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 

Abstract— This work presents a new sensor system for vibration 

and relative humidity measurements based on its interaction with 

the evanescent field of a microwire. The interrogation of the 

sensing head is carried out by monitoring the fast Fourier 

transform phase of one of the FFT peaks of the microwire 

transmission signal. This technique is not dependent of the signal 

amplitude and also eludes the requisite of tracking the wavelength 

evolution in the spectrum, which can be a handicap when there are 

multiple interference frequency components with different 

sensitivities. The point sensor is able to measure a wide humidity 

range (20%–70% relative humidity) with a maximum sensitivity 

reached of 0.14πrad/% relative humidity. This microwire sensor is 

also operated within a frequency range from 320 to 1300 Hz with 

a sensitivity of around 0.0051 nm-1/Hz. Finally, due to the system 

uses an optical interrogator as unique active element, the system 

presents a cost-effective feature. 

Index Terms— fast Fourier transform, humidity sensor, 

vibration sensor, simultaneous measurement, nanosensors, 

microwires, relative humidity. 

I. INTRODUCTION

HE use of micro/nanowires has been growing steadily

over the last years. They are usually manufactured by the 

flame-brushing technique [1] where an optical fiber is heated 

and pulled to monotonically reduce its diameter to the range of 

the propagated wavelength. Therefore, tapered optical fibers 

with a uniform waist in the micro/nanometer range can be 

obtained [2]. Furthermore, a precise control of the taper profile 

is achieved through the pulling rate parameters. The optical 

properties of these devices include a large evanescent field, 

which is particularly important for optical sensing. Thus, the 

interaction of such strong evanescent field with the surrounding 

medium can be measured through changes in either intensity or 

phase of the transmitted light [3]. 

These kinds of nanostructures, such as nanotubes, 

nanoribbons or nanowires, have been used as physical, 
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chemical or biological sensors [4]-[7]. Optical sensor systems 

offer great potential for immunity to electromagnetic 

interference, high sensitivity, fast response, and safe operation 

in dangerous atmosphere (explosive and combustive areas). In 

addition to this, they offer a great number of choices for signal 

retrieval from different parameters such as intensity, spectrum, 

polarization, or phase of the measured light [8]. 

Fiber-optic vibration sensors can be classified in three main 

types: intensity [9]-[12], interferometers [13]-[18], and gratings 

[19]-[23] based sensors. In areas such as tribology [24], [25] 

and structural health monitoring [26], humidity and vibration 

measurement are essential issues. Simultaneous measurement 

of these parameters can significantly decrease the cost and 

complexity of currently sensing systems [27]. 

   Intensity-based sensors have been extensively employed due 

to the fact that they can be used to detect vibrations just by 

monitoring the power variations [28]. This type of sensors also 

offer low cost and are easily produced, however the 

measurement accuracy is limited. Interferometric sensors, such 

as Fabry–Perot, Mach–Zehnder, or Michelson interferometers, 

provide much higher resolution and accuracy, but its 

construction is a complex process.  

 In this work, a new method for simultaneous measurement of 

relative humidity (RH) and mechanical vibration is presented. 

This method is based on the fast Fourier transform (FFT) of the 

microwire optical power transmission spectrum. For the RH 

measurement, the evolution of the phase of one interference is 

measured [29], and on the other hand, for the vibration 

measurements, the special frequency value for the interference 

is tracked. Both measurement process are insensitive to the 

signal amplitude variations, increasing the robustness of the 

system. 

   This technique also avoids the necessity of tracking the 

wavelength evolution in the spectrum simplifying the 

measurements. In addition, the system uses an optical 

interrogator as unique active element, presenting a cost-
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effective feature (in comparison with the economic cost of a 

classic interferometric interrogation setup). 

II. OPERATION PRINCIPLE AND EXPERIMENTAL SETUP 

The manufacture of the microwires has been done by the 

flame-brushing procedure as shown in [28]. Following this 

procedure, a standard optical fiber (single-mode standard 

Corning SMF-28) has been tapered from its nominal outer 

diameter of 125µm until get an adiabatic taper 4µm uniform 

waist diameter that means a tapering ratio of 31.25.  

The transition between the unperturbed optical fiber and the 

uniform waist is exponential. With this system, a uniform waist 

around 20mm length for total taper length of about 110mm is 

fabricated in a single step. Afterwards, the microwire has been 

carefully fixed on a semi-rigid cylindrical substrate for easy 

handling purposes. This microwire renders a λ/r value of 0.775 

with a normalized frequency V of about 8.4 as is was previously 

carried out in [29]. Even with these relative high values, the 

evanescent filed is strong enough to interact with the outer 

medium. 

