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English 

 

According to the World Health Organization, the key goal of health systems is to 

improve the average level of the population health and to reduce health inequalities in 

the population. In order to realise this goal, health system decision-makers need to 

decide which health technologies to invest in and which not to. Health technology 

assessment (HTA) provides a framework for decision-makers to make resource 

allocation and priority setting decisions based on the existing evidence. Considering the 

increasingly tight healthcare budgets and the rich pipeline of high-cost, innovative drugs 

very likely coming to market in the next few years, it is crucial that a robust and 

transparent HTA process be undertaken to assess these drugs, evaluating all aspects of 

the disease and treatment and involving all stakeholders affected. We conducted three 

standalone projects analysing different aspects of recently launched innovative drugs. In 

our first study, we combined high-quality sources of evidence, both from the real-world 

and randomised controlled trials, to evaluate the cost-effectiveness of carfilzomib for 

treating multiple myeloma patients. By harnessing the power of these data sources, we 

demonstrated that the reimbursement of carfilzomib is likely to represent an efficient 

allocation of existing resources. Despite the availability of good sources of evidence, 

the real-world distribution and use of innovative drugs may not be efficient nor fair, and 

this is what we demonstrated with our two other studies. Firstly, we showed that 

significant inequalities exist in the distribution of anti-osteoporosis drugs in primary 

care in England. The most striking case was that of denosumab, a high-cost innovative 

treatment, with prescriptions disproportionately concentrated among the least deprived. 

Substantial inequalities also exist in the use of insulin glargine biosimilars in primary 

care in England, even though guidelines and initiatives to promote the use of biosimilars 

have been put in place. In this study we observed that the real-world savings realised 

from the use of insulin glargine biosimilars represents a small proportion compared with 

what could have been achieved should their uptake had been higher. The results of these 

two studies, therefore, show that resource allocation may not be efficient nor fair in the 

real world, and similar situations are likely to exist in other disease areas. In summary, 

even though in many cases ample evidence exists to assist healthcare authorities making 

resource allocation decisions, we have demonstrated that resource allocation in the real 

world may not be optimal. We hope that our results provide useful insights so that 

healthcare authorities, in England but also in other countries, adopt measures that ensure 

the key objective of our healthcare systems is achieved: to improve the average level of 

the population health and to reduce health inequalities in the population. 
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Euskara 

 

Munduko Osasun Erakundearen arabera, osasun-sistemen helburu nagusia 

populazioaren batazbesteko osasun maila hobetu eta osasun-desparekotasunak 

murriztea da. Helburu hau betetzeko osasun-sistemako erabakitzaileek zein osasun 

teknologiatan inbertitu eta zeinetan ez erabaki behar dute. Honela, osasun teknologien 

ebaluazioa (OTE) deritzonak, existitzen diren datu eta ebidentzia erabilita, baliabideak 

esleitu eta lehentasunak ezartzeko metodologia eskaintzen du. Osasungintzarako 

aurrekontu murritzak eta datozen urteetan merkaturatuko diren kostu altuko sendagaien 

kopuru esanguratsua kontuan harturik, OTErako prozesu sendo eta gardenak izatea 

garrantzi handikoa da, kostu altuko sendagai hauen inguruko alderdi guztiak ondo 

aztertu eta interes-talde guztien ikuspuntuak aintzat hartzen dituena. Berriki 

merkaturatutako sendagaien inguruko hiru proiektu burutu dugu lan honetan, OTEaren 

alderdi desberdinak uztartuz. Lehenik, kalitate altuko informazio-iturri desberdinak 

konbinatuz (entsegu kliniko aleatorioak [EKA] eta mundu errealeko ebidentzia [MEE]), 

mieloma anizkuna tratatzeko karfilzomib erabiltzearen kostu-eraginkortasuna aztertu 

dugu. Bi informazio-iturri hauen indarra baliatuta, karfilzomib erabiltzea eskuragai 

dauden baliabideen esleipen egokia izan litekeela erakutsi dugu. Informazio-iturri 

egokiak izanda ere, litekeena da sendagai berritzaile hauek populazioari modu ez-

eraginkor eta zuzengabean eskaintzea, eta hau da hain zuzen ere beste bi ikerketekin 

ikusi duguna.  Lehenik, Ingalaterran osteoporosia tratatzeko sendagaien preskripzio-

mailan desparekotasun esanguratsuak existitzen direla frogatu dugu. Desparekotasun 

hauek bereziki adierazgarriak dira denosumaben kasuan, kostu altuko sendagai 

berritzailea, zeinen preskripzio mailarik altuenak gabezia edo beharrik baxuena duten 

eskualdeetan biltzen diren. Bigarrenik, desparekotasun esanguratsuak ere existitzen dira 

insulina glarginaren biosimilarren erabilera mailan Ingalaterran, hauek sustatzeko gidak 

eta ekimenak izan badira ere. Honi lotuta, frogatu egin dugu insulina glarginaren 

biosimilarrak erabiltzearen ondorioz aurreztutako diru kantitatea erabilpen zabalago 

batekin aurrez litekeenaren proportzio txiki bat besterik ez dela. Bi ikerketa hauen 

emaitzen arabera, beraz, litekeena da baliabideen esleipena ez-eraginkorra eta ez-justua 

izatea, eta baliteke antzeko egoerak osasungintzako beste zeinbait alorretan existitzea. 

Laburbilduz, kasu askotan ebidentzia-maila zabala izan arren praktikan ikusitako 

baliabideen esleeipena ez-optimoa da. Emaitza hauen laguntzaz espero dugu, bai 

Ingalaterran baita gainontzeko herrialdeetan ere, agintariek gure osasun-sistemen 

helburu nagusia betetzeko beharrezko diren neurriak hartzea, honela populazioaren 

osasuna hobetu eta desparekotasun egoerak ekiditeko. 
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Castellano 

 

Según la Organización Mundial de la Salud, el objetivo primordial de los sistemas de 

salud es mejorar el nivel medio de salud de la población y reducir las desigualdades 

relacionadas con la salud. Para cumplir este objetivo los decisores deben decidir en qué 

tecnologías sanitarias invertir y en cuáles no. La evaluación de tecnologías sanitarias 

(ETS) ofrece un marco de trabajo para que los decisores asignen los recursos disponibles 

y establezcan prioridades en base a la evidencia existente. Teniendo en consideración 

los presupuestos cada vez más ajustados y la cantidad de terapias innovadoras de alto 

coste que probablemente se lanzarán en los próximos años, es necesario llevar a cabo 

procesos de ETS robustos y transparentes que valoren todos los aspectos de la 

enfermedad y considere los puntos de vista de todos los grupos de interés. Así, hemos 

llevado a cabo tres proyectos para analizar distintos aspectos relacionados con 

medicamentos innovadores que se han lanzado al mercado recientemente. En el primer 

estudio combinamos fuentes de información de alta calidad, tanto del mundo real como 

de ensayos clínicos aleatorios, para evaluar el coste-efectividad de carfilzomib en el 

tratamiento de pacientes de mieloma multiple. Haciendo uso del potencial de cada una 

de estas fuentes, demostramos que el reembolso de carfilzomib representa, 

probablemente, una asignación de recursos eficiente. A pesar de la existencia de fuentes 

de información de buena calidad, la distribución y uso de los medicamentos innovadores 

en el mundo real puede no ser ni eficiente ni justo, y esto es precisamente lo que 

demostramos en los dos estudios posteriores. En el primero vimos que existen 

desigualdades significativas en la distribución de medicamentos para la osteoporosis en 

Inglaterra. El caso más llamativo es el de denosumab, un medicamento innovador de 

alto coste, cuyas prescripciones se concentran de forma desproporcionada entre la 

población menos desfavorecida. También demostramos la existencia desigualdades 

importantes en el uso de biosimilares de insulina glargina (también en atención primaria 

en Inglaterra), a pesar de que se hayan desarrollado guías e iniciativas para promover el 

uso de biosimilares. En este estudio observamos que los ahorros generados debido al 

uso de biosimilares de insulina glargina representa únicamente una proporción pequeña 

respecto a lo que el sistema de salud podría haber ahorrado si el uso de biosimilares fuse 

mayor. Los resultados de estos dos estudios, por tanto, demuestran que la asignación de 

recursos puede no ser ni eficiente ni equitativa en el mundo real, y es probable que 

existan situaciones similares en otras áreas terapéuticas. En definitiva, a pesar de que en 

muchos casos haya suficiente base científica para ayudar a las autoridades a asignar los 

recursos disponibles, hemos demostrado que es posible que en el mundo real los 

recursos no se asignen de manera óptima. Esperamos que nuestros resultados ayuden a 

las autoridades sanitarias, tanto en Inglaterra como en otros países, a adoptar medidas 

que aseguren el cumplimiento del objetivo central de nuestros sistemas de salud: mejorar 
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el nivel medio de salud de la población y reducir las desigualdades existentes.  
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A health system can be defined as the set of all actors, institutions and resources whose 

primary intent is to improve health [1]. All these actors and institutions include 

government organisations and agencies, both at the national and sub-national level; 

health service providers, including for and not-for-profit organisations; and citizens who 

become service users when they interact with health service providers [1]. As stated by 

the World Health Organization (WHO) the key goal of health systems and the reason 

why they exist is to improve health; importantly, there are two key components to this 

goal: to improve the average level of the population health and to reduce health 

inequalities in the population [1]. 

 

In order to realise this goal, as well as its two key components, health system decision-

makers need to decide which health technologies and interventions to invest in and 

which not to, either by not funding new technologies or withdrawing funds from those 

of low or no value [2, 3]. Sound resource allocation policies are therefore becoming 

increasingly important, particularly considering the soaring healthcare costs and 

constrained budgets healthcare managers have at their disposal [4, 5]. Drug or 

pharmaceutical spending represents nearly 20% of all healthcare expenditure across the 

Organisation for Economic Co-operation and Development (OECD) countries, and it 

has recently been predicted to keep growing in Europe in the next decade [6, 7]. This, 

along with the rising prices expected for innovative therapies coming to market in the 

near future, presents healthcare managers with considerable challenges, and putting in 

place or maintaining initiatives to achieve their goals is being and will be increasingly 

more problematic considering the tight healthcare funds [8, 9]. 

 

Health technology assessment (HTA) provides a framework for healthcare managers to 

make resource allocation and priority setting decisions based on the existing evidence: 

it is defined as a multidisciplinary process that summarises information in a systematic 

and robust manner about the medical, economic, organisational, social and ethical issues 

related to the use of a health technology [10]. With this, HTA measures the added value 

of a certain technology (most commonly a new technology), oftentimes in terms of 

clinical and economic terms, in comparison to another technology (most commonly the 

standard of care) and, ideally, can be used as a robust tool to identify the value-based 

price of innovations – the price level at which incentives and rewards for manufacturers 

are appropriately balanced against the sustainability of the healthcare system [11]. On 

the other hand, HTA should also be used as a mechanism to address the ethical aspects 

associated with health technologies, as well as designing the route to ensure the right to 

equal treatment [12, 13]. 

 

Pharmaceutical treatments for rare diseases (defined by the European Medicines Agency 
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[EMA] as diseases with fewer than five cases in 10,000 people) represent a particular 

challenge for healthcare managers when making reimbursement or resource allocation 

decisions [14]. Given the small patient population, the clinical evidence to support 

market authorisation and subsequent reimbursement is usually limited for drugs 

targeting rare diseases, and these drugs are often launched at a price that may cause 

complications for budget holders [15, 16]. Recently, the so-called advanced therapy 

medicinal products (ATMPs) have also moved to the centre stage of the affordability 

discussion. These are medicines for human use, most often to treat rare diseases, that are 

based on genes, tissues or cells, and offer ground-breaking new opportunities for the 

treatment of disease and injury [17]. Advanced therapy medicinal products have the 

potential to lead to significant lifelong benefits to patients with, in many cases, a short 

one-off intervention [18]. However, with prices of up to approximately $2 million for a 

one-off treatment, ATMPs are creating and will create major affordability challenges, 

particularly if traditional evaluation and payment methods are considered [18, 19]. For 

this reason, it is crucial that a robust and transparent HTA process be undertaken to 

assess these high-cost drugs, evaluating all aspects of the disease and treatment and 

involving all stakeholders affected. 

 

Once a drug receives market authorisation and a reimbursement approval, it will be 

rolled out to the patient population covered by the decision. As important as the pre-

approval assessment is the post-approval monitoring and evaluation of outcomes and 

costs associated with the drug, particularly when dealing with high-cost drugs with 

limited pre-approval clinical evidence. This is what is known as the analysis of the real-

world (RW) evidence, which can help gather a complete picture of the effectiveness, 

tolerability and resource needs associated with a given treatment [20, 21]. Also, the 

analysis of the use and distribution of therapies in the RW can provide a good 

understanding of whether universal health coverage and inequalities in access to 

healthcare exist and, therefore, whether the key goal of health systems is being achieved 

[1]. 

 

With the rising number of high-cost drugs coming to market and projected to come to 

market in the next decade, we believe it is important to systematically evaluate whether 

the roll-out of these health technologies is being aligned with the key objectives of health 

systems: to improve the average level of the population health and to reduce health 

inequalities in the population [1, 22]. For this purpose, we conducted three standalone 

projects analysing different aspects of recently launched, innovative drugs: 

• In our first study we combined high-quality RW data with data from randomised 

controlled trials (RCTs) to estimate the cost-effectiveness of carfilzomib, an 

innovative drug used to treat multiple myeloma patients (considered a rare 
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disease), in the RW. Randomised controlled trials are a good source of data for 

economic models but differences between RCT and RW conditions (e.g. patient 

characteristics, treatment patterns and dosing, use of supportive care) may limit 

the applicability of conclusions drawn from economic models using data from 

RCTs only. For this reason, our objective was to generate relevant cost-

effectiveness estimates of carfilzomib that healthcare managers can use to make 

evidence-based decisions regarding the value of this innovative technology. 

• In our second study we investigated whether inequalities in the distribution of 

anti-osteoporosis drugs (low-cost bisphosphonates, raloxifene and high-cost 

denosumab) exist in primary care in England. Despite the long history of 

stressing the importance of ensuring healthcare provision according to clinical 

need in the England, examples of the so-called “inverse care law” (i.e. “the 

availability of good medical care tends to vary inversely with the need for it in 

the population served”) abound in England and beyond [23]. We used rich, 

publicly-available datasets to analyse potential associations between anti-

osteoporosis prescription rates and the characteristics of patients being served 

(i.e. sex, age, ethnic group composition, rural-urban classification and income 

deprivation) and estimated concentration indices as summary measures of 

inequality. With this, our objective was to produce evidence of potential 

inequalities in access to treatments in the English primary care and steer 

discussions towards a more equitable healthcare system 

• Biosimilars are medicines highly similar to another biological medicine already 

marketed in the European Union (i.e. the reference product), with no clinically 

meaningful differences in terms of efficacy or safety when compared with the 

reference product [24]. Biosimilars offer great opportunities to reduce healthcare 

expenditure, as long as market access is achieved [25]. The objective of our third 

study was to analyse the uptake of insulin glargine biosimilars in primary care in 

England, as well as the RW budget impact associated with the use of these 

biosimilars. Also, we estimated the missed savings (i.e. opportunities to increase 

savings) and analysed whether there were variations in the uptake of insulin 

glargine biosimilars across regions in England. The end-goal of our study was to 

encourage decision-makers in England to promote the use of best-value 

treatments in primary care, avoiding variation across regions and ensuring the 

right to equal treatment to all patients. 

 

Finally, and considering recent discussions regarding affordability issues of ATMPs, we 

are planning on developing an early economic model that can assist manufacturers to 

generate the appropriate evidence and design the optimal positioning and pricing 

strategy for an ATMP, and also help decision-makers assess the existing evidence and 
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understand the implications of reimbursing an ATMP under different payment scenarios. 

The model will be initially developed to consider the cost-effectiveness and budget 

impact of gene therapies in haemophilia but may be further developed to other disease 

areas such as cancer. 
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Chapter 2 

 

Methodology and results of real-world cost-effectiveness of carfilzomib in 

combination with lenalidomide and dexamethasone in relapsed multiple 

myeloma using registry data 
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ABSTRACT 

Objective: To predict the real-world (RW) cost-effectiveness of carfilzomib in 

combination with lenalidomide and dexamethasone (KRd) versus lenalidomide and 

dexamethasone (Rd) in relapsed multiple myeloma (MM) patients after one to three 

prior therapies. 

Methods: A partitioned survival model that included three health states (progression-

free, progressed disease and death) was built. Progression-free survival (PFS), overall 

survival (OS) and time to discontinuation (TTD) data for the Rd arm were derived using 

the Registry of Monoclonal Gammopathies in the Czech Republic; the relative treatment 

effects of KRd versus Rd were estimated from the phase 3, randomised, ASPIRE trial, 

and were used to predict PFS, OS and TTD for KRd. The model was developed from 

the payer perspective and included drug costs, administration costs, monitoring costs, 

palliative care costs and adverse-event related costs collected from Czech sources. 

Results: The base case incremental cost effectiveness ratio for KRd compared with Rd 

was €73,156 per quality-adjusted life year (QALY) gained. Patients on KRd incurred 

costs of €117,534 over their lifetime compared with €53,165 for patients on Rd. The 

QALYs gained were 2.63 and 1.75 for patients on KRd and Rd, respectively. 

Conclusions: Combining the strengths of randomised controlled trials and observational 

databases in cost-effectiveness models can generate policy-relevant results to allow 

well-informed decision-making. The current model showed that KRd is likely to be cost-

effective versus Rd in the RW and, therefore, the reimbursement of KRd represents an 

efficient allocation of resources within the healthcare system. 
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INTRODUCTION 

Multiple myeloma (MM), generally considered incurable, is the second most common 

haematological malignancy and accounts for approximately 0.8% of all new cancer 

cases worldwide [1-3]. The incidence and survival of cancer patients, in general, as well 

as of MM in particular, have increased in the past few decades, and a similar trend has 

been observed for the economic burden of cancer management [4-7]. For this reason, 

and particularly under a situation of budget constraints that many healthcare decision-

makers are facing, the value of cancer drugs is increasingly being scrutinised [7, 8]. 

  

Cost-effectiveness studies, along with other health economic studies such as budget 

impact analyses, represent essential tools that allow healthcare managers to make 

evidence-based decisions regarding the value and affordability of health technologies. 

Randomised controlled trials (RCTs) are the gold standard to identify relative treatment 

effects and are well suited to produce evidence for regulatory approval; [6] however, 

Sullivan et al. and Neyt et al. argue that results from cost-effectiveness analyses based 

solely on RCTs may not predict the benefits and costs of new treatments in real world 

(RW) patients, and that these analyses should be supplemented with information 

collected from observational databases when available [6, 9]. In fact, there are 

differences between RCTs and the RW that may limit the applicability of economic 

models based on RCTs only in RW populations: potential differences in patient selection 

criteria (i.e. stricter inclusion and exclusion criteria in RCTs, in general, as compared 

with RW studies), treatment patterns and dosing, use of supportive care and extent of 

follow-up (i.e. patients’ adherence to treatment tends to be better in RCTs, as compared 

with RW studies), or differences in care across countries, particularly in the context of 

oncology, are some examples [6, 8, 10]. Observational databases, however, capture 

characteristics and outcomes of patients receiving treatment in real life: the Registry of 

Monoclonal Gammopathies (RMG), for instance, captures a wide range of data of MM 

patients in the Czech Republic, and comparisons across published studies demonstrate 

that differences exist between RCTs and the RW, e.g. outcomes of patients treated with 

lenalidomide and dexamethasone (Rd) are considerably lower in RW patients compared 

with those in recent RCTs [11-16]. Additionally, the limited time duration of RCTs pose 

an extra hurdle for the generalisation of economic model results in the RW, as the time 

horizon of economic models often requires extrapolation of clinical data well beyond 

the trial duration; [17] in registries and observational databases patients may be followed 

for longer periods and consequently the uncertainty around long-term estimates may be 

considerably lower than that obtained as a result of extrapolation of trial data [9, 17, 18]. 

