± 0.95
Spe 76.00 ± 5.22 77.90 ± 3.66 77.49 ± 6.79 77.13 ± 5.32 77.15 ± 6.02
Tit 78.87 ± 1.48 78.87 ± 1.48 78.87 ± 1.48 78.87 ± 1.48 78.87 ± 1.48
Two 84.19 ± 2.46 86.49 ± 4.05 85.14 ± 3.02 84.19 ± 3.04 83.78 ± 3.06
Veh 67.50 ± 4.33 66.67 ± 2.18 68.21 ± 1.89 67.14 ± 1.85 68.44 ± 3.31
Vow 69.29 ± 1.76 67.98 ± 3.72 67.78 ± 2.21 68.89 ± 3.81 67.47 ± 3.60
Win 97.19 ± 1.96 96.60 ± 3.14 94.37 ± 2.05 98.30 ± 1.55 96.60 ± 3.70
Wqr 58.60 ± 3.42 59.22 ± 3.51 58.10 ± 1.84 57.66 ± 1.14 58.54 ± 2.08
Wis 96.49 ± 1.58 96.34 ± 1.02 95.61 ± 1.85 97.07 ± 1.16 96.05 ± 1.52
Yea 57.08 ± 2.30 55.32 ± 2.07 56.47 ± 2.28 57.41 ± 1.75 57.07 ± 1.46
Mean 80.14 ± 2.93 79.76 ± 3.37 79.90 ± 3.01 80.01 ± 2.93 79.94 ± 3.09

Table 8 Wilcoxon Test to compare the best CαC-integral versus clas-
sical FRMs

Comparison R+ R− p-value
aGen vs. WR 290 175 0.22
aGen vs. Cho 251.5 213.5 0.55
aGen vs. CCMin 253.5 211.5 0.66
aGen vs. HamPA 248.5 216.5 0.72

Specifically, we can observe that the α’s values for the
function aGen are close to 0.1, which is the best result ac-
cording to Lucca et al. (2015). This may seem that this is a
good starting value and, by performing small variations (as it
can be seen in Table 9), it may result in an enhancement of
the performance, as shown in Table 5. The same conclusion
can be made for the function dGen but, in this case, with
starting point -0.1 instead of using 0.1, since most of the final
values are negative. Finally, the values of the functions bGen
and cGen end up close to half of the allowed range, since it
is (0,1) and the mean value is around 0.5

Figure 1 shows a line graph showing the variation of
the parameter α in the function aGen (since it is the best
performing one) against the fixed approach. The line having
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Fig. 1 Variations of the obtained α in test, considering the function a
and aGen

the great variation correspond to the method aGen, while, the
constant line is the function a.

6 Conclusion

In this paper, we have introduced a genetic approach to learn
the parameter α used in the generalization of the Choquet
integral by the family of copulas defined by a parameter α
(CαC-integral). Moreover, we have constructed the fuzzy
measure by using a novel method in which they are con-
structed based on the information of the system at execution
time. Specifically, we have applied the CαC-integral consid-
ering 4 different copulas in the FRM of FRBCSs.
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Table 9 Values of the parameter α considered in this study for different
functions

Dataset aGen bGen cGen dGen
App -0.16 ±0.05 0.56 ±0.01 0.39 ±0.02 -0.06 ±0.05
Bal 0.20 ±0.03 0.58 ±0.01 0.63 ±0.01 -0.36 ±0.02
Ban 0.51 ±0.00 0.42 ±0.00 0.64 ±0.01 0.38 ±0.01
Bnd -0.03 ±0.03 0.39 ±0.01 0.57 ±0.01 -0.05 ±0.01
Bup -0.34 ±0.01 0.29 ±0.01 0.37 ±0.01 -0.27 ±0.01
Cle 0.08 ±0.06 0.36 ±0.04 0.55 ±0.04 -0.10 ±0.05
Eco 0.02 ±0.07 0.53 ±0.04 0.54 ±0.04 -0.06 ±0.09
Gla 0.03 ±0.09 0.49 ±0.04 0.51 ±0.05 0.06 ±0.09
Hab -0.15 ±0.03 0.45 ±0.01 0.48 ±0.01 0.11 ±0.03
Ion -0.06 ±0.01 0.51 ±0.01 0.42 ±0.01 0.12 ±0.02
Iri -0.26 ±0.04 0.41 ±0.03 0.51 ±0.03 -0.08 ±0.07
Mag 0.12 ±0.01 0.72 ±0.00 0.48 ±0.01 -0.28 ±0.01
New 0.04 ±0.04 0.47 ±0.02 0.47 ±0.03 -0.39 ±0.06
Pag -0.17 ±0.04 0.48 ±0.02 0.53 ±0.02 -0.07 ±0.04
Pen 0.07 ±0.05 0.52 ±0.02 0.51 ±0.02 -0.19 ±0.05
Pho 0.26 ±0.01 0.78 ±0.00 0.68 ±0.00 -0.11 ±0.01
Pim -0.02 ±0.01 0.49 ±0.01 0.59 ±0.01 -0.12 ±0.01
Rin 0.16 ±0.02 0.65 ±0.01 0.49 ±0.01 -0.28 ±0.01
Sat -0.05 ±0.05 0.55 ±0.02 0.54 ±0.03 -0.12 ±0.05
Seg 0.04 ±0.03 0.59 ±0.01 0.51 ±0.01 -0.17 ±0.03
Shu -0.08 ±0.02 0.52 ±0.01 0.49 ±0.01 -0.02 ±0.02
Spe 0.25 ±0.03 0.49 ±0.01 0.50 ±0.02 -0.01 ±0.02
Tit 0.38 ±0.00 0.72 ±0.00 0.68 ±0.00 0.20 ±0.00
Two 0.11 ±0.01 0.61 ±0.00 0.52 ±0.01 -0.81 ±0.01
Veh 0.37 ±0.04 0.68 ±0.01 0.68 ±0.01 -0.24 ±0.03
Vow 0.17 ±0.06 0.62 ±0.03 0.52 ±0.03 -0.07 ±0.04
Win 0.18 ±0.03 0.48 ±0.02 0.47 ±0.03 -0.01 ±0.04
Wqr 0.01 ±0.04 0.57 ±0.02 0.51 ±0.02 -0.02 ±0.04
Wis -0.07 ±0.02 0.37 ±0.01 0.52 ±0.01 -0.16 ±0.01
Yea 0.14 ±0.04 0.54 ±0.02 0.53 ±0.02 -0.11 ±0.04
Mean 0.06 ±0.03 0.53 ±0.02 0.53 ±0.02 -0.11 ±0.03

We highlight that the adopted genetic approach allows
one to conclude that this generalization is statistically su-
perior in half of the functions used, presenting a competi-
tive behavior in all the cases, when compared against the
methodology that uses a fixed value for the parameter α. Fur-
thermore, we compare the quality of this approach against
classical FRMs and it can be concluded that the methodol-
ogy proposed in this work is an alternative to the function
presented by Lucca et al. (2015), since an improvement in
the quality of the new FRM has been found.

Future work in concerned to the study of our generaliza-
tions in an interval-valued context, following the approach in
Bedregal et al. (2009, 2010); Dimuro (2011).
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Alcalá-Fdez J, Sánchez L, Garcı́a S, Jesus M, Ventura S, Garrell J, Otero
J, Romero C, Bacardit J, Rivas V, Fernández J, Herrera F (2009) Keel:
a software tool to assess evolutionary algorithms for data mining
problems. Soft Computing 13(3): 307–318
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