 

Fig. 1. Schematic illustration of the microwire for RH and mechanical vibration 

sensor and its disposition with the substrate. 

 

As schematically illustrates Fig. 1, the fiber taper drawn from 

a single-mode fiber (SMF) with a diameter of 4µm and a 

nanowire length of about 20mm has been used as sensor. Due 

to the fact that this microwire has been developed only by using 

SMF there is no need of making any splices. With the help of 

nanoscale optical fiber tapers, the light is efficiently launched 

into and picked up from the single microwire using evanescent 

field interaction [4], [30]. In addition to this, it was not needed 

any kind of chemical coating to develop the sensor´s sensitivity. 

This nanowires used as point vibration sensors could be 

multiplexed along a network through the FFT analysis. In this 

work, the microwire sensors are employed as transducers to 

measure mechanical vibrations. 

Fig. 2 illustrates the experimental set up of the proposed 

microwire for RH and mechanical vibration sensing system. As 

it was presented in [29] a commercial interrogating sensor 

device was used to illuminate the network and also to analyze 

the spectrum of the signal guided through the microwire sensor. 

This equipment was originally commercialized for FBG sensors 

monitoring and allows us to interrogate sensors in real time 

(scan frequency of 1Hz) [31]. An optical circulator was 

employed to couple the light towards the sensing unit. This 

sensor unit was inserted into a humidity chamber where 

humidity ranges from 20% to 70% (at constant temperature) 

were applied to evaluate its response to this parameter. 

  The experimental set up of the proposed microwire for 

mechanical vibration sensing system is shown in Fig. 3. 

 

Fig. 2. Experimental setup of the proposed humidity sensor system. 

 

A variable frequency mechanical wave driver was employed 

to induce transversal vibration on the sensing fiber as can be 

seen in Fig. 3. This device allows to create a continuous 

sinusoidal vibration between 0.1 Hz and 5 kHz with an 

amplitude of 7 mm for a vibration of 1Hz and decreasing with 

increasing the frequency. 

 

 

 
Fig. 3. Experimental set up for mechanical vibration measurements. 

 

III. EXPERIMENTAL RESULTS 

A. Relative Humidity sensor 

In order to verify the proper operation of the sensing head, 

Ltrans=44.57mm

ᴓ=4µm

SMF SMFLw=19.9mm
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the humidity-sensing performance of the nanowire in the 

atmosphere of different RHs at room temperature (about 25ºC) 

was experimentally carried out. Fig. 4 (a) shows the 

transmission spectrum of the sensing head which presents 

different frequency components due to the multiple modes 

interference. 

  

 
Fig. 4. (a) Optical transmission spectrum of the sensor at 25ºC and 20% 
humidity, and (b) its fast Fourier transform spectrum. 

 

As it was presented in [29], performing the FFT analysis to 

the optical spectrum interference and tracking the evolution of 

the FFT phase (directly related to wavelength shifts of the 

optical spectrum), it avoids the need of tracking the spectrum 

displacement with the measurement. Fig. 4 (b) shows the FFT 

of the microwire transmission spectrum. This figure evidences 

three frequency components f1, f2 and f3 which corresponds 

with 0.25 nm-1, 0.5 nm-1 and 1.25 nm-1, respectively. The three 

frequency components phase evolution were characterized in 

order to determinate their sensitivities to the RH. 

The characterization was carried out by using a climatic 

chamber in the humidity range from 20% to 70%, 25ºC constant 

temperature, and taking samples each minute for about 3 hours. 

Fig. 5 shows the evolution of the phase of each frequency 

interference with humidity. In this figure, f3 presents the 

maximum phase sensitivity and range, followed by f2. 

However, f1 presents a behavior that can’t be used for 

measuring. The sensitivity of f2 and f3 was about 0.045 

rad/%humidity and 0.14 rad/%humidity, respectively. 

 
Fig. 5. Representation of the phase shift of each frequency component as a 

function of humidity. 

The sensor response presented a hysteresis effect (see Fig. 5) 

observed at high humidity in the descent cycle (the climatic 

chamber uses a digital humidity probe to check the real 

humidity value). This is due to part of the water molecules are 

trapped in the porous surface of the cardboard substrate used 

during the fabrication process for a longer time than in the 

chamber´s atmosphere. This effect could be minimized only by 

using another kind of hydrophobic substrates in the fabrication 

process. 