Mullins et al. claim that this RW evidence is critical for coverage decisions by payers 

and treatment decisions by physicians and patients, and for that reason economic models 
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that combine the strengths of both RCTs (i.e. relative treatment effects) and RW data 

(i.e. baseline risks such as progression-free survival [PFS] and overall survival [OS] in 

patients receiving the comparator treatment) may provide more relevant and less 

uncertain estimates than those based on RCTs only, as long as the evidence available 

from observational databases is robust and representative of the RW patient population 

[8, 9, 19, 20]. Therefore this modelling approach is deemed to be appropriate to support 

well-informed decision-making in the RW, as it may minimise the risk of inefficient 

allocation of resources, including the chances of neglecting the access to more 

efficacious therapies erroneously considered not cost-effective, as well as the likelihood 

of inaccurate budget impact predictions [8, 9, 19, 20]. 

 

Several studies have reported the RW cost-effectiveness of cancer drugs combining data 

from RCTs and observational databases, reinforcing the validity of the approach 

described above. For instance, Seferina et al. estimated the RW cost-effectiveness of 

trastuzumab plus chemotherapy versus chemotherapy alone in early breast cancer 

combining RW outcomes for the trastuzumab arm with treatment effect estimates 

(expressed as hazard ratios [HRs] of trastuzumab versus control arm) from the HERA 

trial [21,22]. Similarly, van Gils et al. analysed the RW cost-effectiveness of oxaliplatin 

in colon cancer, for which they combined published efficacy data from the MOSAIC 

trial with RW data from a Dutch population-based observational study [10]. Other 

studies have adopted a similar approach for the estimation of RW cost-effectiveness of 

health technologies, including disease areas other than cancer such as cardiovascular 

disease or chronic obstructive pulmonary disorder [23-26]. 

 

The aim of the present study was to estimate the RW cost-effectiveness of carfilzomib 

in combination with lenalidomide and dexamethasone (KRd) compared with Rd for the 

treatment of relapsed MM after one to three prior therapies. For this purpose 

observational data for Rd from the RMG in the Czech Republic were combined with 

treatment effect estimates from the ASPIRE trial, a randomised, open-label, multicentre, 

phase 3 study that evaluated the safety and efficacy of KRd compared with Rd in 

relapsed MM patients who had received one to three prior treatments [12, 15, 16]. 

METHODS 

Data sources 

Real-world data for the Rd arm were collected from the RMG [16]. This database was 

set up in 2007 and captures all newly diagnosed MM patients treated in 19 Czech 

hospitals (16 hospitals reported relevant data at the time of data collection), covering 

approximately 80% of all newly diagnosed MM and monoclonal gammopathy of 
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unknown significance (MGUS) patients in the Czech Republic [16]. The RMG is 

considered the most comprehensive database in Central Europe, and includes 

information on MM disease status and history (e.g. laboratory tests performed and 

results, disease stage), treatment received (e.g. specific regimen, time to treatment 

discontinuation [TTD], line of therapy) and outcomes (e.g. PFS and OS). Data from the 

intention-to-treat population in the ASPIRE RCT were also used to inform the cost-

effectiveness model [15]. These two data sources were combined in such a way that 

baseline risks of events with Rd treatment were estimated from the RMG, whereas the 

relative treatment effects of KRd versus Rd were estimated from ASPIRE, as suggested 

and presented in the literature [9, 10, 21-26]. A comparison of baseline characteristics 

of Rd patients in RMG and ASPIRE are presented in the online resources (see 

Supplementary Table 2.1). Patients of the RMG registry were older, had worse 

performance status, were more likely to be refractory to prior bortezomib and 

immunomodulatory treatment, and were less likely to have received stem cell 

transplantation. Cost data were collected from Czech sources. 

 

Model structure   

A partitioned survival model was built with three mutually exclusive health states: 

progression-free (PF), progressive disease (PD) and death (Figure 2.1). Transitions to 

the death state could occur from either the PF or PD health states, death being an 

absorbing state. The proportions of patients in each health state over time were estimated 

using the PFS and OS curves in each treatment arm. A cycle length of 28 days was 

implemented in line with the carfilzomib administration schedule [15]. This modelling 

approach has been extensively used for economic models in MM, including the cost-

effectiveness model of KRd versus Rd from a US perspective authored by Jakubowiak 

et al. [27-33] 

 

Figure 2.1. Model structure. 
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Regimens 

Rd was chosen as the only comparator treatment because it is the most widely used 

treatment regimen in relapsed MM after one to three prior therapies in the Czech 

Republic. Although bortezomib-based and pomalidomide treatments are also available, 

treatment patterns data demonstrate that the market share of Rd was approximately 70-

75% in 2018 [34]. This comparator choice was supported by representatives of a local 

expert society (Czech Myeloma Group). 

 

Carfilzomib was implemented in the model as per the cycle dosing in the carfilzomib 

summary of product characteristics (SPC) and ASPIRE study [15, 35]. Dosing for 

carfilzomib is based on body surface area (BSA), and the reference value considered for 

this analysis was 1.73 m2, in line with previous decisions by the State Institute for Drug 

Control in the Czech Republic (SÚKL) [36]. Dosing for Rd was based on the 

lenalidomide SPC [37]. Additional details are available elsewhere [15, 32]. 

 

Treatment effectiveness 

The PFS, OS and TTD curves for patients receiving Rd were estimated from the RMG. 

The RMG provided separate PFS, OS and TTD data on patients treated with Rd in 

second, third and fourth lines (2L, 3L and 4L), and median values are shown in Table 

2.1. Kaplan-Meier (KM) curves for PFS and OS are provided in the online resources 

(Supplementary Figure 2.1 and 2.2). 

 

Table 2.1. Median PFS, OS and TTD values for patients receiving Rd in the RMG. 

Outcome 2L (n=113) 3L (n=96) 4L (n=15) 

Median PFS, months (95% 

CI) 
8.7 (7.3-10.1) 6.6 (5.3-8.0) 5.7 (1.6-9.7) 

Median OS, months (95% 

CI) 
26.2 (21.7-30.8) 12.6 (11.4-13.7) 

10.6 (5.7-

15.6) 

Median TTD, months (95% 

CI) 
7.2 (NA) 5.2 (NA) 3.8 (NA) 

1L, first line; 2L, second line; 3L, third line; CI, confidence interval; n, number of patients; NA, not available; OS, overall 

survival; PFS, progression-free survival; Rd, lenalidomide/dexamethasone; RMG, Registry of Monoclonal 

Gammopathies; TTD, time to discontinuation. 

 

 

Survival analyses were conducted according to the National Institute of Health and Care 

Excellence (NICE) guideline and parametric models were fitted to PFS, OS and TTD 

data in each line (exponential, Weibull, Gompertz, loglogistic, lognormal and 
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generalised gamma models) [20]. The suitability of each model was assessed through 

visual comparison of the fit versus the corresponding KM curve, goodness-of-fit 

statistics (Akaike information criterion [AIC]), and plausibility of long-term 

extrapolations. The best fitting parametric models in each line were selected, and a 

weighted average of these curves was computed using the number of patients in each 

line in RMG (see Table 2.1) to derive PFS, OS and TTD baseline curves for the overall 

patients population with one to three prior lines. 

 

The relative treatment effect estimates for KRd versus Rd, expressed as HRs (for PFS 

and OS), were derived using ASPIRE patient-level data. PFS data were available from 

the first ASPIRE data cutoff in June 2014 (median follow-up 31 months), while mature 

OS data were available from a later data cut in April 2017 (median follow-up 67 months) 

[15, 38]. To assess the proportionality of the hazards, log-cumulative hazard plots were 

evaluated, along with tests of interaction between treatment effect and time with a Cox 

model [20, 32, 39] The PFS and OS HRs of KRd versus Rd were calculated with separate 

multiple Cox models using a number of baseline characteristics as covariates to reduce 

potential imbalances between treatment arms [40]. Specifically, all covariates that were 

prespecified for subgroup analyses in ASPIRE were included in the initial models. 

Covariates to be included in the final models were identified by first testing each variable 

independently; it was assessed whether the variable was associated with the outcome (at 

a significance level of 0.2). Variables identified in this process were then trimmed one 

at a time (significance level of 0.1 or higher) with a stepwise variable selection 

procedure to derive the final PFS and OS model. This stepwise procedure examined the 

association between baseline covariates and outcomes (PFS and OS) as well as the 

effects of interaction between treatment and covariates by including treatment, each of 

the covariates and treatment-covariate interaction terms as predictor variables. The 

resulting PFS and OS HRs were applied to baseline risks derived from the RMG to 

estimate the PFS and OS curves for KRd, respectively (see online resources, 

Supplementary Table 2.2 and 2.3). The TTD curve for KRd was calculated applying the 

PFS HR to the Rd TTD curves from the RMG in order to simulate that the efficacy 

associated with a particular treatment may be associated with the amount of treatment 

received by patients. 

 

Health-state utilities 

The RMG does not record preference-based utility data for MM patients, and these were 

not collected in the ASPIRE trial. For these reasons utility inputs were estimated by 

combining utilities from the literature and trial-based patient-reported outcomes. The 

methodology for estimating these utilities and the utility values used in the model have 
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been described by Jakubowiak et al. [32]. The impact of adverse events (AEs) on health-

related quality of life was also considered as part of this evaluation by incorporating 

utility decrements (or disutilities) associated with each relevant AE taking into account 

the duration of the AE [29]. The approach adopted and the disutility values implemented 

have also been detailed by Jakubowiak et al. [32]. The implicit assumption associated 

with this approach was that utilities in RMG patients were considered to be similar to 

those in ASPIRE patients. 

 

Costs 

The model was developed from the payer perspective, and costs from Czech sources 

were used to illustrate the current RW cost-effectiveness model. Costs were obtained in 

Czech korunas, and then translated into euros using the average exchange rate between 

June 11th, 2017, and December 11th, 2017 (1 EUR = 25.931 CZK) [41]. In line with the 

published literature, the following cost inputs were considered: drug costs, 

administration costs, monitoring costs, palliative care costs and AE-related costs [32, 

33]. 

Initial drug costs 

Drug prices were collected from the Czech list of reimbursed medicinal products as of 

December 1st, 2017 [42]. To calculate drug costs, mean weight or BSA of patients, 

available strengths (for a vial, capsule or tablet), price of a pack and the number of vials, 

capsules or tablets in a pack were considered. Also, in order to appropriately model the 

treatment acquisition costs based on the actual doses captured in the RMG registry, and 

in alignment with the literature, relative dose intensity (RDI) was applied to reflect the 

impact of dose reductions and interruptions on drug acquisition costs [43-47]. In the Rd 

arm, the RDI values were calculated from the RMG dividing the mean dose of 

lenalidomide per administration (in mg) by 25 mg (i.e. the maximum dose as per the 

lenalidomide label). For the KRd arm, RDI values from ASPIRE were used, as it 

represented the best source of evidence for patients receiving all three drugs in 

combination. Carfilzomib wastage was assumed to be negligible, due to the current 

availability of 60, 30 and 10 mg vials, and therefore the cost per mg was used in the 

model. Information on the dosing for each treatment, along with the RDI and the cost 

per cycle for each drug, are presented in Table 2.2. 

 

  



31 

 

Table 2.2. KRd and Rd drug costs. 

Treatment 

regimen 

Regimen 

components 
Unit 

Unit 

cost (€) 

Dosing 

schedule 
RDI 

Drug 

cost per 

28-day 

model 

cycle (€) 

KRd 

Carfilzomib 

(Cycle 1) 

1 x 60 mg 

vial 
1,400.03 

20 mg/m2 on 

Days 1 and 2, 

27 mg/m2 on 

Days 8, 9, 

15, and 16 

91.0% 5,437 

Carfilzomib 

(Cycles 2-12) 

1 x 60 mg 

vial 
1,400.03 

27 mg/m2 on 

Days 1, 2, 8, 

9, 15, and 16 

91.0% 5,951 

Carfilzomib 

(Cycles 13 and 

beyond) 

1 x 60 mg 

vial 
1,400.03 

27 mg/m2 on 

Days 1, 2, 

15, and 16 

91.0% 3,967 

Lenalidomide 
21 x 25 mg 

tablets 
5,116.65 

25 mg orally 

on days 1-21 
80.5% 4,119 

Dexamethasone 
20 x 20 mg 

tablets 
25.33 

40 mg orally 

on days 1, 8, 

15 and 22 

82.8% 8 

Rd 

Lenalidomide 
21 x 25 mg 

tablets 
5,116.65 

25 mg orally 

on days 1-21 
88.2% 4,512 

Dexamethasone 
20 x 20 mg 

tablets 
25.33 

40 mg orally 

on days 1, 8, 

15 and 22 

88.2% 9 

KRd, carfilzomib/lenalidomide/dexamethasone; Rd, lenalidomide/dexamethasone; RDI, relative dose intensity. 

 

Subsequent treatment costs 

Drug prices were collected from the Czech list of reimbursed medicinal products as of 

December 1st, 2017 [42]. The model considered that patients in the PD state may receive 

subsequent active treatments. Prior to receiving subsequent treatments, patients 

experience a treatment-free interval of three cycles (the same in both treatment arms) 

during which no treatment costs were applied [32]. The proportions of patients 

progressing and receiving subsequent treatments were estimated from the RMG: 54.1% 

of patients went on to receive subsequent treatments (the same in both treatment arms). 

These patients entered a ‘tunnel state’ consisting of a mix of treatments derived from 

patients captured in the RMG, whom were treated following the Czech Myeloma Group 



32 

 

guidelines for MM (Table 2.3) [48]. The detailed proportions of patients receiving each 

subsequent treatment were collected from the RMG and are provided in the online 

resources (Supplementary Table 2.4). The RDI was assumed to be 100% for all 

subsequent treatments due to the lack of data, and overall duration for subsequent 

treatments was assumed to be 5 cycles for both KRd and Rd, based on data from the 

RMG (additional details are provided in the online resources; Supplementary Table 2.5).  

Table 2.3. Unit costs and dosing schedule of subsequent treatments. 

Treatment Unit 
Unit 

cost (€) 
Dosing schedule 

Drug cost 

per 28-day 

model cycle 

(€) 

Bortezomib 

(Actavis)a 
1 x 3.5 mg vial 161.45 

4 subcutaneous 

administrations; each 

administration of 1.3 

mg/m2 

415 

Thalidomideb 

30 x 50 mg 

tablets 
80.98 

28 oral 

administrations; each 

administration 100 mg 

148 
30 x 100 mg 

tablets 
158.11 

Cyclophosphamide 

(Endoxan)c 

10 x 200 mg 26.46 28 intravenous 

administrations; each 

administration of 100 

mg 

 

37 1 x 500 mg 6.62 

1 x 1 g 13.23 

Pomalidomide 

(Imnovid)d 

21 x 1 mg 8,910.32 

21 oral 

administrations; each 

administration of 4 mg 

9,329 
21 x 2 mg 9,049.81 

21 x 3 mg 9,189.17 

21 x 4 mg 9,328.66 

a Bortezomib SPC provides information for a 3-week (21-day) long cycle, and frequency was transformed to a 4-week 

(28-day) long cycle. 
b Dosing schedule informed by expert opinion. Minimum cost per mg was chosen. 
c Dosing schedule informed by expert opinion. Alternatively, patients could also receive 300 mg/m2 on Day 1 and Day 15 

of a 28-day cycle. Minimum cost per mg was chosen. 
d Minimum cost per mg was chosen. 

 

Administration costs 

Carfilzomib and cyclophosphamide were assumed to be administered intravenously at 

the hospital (outpatient) at a cost of €27.19 per administration [49,50]. Costs of oral and 
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subcutaneous administrations were assumed to be zero and therefore no other drug was 

considered to incur any administration costs. 

Monitoring costs 

Monitoring items were derived from the NICE technology appraisal of panobinostat for 

MM, and included skeletal survey by X-ray, laboratory analyses (serum protein 

assessment, haematology, blood chemistry and thyroid function tests) and specialist 

visits [51]. Resource use was estimated from a study that involved seven centres of 

excellence for MM treatment in the Czech Republic, and costs were collected from the 

latest available health checklist published by the Ministry of Health [49]. These inputs 

yielded a figure of €31.46 for monitoring costs per patient per cycle, which was assumed 

to be the same in both treatment arms. Additional details are provided in the online 

resources (Supplementary Table 2.6). 

Palliative care costs 

All progressed patients that were not in either the treatment-free interval or receiving 

subsequent treatments were assumed to incur a standard cost for palliative care, with a 

cost per cycle of €1093 [52].  

Adverse event costs 

Adverse events were included in the model if they were Grade 3 or Grade 4 with an 

incidence equal or greater than 2% in ASPIRE. Monthly probabilities of AEs were 

calculated from the percentages of patients experiencing an AE over the course of the 

ASPIRE trial and from the mean time on treatment in ASPIRE (KRd = 88.1 weeks; Rd 

= 70.7 weeks). Patients were assumed to be at a constant risk of having an AE while on 

treatment in the PF state. Unit costs for AEs were identified from the list of Diagnosis 

Related Group (DRG) codes valid for 2017 [53]. Table 2.4 displays the monthly 

probabilities and unit costs of AEs included in the model. 
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Table 2.4. Estimated monthly probabilities of Grade 3 or Grade 4 adverse events 

and the unit costs (with the corresponding DRG code) of each adverse event. 

Adverse event 

% Grade 3 % Grade 4 
Unit cost 

(€) 

DRG 

inpatient 

code 
KRd Rd KRd Rd 

Blood and Lymphatic System Disorders 

Neutropenia 1.18% 1.12% 0.28% 0.42% 964.02 16341-3 

Anaemia 0.34% 0.51% 0.09% 0.08% 1,001.35 16331-3 

Thrombocytopenia 0.37% 0.42% 0.37% 0.21% 964.02 16341-3 

Gastrointestinal Disorders 

Diarrhoea 0.08% 0.13% 0.00% 0.00% 533.34 06371-3 

Vomiting 0.00% 0.00% 0.00% 0.00% 716.59 17332 

Respiratory, Thoracic and Mediastinal Disorders 

Dyspnoea 0.08% 0.02% 0.00% 0.00% 776.06 0411-3 

General Disorders and Administration Site Conditions 

Fatigue 0.30% 0.29% 0.00% 0.00% 716.59 17332 

Nervous System Disorders 

Peripheral neuropathy 0.08% 0.10% 0.00% 0.00% 716.59 17332 

DRG, Diagnosis Related Group; KRd, carfilzomib/lenalidomide/dexamethasone; Rd, lenalidomide/dexamethasone. 

 

Discount rate 

A discount rate of 3.0% per annum was applied for costs and outcomes, in line with the 

SÚKL methodological guidance [54]. 

Time horizon 

The median age at baseline in the RMG registry and ASPIRE study was 67 and 64 years, 

respectively, but patients as young as 49 and 31 years were included in the RMG registry 

and ASPIRE study, respectively [12,15]. Therefore a lifetime time horizon (40 years) 

was considered appropriate in the base case given the patients’ heterogeneity in terms 

of age at diagnosis. This time horizon would allow capturing all costs and consequences 

of all patients over their lifetime. 

Sensitivity analyses 

Univariate deterministic sensitivity analyses (DSA) were conducted to test the effects of 

parameter uncertainty within the model. The model parameters were varied using 95% 

confidence intervals (CIs), if available; if these were not available, standard probability 

distributions were assigned to model parameters and lower and upper limits were 

calculated as the 2.5th and 97.5th percentile, respectively, assuming a standard error 
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(SE) equal to 10% of the base case values. Lower and upper bounds of curve fit 

parameters were estimated with their corresponding variance-covariance matrices 

within a multinormal distribution. Probabilistic sensitivity analyses (PSA) were also 

conducted. Standard probability distributions were assigned to model parameters and 

5,000 Monte Carlo simulations were computed. Finally, a number of scenario analyses 

were performed: (1) only add-on therapy costs, i.e. carfilzomib costs, were considered, 

given that Rd has previously been appraised and recommended as a cost-effective 

treatment option, including in the Czech Republic; [55-57] (2) unadjusted PFS and OS 

HRs (i.e. the HR from the primary ASPIRE publication for PFS and the unadjusted HR 

estimated for OS using the data made available in April 2017); [15,37] (3) same utilities 

for KRd and Rd arms, assuming KRd utilities for both arms; (4) time horizon of 20 

years; (5) discount rate of 0% for both costs and outcomes, as per the SÚKL guidelines; 

[54] and (6) discount rate of 5% for both costs and outcomes, as per the SÚKL guidelines 

[54]. 

