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Abstract

The rising volume of data and its high complex-
ity has brought the need of developing increas-
ingly efficient knowledge extraction techniques,
which demands efficiency both in computational
cost and in accuracy. Most of problems that are
handled by these techniques has complex infor-
mation to be identified. So, machine learning
methods are frequently used, where a variety of
functions can be applied in the different steps that
are employed in their architecture. One of them
is the use of aggregation functions aiming at re-
sizing images. In this context, we introduce a
study of aggregation functions based on the Cho-
quet integral, whose main characteristic in com-
parison with other aggregation functions is that it
considers, through fuzzy measure, the interaction
between the elements to be aggregated. Thus,
our main goal is to present an evaluation study
of the performance of the standard Choquet in-
tegral the and copula-based generalization of the
Choquet integral in relation to the maximum and
mean functions, looking for results that may be
better than the aggregation functions commonly
applied. The results of such comparisons are
promising, when evaluated through image qual-
ity metrics.

Keywords: Choquet integral, Aggregation func-
tions, Image processing.

1 Introduction

Knowledge extraction techniques have received much at-
tention from the research community in the past years, spe-
cially when one considers the rising volume of data and its
increasing complexity. One of the most used techniques in
the context of data extraction is classification [1], in which
some instances have to be organized into predefined cat-
egories according to their features, and applied in various

fields [11, 12, 26, 3], from health to emergency manage-
ment, to name a few.

Image classification is a very common problem in the area
of computer vision, where the main challenges are, for ex-
ample: identifying patterns in images, distinguishing living
beings from objects, labeling acquired images, among oth-
ers. Most of these problems have complex information to
be identified.

These methods use a variety of functions within the differ-
ent steps that are employed in their architectures. One of
them is the use of aggregation functions [13, 6], such as the
maximum and the arithmetic mean [27].

Image reduction technique is commonly used to speed up
processing or to reduce the storage or transmission cost
(see, e.g., [24, 25, 23, 4]). In order to improve the ag-
gregation of meaningful information without degrading its
discriminative power in image processing, Dias et al. [8]
have proposed to replace the maximum and the arithmetic
mean, which are commonly used in the literature for image
reduction, by the Choquet integral [7]. In order to mea-
sure the output image quality, Dias et al. [8] considered the
commonly used measurements found in the literature.

The main objective of this present work is to carry out a
study of the use of an aggregation function defined as a
copula-based generalization of the Choquet integral, called
CC-integrals [18, 19], to reduce the size of an image. This
study is performed by applying a particular instance of a
CC-integral, called CMin-integral [18, 9], to a group of im-
ages, obtaining the results of each image individually. The
results are then compared with the Choquet Integral used
in [8], the maximum and the arithmetic mean. Those com-
parisons of the results are performed through image quality
measure functions [10].

We observe that CMin-integral has presented excellent re-
sults when used in classification problems the literature
(see, e.g., [18, 9]). CMin-integral was also used to build
a multimodal fuzzy fusion-based brain-computer interface
system [17]. Then, we are willing to evaluate if the CMin-
Integral is able to present better results than the Choquet
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integral, the maximum and the mean functions.

This paper is organized as follows. In Section 2, we present
some preliminary concepts, such as the definition of aggre-
gation functions, as well as the definitions of Choquet inte-
gral and the generalisation of the Choquet integral based on
copulae. In Section 3, the proposed method is addressed,
where the process of resizing images by means of aggrega-
tion functions is detailed. The analysis of the experimen-
tal results are presented in Section 4. Finally, Section 5
presents the Conclusion.

2 Preliminary concepts

The process of combining different values and returning a
single value is called aggregation. Formally, the operator
responsible for this task is named an aggregation function
[13]. The input values of an aggregation function can be,
for example: membership degrees of fuzzy sets, weights of
criteria, degrees of preference, etc. It can be applied in sev-
eral areas such as statistics, computer science, mathematics
and economics, to name a few.

Definition 1 An n-ary function A : [0, 1]n → [0, 1] is said
to be an aggregation function if the following conditions
hold:
(A1) Boundary conditions: A(0, . . . , 0) = 0 and
A(1, . . . , 1) = 1.
(A2) Monotonicity: A(x1, . . . , xn) ≤ A(y1, . . . , yn)
whenever xi ≤ yi for all i ∈ {1, ..., n}, i.e., A is non-
decreasing in each argument.