The stability of the system was also analyzed. The phase 

variations of frequencies f2 and f3, were tested during 20 

minutes for a 30% RH and 22ºC, showing an instability of 

around 0.007π rad and 0.012π rad in that order, as Fig. 6 

illustrates.  
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Fig. 6. Phase fluctuations of frequencies f2 (a) and f3 (b) along 20 minutes for a 

30% RH and 22ºC. 

 

B. Mechanical vibration sensor 

   Mechanical vibration sensors using fiber-optic tapers as 

transducers, are usually based on the detection of power 

variations generated by the bending change radius [32]. 

However, in this work, the analysis of the vibration is carried 

out by using the relation between the vibrations with the 

position of the peaks in the FFT module. Fig. 7 illustrates four 

examples of these peaks in the FFT module due to the vibration 

induced by a mechanical shaker. As it can be seen, these spatial 

frequencies do not overlap with the intrinsic nanowire peaks (in 

the frequency range 300-1300Hz). Those nanowire intrinsic 

peaks appear due to the mode beat of the fiber and are located 

at lower spatial frequencies (below 1.5 nm-1) than the peaks 

which correspond to external vibration (over 1.5 nm-1). 

 
Fig. 7. FFT magnitude peaks for 470 Hz, 700Hz, 860 Hz and 1010 Hz induced 

sinusoidal vibration. 

 

   The spatial frequency position (maximum peak) for each 

vibration frequency in the range of 320 Hz – 1300 Hz was 

carried out. As Fig. 8 illustrates, the peak position presents a 

linear behavior with the vibration frequency with a sensitivity 

of 0.0051 nm-1/Hz. The sensor system was tested in conditions 

of 42% RH and constant 24ºC. 

 

 
 

Fig. 8. Characterization of the spatial frequency peaks location with the 

vibration frequency. 
 

C. Simultaneous RH and vibration sensor 

   A characterization of the sensor system as a simultaneous 

sensor for RH and vibration was carried out. The fringe 

characterization depends on the parameter to be measured: for 

RH the study was focused on the peak f3 located at 1.25nm-1 

(see Fig. 4 (b)) by following its FFT phase. Likewise, as can be 

seen in Fig. 7, new FFT peaks appear when vibration is applied 

to the sensor. As it will be shown, vibration frequency shifts can 

be easily evaluated by following those new peaks. For the 

characterization as simultaneous sensor, the crosstalk between 

peaks was experimentally analyzed. Fig. 9 shows the phase 

stability of f3 at 40% RH with vibrations ranged 300 Hz – 1300 

Hz with 100 Hz steps between them. Ten measurements were 

attained for each vibration frequency, obtaining a phase 

instability of 0.006π rad in the worst scenario. 

 
Fig. 9. f3 component phase stability (40% RH) for different vibration 
frequencies. 

 

   In order to test the crosstalk with constant frequency vibration 

and variable RH the system was introduced inside the climatic 

chamber to induce variable-controlled RH changes. In Fig. 10 

the results of the crosstalk are shown. The independence 

between measures of RH and vibration is probed. Applying RH 

variations from 20% to 70% with 10% steps a stability of 

0.0125 nm-1 was achieved. This instability is given by the 

interrogating sensor device resolution. 
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Fig. 10. Spatial frequency stability for a 470 Hz vibration frequency with 

variable RH. 

IV. CONCLUSIONS 

To summarize, a new sensor system for relative humidity and 

mechanical vibration measurements based on its interaction 

with the evanescent field of a microwire has been proposed and 

experimentally demonstrated. It has been experimentally 

demonstrated that this sensor is able to measure mechanical 

vibration regardless of the relative humidity and vice versa. The 

interrogation of the sensing head for RH measurements has 

been carried out by monitoring the FFT phase variations of one 

of the microwire interference frequencies. This method is 

independent of the signal amplitude and also avoids the 

necessity of tracking the wavelength evolution of the spectrum, 

which can be a handicap when there are multiple interference 

frequency components with different sensitivities. The sensor 

has been operated within a wide humidity range (20%–70% 

RH) with a maximum sensitivity achieved of 0.14rad/% RH. 

For mechanical vibration measurements another technique, 

based on the generation and tracking of new FFT peaks when 

mechanical vibration is applied, has been used. A linear 

response, with a sensitivity of 0.0051 nm-1/Hz, has been 

experimentally obtained when this microwire was made to 

operate in the range of 320 Hz – 1300Hz. 

The feasibility of simultaneous of RH and mechanical 

vibration measurement with resolutions of 0.006π rad and 

0.0125 nm-1, respectively have been attained. To conclude, due 

to the system uses a commercial optical interrogator as unique 

active element, the system presents a cost-effective feature. 
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