RESULTS 

Base case analysis  

The survival analyses for PFS of patients receiving Rd in the RMG yielded the lowest 

AIC for the log-logistic curves in second- and third-line patients, and for the exponential 

curve in fourth-line patients. For OS, the exponential curve resulted in the lowest AIC 

in second- and fourth-lines, and for the log-logistic curve in third-line patients. For TTD, 

the Weibull curve was associated with the lowest AIC in second- and third-lines; the 

AIC of the Weibull curve in fourth-line patients was very similar to that of the lowest 

AIC (Gompertz), and for that reason the Weibull function was selected for estimating 

TTD in all three lines. AIC values for PFS, OS and TTD are reported in the online 

resources (Supplementary Table 2.7). 

 

The results from the test of interaction between treatment effect and time (p = 0.08 for 

PFS; p = 0.41 for OS), and visual examination of the log-cumulative hazard plots 

suggested that the proportional hazards assumption was valid, as reported by 

Jakubowiak et al. [32]. The stepwise Cox models showed that there was no evidence of 

treatment-covariate interaction which, along with the lack of evidence of differences in 

relative treatment effects across subgroups reported by Stewart et al., supported the 

assumption that relative treatment effects observed in ASPIRE could be transferable to 

the RW setting [15,32]. The stepwise Cox models identified a number of baseline 

covariates with a potential prognostic effect for predicting PFS and OS. For PFS, the 

following covariates were identified: baseline haemoglobin (higher risk of progression 

if <105 g/L), baseline platelet count (higher risk if <150 x 109/L), baseline calcium level 
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(higher risk if >11.5 mg/dL), International Staging System (ISS) stage at diagnosis 

(higher risk for stage II compared with stage I and missing categories; similar risk for 

stage II and III patients), β-2 microglobulin level at stratification (higher risk if ≥2.5 

mg/L), risk group as determined by fluorescent in-situ hybridisation (higher risk for high 

risk patients compared with standard and unknown categories), prior bortezomib 

exposure (higher risk for patients with prior bortezomib exposure) and refractory to 

immunomodulatory agents in any prior regimen (higher risk for refractory patients). For 

OS, the following covariates were identified: sex (higher risk of death for male patients), 

baseline Eastern Cooperative Oncology Group (ECOG; higher risk for patients with 

ECOG of 2 compared with patients with ECOG of 1; similar risk for patients with values 

of 0 and 1), baseline haemoglobin (higher risk if <105 g/L), baseline platelet count 

(higher risk if <150 x 109/L), baseline creatinine clearance (continuous variable), 

disease stage at diagnosis (higher risk for stage II compared with stage I), β-2 

microglobulin level at stratification (higher risk if ≥2.5 mg/L) and refractory to 

immunomodulatory agents in any prior regimen (higher risk for refractory patients). The 

multiple Cox models showed statistically significant treatment effects for both PFS and 

OS: the PFS HR was equal to 0.641 (95% CI: 0.526-0.781; p-value<0.001) and OS HR 

equal to 0.731 (95% CI: 0.612-0.872; p-value<0.001). Given that the assumption of 

proportional hazards was considered appropriate, the HRs calculated from these 

analyses were applied to the PFS, OS (Figure 2.2) and TTD curves of Rd to derive the 

corresponding KRd curves. 

 

Figure 2.2. Progression-free survival and overall survival curves for Rd and KRd 

in the base case analysis. 

 

 

The base case ICER for KRd compared with Rd was €73,156 per QALY gained (Table 

2.5). Patients on KRd incurred costs of €117,534 over their lifetime compared with 

€53,165 for patients on Rd. The QALYs gained were 2.63 and 1.75 for patients on KRd 

and Rd, respectively; the LY gained were 3.42 and 2.43 for patients on KRd and Rd, 
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respectively. 

 

Table 2.5. Base case results. 

 Total 

costs 

(€) 

Total 

LYs 

Total 

QALYs 

Incremental 

costs (€) 

Incremental 

LYs 

Incremental 

QALYs 

ICER 

(€/QALY) 

Rd 53,165 2.43 1.75 

64,368 0.99 0.88 73,156 

KRd 117,534 3.42 2.63 

KRd, carfilzomib/lenalidomide/dexamethasone; ICER, incremental cost-effectiveness ratio; LY, life year; QALYs, quality-

adjusted life year; Rd, lenalidomide/dexamethasone. 

 

Table 2.6 shows that the largest proportion of incremental costs is due to the increased 

treatment costs in the KRd arm. Higher costs of lenalidomide and dexamethasone in the 

KRd arm are a consequence of extending Rd treatment duration in the KRd arm 

compared with the Rd arm, due to a better response to treatment in KRd patients that 

allows patients to remain on therapy for longer. Costs of AEs and monitoring costs are 

also higher in the KRd arm due to patients staying longer in the PF state, as compared 

with patients receiving Rd treatment. 

Sensitivity analyses 

Results of univariate DSA are presented in a form of a tornado diagram (Figure 2.3). 

The ICER was most influenced by the OS HR, followed by the pre-progression utilities, 

BSA, RDI and the shape parameter of the log-logistic curve for OS in second-line 

patients. The model results were less sensitive to the TTD estimates and PFS HR. 
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Table 2.6. Summary of predicted costs by item. 

Item Cost KRd 

(€) 

Cost Rd 

(€) 

Increment 

(€) 

Drug cost: carfilzomib 56,152 0 56,152 

Drug cost: lenalidomide 41,273 36,069 5,204 

Drug cost: dexamethasone 84 71 13 

Administration cost: carfilzomib 1,414 0 1,414 

Adverse events costs 270 224 46 

Monitoring costs 839 451 388 

Subsequent treatments 1,013 1,216 -203 

Administration cost: subsequent treatments 107 128 -21 

Palliative care costs 16,382 15,006 1,375 

Total 117,534 53,165 64,368 

KRd, carfilzomib/lenalidomide/dexamethasone; Rd, lenalidomide/dexamethasone. 

 

Figure 2.3. Tornado diagram illustrating the results of the univariate deterministic 

sensitivity analyses. 
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The results of the PSA are shown in Figure 2.4. The scatter plot of incremental costs and 

QALYs shows that all simulations resulted in KRd being more effective and more costly 

than Rd, yielding an ICER very close to the base case ICER (€73,649 per QALY). The 

cost-effectiveness acceptability curve (Figure 2.5) demonstrates that the probability of 

KRd being the most-effective intervention was highest at a willingness to pay threshold 

between €70,000 and €75,000 per QALY and above. 

 

Figure 2.4. Incremental cost-effectiveness plane for KRd versus Rd. 

 

 

Figure 2.5. Incremental cost-effectiveness acceptability curve for KRd versus Rd. 
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Results from scenario analyses are summarised in Table 2.7. Consideration of 

carfilzomib costs only resulted in a reduction of the ICER from €73,156 to €67,347 per 

QALY, while the implementation of the unadjusted PFS and OS HRs pushed the ICER 

up to €93,094 per QALY. Implementing discount rates of 0% for costs and outcomes 

reduced the ICER (€56,930 per QALY) compared with the base case, whereas assuming 

the same utilities for KRd and Rd arms, setting the time horizon at 20 years and 

assuming discount rates of 5% increased the ICER (€77,258, €80,703 and €83,807 per 

QALY, respectively). 
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 Table 2.7. Results from scenario analyses. 

Scenario 

KRd Rd 

Incremental 

costs (€) 

Incremental 

LYs 

Incremental 

QALYs 

ICER 

(€/QALY) Total costs 

(€) 

Total 

LYs 

Total 

QALYs 

Total costs 

(€) 

Total 

LYs 

Total 

QALYs 

Base case 117,534 3.42 2.63 53,165 2.43 1.75 64,368 0.99 0.88 73,156 

Carfilzomib costs onlya 75,648 3.42 2.63 16,391 2.43 1.75 59,257 0.99 0.88 67,347 

Unadjusted PFS and OS 

HRsb 
112,651 3.12 2.39 53,165 2.43 1.75 59,485 0.69 0.64 93,094 

Same utilities for KRd 

and Rd armsc 
117,534 3.42 2.63 53,165 2.43 1.80 64,368 0.99 0.83 77,258 

Time horizon of 20 years 117,410 3.31 2.53 52,954 2.41 1.73 64,456 0.90 0.80 80,703 

Discount rate of 0% for 

both costs and outcomes 
121,767 3.98 3.07 55,609 2.66 1.91 66,158 1.32 1.16 56,930 

Discount rate of 5% for 

both costs and outcomes 
115,126 3.16 2.42 51,871 2.31 1.67 63,255 0.84 0.75 83,807 

HR, hazard ratio; ICER, incremental cost-effectiveness ratio; KRd; carfilzomib/lenalidomide/dexamethasone; LY, life year; OS, overall survival; PFS, progression-free survival; QALY, 

quality-adjusted life year; Rd, lenalidomide/dexamethasone. 
a Rd drug costs were excluded from both KRd and Rd arms. 
b The PFS HR was obtained from the primary ASPIRE publication. The OS HR from the April 2017 data cut was 0.794 (95% CI: 0.667-0.945; p-value<0.001). 
c Utilities of KRd assumed for both KRd and Rd arms. 
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DISCUSSION 

The current analysis evaluated the RW cost-utility of KRd versus Rd in relapsed MM 

patients that have received one to three prior therapies, resulting in an ICER of €73,156 per 

QALY gained in the base case. The cost-utility model developed for the analysis used a 

partitioned survival modelling approach, which is employed in a significant proportion of 

economic evaluations of cancer therapies. Scientifically reputable health technology 

assessment agencies such as NICE have repeatedly reviewed and confirmed the 

appropriateness of such model structure [29,30]. The analysis was conducted from the payer 

perspective, and the Czech Republic was chosen to illustrate the model given the rich 

observational data sources available in the country. 

  

For estimating the RW cost-effectiveness of KRd versus Rd, the baseline hazard of patients 

treated with Rd (PFS, OS and TTD) were calculated from the RMG, one of the most 

comprehensive and relevant registries capturing outcomes of MM patients [16]. The KRd 

versus Rd HRs from ASPIRE were applied to the baseline hazard to estimate the hazard of 

patients receiving KRd in the RW, assuming that the relative treatment effects observed in 

ASPIRE are applicable in the RW. Results from the phase 3 ASPIRE trial demonstrated that 

the relative treatment effects are consistent across a wide variety of subgroups of relapsed 

MM patients, and additional statistical analyses showed no significant treatment-covariate 

interaction in the ASPIRE patient population [15, 32]. This is regarded as a strong evidence 

base to support the applicability of trial HRs in the RW [9]. This methodology has been 

previously adopted for the estimation of RW cost-effectiveness of health technologies in 

oncology as well as other disease areas, such as cardiovascular and respiratory diseases; 

[10, 21, 22, 24-26] the approach has also been accepted by NICE, issuing a positive 

recommendation for evolocumab for treating primary hypercholesterolaemia or mixed 

dyslipidaemia in specific patient groups based on an economic model that combined 

baseline risks of cardiovascular disease from the Clinical Practice Research Datalink 

registry with reductions in cardiovascular events from a meta-analysis of RCTs [58]. 
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Neyt et al. argue that combining observational data with evidence from RCTs is a solution 

for handling potential differences between RW patients and RCT patients: RCTs are the 

gold standard for estimating relative treatment effects, whereas observational databases 

capture baseline risks of patients treated in RW conditions, and therefore an analysis that 

combines the strengths of both observational and RCT data may result in results that are 

more relevant for policy purposes, compared with results obtained from data collected 

under ideal circumstances (i.e. RCTs) only. With regard to the current decision problem, 

the outcomes observed in ASPIRE were substantially better than those observed in the 

RMG: in ASPIRE, the median PFS and OS were 17.6 and 40.4 months, respectively, for 

patients receiving Rd; [15,38] patients in the RMG, however, had median PFS and OS 

values of approximately 7.6 and 19.3 months, respectively (weighted values from Table 

2.1). Similar differences were identified for treatment duration: the median TTD was 13.1 

months in the Rd arm in ASPIRE, in contrast with the 6.1 months in the RMG (Table 2.1) 

[15,38]. These dissimilarities between ASPIRE and the RMG are likely to arise from 

differences in patient characteristics, treatment selection and treatment patterns between the 

trial and the RW. For these reason, and given the available evidence base, the use of registry 

data to inform baseline risks in economic models is considered to present healthcare 

managers with the most relevant information package for an appropriate decision-making 

and avoid unrealistic budget impact predictions caused by overestimating key variables 

such as treatment duration. This is particularly important in MM where a number of trials 

that enrolled patients across the world have consistently shown better outcomes and longer 

treatment duration than what is achieved in the RW [11-15]. 

 

The sensitivity analyses showed that the model is particularly sensitive to the parameters 

predicting and assumptions made around the relative treatment effect for OS associated 

with KRd versus Rd. However, considering that RW outcomes are not yet available for 

KRd, the base case is considered to represent a set of plausible assumptions. 

 

In the current model, patients in the KRd arm were estimated to spend longer time in PFS 
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compared with patients in the Rd arm, which in turn extended the use of lenalidomide and 

dexamethasone in the KRd arm (the cost of lenalidomide and dexamethasone was €41,273 

versus €36,069 in the KRd and Rd arms, respectively; Table 2.6). Innovative therapies like 

carfilzomib tend to extend the use of costly therapies that have been considered cost-

effective in the past (e.g. lenalidomide given on top of carfilzomib in the KRd regimen), 

and this could generate the perception that the innovative therapies are more expensive than 

they actually are [32,56,57]. The currently accepted methodology for cost-effectiveness 

analysis does not consider the new paradigm of oncology regimens administered in 

combination, which represents a major hurdle to demonstrate cost-effectiveness of 

innovative therapies. Health technology assessment agencies such as NICE have recognised 

these challenges and acknowledged that some innovative therapies may not even be cost-

effective at zero price, but no practical solution has been proposed and widely accepted thus 

far [59]. For this reasons, one scenario analysis evaluated the cost-effectiveness of 

carfilzomib excluding the costs of lenalidomide and dexamethasone in both KRd and Rd 

arms, i.e. focusing the analysis on the introduction of carfilzomib only. The ICER was lower 

than that of the base case (€67,347 and €73,156 per QALY in the scenario analysis and base 

case, respectively), which is in line with the results shown by Jakubowiak et al. [32]. This 

approach was accepted by NICE in the technology appraisal of cinacalcet, where the costs 

of dialysis were excluded from the base case analysis [60,61]. 

  

In RCTs, it is expected that the randomisation process will produce treatment groups that 

are balanced across the covariate levels. In reality, however, it is common to observe post 

hoc imbalances in covariates across treatment groups, which may have a confounding 

effect. In order to remove the between-patient variability associated with covariates not 

included as randomisation factors and increase the generalisability of the analyses, as well 

as allowing for the unbiased transferability to RW data, PFS and OS HRs estimated from 

ASPIRE were adjusted for a number of baseline covariates [32]. A scenario analysis was 

conducted to quantify the impact of covariate adjustment on cost-effectiveness results by 

implementing the unadjusted HRs from ASPIRE, and the ICER increased from €73,156 to 
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€93,094 per QALY [15]. Nevertheless, the stepwise Cox models conducted on the ASPIRE 

patient-level data indicated that a number of covariates may have a prognostic effect on 

PFS and OS, and therefore the base case ICER is considered to be more precise and relevant 

for decision-making purposes. 

   

Additional scenario analyses demonstrated the robustness of the model results. The 

assumption of equal utilities in the KRd and Rd arms, which represents a conservative 

assumption as described by Jakubowiak et al., only increased the ICER to €77,258 per 

QALY, and a similar effect on the ICER was observed when shortening the time horizon to 

20 years (€80,703 per QALY) or setting the discount rate of both costs and outcomes at 5% 

(ICER of €83,807 per QALY). On the other hand, assuming a discount rate of 0% improved 

the cost-effectiveness of KRd considerably, yielding an ICER of €56,930 per QALY. 

 

The analysis had various limitations associated with the underlying data and methods. 

Firstly, the review of the literature to identify some input parameters for the cost-

effectiveness model was not systematic. All inputs were, however, obtained from relevant 

data sources (either from the pivotal clinical trial ASPIRE or local data sources in the Czech 

Republic) and therefore it is considered that the impact of not having conducted a 

systematic literature review for all input parameters is minimal. This strategy is aligned 

with other RW CE studies in the literature [10, 21, 22, 62]. The PFS, OS and TTD curves 

were derived from data collected during a period in which, in the Czech Republic, patients 

were treated with lenalidomide only up to a maximum cumulative dose of 4,200 mg [56]. 

The model, however, assumed that patients would be treated with lenalidomide until 

progression, in line with the most recent decision in October 2016 by SÚKL on 

lenalidomide reimbursement, and costs of lenalidomide and dexamethasone were 

implemented accordingly [57]. The outcomes that would have been observed if 

lenalidomide and dexamethasone had been given until progression may have been better 

than those captured in the RMG and used in the current model, and therefore the outcomes 

generated in the current model may be an underestimation. On the other hand, no hard stop 
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at eight cycles (i.e. equivalent to a cumulative dose of 4,200 mg assuming no dose 

reductions and no missed doses) or any time point afterwards was observed in the TTD 

curves from the RMG, indicating that the impact of the 4,200 mg cap may not be sizable. 

With regard to AE rates, the model included rates estimated from the ASPIRE frequencies 

of AEs. No data on AEs were available from the RMG and therefore no further adjustment 

was conducted. This represents a further limitation, although the impact of AE costs on the 

cost-effectiveness of KRd is minimal (i.e. the incremental cost of AEs is only 0.07% of the 

total incremental costs of KRd compared with Rd; see Table 2.6). The last PFS and OS 

events in patients captured in the RMG happened at nearly five years; the KM estimates 

showed a probability of remaining progression-free of approximately 5% and a probability 

of survival of approximately 20% at about five years (see online resources; Supplementary 

Figure 2.1 and 2.2). The long-term extrapolation of PFS and OS may be seen as a key 

contributor to the model uncertainty particularly considering the extent of the time horizon 

in the base case but, taking into account the maturity of the RMG data, this long-term 

extrapolation is not deemed to have a large impact on results. Besides, in a recent 

retrospective analysis of long-term PFS and OS data of Rd patients in the RMG registry, 

the median PFS and OS was estimated to be 9.0 months and 18.5 months, respectively [62]. 

PFS and OS at six years was <5% and 20%, respectively. These values are very closely in 

line with the predictions of our model therefore we believe the PFS and OS predictions can 

be considered valid. Additionally, a scenario analysis looked into the impact of shortening 

the time horizon to 20 years, and demonstrated that the choice of time horizon does not 

have a large impact on the cost-effectiveness results. Other limitations, such as the 

uncertainty around the utility estimates, have been discussed by Jakubowiak et al. [32]. 

 

The cost-effectiveness analysis by Jakubowiak et al. compared KRd versus Rd in relapsed 

MM from a US perspective, with an ICER of $107,520 per QALY [32]. The authors 

estimated that patients treated with KRd would benefit from 1.99 incremental LYs and 1.67 

incremental QALYs compared with Rd, in contrast with the incremental 0.99 LYs and 0.88 

QALYs estimated in the current model [32]. Larger differences can be observed when 
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absolute LYs and QALY estimates are compared, despite the similar relative improvement 

in LYs and QALYs between the two analyses [32]. This reinforces the value of using RW 

data in cost-effectiveness analyses to avoid estimations that diverge from observed 

outcomes in the RW. However, these seemingly disparate results can be primarily explained 

by one key difference in the modelling approach between the two models: the data source 

used for calculating the PFS, OS and TTD curves. Jakubowiak et al. derived these curves 

for both KRd and Rd arms by fitting joint parametric models to the ASPIRE trial data; 

registry data (collected from the US Surveillance, Epidemiology, and End Results registry) 

were only used for the extrapolation of the Rd OS curve after the time of the last death 

event in the Rd arm in ASPIRE, and the OS HR was then used to estimate the corresponding 

OS curve for patients in the KRd arm. 

 

In summary, this analysis showed that cost-effectiveness models of health technologies in 

the RW can generate policy-relevant results when the strengths of both RCTs and powerful 

observational databases are combined. The current model showed that KRd is likely to be 

cost-effective versus Rd in the RW population (MM patients with one to three prior 

therapies), with an ICER of €73,156 per QALY and these results, along with the cost-

effectiveness analysis conducted by Jakubowiak et al., confirm that KRd is likely to be cost-

effective versus Rd both in the clinical and RW settings [32]. Therefore, the reimbursement 

of KRd for this patient population represents an efficient allocation of resources within the 

healthcare system. 
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SUPPLEMENTARY MATERIAL 

 

 

Supplementary Figure 2.1. Progression-free survival curves of patients receiving Rd 

in the RMG. 