The use of the domain [0, 1]n and codomain [0, 1] to de-
fine the aggregation function aims the fuzzy context, but
any closed interval could be used. The most commonly
used aggregation functions are the maximum, defined by
f(x1, . . . , xn) = max{x1, . . . , xn}, the minimum, defined
by f(x1, . . . , xn) = min{x1, . . . , xn}, and the well known
arithmetic mean function.

Definition 2 [16] An aggregation function T : [0, 1]2 →
[0, 1] is a t-norm if the following conditions hold, for all
x, y, z ∈ [0, 1]:

(T1) Commutativity: T (x, y) = T (y, x);

(T2) Associativity: T (x, T (y, z)) = T (T (x, y), z);

(T3) Neutral element 1: T (x, 1) = x.

One example of t-norm is the minimum defined by
TM (x, y) = min{x, y}.

Copulas are important aggregation functions that link (two-
dimensional) probability distribution functions to their one-
dimensional marginal distributions, playing an important
role in the theory of probabilistic metric spaces and statis-
tics [2].

Definition 3 [2] A bivariate function C : [0, 1]2 → [0, 1]
is a copula if it satisfies the following conditions, for all
x, x′, y, y′ ∈ [0, 1] with x ≤ x′ and y ≤ y′:

(C1) C[x, y] + C[x′, y′] ≥ C[x, y′] + C[x′, y];

(C2) C[x, 0] = C[0, x] = 0;

(C3) C[x, 1] = C[1, x] = x.

One example of copulas is the minimum t-norm TM .

In this work we also consider the Choquet integral [5],
which is an alternative aggregation function considered an
extension of Lebesgue integral. It is defined based on a
fuzzy measure, which can be interpreted in various ways
depending on the context of the problem being addressed.

Within the context of aggregation functions, a fuzzy mea-
sure represents the degree of relation between the elements
being aggregated [5]. Thus, the increasing use of Choquet
integral occurs due to the fact that it considers the relevance
of each attribute to be aggregated and also its interactions.

Definition 4 Let N = {1, ..., n} and 2N be the powerset
of N . A function m : 2N → [0, 1] is a fuzzy measure if, for
all A,B ⊆ N , the following conditions are satisfied:
(m1) Boundary conditions: m(∅) = 0 and m(N) = 1.
(m2) Monotonicity: m(A) ≤ m(B), whenever A ⊆ B.

Definition 5 Let m : 2N → [0, 1] be a fuzzy measure. The
discrete Choquet integral of ~x = (x1, . . . , xn) ∈ [0, 1]n

with respect to the fuzzy measure m is the function Cm :
[0, 1]n → [0, 1], defined by:

Cm(~x) =

n∑
i=1

(
x(i) − x(i−1)

)
·m(A(i)), (1)

where (x(1), . . . , x(n)) is an increasing permutation of ~x,
that is, 0 ≤ x(1) ≤ . . . ≤ x(n), where x(0) = 0, andA(i) =
{(i), . . . , (n)} is the subset of indices corresponding to the
n− i+ 1 largest components of ~x.

The Choquet integral defined as in Eq. (1) satisfies the con-
ditions of Def. 1, and therefore is an aggregation function.
Besides, the Choquet integral can be written in its expanded
form as:

Cm(~x) =

n∑
i=1

(
x(i) ·m(A(i))− x(i−1) ·m(A(i))

)
, (2)

Comparing with other aggregation functions, the main
characteristic of the Choquet integral is that it takes into ac-
count, through the fuzzy measure, the interaction between
the elements to be aggregated. For instance, the maximum
does not consider the relation between the elements and
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disregards important information. In the context of image
processing, the values to be aggregated are pixels that ap-
pear in a window. Therefore, in this sense, the more avail-
able information of the relations between the pixels to be
aggregated, the better will be the output image.

Choquet integral can be generalized by copulas [2], yield-
ing a family of aggregation functions called CC-integrals
[18]. This generalization is constructed by replacing the
product operator of the Choquet integral in its expanded
form, Eq. (2), by a copula.

Definition 6 Let m : 2N → [0, 1] be a fuzzy measure and
let C : [0, 1]2 → [0, 1] be a copula. A discrete Choquet
integral based on copula with respect to the fuzzy measure
m is a function CCm : [0, 1]n → [0, 1], defined by

CCm(~x) =
n∑
i=1

C
(
x(i),m(A(i))

)
− C

(
x(i−1),m(A(i))

)
,

(3)
where (x(1), . . . , x(n)) is an increasing permutation of the
input ~x, i.e., 0 ≤ x(1) ≤ . . . ≤ x(n), with the convention
that x(0) = 0, and A(i) = {(i), . . . , (n)} is the subset of
indices of the n− i+ 1 largest components of ~x.