 

 

Rd, lenalidomide/dexamethasone; RMG, Registry of Monoclonal Gammopathies. 

 

a) Progression-free survival of all patients with one to three prior lines. 

b) Progression-free survival of patients, per treatment line. 
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Supplementary Figure 2.2. Overall survival curves of patients receiving Rd in the 

RMG. 

 

 

Rd, lenalidomide/dexamethasone; RMG, Registry of Monoclonal Gammopathies. 

 

a) Overall survival of all patients with one to three prior lines. 

b) Overall survival of patients, per treatment line. 
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Supplementary Table 2.1. Comparison of baseline characteristics in RMG and ASPIRE patients. 

 

Descriptive statistics 

Second Line  

RMG / ASPIRE 

(n=113/n=157) 

Third Line  

RMG / ASPIRE 

(n=96/n=139) 

Fourth Line  

RMG / ASPIRE 

(n=15/n=100) 

Age (median years) 69 / 66 66 / 64 76 / 65 

Sex (n, % male) 47.8% / 51.6% 52.1% / 69.1% 40.0% / 55.0% 

Status Performance (ECOG/WHO)    

0 8.2% / 38.9% 6.5% / 51.1% 6.7% / 43.0% 

1 60.9% / 53.5% 70.7% / 40.3% 53.3% / 46.0% 

2 21.8% / 7.6% 18.5% / 8.6% 40.0% / 11.0% 

3 7.3% / - 4.3% / - 0.0% / - 

4 1.8% / - 0.0% / - 0.0% / - 

Beta2 microglobulin (mg/l)    

<2.5 17.8% / 15.3% 19.7% / 24.5% 25.0% / 85.0% 

≥2.5 82.2% / 82.8% 80.3% / 74.8% 75.0% / 13.0% 

Creatinine level (median, umol/l) 87 / 75 93 / 86 121 / 74 

Haemoglobin level (median, g/l) 115 / 109 111 / 116 117 / 107 

ISS at diagnosis    

Stage 1 23.1% / 18.5% 30.2% / 23.7% 46.7% / 12.0% 

Stage 2 38.9% / 23.6% 40.7% / 20.1% 6.7% / 29.0% 

Stage 3 38.0% / 39.5% 29.1% / 39.6% 46.7% / 44.0% 

Prior Velcade exposure  61.9% / 46.5% 94.8% / 75.4% 100.0% / 82.0% 

Refractory to 1:    

IMiD 17.6% / 12.1% 34.3% / 24.5% 58.3% / 35.0% 

Velcade 38.6% / 3.8% 39.4% / 18.0% 46.7% / 27.0% 

SCT status (yes) 2 22.1% / 49.7% 38.5% / 70.5% 26.7% / 53.0% 

  Note: Percentages may not add up to 100% due to rounding or missing data. 
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Supplementary Table 2.2. Multiple Cox regression analysis of PFS, detailed output. 

Covariate Subgroup 
Reference 

Group 

Hazard Ratio p-value 

(2-sided) Point Estimate 95% CI 

Treatment KRd Rd 0.641 0.526 0.781 <0.0001 

Baseline Hemoglobin Level Category  ≥ 105 g/L < 105 g/L 0.658 0.531 0.814 0.0001 

Baseline Platelet Level Category  ≥ 150 x109/L < 150 x109/L 0.665 0.535 0.825 0.0002 

Baseline Corrected Calcium Level 

Category 

<= 11.5 

mg/dL 
>11.5 mg/dL 0.610 0.347 1.073 0.0863 

Disease Stage at Initial Diagnosis Missing II 0.771 0.553 1.073 0.1232 

Disease Stage at Initial Diagnosis I II 0.730 0.533 1.001 0.0510 

Disease Stage at Initial Diagnosis III II 0.986 0.777 1.251 0.9091 

β2 Microglobulin Level Category  < 2.5 mg/L ≥ 2.5 mg/L 0.790 0.603 1.034 0.0863 

Risk Group as Determined by FISH Standard High 0.642 0.476 0.866 0.0037 

Risk Group as Determined by FISH Unknown High 0.667 0.499 0.893 0.0065 

Prior Bortezomib Exposure (used for 

randomization stratification) 
No Yes 0.745 0.603 0.919 0.0061 

Refractory to prior IMiD Regimen No Yes 0.529 0.425 0.657 <0.0001 

Abbreviations: CI = confidence interval; FISH = fluorescent in situ hybridization; IMiD = immunomodulatory drug; Source: 

Amgen, data on file.  
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Supplementary Table 2.3. Multiple Cox regression analysis of OS, detailed output. 

Covariate Subgroup 
Reference 

Group 

Hazard Ratio p-value 

(2-sided) Point Estimate 95% CI 

Treatment KRd Rd 0.731 0.612 0.872 0.001 

Sex Male Female 1.185 0.989 1.419 0.066 

ECOG 1 0 0.990 0.820 1.196 0.917 

ECOG 2 0 2.035 1.525 2.716 0.000 

Baseline Hemoglobin Level Category  ≥ 105 g/L < 105 g/L 0.643 0.531 0.780 0.000 

Baseline Platelet Level Category  ≥ 150 x109/L 
< 150 

x109/L 
0.604 0.498 0.733 0.000 

Baseline Creatinine Clearance Continuous variable  0.994 0.991 0.998 

Disease Stage at Initial Diagnosis Missing II 1.232 0.931 1.632 0.145 

Disease Stage at Initial Diagnosis I II 1.220 0.944 1.577 0.128 

Disease Stage at Initial Diagnosis III II 1.155 0.839 1.591 0.377 

β2 Microglobulin Level Category  < 2.5 mg/L ≥ 2.5 mg/L 1.490 1.146 1.937 0.003 

Refractory to prior IMiD Regimen Yes No 1.518 1.238 1.861 0.000 

Abbreviations: CI = confidence interval; ECOG = Eastern Cooperative Oncology Group; IMiD = immunomodulatory drug; 

Source: Amgen, data on file.  
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Supplementary Table 2.4. Percentage of patients receiving each subsequent treatment 

after progression, per treatment line, in the RMG. 

 
After 2L 

(n=62) 
After 3L (n=53) After 4L (n=3) 

Bortezomib 37.1% 35.8% 0.0% 

Lenalidomide 11.3% 9.4% 66.7% 

Thalidomide 17.7% 26.4% 0.0% 

Cyclophosphamide plus 

dexamethasone 
19.4% 9.4% 0.0% 

Pomalidomide plus 

dexamethasone 
0.0% 7.5% 0.0% 

Bortezomib plus thalidomide 0.0% 0.0% 0.0% 

Othera 14.5% 11.5% 33.3% 

2L, second line; 3L, third line; 4L, fourth line; n, number of patients; RMG, Registry of Monoclonal Gammopathies. 
aThe cost of “other” treatments was assumed to be the minimum cost among all the subsequent treatments. 

 

Supplementary Table 2.5. Duration of subsequent treatments after progression, per 

treatment line, in the RMG. 

 
After 2L 

(n=62) 

After 3L 

(n=53) 
After 4L (n=3) 

Duration (weeks) 21.9 14.1 31.7 

2L, second line; 3L, third line; 4L, fourth line; n, number of patients; RMG, Registry of Monoclonal Gammopathies. 
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Supplementary Table 2.6. Monitoring costs. 

Item 

Proportion 

of patients 

tested 

Test 

frequency 

(per cycle) 

Unit cost 

(€) 

Cost per 

28-day 

cycle (€) 

Skeletal survey by x-ray 53.85% 0.05 8.60 0.21 

Serum protein assessment 100% 1.11 2.43 2.71 

Lab results - haematology 100% 2.02 2.51 5.05 

Lab results - blood chemistry 100% 1.75 2.31 4.05 

Lab results - thyroid function 

test 
100% 1.75 2.31 4.05 

Specialist visit (haematologist) 100% 2.26 6.83 15.39 
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Supplementary Table 2.7. AIC values associated with PFS, OS and TTD curves of 

patients receiving Rd in the RMG, per treatment line. 

 PFS OS TTD 

 2L 3L 4L 2L 3L 4L 2L 3L 4L 

Exponential 299.47 267.59 43.64 220.21 219.81 42.65 276.93 244.03 38.56 

Weibull 297.23 267.15 44.61 221.77 219.75 44.36 231.29 221.72 34.45 

Gompertz 301.46 269.58 44.07 221.91 221.51 43.55 235.42 230.83 34.25 

Log-logistic 291.41 262.77 46.71 222.64 218.69 43.52 248.95 226.74 37.12 

Log-normal 297.21 263.64 46.83 222.62 219.34 43.84 256.74 237.29 37.93 

Generalised 

gamma 
295.17 264.25 NAa 223.58 220.26 45.77 232.12 223.22 35.96 

2L, second line; 3L, third line; 4L, fourth line; NA, not available; OS, overall survival; PFS, progression-free survival; Rd, 

lenalidomide/dexamethasone; RMG, Registry of Monoclonal Gammopathies; TTD, time to discontinuation. 
aCould not be computed. 
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ABSTRACT 

Objective: To investigate potential variations in prescription rates of anti-osteoporosis 

drugs at the general practitioner (GP) practice level in England, analysing associations 

of prescription rates with key demographic and socio-economic variables, and its 

evolution over time. 

Methods: A retrospective database analysis was conducted using prescription data from 

all GP practices in England between April 2013 and September 2018. Potential 

associations between prescription rates and other variables (sex, age, ethnicity, rural-

urban classification and income deprivation) were analysed using mixed-effects Poisson 

regressions and concentration indices. 

Results: Alendronic acid was the most frequently prescribed anti-osteoporosis drug. 

Exploratory and regression analyses showed the association between GP prescriptions 

and the characteristics of the population they serve. Income deprivation had a 

statistically significant and negative effect on prescription levels of alendronic acid, 

denosumab, ibandronic acid and risedronate sodium. Since 2013, denosumab 

prescriptions exhibited a steep surge in the least income-deprived areas, compared with 

a modest rise in the most income-deprived areas. Concentration indices indicated a 

disproportionate concentration of denosumab and, to a lesser extent, ibandronic acid 

prescriptions among the least income-deprived. The analyses demonstrated that 

different prescribing behaviours may exist across GPs according to the Clinical 

Commissioning Group (CCG) to which they belong. 

Conclusions: Variation in the prescription of anti-osteoporosis drugs exists across GPs 

and CCGs in England, this being more prominent for certain drugs (e.g. denosumab) 

compared with others (e.g. alendronic acid). Inequalities exist in English primary 

healthcare and we advocate our findings could support the efforts of decision-makers 

towards a more equitable system. 

KEYWORDS 

Osteoporosis; Prescriptions; General practitioner; Health determinants; Deprivation; 

England. 

KEY ABBREVIATIONS 

AIC, Akaike information criterion; AUC, area under the curve; BIC, Bayesian 

information criterion; BNF, British National Formulary; CCG, Clinical Commissioning 

Group; CI, concentration index; GP, general practitioner; IMD, Index of Multiple 

Deprivation; LSOA, Lower-layer Super Output Area; LRT, likelihood ratio test; ONS, 

Office for National Statistics; RUC, rural-urban classification; TA, technology appraisal. 
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INTRODUCTION 

Spatial and temporal variation in drug prescription rates is a common phenomenon 

within and across healthcare settings and, although a certain level can be justified 

considering the biologic and demographic characteristics of patient populations, in 

many cases the observed variations may be larger than what could be considered fair by 

international standards of human rights, reflecting underlying inequalities within 

healthcare systems [1, 2]. Significant differences in drug prescription rates have been 

found in a number of disease areas across countries, regions, and even lower 

organisational levels such as districts or municipalities, which highlights the importance 

of addressing this issue at all layers of healthcare decision-making, including 

international organisations in the healthcare sector [3-15]. Importantly, these variations 

in prescription rates may also translate into inconsistent, and often superfluous, drug 

expenditure, which has become a critical issue in healthcare systems where healthcare 

commissioners are struggling to cope with increasing demands under heavily 

constrained budgets. 

 

A fundamental part for understanding and addressing variations and inequalities is to 

identify their determinants, and common findings across many studies in different 

disease areas indicate that key socio-demographic variables such as sex, age, economic 

status, education level, ethnicity and level of urbanisation of the area where individuals 

live have a significant impact on varying prescription rates [4, 6, 8, 10, 15, 12]. For 

instance, several studies have demonstrated uneven antibiotic prescription rates in 

Italian children, with greater use of antibiotics in the more deprived southern regions (in 

terms of income and Human Development Index [HDI]) in line with the well-described 

north-south socio-economic polarisation [11, 16]. But examples like this one abound. A 

study conducted by the Organisation for Economic Co-operation and Development 

(OECD) stressed that it is essential to tackle inequality by focusing at the bottom of the 

income distribution, putting in place policies that promote and increase access to high-

quality education and healthcare [17]. This, the OECD stated, would not only make 

societies less unfair, but also richer [17]. Therefore, minimising inequalities in the access 

to healthcare across socio-economic groups and distributing the resources available 

based on the needs of the patients being served should be a key goal for healthcare 

policy-makers [18, 19]. This, with a particular commitment to ensuring social justice 

through the development of primary care, was put at the centre of health policy 

discussions with the Astana Declaration [20]. 

 

Variation in prescription rates may also exist in the case of anti-osteoporosis drugs. 

Recent reports have estimated that three million people in the UK have osteoporosis, 
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and over 500,000 people present with fragility fractures (i.e. fractures that result from 

mechanical forces that would not normally result in fracture), which represents a 

significant financial burden to the National Health Service (NHS) of approximately £4.4 

billion a year, equivalent to £8,800 per person with a fragility fracture [21, 22]. The 

National Institute for Health and Care Excellence (NICE) have highlighted the 

importance of identifying the individuals at high risk of fragility fractures and offering 

treatments to improve bone density and reduce fracture risk, which is perhaps more 

relevant than ever given the estimated increase in the epidemiological burden of 

osteoporosis in the UK and the ever-increasing ageing population [22, 23]. Also, NICE 

have conducted several technology appraisals (TAs) since 2008, assessing the anti-

osteoporosis drugs available on the market and issuing guidance about how and when 

to use them (if recommended) [24-28]. These anti-osteoporosis drugs include 

bisphosphonates (such as alendronic acid, ibandronic acid and risedronate sodium), a 

selective oestrogen receptor modulator (raloxifene) and a monoclonal antibody that 

inhibits osteoclasts’ function (denosumab). Despite NICE guidance, however, a clinical 

audit conducted in 2016 showed a substantial gap between what is recommended and 

what is done in reality in relation to secondary prevention of fragility fractures in 

England and Wales: only 34% of people aged 50 or over who had sustained a fragility 

fracture were recommended bone protection therapy, of whom only 31% were treated 

within four months of their fracture [22]. From a healthcare decision-maker’s 

perspective, and given this proof of suboptimal treatment patterns, it is crucial to ensure 

an efficient and fair distribution of resources, and it is therefore important to understand 

how GPs prescribe anti-osteoporosis drugs and how these are distributed across the 

population. This may be even more important considering that substantial differences 

exist in their prices due to the availability of generic treatments for bisphosphonates and 

raloxifene, compared with the branded denosumab (Online Resource, Appendix 1). 

 

In line with this, we set out to produce some evidence to steer policy discussions towards 

a more equitable primary care in publicly funded healthcare systems. Firstly, we 

evaluated the levels of prescription rates of anti-osteoporosis drugs at the GP practice 

level in England, as well as their temporal trends. Secondly, we investigated whether the 

demographic and socio-economic characteristics of the patients being served (i.e. sex, 

age, ethnic group composition, rural-urban classification and income deprivation) were 

significant predictors of anti-osteoporosis drug prescription rates. Finally, we analysed 

potential inequalities in anti-osteoporosis drug prescription rates, evaluating whether 

inequality levels differ across drug types, and examined the evolution of inequality over 

time to assess whether there is, or there is not, a potential trend towards a more equitable 

primary care system in England. 
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METHODS 

Data sources 

In recent years, the UK Government have made public a large amount of data as part of 

its commitment for greater transparency, including data on treatments prescribed by GP 

practices in England, characteristics of patients registered with GP practices, ethnic 

group composition, rural-urban classification (RUC) of specific geographic areas and 

deprivation status [29]. Comprehensive datasets available online are accessible via the 

NHS Digital, GOV.UK and Office for National Statistics (ONS) portals [30-35]. 

 

Variables   

GP practice-level prescription data  

On December 17th, 2018, we extracted the data on each individual treatment (identified 

by a unique British National Formulary [BNF] code) prescribed by each GP practice in 

England and dispensed in the community in the UK, with the corresponding number of 

prescribed items that were dispensed. Location data such as postcode and information 

on the Clinical Commissioning Group (CCG) to which each GP practice belongs were 

also available. Prescribing information datasets were available monthly, recording data 

starting from August 2010 until September 2018 (at the time of data collection), but we 

did not include data before April 2013 in the current analysis due to the lack of other 

relevant datasets in that period (see Section “Patient demographics”). Therefore, for the 

current analysis we used the datasets containing monthly prescription data from April 

2013 until September 2018. 

 

We filtered these datasets to generate datasets capturing prescriptions for alendronic acid 

(with and without colecalciferol), denosumab, ibandronic acid, raloxifene and 

risedronate sodium. We considered these products in our analyses because NICE had 

assessed and recommended their use in routine practice at some point and because these 

drugs are most frequently prescribed in primary care (Table 3.1). The drugs that could 

have been potentially included but were excluded from the analysis, as well as the reason 

for their exclusion (e.g. because NICE did not include the drug in the latest technology 

appraisals or because the number of prescriptions by GPs in England are close to zero), 

are reported in Online Resource, Appendix 2. All prescribing data have also been made 

available to the public through a user-friendly interface (OpenPrescribing.net) 

developed by the Evidence-based Medicine DataLab at the University of Oxford. This 

allowed us to validate the data used in our analyses by comparing the number of 

prescriptions included in our final datasets with the number of prescriptions reported at 

OpenPrescribing.net [36]. When prescription data were not reported for a given product 

by a GP practice, we considered the number of prescriptions for that product to be zero.
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Table 3.1. Products included in the analysis and the reason for their inclusion. 

Product Mode of 

administration 

Reason for inclusion 

Alendronic 

acid 

Oral Alendronic acid has been consistently recommended by NICE as a key treatment for osteoporosis [24, 25, 

28]. By being a product administered orally, alendronic acid is expected to be prescribed primarily by GPs. 

Alendronic 

acid and 

colecalciferol 

Oral NICE have considered alendronic acid with and without colecalciferol (vitamin D3) as one single technology 

[27], and therefore the conclusions drawn by NICE for alendronic acid are also applicable when it is 

combined with colecalciferol. By being a product administered orally, alendronic acid and colecalciferol is 

expected to be prescribed primarily by GPs.  

Denosumab 

(excluding 

XGEVA®) 

Subcutaneous NICE (TA204) recommended denosumab for a specific group of osteoporosis patients for whom oral 

bisphosphonates are unsuitable [26]. Although denosumab treatment may be started in secondary care, all 

subsequent administrations are expected to be delivered in primary care [37]. 

Ibandronic 

acid 

Oral and 

intravenous 

(IV) 

Both the oral and IV forms of ibandronic acid were recommended by NICE TA464 [28]. Intravenous 

ibandronic acid is expected to be delivered mainly in secondary care, whereas its oral formulation primarily 

by GPs. The GP prescribing datasets capture both oral and IV prescriptions by GPs in England and, although 

most prescriptions correspond to the oral formulation [31]. 

Risedronate 

sodium 

Oral NICE have consistently recommended risedronate sodium as a treatment for osteoporosis [24, 25, 28]. By 

being a product administered orally, risedronate sodium is expected to be prescribed primarily by GPs. 

Raloxifene Oral NICE recommended raloxifene (TA161) for the secondary prevention of osteoporotic fractures in a specific 

subgroup of postmenopausal women [24]. By being a product administered orally, raloxifene is expected to 

be prescribed primarily by GPs. 

GP, general practitioner; IV, intravenous; NICE, National Institute for Health and Care Excellence; TA, technology appraisal. 
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Patient demographics  

We retrieved the details on the patient population registered at each GP practice (except 

for those practices with 100 or fewer patients which are unavailable for privacy reasons). 

These datasets reported the number of patients registered at each GP practice by sex and 

age band; from these, we calculated the proportion of females and the mean age of 

patients registered at each GP practice. Quarterly data are available from April 2013 to 

January 2017, and monthly data have been published thereafter. When data for a given 

month were not available (between April 2013 and January 2017), we conducted a linear 

interpolation between the two closest data points, assuming a linear change in potential 

differences in the sex (as a proportion of females) and age structure over time.  

Ethnic composition of the local area  

To incorporate ethnicity in our analyses, we obtained the 2011 ethnic group composition 

data from the ONS and calculated the percentage of white people for each Lower-layer 

Super Output Area (LSOA) in England, i.e. small areas with a similar population size 

and an average of 1,500 residents or 650 households. White people, as per the ONS 

classification, included English, Welsh, Scottish, (Northern) Irish, Gypsy or Irish 

Traveller, and Other White categories.  

Rural-urban classification of the local area  

We collected the 2011 RUC data of LSOAs from the ONS, which classifies each LSOA 

into one of four urban or six rural categories. For this analysis, we combined all rural 

sub-categories in a single “rural” category, while all urban sub-categories formed a 

single “urban” category. We considered these cross-sectional data on ethnicity and rural 

category for the entire analysis time frame due to the lack of more up-to-date data. 

Nevertheless, we did not expect any specific trends during the observation period. 

Deprivation of the local area  

The Index of Multiple Deprivation (IMD) is the official measure of deprivation in 

England and is generated combining information from seven domains with a particular 

weighting scheme (income: 22.5%; employment: 22.5%; education, skills and training: 

13.5%; health and disability: 13.5%; crime: 9.3%; barriers to housing and services: 

9.3%; and living environment: 9.3%) [35]. The IMD and its seven domain indices were 

available for each LSOA. These indices rank each LSOA from 1 (the most deprived 

area) to 32,844 (the least deprived area) and are calculated from scores which, in the 

case of the income and employment domains, are meaningful and can be interpreted as 

the proportion of the population experiencing the corresponding type of deprivation. We 

considered income deprivation as the key variable for analysis in line with our research 

objectives and the evidence available in the literature. Our analyses incorporated income 

deprivation as a score and as a decile. The latest available IMD version at the time of 



70 

 

manuscript submission was from 2015 [35].  

Variables summary 

Figure 3.1 outlines the data sources used and summarises the process for linking all these 

together to generate a single dataset capturing the variables used in our analyses. These 

variables are also summarised in Table 3.2. Our final dataset only considered prescribing 

data for which details on patients registered were available, as otherwise the lack of data 

on the size of the GP practice would not let us put the number of prescriptions into 

context. 

 

Figure 3.1. Summary of data sources and variables included in the analyses. 
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Table 3.2. Description of variables included in the analyses. 

Variable Description 

GP Identification code of a given GP practice i. 

CCGi The CCG to which a given GP practice i belongs. 

Product BNF code associated with the product p of interest. 

Time Time t (year and month) at which the products of interest were prescribed. 

Itemsi,t,p Number of items of product p prescribed by GP practice i at time t and 

dispensed in the community in the UK.  

Patientsi,t Number of patients registered with GP practice i at time t. 

income.scorei Proportion of the population in the LSOA where the GP practice i is located 

experiencing deprivation relating to low income. This measure includes both 

those people that are unemployed and those that are in work but have low 

earnings. 

Income.decilei Income deprivation decile of the LSOA where GP practice i is located. 

Sexi,t Proportion of females in the patient pool registered with GP practice i at 

time t. 

agei,t Average age, in years, of the patient pool registered with GP practice i at 

time t. 

rural-urbani Rural classification (either as ‘rural’ or ‘urban’) of the LSOA where GP 

practice i is located. 

Ethnicityi Proportion of white people, as per the ONS classification, in the LSOA 

where GP practice i is located. 

BNF, British National Formulary; CCG, Clinical Commissioning Group; GP, general practitioner; LSOA, Lower-layer Super 

Output Area. 

 

Data analysis 

Exploratory analyses  

We analysed the number of GP practices for which prescribing data were available, as 

well as the number of practices for which the characteristics of registered patients could 

be accessed. With these, we calculated the total number of prescriptions included in our 

final datasets and compared these numbers with those available online to ensure we did 

not miss a substantial amount of data [36]. We conducted several exploratory analyses 

to better understand the entire dataset and potential relationships between variables. To 

assess whether different prescribing behaviours may exist for different strata of the 
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population according to income deprivation, we plotted the prescription rates over time 

for each product separately and by income deprivation decile. This analysis provided an 

understanding of the temporal trends of the prescription rates of each product. 

Regression analyses  

We implemented mixed-effects Poisson regression models (one for each product of 

interest) to assess whether, and how, prescription rates of anti-osteoporosis drugs are 

affected by demographic and socio-economic factors. Time, the number of patients 

registered, sex, age, ethnic group composition, rural-urban category and income 

deprivation score were included as fixed-effects variables (i.e. the full model); a random 

intercept was included for the GP practice. Also, we built regression models considering 

the income deprivation score as the sole fixed-effect variable (apart from time and the 

number of patients for normalisation purposes) to understand the effect of income 

deprivation in the absence of other explanatory variables (i.e. the reduced model). 

Clinical Commissioning Groups represent the organisational level in which funding 

decisions are made in England, potentially resulting in differential access to medicines 

[38]. Consequently prescription levels of a certain product may vary across CCGs, and 

for that reason we constructed models with and without random effects for CCGs [39]. 

We calculated the Akaike and Bayesian information criteria (AIC and BIC) associated 

with each of these models, and the models with and without random effects for CCGs 

were compared with a likelihood ratio test (LRT). We estimated marginal and 

conditional R2 values as described in the literature [40]. Model codes, as written in R, 

are reported in Online Resource, Appendix 3. 

Analysis of inequalities  

We estimated concentration indices (CIs) to identify the potential presence of socio-

economic inequalities in prescription rates of anti-osteoporosis drugs in primary care in 

England. We plotted the cumulative number of prescriptions vs the cumulative number 

of patients ranked by income (i.e. concentration curves) and calculated the area under 

the curve (AUC) with the trapezoidal rule. The CIs were then calculated as: CI = 2 * 

(0.5 – AUC) [41]. We compared the CIs and curves with the 45-degree line (or CI equal 

to zero), which would represent perfect equality assuming all GP practices are expected 

to have the same level of consumption regardless of the characteristics of the patient 

population they serve. Finally, we graphically analysed the evolution of CIs over time. 

 

Software 

Data collection, cleaning, manipulation and all analyses, as described below, were 

conducted using R version 3.5.1 and the key following packages: broom, caTools, curl, 

data.table, dplyr, ggplot2, lme4, readr, stringr [42]. 
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RESULTS 

Exploratory analyses  

The exploratory analyses showed that the total number of GP practices in England has 

decreased since 2013, and even more so the number of GP practices for which both 

prescribing and patient data files are available (i.e. the ones we used in our analyses), 

going from 8,077 GP practices in April 2013 to 7,043 in September 2018 (Online 

Resource, Appendix 4). Nevertheless, there is no reason why we would think this could 

affect our analyses in any particular way. Alendronic acid was undeniably the anti-

osteoporosis drug most frequently prescribed by GPs in England, despite a steady 

decrease from approximately 600,000 items per month in 2013 (an average of 75.1 items 

per GP practice in April 2013) to 500,000 items per month in 2018 (68.3 items per GP 

practice in September 2018). Risedronate sodium was the next most commonly 

prescribed drug, followed by ibandronic acid and raloxifene (7.4, 1.8 and 0.6 items per 

GP practice, respectively, in September 2018). Denosumab, with a steady increase in 

prescriptions between 2013 and 2018, was at the time of analysis prescribed at a similar 

level than that of raloxifene (0.6 items per GP practice in September 2018). The 

combined alendronic acid and colecalciferol was the least prescribed product (0.1 items 

per GP practice in September 2018). The different prescription levels across drugs and 

distinct patterns over time justified the implementation of separate regression models 

for each product analysed (Online Resource, Appendix 5). By comparing our final 

dataset with the anti-osteoporosis drug prescription numbers available online at 

OpenPrescribing.net, we confirmed that our final dataset captured most of the 

prescriptions of interest (Online Resource, Appendix 5).  

 

Our analyses indicated that different prescribing behaviours may exist across GPs in 

England according to income deprivation levels of the area where GPs are located, with 

the clearest examples of polarisation observed for denosumab, followed by ibandronic 

acid and raloxifene (Figure 3.2; please note the differences in scale of Y axes). 

Denosumab showed a considerably sharper increase in prescription rates in less deprived 

areas compared with more deprived areas, with more than a three-fold difference in 

prescription rates between the most and least deprived areas. Further exploratory 

analyses are reported in Online Resource, Appendix 6. 
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Figure 3.2. Prescription rates, over time, for each product and by income 

deprivation decile (from 1, the most deprived, to 10, the least deprived). 
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Figure 3.2. (continued) Prescription rates, over time, for each product and by 

income deprivation decile (from 1, the most deprived, to 10, the least deprived). 
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Regression analyses  

Results from regression analyses are reported in Table 3.3. Our analyses showed that 

socioeconomic status, measured by income deprivation, was a statistically significant 

predictor (at a 5% significance level) of prescription levels for most drugs. When 

adjusted for demographic and rural-urban characteristics, income deprivation had a 

negative effect on prescription levels of alendronic acid (with and without 

colecalciferol), denosumab, ibandronic acid and risedronate sodium, i.e. a larger 

proportion of the population experiencing deprivation relating to low income would 

mean, on average, lower prescription levels of these drugs. The results indicated the 

opposite, albeit not statistically significant at a 5% significance level, effect for 

raloxifene. We observed a statistically significant and positive effect of sex (proportion 

of females registered with GPs) on prescription levels of all anti-osteoporosis drugs 

except for the combined alendronic acid and colecalciferol. Similarly, we identified 

statistically significant and positive effects of age (years) on prescription levels of all 

drugs, meaning that a higher mean age of patients registered with GPs was associated 

with higher anti-osteoporosis drug prescriptions rates. Our analyses suggested that the 

ethnic group composition had a statistically significant effect on prescription levels of 

all products: we observed that the larger the percentage of white people in the local area, 

the larger the amount of denosumab, ibandronic acid, raloxifene and risedronate sodium 

would be, and noted the opposite effect for alendronic acid with and without 

colecalciferol. We found that alendronic acid and colecalciferol, denosumab and 

ibandronic acid were more likely to be prescribed in urban areas, whereas alendronic 

acid, raloxifene and risedronate sodium were more likely to be prescribed in rural areas. 

We observed a large difference between the marginal and conditional R2 in all cases, 

which highlighted the importance of implementing a mixed-effects model structure. The 

results in Table 3.3 were largely aligned with the results illustrated in Figure 3.2. 

 

In general, the reduced models yielded similar regression coefficients as those resulting 

from the full models, thereby validating the appropriateness of our analyses. The 

reduced models corroborated the influence of income deprivation on prescription levels 

of alendronic acid, denosumab, ibandronic acid and risedronate sodium, and implied 

that income deprivation may be affecting raloxifene prescription levels in a similar way. 

The differences in the marginal R2 between the full and reduced models provide a sense 

of the additional variability explained by the fixed factors excluded from the reduced 

models. 

 

The regression analyses confirmed that it was appropriate to consider random effects for 

CCGs, suggesting that a substantial variation in anti-osteoporosis drug prescription 

levels may exist at the CCG level. All models yielded lower AIC and BIC values when 
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random effects for CCGs were implemented and all twelve LRTs (one test comparing 

the models for each product [both the full and reduced models] with and without random 

effects for CCGs) were statistically significant (p<0.001) in favour of the models with 

random effects. The models that included random effects for CCGs yielded higher 

conditional R2 values compared with those without random effects for CCGs, further 

emphasising the existing variability across CCGs. The regression model results without 

random effects for CCGs are reported in Online Resource, Appendix 7. 

 

Finally, the regression analyses confirmed the time trends observed in the exploratory 

analyses, showing a negative trend (i.e. a reduction in prescription levels) for all drugs 

but denosumab. 
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Table 3.3. Mixed-effects regression model results: estimates (and 95% confidence intervals) of models with random effects for 

CCGs, with and without demographic and rural-urban characteristics. 

 Alendronic acid 
Alendronic acid 

and colecalciferol 
Denosumab Ibandronic acid Raloxifene 

Risedronate 

sodium 

 
Full 

model 

Reduced 

model 

Full 

model 

Reduced 

model 

Full 

model 

Reduced 

model 

Full 

model 

Reduced 

model 

Full 

model 

Reduced 

model 

Full 

model 

Reduced 

model 

Intercept 
106.669 

(106.231 to 

107.107)*** 

87.570 

(87.251 to 

87.889)*** 

429.432 

(428.553 to 

430.311)*** 

390.752 

(389.218 to 

392.285)*** 

-572.244 

(-575.279 to 

-569.208)*** 

-603.583 

(-605.248 to 

-601.918)*** 

182.845 

(181.813 to 

183.876)*** 

159.433 

(158.694 to 

160.172)*** 

205.446 

(203.549 to 

207.342)*** 

188.403 

(186.763 to 

190.042)*** 

66.461 

(65.964 to 

66.959)*** 

52.699 

(52.119 to 

53.279)*** 

Patients 

(1,000s) 

0.049 

(0.049 to 

0.049)*** 

0.047 

(0.046 to 

0.047)*** 

0.071 

(0.065 to 

0.078)*** 

0.067 

(0.061 to 

0.073)*** 

0.068 

(0.065 to 

0.071)*** 

0.062 

(0.059 to 

0.065)*** 

0.062 

(0.060 to 

0.063)*** 

0.059 

(0.057 to 

0.060)*** 

0.053 

(0.051 to 

0.055)*** 

0.051 

(0.048 to 

0.053)*** 

0.051 

(0.051 to 

0.052)*** 

0.049 

(0.048 to 

0.050)*** 

Income 

score (% 

deprived) 

-0.001 

(-0.002 to 

-0.001)*** 

-0.002 

(-0.002 to 

-0.002)*** 

-0.020 

(-0.028 to 

-0.013)*** 

0.007 
(0 to 0.014) 

-0.005 

(-0.008 to 

-0.002)** 

-0.018 

(-0.021 to 

-0.015)*** 

-0.009 

(-0.011 to 

-0.007)*** 

-0.013 

(-0.015 to 

-0.011)*** 

0.003 

(-0.001 to 

0.006) 

-0.006 

(-0.009 to 

-0.002)*** 

-0.002 

(-0.003 to 

-0.001)** 

-0.003 

(-0.004 to 

-0.002)*** 

Sex (% 

females) 

0.037 

(0.036 to 

0.038)*** 

 

-0.015 

(-0.027 to 

-0.002)* 

 

0.101 

(0.091 to 

0.110)*** 

 

0.056 

(0.051 to 

0.060)*** 

 

0.071 

(0.064 to 

0.079)*** 

 

0.052 

(0.050 to 

0.054)*** 

 

Age (mean 

years) 

0.049 

(0.049 to 

0.050)*** 

 

0.070 

(0.059 to 

0.080)*** 

 

0.100 

(0.093 to 

0.107)*** 

 

0.057 

(0.054 to 

0.060)*** 

 

0.053 

(0.047 to 

0.058)*** 

 

0.041 

(0.039 to 

0.043)*** 

 

Rural-urban 

category 

(rural=0) 

-0.011 

(-0.023 to 

0.002) 

 

0.796 

(0.524 to 

1.067)*** 

 

0.174 

(0.080 to 

0.269)*** 

 

0.010 

(-0.044 to 

0.064) 

 

-0.240 

(-0.337 to 

-0.143)*** 

 

-0.078 

(-0.117 to 

-0.038)*** 

 

Ethnicity 

(% white) 

-0.001 
(-0.001 to 

-0.001)*** 

 
-0.007 

(-0.011 to 

-0.003)** 

 
0.009 

(0.006 to 

0.012)*** 

 
0.006 

(0.004 to 

0.008)*** 

 
0.022 

(0.019 to 

0.025)*** 

 
0.001 
(0 to 

0.002)* 
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Time (year 

and month)a 

-0.053 
(-0.053 to 

-0.053)*** 

-0.042 
(-0.042 to 

-0.041)*** 

-0.218 
(-0.218 to 

-0.218)*** 

-0.198 
(-0.199 to 

-0.198)*** 

0.277 
(0.276 to 

0.279)*** 

0.298 
(0.297 to 

0.299)*** 

-0.094 
(-0.094 to 

-0.093)*** 

-0.079 
(-0.080 to 

-0.079)*** 

-0.107 
(-0.108 to 

-0.106)*** 

-0.095 
(-0.096 to 

-0.094)*** 

-0.035 
(-0.035 to 

-0.034)*** 

-0.026 
(-0.026 to 

-0.025)*** 

AIC 4,288,756 4,288,756 206,579 206,579 448,412 448,412 1,271,381 1,271,381 740,019 740,019 2,297,784 2,297,784 

BIC 4,288,867 4,288,867 206,691 206,691 448,523 448,523 1,271,492 1,271,492 740,130 740,130 2,297,895 2,297,895 

Marginal R2 0.213 0.062 0.015 0.006 0.139 0.051 0.103 0.027 0.097 0.010 0.111 0.030 

Conditional 

R2 
0.983 0.986 1 1 0.811 0.816 0.947 0.953 0.979 0.980 0.938 0.945 

Nb 505,407 505,407 505,407 505,407 505,407 505,407 

Significance codes: *** for p<0.001; ** for p<0.01; * for p<0.05. 

AIC, Akaike information criterion; BIC, Bayesian information criterion; CCGs, Clinical Commissioning Groups; GP, general practitioner. 
aThe variable time took 66 different values, from prescriptions in April 2013 where time was 2013.25 to September 2018 where time was 2018.67. 
bTotal number of prescription entries captured in the final dataset, which includes one entry per GP practice per time point. 

NOTE: Cells in the table above were greyed out if confidence intervals contained zeros. 
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Analysis of inequalities 

Concentration indices were in line with the previous results, further demonstrating the 

inequality in anti-osteoporosis drug prescription rates between the GP practices in the 

most and least income-deprived areas. Figure 3.3 displays examples of concentration 

indices, along with their concentration curves, generated for each product analysed. 

Over time (Figure 3.4), the results indicated an approximately equal distribution of the 

most frequently prescribed products (alendronic acid and risedronate sodium) across GP 

practices in England. On the other hand, the analysis pointed towards a disproportionate 

concentration of denosumab prescriptions among the least deprived populations. This 

inequality in the access to denosumab in favour of the least deprived increased 

substantially from 2013 to 2017 (with a maximum value of the CI of 0.225 in October 

2016) and has remained approximately stable in the last two years (0.202 in September 

2018). We also observed a disproportionate concentration of prescriptions among the 

least deprived, although to a lesser extent compared with denosumab, for ibandronic 

acid and raloxifene, with a CI of 0.101 and 0.088 in September 2018, respectively. 

Although prescribed substantially less frequently than other anti-osteoporosis drugs, the 

prescriptions of the combined alendronic acid and colecalciferol were slightly 

concentrated among the most deprived populations (a minimum CI of -0.091 in May 

2016). 
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Figure 3.3. Concentration curves of anti-osteoporosis drugs using prescribing data 

from GP practices in England in September 2018. 

 

  



82 

 

Figure 3.4. Concentration index (calculated with the patient population ranked by 

income deprivation of the LSOA where the GP practice is based) over time. 

 

DISCUSSION 

Summary of findings 

Firstly, our analyses showed that alendronic acid is by far the most frequently prescribed 

anti-osteoporosis drug, followed by risedronate sodium and ibandronic acid. However, 

the prescription levels of all anti-osteoporosis drugs analysed here, except for 

denosumab, have been falling over the past few years. Secondly, we demonstrated that 

demographic and socio-economic characteristics (i.e. sex, age, ethnic group 

composition, rural-urban classification and income deprivation of the local area) of the 

patients being served do have an impact on anti-osteoporosis drug prescription rates. 

Our results revealed that income deprivation, a key variable in our analyses, had a 

negative effect on prescription levels of alendronic acid (with and without 

colecalciferol), denosumab, ibandronic acid and risedronate sodium; the case of 

denosumab represents the clearest example, exhibiting a steep surge in prescription rates 

across GPs located in the least income-deprived areas, compared with a modest rise in 

the most income-deprived areas. Also, our results suggested that different prescribing 

behaviours may exist across GPs according to the CCG to which they belong. Finally, 

the CIs corroborated the association of income deprivation with drug prescription levels. 