Note that Eq. (3) satisfies the conditions of Def. 1, and so
CCm is also an aggregation function. Moreover, if we apply
in Eq. (3) the minimum t-norm TM , we obtain:

CTM
m (~x) =

n∑
i=1

(
min{x(i),m(A(i))} −min{x(i−1),m(A(i))}

)
,

(4)
which is known as the CMin-integral.

In this work we adopt as fuzzy measure, the power measure
defined by:

mP (A) =

(
|A|
n

)q
, where q > 0. (5)

The value of q can be defined by an expert or be determined
by a genetic algorithm which is able to determine the best
value for q according to the problem being addressed.[21,
20, 18]

3 Proposed method

It is shown in Figure 1 the process of input of an original
image up to its modified output. It is depicted the resizing
process of the image, i.e., a reduction by means of an aggre-
gation function (in this case, the standard Choquet integral,
Eq. (1) with the power measure as in Eq. (5), considering
q = 0.5). As can see in in Figure 1 to carry out the process
the input of a 4 × 4 image, regarding 2 × 2 windows, that
is, 4 pixels by window with stride 2.

Under this setting, the Choquet integral is applied on each
one of the four image windows, generating a reduced im-
age (a single value) in comparison with the input image,

where now each of the four windows presents a pixel. In
this way, the resulting aggregated image becomes a 2 × 2
image, where the yellow, green, blue and pink parts of the
original image (reduced image by aggregation in Fig. 1)
becomes single values.

Figure 1: Process steps: input and output of an image using
maximum aggregation function

Then, in order to return to the same size of the input image,
the resize step is applied after the aggregation step. The
purpose of doing that is to make possible the use of qual-
ity measures to make comparisons between the input image
with the output image, which needs to be into the same di-
mension. We used the nearest function in Matlab software.
We observe that this resizing method is not the best one that
may be found in the literature, such as image magnification
using interval information [15]. However, since the resiz-
ing is not the focus of this work, we decided to use it due
to its simplicity.

After this process, the quality measures can be applied.
In this work we used seven of those [10], namely: Av-
erage Difference (AD ≤ 0), Structural Content (SC↓),
Normalized Cross-Correlation (NK↑), Maximum Differ-
ence (MD↓), Normalized Absolute Error (NAE↓ ), Mean
Squared Error (MSE↓) and Peak Signal to Noise Ratio
(PSNR↑).

These measures aim at calculating up to what extent the
output image is close/similar to the input image. The ↑ ar-
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row denotes that the higher the value, the better the quality.
The ↓ arrow denotes that the lower the value, the better the
quality of the output image.

Let an image be of size M × N , where M is the number
of rows and N the number of columns. Besides, let P (i, j)
represent the original image and let P̂ (i, j) represent the
modified image (resized). The different quality metrics are
defined as follows:

AD =
1

MN

M∑
i=1

N∑
j=1

(
P (i, j)− P̂ (i, j)

)
, (6)

SC =

M∑
i=1

N∑
j=1

(P (i, j))
2

M∑
i=1

N∑
j=1

(
P̂ (i, j)

)2 , (7)

NK =

M∑
i=1

N∑
j=1

(
P (i, j)× P̂ (i, j)

)
M∑
i=1

N∑
j=1

(P (i, j))
2

, (8)

MD = max |P (i, j)− P̂ (i, j)|,
for i ∈ {1, . . . ,M} and j ∈ {1, . . . , N}.

(9)

NAE =

M∑
i=1

N∑
j=1

|O (P (i, j))−O(P̂ (i, j))|

M∑
i=1

N∑
j=1

|O (P (i, j)) |
, (10)

MSE =
1

MN

M∑
i=1

N∑
j=1

(
P (i, j)− P̂ (i, j)

)2
, (11)

PSNR = 10 log10
(2n − 1)

2

√
MSE

, (12)

At last, quality measures are used and then hypothesis tests
are applied in order to obtain a statistical analysis of the
results. Non-parametric tests were used, since there is no
guarantee of the normality and homocedasticity of data.

The non-parametric Friedman test [14] is applied to point
out statistical differences between a group of results, that
is, between the aggregation functions used. After confirm-
ing the existence of differences between groups, a post hoc
test is performed to verify in which groups there are such
differences. In order to do that, the Wilcoxon [28] non-
parametric paired test was used. The significance level con-
sidered for the hypothesis tests was 0.05.