The concentration index was positive for denosumab, ibandronic acid and raloxifene, 

showing that prescriptions of these drugs were disproportionately concentrated among 
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the least deprived. The CI associated with denosumab showed a sharp increase since the 

first prescriptions in 2013 and remained relatively stable at a value slightly over 0.2 

since 2017. 

 

Strengths and limitations 

The UK Government have done an excellent job in making many large datasets freely 

available to the public. This exemplifies an unprecedented exercise of transparency that 

can lead to generating valuable insights such as those exposed in this paper. For privacy 

reasons, however, all these datasets capture aggregated data rather than patient-level 

data, which would potentially result in more precise estimations. Nevertheless, we 

consider that the granularity of the prescriptions by GPs and the combination with other 

variables from various sources is a key strength of our analysis and represents a unique 

recipe that could trigger potentially controversial discussions at all levels of society. 

 

Our study had some limitations. The lack of individual patient-level data prevented us 

from assessing the impact of other potential confounders such as patients’ characteristics 

(e.g. fracture history or comorbidities), compliance or persistence. Also, due to the lack 

of a robust evidence base and consensus among experts, the implementation of the so-

called “drug holidays” may vary across GP practices in England [43, 44]. Drug holidays 

may influence anti-osteoporosis drug prescription rates, but the absence of these data in 

publicly available datasets did not allow us to assess its impact. Likewise, the inability 

to track treatment switches precluded us from analysing the variation of anti-

osteoporosis treatment patterns in more detail. Between April 2013 and January 2017 

only quarterly data describing the patient population were available (as opposed to 

monthly data thereafter) and therefore, to estimate the data for the missing months, we 

assumed a linear change between the two closest data points available. Considering that 

exceptional changes in the size, sex and age structure of a GP practice are unlikely to 

happen from month to month, we believe this approach is realistic. Also, these data were 

unavailable for small GP practices (generally practices with less than 100 registered 

patients) for privacy reasons. Apart from being an unavoidable limitation, we do not 

believe this to be a source of bias. The GP list inflation, which may be caused by patients 

who should have but have not been removed from GP lists (following death or 

emigration, for example), poses another challenge for the interpretation of our analyses. 

This is an issue the UK Government have been trying to address for years, but the 

problem still exists and constitutes a limitation we could not circumvent.  

 

On the other hand, rural-urban classification, ethnicity and income deprivation data were 

only available at a single point in time. This represents a considerable, albeit 
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unavoidable, limitation. A recent study, however, showed that the general patterns of 

overall and health-related deprivation patterns have persisted in England since 2004 and 

therefore we do not believe that our results were affected by the lack of more up-to-date 

data in any significant way [45]. Additionally, our analysis combined data for GP 

practices with data of the corresponding neighbourhood. For this, we assumed that 

patients registered with a GP practice live in the vicinity of that GP practice. This is a 

reasonable assumption given how patients have been registered and accepted by GP 

practices historically but may not be necessarily correct since 2015 when the NHS 

announced that GP practices were free to register patients that live outside their practice 

boundary area [46]. Another key caveat worth mentioning is that the IMD, and its 

income deprivation domain, are designed to identify aspects of deprivation rather than 

affluence; e.g. being among the least deprived does not necessarily mean being among 

the wealthiest. It is important to keep this in mind when interpreting the results. For the 

calculation of concentration indices, we compared the distribution of each of the anti-

osteoporosis drugs analysed here with the 45-degree line, or the equality line. By doing 

so we assumed that the right thing would be for all GP practices to prescribe all drugs at 

the same rates regardless of the characteristics of the population being served. This may 

be a considerable limitation but, nevertheless, allows us to draw clear conclusions 

regarding the trends in inequalities associated with anti-osteoporosis drug prescription 

rates by GPs in England. 

 

Comparison with other studies 

Our results are aligned with those reported by many others indicating that key 

demographic and socio-economic variables have a significant impact on varying 

prescription rates. Antibiotics represent one of the most frequently analysed drug groups 

when it comes to geographic variation in prescription rates within and across healthcare 

settings. For example, several studies have shown varying antibiotic prescription rates 

in Italian children which follow the well-described north-south socio-economic 

polarisation according to income and HDI; [11, 14, 16, 47] studies in other jurisdictions 

have drawn similar conclusions [4, 8, 9, 48-50]. Many other disease areas (e.g. glaucoma 

or mental health disorders), although perhaps to a lesser extent, have also been 

investigated and reported comparable findings [6, 10, 12, 13, 51]. 

 

Several studies have analysed the prescription trends and determinants of anti-

osteoporosis prescriptions in the UK. One study examined the patterns and determinants 

of anti-osteoporosis drug prescriptions after hip fracture between 2000 and 2010 using 

patient-level data from clinical records from the Clinical Practice Research Datalink 

(CPRD) database [52]. The study showed a steady rise in prescriptions during the study 
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period and indicated an increased likelihood of prescriptions for females, older ages or 

history of major osteoporotic fractures, among other variables [52]. Another study, also 

using patient-level data from the CPRD, analysed the prescription rates of anti-

osteoporosis drugs in the UK between 1990 and 2012, and the analyses were stratified 

by sex, age, geographic region and ethnicity [15]. The study exposed a plateau, or even 

a decrease in the case of women, in prescription rates at the end of the study period, and 

demonstrated there were marked differences between ethnic groups and regions [15]. 

These studies confirm that our selection of covariates was appropriate. A key strength 

of these studies was the use of patient-level data from CPRD, which allowed linking 

patient-specific characteristics with prescriptions, whereas we had to used aggregated 

data that did not allow the same level of granularity in the analyses. 

 

Another recent study that used the same data sources as we did, analysed the variation 

in gluten-free prescription rates at the GP level in England [39]. The authors found CCGs 

to be a significant driver of variation, with a large variation in gluten-free prescribing at 

the CCG level and a significant effect of CCGs in their statistical models. These results, 

the authors said, were likely due to variations in CCG policies, suggesting that practices 

are responsive to CCG prescribing guidance. Our results are aligned with the findings 

reported for gluten-free foods, which reassures the appropriateness of our approach. 

 

Policy-level implications 

There may be cases in which certain inequalities in drug prescription rates can be 

considered fair. For instance, some genetic diseases may follow a singular geo-spatial 

pattern, which in turn generates geo-spatial differences in the distribution of resources 

deployed to treat these particular diseases [53, 54]. In general, however, very strict 

conditions need to be met for regarding inequalities as fair, and we do not see any reason 

why certain anti-osteoporosis prescriptions should be disproportionately concentrated 

in given areas [2]. Published meta-analyses have claimed that no statistically significant 

differences exist among the anti-osteoporosis drugs currently used for the prevention of 

hip-fractures and therefore there is no clear basis for the existence of distinct prescription 

patterns, such as those observed in Figure 3.2 [55-57]. The implications of varying 

patterns are even more remarkable considering the price differences among these 

products (Online Resource, Appendix 1). Denosumab is a pricy drug compared with the 

other drugs included in these analyses and, from a healthcare policymaker’s perspective, 

it may be worrying to realise that a patient registered with a GP in a relatively deprived 

area may be less likely to receive denosumab compared with a patient in a less deprived 

area. Also, we showed that prescription levels may be associated with the corresponding 

CCG, meaning that funding decisions made at the CCG level may be affecting 
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prescription levels downstream. With these results, our analyses added further evidence 

to the postcode lottery issue [39]. 

 

According to the GP contract, GPs get the largest proportion of their income from the 

“Global sum”, i.e. capitation-based payments adjusted by factors such as patients’ age 

and gender, as well as the morbidity and mortality in the local area. Also, since 2004, 

the Quality and Outcomes Framework (QOF) represents a substantial proportion of GPs’ 

total income [58]. The QOF is a voluntary reward and incentive programme to promote 

an evidence-based, high-quality care in England [59]. Rewards are granted according to 

a point-based system; out of 379 points in the clinical domain, 3 correspond to indicators 

of secondary prevention of fragility fractures associated with osteoporosis [59]. All GPs 

across England are assessed against the same indicators and therefore we do not see any 

reason why the QOF may affect GPs’ prescribing behaviour. Also, because treatments 

prescribed by GPs are paid for by the NHS (except a £9 per-item patient co-payment) 

there seems to be no personal economic incentive for GPs to prescribe one drug or 

another. Additionally, GPs are constantly monitored by CCGs’ Medicines Management 

Teams, who ensure that the latest medical guidance is followed and the most cost-

effective treatments are used.    

 

Understanding the association between demographic and socio-economic variables and 

prescription rates of anti-osteoporosis drugs, as presented in our study, is key for 

designing strategies to tackle inequality and ensure an efficient allocation of resources, 

as stated by the Astana Declaration on primary health care [20, 60]. Attaining the highest 

possible standard of care is a fundamental right of every human being and for that the 

international community agreed on a clear set of Sustainable Development Goals, which 

include good health and wellbeing, as well as reduced inequalities, decades ago. 

Therefore, it should be expected that healthcare authorities have effective policies in 

place to incentivise an evidence-based use of resources to avoid misuse and unnecessary 

costs, as well as distributing the resources available on the basis of the needs of the 

particular populations served [61]. This is of even greater importance in light of studies 

that have estimated that a significant proportion of patients (30-40% worldwide) do not 

receive treatments of proven effectiveness, and that 20-25% receive unnecessary or even 

harmful treatments [62]. Our study sheds light on the existing inequalities in the English 

primary health care and presents evidence that, hopefully, will guide decision-makers 

towards a fairer and more efficient health system. 

 

Future research 

The true reasons for the existence of different prescribing behaviours across GP 
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practices are still unclear to us. There are diseases in which treatment selection may be 

guided by policy according to certain patient characteristics, but NICE guidelines for 

osteoporosis treatment (including the guidance on bisphosphonates updated in July 

2019) are clear: oral and intravenous bisphosphonates are recommended in England, 

within their marketing authorisations, for treating osteoporosis in adults at a high risk of 

osteoporotic fragility fracture and when treatment is appropriate, considering the risk of 

fracture, risk of adverse events, and other clinical circumstances or preferences [28]. In 

other words, no patient characteristic other than fracture risk scores should be affecting 

treatment selection [28].  

 

A recent study in the United States concluded that patients’ socio-economic status 

influences physician price responses but it is unclear whether this could be the case in a 

publicly funded system such as the NHS in England [63]. Another potential factor 

influencing treatment selection across GPs, therefore, could be the distribution of 

fracture risk scores across the English geography. Similarly, we showed that considering 

varying prescription levels by CCG had a substantial impact on results. Because GP 

funding decisions are made at the CCG level, we believe that different policies at 

different CCGs may be considerably influencing GPs’ prescription decisions. Other 

factors with a potentially significant effect on prescribing patterns may be patients’ 

perceptions and the associated GPs’ prescription attitudes and the familiarity of GPs 

with anti-osteoporosis drugs, which may also be related to the power of the workforce 

pharmaceutical companies deploy throughout the country. All these remain fields that 

requires further study, but the ongoing NICE appraisal on non-bisphosphonates for 

treating osteoporosis may clarify some of the uncertainties associated with treatment 

selection described here. The current analysis could also be expanded to analyse 

prescription rates of other treatments and understand whether similar patterns exist 

across disease areas. 

CONCLUSIONS 

Variation in the prescription of anti-osteoporosis drugs exists across GPs and CCGs in 

England, this being more prominent for certain drugs (e.g. denosumab and ibandronic 

acid) compared with others (e.g. alendronic acid). Inequalities exist in English primary 

healthcare and we advocate our findings could support the efforts of decision-makers 

towards a more equitable system. 
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SUPPLEMENTARY MATERIAL 

 

Appendix 1: Anti-osteoporosis drug costs. 

 

 Generic 

available? 

Items per 

pack and 

dose per 

item 

Price per 

pack 

Cost per 

annum 

Source 

Alendronic 

acid (oral) 

Yes 4 x 70 mg £0.87 £11.34 TA464 

Denosumab 

(subcutaneous) 

No 1 x 60 

mg/ml 

£183.00 £366.00 MIMS 

online 

Ibandronic 

acid 

(intravenous) 

Yes 1 x 150 mg £1.32 £15.84 TA464 

Ibandronic 

acid (oral) 

Yes 1 x 3 mg / 3 

ml 

£8.51 £34.04 TA464 

Raloxifene Yes 28 x 60 mg £3.49 £45.49 MIMS 

online 

Risedronate 

sodium  

Yes 4 x 35 mg £0.98 £12.78 TA464 

MIMS, Monthly Index of Medical Specialties; TA464, technology appraisal 464. 

NOTES:  

• These prices are estimates of the actual prices paid by the English National Health Service. 

• The costs for alendronic acid, ibandronic acid and risedronate sodium were collected from the TA464 

guidance issued by NICE (Committee Papers; Table 3).1  

• The costs of denosumab and raloxifene were estimated using the price per pack from MIMS online 

(www.mims.co.uk), accessed on April 7th, 2019. 

 

 

 
1 National Institute for Health and Care Excellence. Denosumab for the prevention of osteoporotic fractures in postmenopausal women 2010 

[Available from: https://www.nice.org.uk/guidance/ta204, accessed November 23rd 2018]. 

http://www.mims.co.uk/
https://www.nice.org.uk/guidance/ta204
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Appendix 2: Products excluded from the analysis and the reason for their 

exclusion. 

 

Product Mode of 

administration 

Reason for exclusion 

Denosumab 

XGEVA® 

SC Denosumab exists as two branded products: Prolia® 

and XGEVA®. XGEVA® is indicated for the 

prevention of skeletal related events in adults with 

advanced malignancies involving bone, which is 

outside the scope of the current analysis. 

Etidronate 

disodium 

Oral Etidronate disodium was not included as a comparator 

in the NICE TA464 final scope as it had been 

discontinued by the manufacturer in the UK despite 

having a UK marketing authorisation for the prevention 

and treatment of corticosteroid-induced osteoporosis.2 

Additionally, prescription datasets show that less than 

10 items per month have been prescribed by GPs in the 

England since January 2015.3  

Other 

bisphosphonate 

and other 

preparations 

- This category represents a mix of rarely prescribed 

items, with less than 100 items prescribed per month in 

England since, at least, October 2013.3  

Pamidronate 

disodium 

IV Pamidronate disodium was not included as a 

comparator in the NICE TA guidance 160, 161 and 204, 

nor included in the TA464 final scope.2 Also, by being a 

product administered intravenously, it is unlikely to be 

prescribed in primary care. Eight items or less per 

month have been prescribed by GPs in England since 

October 2013.3  

Strontium 

ranelate 

Oral There has been a sharp decline in the number of GP 

prescriptions of strontium ranelate over time in 

England, with less than 100 prescriptions in September 

2018.3  

Tiludronic acid IV No items have been prescribed by GPs in England since 

October 2013.3  

 
2 National Institute for Health and Care Excellence. Bisphosphonates for preventing osteoporotic fragility fractures (including a partial 

update of NICE technology appraisal guidance 160 and 161). Final scope. 2014 [Available from: 

https://www.nice.org.uk/guidance/ta464/documents/osteoporosis-prevention-bisphosphonates-inc-part-rev-ta160-ta161-id782-final-scope2, 

accessed November 23rd 2018] 

3 EBM DataLab, University of Oxford. OpenPrescribing.net 2017 [Available from: https://openprescribing.net/, accessed January 26th 2018] 

https://www.nice.org.uk/guidance/ta464/documents/osteoporosis-prevention-bisphosphonates-inc-part-rev-ta160-ta161-id782-final-scope2
https://openprescribing.net/
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Zoledronic 

acid 

IV By being a product administered intravenously, it is 

unlikely to be prescribed in primary care. Less than 24 

items per month have been prescribed by GPs in 

England since October 2013.3  

Teriparatide SC (self-

administration) 

Teriparatide was recommended by NICE TA161 for 

postmenopausal women aged 65 years or older with 

osteoporosis and a previous fragility fracture, who: 

Are unable to take alendronate and risedronate, or have 

a contraindication to or are intolerant to alendronate and 

risedronate; 

Or who have had an unsatisfactory response to 

treatment with alendronate or risedronate.4  

However, teriparatide was not included in the TA464 

final scope.2 Furthermore, very few items have been 

prescribed by GPs in England in the past few years (less 

than 100 per month since the end of October 2013.3  

Sodium 

clodronate 

Oral and IV Bisphosphonate used for treating bone-related issues 

arising as a consequence of diseases such as multiple 

myeloma and breast cancer. 

GP, general practitioner; IV, intravenous; NICE, National Institute for Health and Care Excellence; SC, subcutaneous; TA, 

technology appraisal. 

 

 

 
4 National Institute for Health and Care Excellence. Raloxifene and teriparatide for the secondary prevention of osteoporotic fragility fractures 

in postmenopausal women. Technology appraisal guidance [TA161] 2008 [Available from: https://www.nice.org.uk/guidance/ta161, accessed 

November 11th 2018] 

https://www.nice.org.uk/guidance/ta161
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Appendix 3: Model formulas of mixed effects Poisson regression models. 

 

library(lme4) 

 

# Regression models with random effects for Clinical Commissioning Groups (CCGs) 

and all explanatory variables 

# ------------------------------------------------------------------------------------------------------

------------------------------- 

mod.CCG <- glmer(ITEMS ~ NUMBER_OF_PATIENTS_1000s +  

    PERCENTAGE_FEMALES + 

                     MEAN_AGE + 

    PERCENTAGE_WHITE + 

                     as.factor(RURAL-URBAN_CATEGORY) + 

                     INCOME_DEPRIVATION_SCORE + 

      TIME + 

                     (1|PRACTICE) + (1|CCG), 

                     data = data, family = poisson) 

 

 

# Regression models with random effects for CCGs and income deprivation score as the 

only explanatory variable (plus time and number of patients for normalisation) 

# ------------------------------------------------------------------------------------------------------

------------------------------- 

mod.incomeOnly.CCG <- glmer(ITEMS ~ NUMBER_OF_PATIENTS_1000s + 

                     INCOME_DEPRIVATION_SCORE + 

      TIME + 

                     (1|PRACTICE) + (1|CCG), 

                     data = data, family = poisson) 

 

 

# Regression models with all explanatory variables and without random effects for 

CCGs 

# ------------------------------------------------------------------------------------------------------

------------- 

mod.noCCG <- glmer(ITEMS ~ NUMBER_OF_PATIENTS_1000s +  

    PERCENTAGE_FEMALES + 

                     MEAN_AGE + 

    PERCENTAGE_WHITE + 
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                     as.factor(RURAL-URBAN_CATEGORY) + 

                     INCOME_DEPRIVATION_SCORE + 

       TIME + 

                     (1|PRACTICE), 

                     data = data, family = poisson) 

 

# Regression models with income deprivation score as the only explanatory variable 

(plus time and number of patients for normalisation) and without random effects for 

CCGs 

# ------------------------------------------------------------------------------------------------------

------------------------------- 

mod.incomeOnly.noCCG <- glmer(ITEMS ~ NUMBER_OF_PATIENTS_1000s + 

                     INCOME_DEPRIVATION_SCORE + 

      TIME + 

                     (1|PRACTICE), 

                     data = data, family = poisson) 
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Appendix 4: Data available and included in the analyses. 

 

Data available at GP practice level and data included in the analyses 

 

 

Summary of data available at GP practice level and data included in the analyses 

Year 

GPs with 

available 

prescribing 

data 

GPs that 

prescribed 

drugs of 

interest 

GPs that 

did not 

prescribe 

drugs of 

interest 

GPs with 

available 

patient 

data files 

GPs with 

prescribing 

data but no 

available 

patient 

data files 

GPs 

included in 

the 

analyses 

2013 9856 8120 1736 8065 1819 8037 

2014 9920 8034 1886 7963 1978 7942 

2015 9906 7894 2012 7793 2129 7778 

2016 9857 7705 2152 7650 2233 7624 

2017 9747 7469 2278 7428 2360 7386 

2018 9565 7231 2334 7196 2417 7148 

 

NOTE: The data above are averages for a given year.
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Appendix 5: Total number of anti-osteoporosis prescriptions included in the final 

dataset for analysis and comparison with the data available at 

OpenPrescribing.net. 