4 Results and discussion

In Tables 2, 3, 4, 5, 6, 7 and 8 we find some results of each
image quality measure. The table contains the results of the
averages. The ones in blue color are the results for those
functions based on Choquet integral, on the other hand in
red color we have the results for functions commonly used
in the literature and in boldface, the best aggregation func-
tions of each type are given.

Twelve images were randomly chosen from IIIT 5K-Word
dataset [22] in order to compare the following aggregation
fuctions: maximum, arithmetic mean, standard Choquet in-
tegral and CMin-integral, Eq. (1) and Eq. (4), respectively,
both using fuzzy power measure from Eq. (5).

For each of those twelve images, experiments were per-
formed considering 2 × 2, 3 × 3 and 4 × 4 windows, and
strides 2 and 3. Using different sizes for windows and
stride permits to capture interaction features between mul-
tiple windows. Besides, the q parameter from Eq. (5) was
varied considering the following values: q = 0.1, q = 0.3,
q = 0.5 and q = 0.7.

In this way, each input image generated 24 output images,
one for each distinct combination of the window settings,
stride and exponent of the fuzzy measure. Then, seven
quality measures were applied, namely: AD ≤ 0, SC↓,
NK↑, MD↓, NAE↓, MSE↓ and PSNR↑, which compared
each output image with the input image.

Table 1 shows an extract of the complete data table of the
measure AD ≤ 0, in order to illustrate how the data are
organized to perform the analysis.

Table 1: Results for AD quality measure (result must be
equal to or close to zero)

Imagem Stride q W Cm CTM
m Max Mean

127 1 2 0.1 2 -3.5849 -6.8215 -8.6169 -0.1210
127 2 2 0.1 2 -4.2975 -5.7222 -11.4236 -0.1309
127 3 2 0.1 2 -13.758 -21.0464 -6.4345 -0.1191
138 4 2 0.1 2 -32.0959 -41.1846 -14.263 -0.1245
138 5 2 0.1 2 -30.451 -38.3909 -16.3074 -0.1319
138 6 2 0.1 2 -26.337 -36.7698 -15.1768 -0.1313
159 1 2 0.1 2 3.0724 22.473 -20.9338 -1.0202
161 1 2 0.1 2 -15.1256 -9.4365 -15.9019 -0.1277
161 2 2 0.1 2 -13.2427 -5.0373 -15.4228 -0.1258
52 1 2 0.1 2 -15.7669 4.5155 -30.7347 -0.4167
52 2 2 0.1 2 -27.9197 -10.2939 -33.6188 -0.6948
52 3 2 0.1 2 -14.6652 -4.7945 -18.5452 -1.1326

It was possible to observe that the functions of maximum
and integral aggregation of standard Choquet integral ob-
tained better means for the AD ≤ 0 quality measures Ta-
ble (2), NK↑ Table (6), SC↓ Table (4) e MD↓ Table (3).
Since the null hypothesis of the Friedman test was rejected
for quality measures, that is, there are statistical differences
between the aggregation functions applied in each measure
of quality.

The post-hoc test applied in each of measures quality AD
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≤ 0, NK↑, SC↓ and MD↓ indicated that only for NK↑ the
maximum function and standard Choquet integral do not
present significant differences. In view of this it can be
concluded that, statistically, the two functions that obtained
the best results for AD, NK↑, SC↓ e MD↓ quality measures
are different and presented superior results in relation to the
mean and CMin-integral.

In the other side, for PSNR↑ Table (8), NAE↓ Table (5) and
MSE↓ Table (7) the means of each aggregation function
showed the best results for the mean and CMin-Integral.
Applying the Friedman test, the null hypothesis was re-
jected for the PSNR↑, NAE↓ and MSE↓ measures. That
is, there are also statistical differences between the aggre-
gation functions for each of these measures. The Wilcoxon
paired test applied to each of the PSNR↑, NAE↓ e MSE↓
measures indicate that there are statistical differences be-
tween all aggregation functions for quality measures named
PSNR↑, NAE↓ and MSE↓.

It can be observed that for AD ≤ 0, NK↑, SC↓ and MD↓
measures the two best functions were the maximum and
the standard Choquet integral. Alternatively, for PSNR↑,
NAE↓ and MSE↓measures the two best functions were the
mean and CMin-Integral.

Table 2: Averages of the AD ≤ 0 Image Quality Measure-
ments for each aggregation function

AD ≤ 0
Cm CTM

m Max Mean
-23.0636 -18.5387 -28.1740 1.4930

Table 3: Image Quality Measurement Averages MD ↓ for
each aggregation function.

MD↓
Cm CTM

m Max Mean
164.9444 188.4722 134.3056 182.6667

Table 4: Image Quality Measurement Means SC ↓ for each
aggregation function.

SC↓
Cm CTM

m Max Mean
0.7477 0.8267 0.7181 1.0961

On the other hand, for the quality measures: PSNR↑, NAE↓
and MSE↓, the averages of each aggregation function pre-
sented better results for the mean and CMin-Integral. Ap-
plying the Friedman test, the null hypothesis was rejected
for PSNR↑, NAE↓ and MSE↓ measures. Therefore, there
are also statistical differences between the aggregation

Table 5: Averages of the Image Quality Measures NAE ↓
for each aggregation function.

NAE↓
Cm CTM

m Max Mean
0.3436 0.3372 0.3489 0.1990

Table 6: Averages of Image Quality Measures NK↑ for
each aggregation function.

NK↑
Cm CTM

m Max Mean
1.1036 1.0627 1.1167 0.9127

Table 7: MSE ↓ Image Quality Measurement Means for
each aggregation function.

MSE↓
Cm CTM

m Max Mean
3069.48 2581.10 4103.56 1493.59

Table 8: Averages of the Image Quality Measures PSNR ↓
for each aggregation function.

PSNR↓
Cm CTM

m Max Mean
14.1419 14.5344 13.2301 17.2187

functions for each of those quality measures. Wilcoxon
paired test applied in each of the PSNR↑, NAE↓ and MSE↓
measures, indicates that there are statistical differences be-
tween all the aggregation operators for PSNR↑, NAE↓ and
MSE↓.

An interesting result is that, on one hand, it can be observed
that for AD ≤ 0, NK↑, SC↓ and MD↓ the best functions
were the maximum and standard Choquet integral. While
for PSNR↑, NAE↓ and MSE↓, the results were better for
the mean and CMin-Integral.

Figures 3 and 4 show the original input image and output
image after applying each of the aggregation functions con-
sidering 2 × 2 window, stride 2 and q = 0.5. The values
for the images, where it were applied the maximum and
Choquet integral, in most cases were closer in comparison
with the results from the mean and CMin-Integral, as seen
in the tests. However, it is possible to verify visual differ-
ences on the integrity of the resulting images compared to
the original input image.

In both Fig. 3 and Fig. 4 we observe that, for instance, the
image of the maximum despite showing good results in the
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Input

Max Choquet− integral

Mean CMin− Integral

Figure 2: Maximum, mean, Choquet integral and CMin-
Integral results obtained through experiments applied to
one of the images from the IIIT 5K-Word dataset called
138 6 (after the resizing process). The parameters used
were: window size = 4 × 4, stride = 2 and exponent of
the fuzzy measure = 0.7

Input

Max Choquet− integral

Mean CMin− Integral

Figure 3: Maximum, mean, Choquet integral and CMin-
Integral results obtained through experiments applied to
one of the images from the IIIT 5K-Word dataset called
138 4 (after the resizing process). The parameters used
were: window size = 2 × 2, stride = 2 and exponent of
the fuzzy measure = 0.1

quality measures, is notably not so similar to the original
image, as the edges are more jagged.

5 Conclusion

The process illustrated in Figure 1 is classic in the litera-
ture, only changing the sizes of windows and strides. The
novelty of this paper was to present aggregation functions
based on Choquet integral as an alternative from the classic
ones, namely the maximum and mean functions.

The results of applying the Choquet integral to resizing im-
ages were shown to be good. It was possible to observe that
the standard Choquet integral function has similar results to
the maximum, and the CMin-Integral has similar results to
the mean function. We also observed that Choquet inte-
gral aggregation function presented good quality of images
maintaining the integrity of the original input image. That
is, it was capable of minimizing the issues of jagged edges,
despite not being the most similar to the original input im-
age, as shown by the quality measures.

There is also the possibility of refining the results, in a way
that the q parameter used in the Choquet integral in relation
to the fuzzy power measure can be learned by an algorithm,
such as a neural network or a genetic algorithm, providing
better results. This is still ongoing work.

Future works include also the use of other functions such
as the pre-aggregation function presented in [21] and [20]
in order to refine the choice of the q parameter.
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