 

These graphs include the prescriptions of strontium ranelate, which was excluded from 

the final analysis, demonstrating that its number of prescriptions declined rapidly in the 

last few years. The graphs demonstrate that different products are prescribed at different 

levels and therefore we implemented separate statistical models per product type (see 

the Methods section in the main document).  
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The table below reports the mean number of prescriptions (and standard deviation), per 

GP practice in England, of the anti-osteoporosis drugs included in our analyses between 

April 2013 and September 2018. 

 

Year Month 
Alendronic 

acid 

Alendronic 

acid and 

colecalciferol 

Denosumab 
Ibandronic 

acid 
Raloxifene 

Risedronate 

sodium 

2013 April 75.1 (61.4) 0.2 (0.7) 0.1 (0.4) 2.4 (3.9) 0.9 (1.7) 7.4 (8.7) 

2013 May 78.1 (64) 0.2 (0.8) 0.1 (0.4) 2.5 (4) 0.9 (1.7) 7.7 (9.1) 

2013 June 72.2 (59) 0.2 (0.7) 0.1 (0.4) 2.3 (3.7) 0.9 (1.7) 7.1 (8.4) 

2013 July 79.1 (64.2) 0.2 (0.8) 0.1 (0.4) 2.4 (3.9) 0.9 (1.7) 7.8 (9.2) 

2013 August 77.8 (63.6) 0.2 (0.8) 0.1 (0.4) 2.4 (3.8) 0.9 (1.7) 7.7 (9) 

2013 September 74.5 (60.4) 0.2 (0.8) 0.1 (0.4) 2.3 (3.7) 0.8 (1.6) 7.4 (8.7) 

2013 October 79.6 (64.3) 0.2 (0.7) 0.1 (0.5) 2.4 (3.9) 0.9 (1.8) 7.9 (9.2) 

2013 November 76.3 (62.1) 0.2 (0.7) 0.1 (0.5) 2.3 (3.8) 0.9 (1.7) 7.5 (8.8) 

2013 December 78.9 (64.3) 0.2 (0.8) 0.1 (0.4) 2.3 (3.8) 0.9 (1.7) 7.8 (9.2) 

2014 January 78.4 (63.7) 0.2 (0.8) 0.1 (0.5) 2.3 (3.8) 0.9 (1.7) 7.8 (9.2) 

2014 February 71.1 (57.5) 0.2 (0.7) 0.1 (0.5) 2.1 (3.5) 0.8 (1.6) 7 (8.3) 

2014 March 75.7 (61.4) 0.2 (0.7) 0.1 (0.5) 2.2 (3.7) 0.8 (1.6) 7.7 (9.2) 

2014 April 76.2 (61.9) 0.2 (0.7) 0.1 (0.5) 2.2 (3.7) 0.8 (1.7) 7.7 (9.2) 

2014 May 78.8 (64.4) 0.2 (0.8) 0.2 (0.6) 2.3 (3.8) 0.8 (1.7) 7.9 (9.3) 

2014 June 75.1 (61.1) 0.2 (0.8) 0.2 (0.6) 2.2 (3.6) 0.8 (1.6) 7.5 (8.9) 

2014 July 80.8 (65.5) 0.2 (0.8) 0.2 (0.6) 2.3 (3.9) 0.9 (1.7) 8.1 (9.6) 

2014 August 75.6 (61.7) 0.2 (0.7) 0.2 (0.6) 2.1 (3.6) 0.8 (1.6) 7.5 (9) 

2014 September 77.7 (62.8) 0.2 (0.7) 0.2 (0.7) 2.2 (3.7) 0.8 (1.6) 7.8 (9.3) 

2014 October 81.9 (66.1) 0.2 (0.8) 0.2 (0.7) 2.3 (3.8) 0.8 (1.7) 8.1 (9.8) 

2014 November 73.6 (59.3) 0.2 (0.7) 0.2 (0.7) 2.1 (3.5) 0.8 (1.6) 7.3 (8.8) 

2014 December 82.4 (66.3) 0.2 (0.8) 0.2 (0.7) 2.3 (3.8) 0.9 (1.7) 8.2 (9.9) 

2015 January 76.6 (61.1) 0.2 (0.7) 0.2 (0.7) 2.1 (3.6) 0.8 (1.6) 7.7 (9.3) 
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2015 February 70.5 (56.3) 0.1 (0.6) 0.2 (0.7) 2 (3.3) 0.7 (1.5) 7.1 (8.6) 

2015 March 77.7 (62.3) 0.2 (0.7) 0.3 (0.9) 2.2 (3.7) 0.8 (1.6) 7.7 (9.4) 

2015 April 75.8 (60.6) 0.2 (0.7) 0.3 (0.8) 2.1 (3.6) 0.8 (1.6) 7.6 (9.1) 

2015 May 74.1 (59.7) 0.1 (0.6) 0.3 (0.8) 2.1 (3.5) 0.8 (1.5) 7.4 (8.9) 

2015 June 77 (61.8) 0.1 (0.6) 0.3 (0.9) 2.1 (3.6) 0.8 (1.6) 7.7 (9.4) 

2015 July 80.6 (64.3) 0.2 (0.7) 0.3 (0.9) 2.2 (3.7) 0.8 (1.6) 8.1 (9.8) 

2015 August 73.2 (59) 0.1 (0.6) 0.3 (0.9) 2 (3.4) 0.7 (1.4) 7.3 (8.9) 

2015 September 76.9 (61.7) 0.1 (0.6) 0.3 (0.9) 2.1 (3.5) 0.8 (1.5) 7.7 (9.5) 

2015 October 77.6 (62.1) 0.1 (0.6) 0.3 (0.9) 2.1 (3.5) 0.8 (1.5) 7.8 (9.5) 

2015 November 73.8 (59.6) 0.1 (0.6) 0.3 (0.9) 2 (3.4) 0.7 (1.5) 7.4 (9.1) 

2015 December 81.1 (65.5) 0.1 (0.6) 0.3 (0.9) 2.2 (3.6) 0.8 (1.5) 8.2 (10.1) 

2016 January 72.2 (57.7) 0.1 (0.6) 0.3 (1) 2 (3.2) 0.7 (1.4) 7.3 (9) 

2016 February 71.4 (57.2) 0.1 (0.5) 0.3 (0.9) 1.9 (3.2) 0.7 (1.4) 7.2 (8.8) 

2016 March 74.9 (59.9) 0.1 (0.6) 0.3 (1) 2 (3.4) 0.7 (1.5) 7.6 (9.4) 

2016 April 75.8 (60.9) 0.1 (0.7) 0.4 (1.1) 2 (3.4) 0.7 (1.5) 7.7 (9.5) 

2016 May 72.5 (58.3) 0.1 (0.6) 0.4 (1) 1.9 (3.2) 0.7 (1.4) 7.4 (9.1) 

2016 June 75.2 (60.2) 0.1 (0.6) 0.4 (1.1) 2 (3.3) 0.7 (1.5) 7.7 (9.6) 

2016 July 73.7 (58.9) 0.1 (0.6) 0.4 (1) 1.9 (3.2) 0.7 (1.4) 7.5 (9.4) 

2016 August 74.8 (59.7) 0.1 (0.6) 0.4 (1.1) 2 (3.3) 0.7 (1.4) 7.7 (9.7) 

2016 September 74.8 (60.6) 0.1 (0.6) 0.4 (1.1) 1.9 (3.3) 0.7 (1.4) 7.7 (9.8) 

2016 October 72.7 (58.4) 0.1 (0.5) 0.4 (1.2) 1.9 (3.2) 0.7 (1.4) 7.5 (9.5) 

2016 November 75 (60.4) 0.1 (0.6) 0.4 (1.2) 1.9 (3.3) 0.7 (1.4) 7.8 (10.2) 

2016 December 76 (61.2) 0.1 (0.5) 0.4 (1.1) 1.9 (3.2) 0.7 (1.4) 7.9 (10) 

2017 January 71.3 (56.7) 0.1 (0.5) 0.5 (1.2) 1.8 (3) 0.7 (1.4) 7.4 (9.4) 

2017 February 66.7 (53.4) 0.1 (0.5) 0.4 (1.1) 1.7 (2.9) 0.6 (1.3) 6.9 (8.9) 

2017 March 76.2 (61.2) 0.1 (0.6) 0.5 (1.3) 2 (3.3) 0.7 (1.4) 8 (10.2) 

2017 April 68 (54.6) 0.1 (0.5) 0.4 (1.1) 1.7 (2.9) 0.6 (1.3) 7.1 (9.2) 

2017 May 73.9 (59.3) 0.1 (0.6) 0.5 (1.3) 1.9 (3.2) 0.7 (1.4) 7.7 (10.1) 

2017 June 74.3 (59.5) 0.1 (0.5) 0.5 (1.3) 1.9 (3.1) 0.7 (1.4) 7.7 (10.1) 
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2017 July 72 (57.3) 0.1 (0.5) 0.5 (1.4) 1.9 (3.1) 0.7 (1.4) 7.6 (9.8) 

2017 August 73.1 (58.5) 0.1 (0.5) 0.5 (1.3) 1.9 (3.1) 0.7 (1.4) 7.7 (9.9) 

2017 September 70.9 (56.5) 0.1 (0.5) 0.5 (1.3) 1.8 (3) 0.6 (1.3) 7.5 (9.9) 

2017 October 72.5 (58) 0.1 (0.6) 0.5 (1.4) 1.9 (3.1) 0.7 (1.3) 7.5 (9.8) 

2017 November 73.2 (58.4) 0.1 (0.6) 0.5 (1.4) 1.9 (3.1) 0.7 (1.4) 7.8 (10.3) 

2017 December 72.4 (58.3) 0.1 (0.6) 0.5 (1.4) 1.9 (3.2) 0.7 (1.3) 7.7 (10.1) 

2018 January 72.8 (58) 0.1 (0.5) 0.6 (1.5) 1.9 (3.1) 0.7 (1.4) 7.7 (10.2) 

2018 February 65.3 (51.8) 0.1 (0.5) 0.5 (1.4) 1.7 (2.8) 0.6 (1.2) 6.9 (9.2) 

2018 March 71.9 (57.1) 0.1 (0.5) 0.6 (1.4) 1.9 (3.1) 0.6 (1.3) 7.6 (10.2) 

2018 April 69.3 (55.2) 0.1 (0.5) 0.6 (1.6) 1.8 (3) 0.6 (1.3) 7.4 (10) 

2018 May 72.2 (57.2) 0.1 (0.5) 0.6 (1.6) 1.9 (3.2) 0.7 (1.4) 7.7 (10.3) 

2018 June 70.5 (55.6) 0.1 (0.5) 0.6 (1.6) 1.9 (3.1) 0.7 (1.4) 7.6 (10.2) 

2018 July 71.7 (56.7) 0.1 (0.5) 0.6 (1.6) 1.9 (3.2) 0.6 (1.3) 7.7 (10.4) 

2018 August 73.8 (58.5) 0.1 (0.5) 0.6 (1.5) 2 (3.3) 0.7 (1.3) 7.9 (10.6) 

2018 September 68.3 (54.4) 0.1 (0.5) 0.6 (1.5) 1.8 (3) 0.6 (1.3) 7.4 (10.1) 

 

 

The figure below displays the number of anti-osteoporosis prescriptions we downloaded 

from the internet and used in the current study compared with the data available at 

OpenPrescribing.net. The figure demonstrates we did not miss a substantial amount of 

data. The only notable difference between the data we used and the data available at 

OpenPrescribing.net can be observed for denosumab. This, however, is the result of 

excluding XGEVA® from our analyses, i.e. denosumab prescriptions indicated for the 

prevention of bone complications in adults with advanced cancer that has spread to the 

bone. 
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Comparison of prescription numbers used in analyses vs. numbers available at 

OpenPrescribing.net 

 

 



105 

 

Appendix 6: Additional exploratory analyses. 

 

We visually analysed the frequency of the number of prescriptions, at each time point, 

for all products together and for each product separately with histograms. We assessed 

the distributions of the proportion of females and mean age across GP practices, at each 

time point, using histograms. We plotted a histogram to understand the proportion of 

white people per LSOA as per the 2011 Census. We constructed scatter plots and box 

plots to visually evaluate any potential relationships between prescription rates and 

quantitative and qualitative variables, respectively, included in Table 3.2 of the main 

document. We used box plots to visually judge whether consistently different 

prescription levels, for each product, may exist in different CCGs. Below we present 

examples of outputs from our exploratory analyses, using alendronic acid and 

denosumab prescription data. 

 

Total prescriptions of alendronic acid by GPs in England in September 2018 

 
 

Distribution of mean age across GP practices in England in September 2018 
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Distribution of the proportion of females across GP practices in England in 

September 2018 

 

 

 

Total prescriptions of alendronic acid by GPs in England vs mean age of patients 

in September 2018 
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Total prescriptions of alendronic acid by GPs in England vs proportion of females 

in September 2018 

 

 

 

Total prescriptions of alendronic acid by GPs in England in September 2018 vs 

proportion of white people (seven practices with prescription levels higher than 50 

items per 1,000 not shown for clarity purposes) 
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Total prescriptions of alendronic acid by GPs in England in September 2018 by 

rural category 

 

 

 

Total prescriptions of alendronic acid by GPs in England in September 2018 vs 

Index of Multiple Deprivation rank (seven practices with prescription levels higher 

than 50 items per 1,000 not shown for clarity purposes) 
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Total prescriptions of alendronic acid by GPs in England in September 2018 by 

Index of Multiple Deprivation decile 

 

 

 

Total prescriptions of denosumab by GPs in England in September 2018 by Index 

of Multiple Deprivation decile 
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Total prescriptions of alendronic acid by GPs in England in September 2018, grouped by CCG 

 

 

This graph depicts the variability of alendronic acid prescriptions across CCGs. The two CCGs encircled (in red) in this figure illustrate 

that GPs belonging to different CCGs may prescribe certain drugs at different rates. 
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Appendix 7: Mixed-effects regression model results: estimates (and 95% confidence intervals) of models without random effects 

for CCGs, with and without demographic and rural-urban characteristics. 

 

 Alendronic acid 
Alendronic acid 

and colecalciferol 
Denosumab Ibandronic acid Raloxifene 

Risedronate 

sodium 

 
Full 

model 

Reduced 

model 

Full 

model 

Reduced 

model 

Full 

model 

Reduced 

model 

Full 

model 

Reduced 

model 

Full 

model 

Reduced 

model 

Full 

model 

Reduced 

model 

Intercept 
108.306 

(107.957 to 
108.654)*** 

89.028 

(88.643 to 
89.412)*** 

410.992 

(409.363 to 
412.622)*** 

391.508 

(389.267 to 
393.749)*** 

-565.865 

(-567.323 to 
-564.406)*** 

-606.908 

(-613.837 to 
-599.979)*** 

185.159 

(184.431 to 
185.888)*** 

160.702 

(159.624 to 
161.779)*** 

200.967 

(199.119 to 
202.814)*** 

186.503 

(186.307 to 
186.699)*** 

68.211 

(67.683 to 
68.739)*** 

54.326 

(53.294 to 
55.357)*** 

Patients 

(1,000s) 

0.049 

(0.049 to 
0.049)*** 

0.046 (0.046 

to 0.047)*** 

0.067 

(0.061 to 
0.074)*** 

0.067 

(0.060 to 
0.073)*** 

0.065 

(0.062 to 
0.068)*** 

0.057 

(0.054 to 
0.061)*** 

0.062 

(0.060 to 
0.063)*** 

0.058 

(0.057 to 
0.060)*** 

0.053 

(0.050 to 
0.055)*** 

0.050 

(0.048 to 
0.053)*** 

0.051 

(0.051 to 
0.052)*** 

0.049 

(0.048 to 
0.050)*** 

Sex (% 

females) 

0.037 

(0.036 to 
0.038)*** 

 

0.015 

(0.003 to 
0.026)* 

 

0.094 

(0.083 to 
0.105)*** 

 

0.056 

(0.051 to 
0.061)*** 

 

0.071 

(0.063 to 
0.078)*** 

 

0.052 

(0.050 to 
0.054)*** 

 

Age (mean 

years) 

0.051 

(0.050 to 
0.051)*** 

 

0.040 

(0.029 to 
0.051)*** 

 

0.124 

(0.116 to 
0.132)*** 

 

0.061 

(0.058 to 
0.065)*** 

 

0.050 

(0.044 to 
0.056)*** 

 

0.042 

(0.041 to 
0.044)*** 

 

Rural-urban 

category 

(rural=0) 

-0.020 

(-0.032 to 
-0.008)** 

 

0.550 

(0.290 to 
0.811)*** 

 

0.092 

(-0.031 to 
0.215) 

 

-0.020 

(-0.074 to 
0.034) 

 

-0.236 

(-0.333 to 
-0.138)*** 

 

-0.130 

(-0.170 to 
-0.091)*** 

 

Ethnicity 

(% white) 

0 

(-0.001 to 
0)** 

 

-0.006 

(-0.011 to 
-0.002)** 

 

0.023 

(0.021 to 
0.026)*** 

 

0.013 

(0.011 to 
0.015)*** 

 

0.025 

(0.022 to 
0.028)*** 

 

0.003 

(0.003 to 
0.004)*** 

 

Income 

score (% 

deprived) 

-0.001 

(-0.002 to 
-0.001)*** 

-0.002 

(-0.003 to 
-0.002)*** 

-0.013 

(-0.020 to 
-0.006)*** 

0.007 

(0 to 0.014) 

-0.017 

(-0.021 to 
-0.013)*** 

-0.036 

(-0.040 to 
-0.032)*** 

-0.008 

(-0.010 to 
-0.007)*** 

-0.014 

(-0.016 to 
-0.012)*** 

-0.002 

(-0.005 to 
0.002) 

-0.011 

(-0.014 to 
-0.008)*** 

-0.001 

(-0.002 to 
0)** 

-0.004 

(-0.005 to 
-0.003)*** 
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Time (year 

and month) 

a 

-0.054 
(-0.054 to 

-0.054)*** 

-0.042 
(-0.043 to 

-0.042)*** 

-0.209 
(-0.210 to 

-0.208)*** 

-0.199 
(-0.200 to 

-0.198)*** 

0.273 
(0.272 to 

0.274)*** 

0.299 
(0.296 to 

0.303)*** 

-0.095 
(-0.096 to 

-0.095)*** 

-0.08 
(-0.081 to 

-0.080)*** 

-0.105 
(-0.106 to 

-0.104)*** 

-0.094 
(-0.094 to 

-0.094)*** 

-0.036 
(-0.036 to 

-0.035)*** 

-0.026 
(-0.027 to 

-0.026)*** 

AIC 4,293,553 4,322,841 206,592 206,574 453,391 455,282 1,272,909 1,274,744 740,538 741,707 2,299,736 2,304,076 

BIC 4,293,653 4,322,896 206,692 206,629 453,491 455,338 1,273,010 1,274,799 740,638 741,763 2,299,836 2,304,132 

Marginal R2 0.225 0.061 0.011 0.006 0.231 0.065 0.144 0.028 0.107 0.011 0.129 0.030 

Conditional 

R2 
0.983 0.986 1 1 0.815 0.806 0.950 0.955 0.982 0.982 0.940 0.947 

Nb 505,407 505,407 505,407 505,407 505,407 505,407 

Significance codes: *** for p<0.001; ** for p<0.01; * for p<0.05. 

AIC, Akaike information criterion; BIC, Bayesian information criterion; CCGs, Clinical Commissioning Groups; GP, general practitioner. 
aThe variable time took 66 different values, from prescriptions in April 2013 where time was 2013.25 to September 2018 where time was 2018.67. 
bTotal number of prescription entries captured in the final dataset, which includes one entry per GP practice per time point. 

NOTE: Cells in the table above were greyed out if confidence intervals contained zeros. 
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ABSTRACT 

Background: Lantus®, the reference insulin glargine used for the treatment of diabetes, 

lost its patent protection in 2014 opening the market to biosimilar competitors. 

Objective: First, to analyse the adoption rates of insulin glargine biosimilars in primary 

care in England and estimate the savings realised, and missed, since an insulin glargine 

biosimilar was first used. Second, to assess potential variations in adoption rates across 

Clinical Commissioning Groups (CCGs). 

Methods: Datasets capturing information on all insulin glargine items prescribed by all 

general practitioners (GPs) up to December 2018 were used. Total costs of insulin 

glargine and uptake rates of biosimilars were calculated. The real-world budget impact 

was estimated assuming the cost of reference insulin glargine for all items and 

comparing the total costs in this scenario with the total costs in the real world. The 

missed savings were estimated assuming the cost of biosimilars for all insulin glargine 

items. Choropleth maps were generated to assess potential variations in uptake across 

CCGs. 

Results: Insulin glargine biosimilars generated savings of £900K between October 2015 

(time of first prescription) and December 2018. The missed savings amounted to 

£25.6M in this period, indicating that only 3.42% of the potential savings were achieved. 

The analyses demonstrated a large level of variation in the uptake of insulin glargine 

biosimilars across CCGs, with market shares ranging from 0% to 53.3% (December 

2018). 

Conclusions: These results may encourage decision-makers in England to promote the 

use of best value treatments in primary care and to re-evaluate variation across CCGs. 

KEYWORDS 

Diabetes; Insulin glargine; Biosimilars; Prescriptions; Budget impact; England. 

KEY ABBREVIATIONS 

ABCD, Association of British Clinical Diabetologists; CCG, Clinical Commissioning 

Group; EMA, European Medicines Agency; FOI, Freedom of Information; GP, general 

practitioner; NHS, National Health Service; LTP, Long-term plan; RMOC, Regional 

Medicines Optimisation Committee.
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INTRODUCTION 

Biosimilars, as defined by the European Medicines Agency (EMA), are medicines 

considered to be highly similar to another medicine already marketed in the European 

Union (EU), i.e. the reference product. Due to the natural variability associated with the 

production of biological medicines, the EMA acknowledge that minor differences can 

exist between the biosimilar and its reference product, but these are not meaningful in 

terms of quality, safety and efficacy according to the EMA (1). Prices of biosimilars are 

typically lower than those of the corresponding reference products, and NHS England 

estimated that potential savings with biosimilar adoption could reach £300m per year by 

2021, i.e. equal to 1.8% of the total expenditure on medicines in 2015/16 (2). For this 

reason, in 2017 NHS England put in place a Commissioning Framework to optimise the 

use of biological medicines and promote the use of biosimilars when clinically 

appropriate (2). This framework emphasised the potential for improvement in 

specialised services, focusing on savings that could be realised from a wide adoption of 

adalimumab, etanercept, infliximab, rituximab and trastuzumab biosimilars (2). Despite 

its focus on secondary-care medicines, the potential savings from the adoption of 

biosimilars in primary care, such as those resulting from the uptake of insulin glargine 

biosimilars, should not be underestimated. 

 

The patent on the Lantus®, the reference insulin glargine for the treatment of diabetes 

mellitus in adults, adolescents and children aged two years and above, expired in 2014 

in Europe and the United States (3; 4). Since then, several companies have launched 

insulin glargine biosimilars, including Abasaglar® (approved by the EMA in September 

2014) and Semglee® (approved by the EMA in January 2018) (3). Following the 

approval of Abasaglar®, the Association of British Clinician Diabetologists (ABCD) 

released a statement acknowledging the potential savings that insulin glargine 

biosimilars could bring to the National Health Service (NHS) without compromising 

patients’ safety or efficacy outcomes and supported the use of these treatments for 

newly-diagnosed patients (5). The ABCD considered, however, that switching patients 

on treatment should not be done automatically (neither at the hospital, general practice 

[GP] or pharmacy level) and should only be conducted under properly trained clinical 

teams (5). In line with this and NHS England´s Commissioning Framework, a number 

of regional and local authorities have put in place policies to promote the use of 

biosimilars, including insulin glargine. For instance, the South Staffordshire Area 

Prescribing Group (which includes several Clinical Commissioning Groups [CCGs]) 

published a statement underlining that they will “initiate new patients requiring insulin 

glargine on biosimilar Abasaglar®” (6). Also, several CCGs have issued clear guidance 
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on how to switch patients on Lantus® to Abasaglar®, and even calculated the savings 

that could be realised from this change (7-11). 

  

In general, however, the CCG Biosimilar National Questionnaire results suggest that 

CCGs put more emphasis on the development of uptake plans for biosimilars used in 

secondary care; for instance, 98% and 96% of CCGs confirmed having developed plans 

for commissioning infliximab and etanercept biosimilars for new patients, with only 3% 

of CCGs indicating that similar strategies had been put in place for insulin glargine 

biosimilars (12). Therefore, a considerable amount of potential savings may have been 

missed, particularly in primary care, the healthcare setting where diabetes patients are 

regularly treated and followed-up (13). For this reason, the main objective of our 

analysis was to estimate the real-world adoption rates and budget impact, or savings, of 

insulin glargine biosimilars in primary care in England, as well as the savings that may 

have been missed since their launch. In addition, we assessed whether insulin glargine 

biosimilar adoption rates varied across CCGs and attempted to identify if different 

prescribing policies may have led to any potential differences. 

METHODS 

Data 

In the interest of good governance and public accountability, the UK Government have 

committed to increase transparency in the public sector in recent years, including 

making publicly available GP practice level prescribing data [14]. On May 21st, 2019, 

we extracted the data on each individual treatment (identified by a unique British 

National Formulary code) prescribed by each GP practice in England and dispensed in 

the community in the UK. Prescribing information datasets were available monthly, 

recording data starting from August 2010 until December 2018 (at the time of data 

collection). We filtered these datasets to capture prescriptions of insulin glargine 

prescribed by brand name and excluded those where insulin glargine was prescribed 

generically; the products and presentations included in the analyses are described in 

Table 4.1. The datasets captured a small number of Lantus OptiSet® and Lantus 

OptiClik® prescriptions, but these were excluded from the analyses due to the 

manufacturer’s decision to discontinue their commercialisation following the advice 

from the National Patient Safety Agency in 2010 [15]. Toujeo DoubleStar® and 

Semglee® (insulin glargine biosimilars) were not captured in our dataset due to the time 

limits (i.e. December 2018). 
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Table 4.1. Products included in the analysis. 

Product Presentation 

Reference 

or 

biosimilar? 

If biosimilar, 

corresponding reference 

product 

Lantus® 100 units/ml in 3-ml cartridges Reference - 

Lantus® 100 units/ml in 10-ml vials Reference - 

Lantus® 
SoloStar®: 100 units/ml in 3-ml 

pre-filled pens 
Reference 

- 

Toujeo® 
300 units/ml in 1.5-ml pre-filled 

SoloStar pens 
Reference 

- 

Abasaglar® 100 units/ml in 3-ml cartridges Biosimilar 
Lantus®, 100 units/ml in 

3-ml cartridges 

Abasaglar® 
KwikPen®: 100 units/ml in 3-ml 

pre-filled pens 
Biosimilar 

Lantus SoloStar®, 100 

units/ml in 3-ml pre-filled 

pens 

 

 

Among other variables, our datasets captured the total number of units (i.e. cartridges, 

pens or vials) of each product and each presentation of insulin glargine prescribed by 

each GP practice, as well as the net ingredient cost (i.e. the list price as stated in the 

Drug Tariff) and actual cost (i.e. actual drug acquisition costs, calculated as the list price, 

or net ingredient cost, minus an approximate discount plus payment for consumables, 

containers and out-of-pocket expenses) for the payer (i.e. the NHS) associated with 

these. Each GP practice was identified by a unique practice code and an additional field 

indicated the CCG to which each GP practice belonged. All prescribing data are also 

available to the public through a user-friendly interface (OpenPrescribing.net) 

developed at the University of Oxford [16]. 

 

Analyses   

Firstly, we calculated the total number of units prescribed of each product and 

presentation, over time, by GPs in England. To understand the market dynamics 

following the adoption of biosimilars, we calculated the country-level market share of 

each product and presentation, over time, as the proportion of the total units prescribed. 

We also analysed the evolution of the actual cost per unit to understand whether certain 

changes in actual cost of treatments have resulted following the commercialisation of 

biosimilars. 
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Then we estimated the real-world budget impact, or savings, resulting from the adoption 

of insulin glargine biosimilars by GPs in England. For this, we calculated the total actual 

costs of insulin glargine in our datasets (i.e. the total costs in the real world) and 

compared these with the hypothetical scenario in which insulin glargine biosimilars 

were not available, by replacing the cost of biosimilar prescriptions with the cost of the 

corresponding reference product (Table 4.1). Additionally, we estimated the missed 

savings with a threshold analysis, i.e. comparing the total actual costs in the real world 

with the hypothetical scenario in which insulin glargine biosimilars had a market share 

of 100%. In other words, to estimate the missed savings we assumed that access to 

Abasaglar® would have been available to all relevant patients in England after the first 

GP-prescribed Abasaglar®. We consider this to be a valid assumption for this 

hypothetical scenario analysis as, in theory, all CCGs in England could have made the 

decision to commission Abasaglar® as quickly as the quickest CCG. Because Toujeo® 

is an insulin glargine marketed as 300 units/ml, compared with the 100 units/ml of the 

other insulin glargine products, it was not considered for potential substitution in the 

threshold analysis. 

 

We created choropleth maps to observe the uptake of insulin glargine biosimilars at the 

CCG level and to visually assess whether differences exist across CCGs. The choropleth 

maps presented here show the proportion of Abasaglar KwikPen® from the total 3-ml 

pre-filled pen prescriptions (i.e. the sum of Abasaglar KwikPen® and Lantus SoloStar® 

prescriptions). We downloaded CCG boundary data from the Open Geography portal of 

the Office of National Statistics; boundary data from 2015 were used due to the lack of 

completeness of the 2016, 2017 and 2018 datasets. Finally, in order to better understand 

the reasons that may be driving potential differences in the uptake of insulin glargine 

biosimilars across CCGs, we submitted two Freedom of Information (FOI) requests to 

two CCGs with markedly different adoption rates. With these FOI requests, we asked 

whether the CCGs had put in place any policies to incentivise the use of biosimilars and 

insulin glargine biosimilars in particular. 

RESULTS 

Our results show that Lantus SoloStar® was the insulin glargine product most frequently 

prescribed by GPs in England, with nearly 6,000,000 units prescribed in 2018, compared 

with the nearly 1,400,000 units of Lantus® cartridges, the second most prescribed 

product (Table 4.2). Nevertheless, the market share of Lantus SoloStar® decreased 

substantially from 80% just before the introduction of Toujeo® and Abasaglar® 

(particularly KwikPen®) in late 2015 to 60% in December 2018 (Table 4.2; see 
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Supplementary Materials for further information). By December 2018, Toujeo® and 

Abasaglar KwikPen® reached a market share of approximately 10% and 8%, 

respectively (see Supplementary Materials). 

 

The analysis of actual costs of insulin glargine showed that these have been maintained 

relatively steady in the last few years, with a considerable reduction in the case of 

Lantus® in 2018 (Table 4.2; see Supplementary Materials for further information). The 

actual cost of Lantus SoloStar® to the English NHS (£7.01 per pen) was, in December 

2018, closer to that of Abasaglar KwikPen® (£6.55 per pen) than ever before, which 

represents savings of £0.46 per pen (or 6.6%) with Abasaglar KwikPen® compared with 

Lantus SoloStar®.  
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Table 4.2. Total units, total costs and actual cost per unit of insulin glargine in 

primary care in England since the introduction of insulin glargine biosimilars. 

 2015 2016 2017 2018 
Total: 

2015-2018 

Total units      

Abasaglar® 100u/ml cartridges 

(3ml) 
214 11,973 40,406 64,086 116,679 

Abasaglar KwikPen® 100u/ml 

pens (3ml) 
1,131 66,540 287,331 571,320 926,322 

Lantus® 100u/ml cartridges (3ml) 1,569,162 1,616,568 1,518,500 1,382,872 6,087,102 

Lantus® 100u/ml vials (10ml) 48,709 47,804 42,045 36,882 175,440 

Lantus SoloStar® 100u/ml pens 

(3ml) 
6,395,711 6,493,615 6,257,381 5,959,478 25,106,185 

Toujeo® 300u/ml pens (1.5ml) 9,703 183,632 485,377 818,117 1,496,829 

Total costs (£)      

Abasaglar® 100u/ml cartridges 

(3ml) 
1,396 78,287 264,164 419,789 763,636 

Abasaglar KwikPen® 100u/ml 

pens (3ml) 
7,381 435,216 1,878,904 3,743,194 6,064,695 

Lantus® 100u/ml cartridges (3ml) 12,046,224 12,425,823 11,674,629 10,014,635 46,161,311 

Lantus® 100u/ml vials (10ml) 1,382,180 1,358,124 1,194,763 987,773 4,922,840 

Lantus SoloStar® 100u/ml pens 

(3ml) 
49,102,727 49,916,502 48,112,182 43,147,088 190,278,499 

Toujeo® 300u/ml pens (1.5ml) 99,124 1,878,858 4,965,681 8,386,202 15,329,865 

Actual cost per unit (£)      

Abasaglar® 100u/ml cartridges 

(3ml) 
6.53 6.54 6.54 6.55 - 

Abasaglar KwikPen® 100u/ml 

pens (3ml) 
6.53 6.54 6.54 6.55 - 

Lantus® 100u/ml cartridges (3ml) 7.68 7.69 7.69 7.24 - 

Lantus® 100u/ml vials (10ml) 28.38 28.41 28.42 26.78 - 

Lantus SoloStar® 100u/ml pens 

(3ml) 
7.68 7.69 7.69 7.24 - 

Toujeo® 300u/ml pens (1.5ml) 10.22 10.23 10.23 10.25 - 
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Table 4.3 shows the budget impact, or savings, associated with the introduction of 

insulin glargine biosimilars in primary care in England. The total savings with 

Abasaglar® between October 2015 (the time of the first captured Abasaglar® 

prescription) and December 2018 were approximately £900K, most of which was due 

to the adoption of KwikPen®. The total missed savings in England, however, amounted 

to approximately £25.6M. With this, the results showed that the percentage of savings 

realised with the introduction of insulin glargine biosimilars was 3.42% of the total 

savings that could have been achieved in the period analysed. 

 

Table 4.3. Real-world savings and missed savings with insulin glargine biosimilars 

in primary care in England. 

 2015 2016 2017 2018 
Total: 

2015-2018 

Savings      

Savings with Abasaglar® 

cartridges 
246 13,744 46,488 44,316 104,794 

Savings with Abasaglar 

KwikPen® 
1,303 76,278 330,346 393,208 801,135 

Total savings with 

Abasaglar® 
1,549 90,022 376,834 437,524 905,929 

Missed savings      

Missed savings with 

Abasaglar ® cartridges 
450,257 1,855,735 1,747,052 956,270 5,009,314 

Missed savings with 

Abasaglar KwikPen® 
1,837,423 7,443,899 7,194,153 4,101,579 20,577,054 

Total missed savings with 

Abasaglar® 
2,287,680 9,299,635 8,941,205 5,057,849 25,586,369 

Percentage of savings 

realised 
0.07% 0.96% 4.04% 7.96% 3.42% 

 

 

Our analyses demonstrated that the uptake of insulin glargine biosimilars varied 

substantially across CCGs, but no clear geographical pattern emerged (Figure 4.1). The 

NHS Swindon CCG was the quickest CCG to adopt insulin glargine biosimilars, with 
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an average of 7.4% of use of Abasaglar KwikPen® (from the total 3-ml pre-filled pen 

prescriptions) across GP practices in December 2015. The uptake of Abasaglar 

KwikPen®, over time, was unequal across England, with NHS North and West Reading 

CCG leading the uptake of Abasaglar KwikPen® in December 2016 (26.9%) and NHS 

Kernow CCG in December 2017 (40.2%). In December 2018, NHS Swindon CCG and 

NHS Kernow CCG were the CCGs with the highest use of insulin glargine biosimilars 

(53.3% and 51.4%, respectively), followed by NHS Berkshire West, which included the 

former NHS North and West Reading CCG (41.2%) (Figure 4.1; the “missing data” were 

not actually missing, but due to the evolution of CCGs and lack of complete boundary 

data associated with these changes we were not able to present all the data in the map). 

On the other hand, in December 2018 the use of Abasaglar KwikPen® was zero in nine 

CCGs, with a total of 28 CCGs below a 1% use. Choropleth maps of Abasaglar 

KwikPen® uptake in December 2015, December 2016 and December 2017 are available 

in Supplementary Materials. 

 

One FOI request was submitted to NHS Kernow CCG (one of the CCGs with the highest 

insulin glargine biosimilar use) and the response to our request stated that NHS Kernow 

CCG has not incentivised an increase in the use of biosimilars in Cornwall, nor more 

specifically has it incentivised the uptake of biosimilar insulin glargine. It was 

confirmed, however, that the CCG supported the review of all people with diabetes who 

are prescribed analogue insulin and a switch to a biosimilar if appropriate and acceptable 

to the individual. We submitted another FOI request to South Sefton CCG (one of the 

CCGs with an uptake rate of insulin glargine biosimilars of 0%), but the response only 

mentioned that agreeing on policies around biosimilars is part of the CCG’s work plan 

for 2019/2020. 
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Figure 4.1. Market share of Abasaglar KwikPen®, from the total 3-ml pre-filled 

pen prescriptions, in December 2018. 
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CONCLUSIONS 

Summary of findings 

Our analyses showed that the total savings with Abasaglar® between October 2015 (the 

time of the first Abasaglar® prescription) and December 2018 were approximately 

£900K, which represents 3.42% of the total savings that could have been realised in the 

period analysed. In other words, approximately savings of £25.6M on drug acquisition 

costs were missed from not using insulin glargine biosimilars in that period, assuming 

full access to Abasaglar® in primary care in England, ceteris paribus. The extent of 

future savings and missed savings will depend on a number of variables such as price 

adjustments, the entry of competitor biosimilars and the subsequent market dynamics, 

and incentives to clinicians and patients, but our results provide a valuable idea of the 

range of future realised and missed savings. Our analyses also demonstrated that a 

substantial level of variation in the use of insulin glargine biosimilars exists across CCGs 

in England, ranging from 0% to 53.3% in the case of Abasaglar KwikPen®. The 

information gathered from the two FOI requests did not provide sufficient clarification 

as to why this level of variation exists between one of the CCGs with highest insulin 

glargine biosimilar use and one of the CCGs with the lowest use. 

 

Strengths and limitations 

In recent years, the UK Government have made public a large amount of data to 

encourage analysis and innovation, including detailed, monthly datasets on treatments 

prescribed by GP practices in England [14]. Using these rich datasets represents the key 

strength of our study and, with this, not only did we shed light on an issue with relevant 

implications at the policy level, but we contributed towards the very purpose of making 

all these datasets available to the public. In addition, our study provides a framework 

that can be updated regularly to evaluate the uptake and variation of any particular 

treatment across GPs in England and to promote policies that ensure equitable access to 

healthcare; this framework could be used at either national, regional or local level. 

  

Our study, however, also had certain limitations. A number of medical associations and 

regulatory agencies, including the Medicines and Healthcare Products Regulatory 

Agency in the UK, have stated that all biological medicines must be prescribed by brand 

name to avoid automatic substitution at the pharmacy level [2]. The GP practice level 

prescribing data, however, captured a considerable number of insulin glargine 

prescriptions (13.3%) without a brand name associated with the given prescription 

record. For this reason, and to prevent potential errors, we focused on those records with 

an associated brand name and removed the rest from our analyses. Therefore, our results 

are likely to be an underestimation of the real budget impact as well as an 
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underestimation of the total missed savings. On the other hand, our study only 

considered drug acquisition costs and did not account for potential costs of switching 

patients from originators to biosimilars, such as the costs of regularly monitoring blood 

glucose levels or potential nocebo effects, meaning that the savings we estimated will 

likely be reduced in practice by these extra costs [17,18]. Switching costs have been 

shown to be substantial in other disease areas, but managed biosimilar switch 

programmes have also been successfully implemented in the UK despite this additional 

burden [19-21]. Although it is expected that switching costs will not exceed the savings 

realised by an increased use of insulin glargine biosimilars, the lack of data on switching 

prevents us from assessing this in detail. 

 

The lack of patient-level data was another limitation, as we were not able to assess any 

potential associations between the use of specific treatments (e.g. the uptake of insulin 

glargine biosimilars) and patients’ characteristics. This was an unavoidable limitation 

resulting from the nature of the dataset. Finally, the responses to our FOI requests did 

not provide the extent of detail we were hoping for, limiting our ability to understand 

whether policies for access to insulin glargine biosimilars varied across CCGs and what 

may be driving the observed differences. 

 

Policy-level implications 

As part of the UK Government’s Long-Term Plan (LTP) for the NHS, the NHS 

announced savings of £700M have been achieved in 2018/2019 as a consequence of 

maximising the use of best value generic and biologic treatments [22]. A significant 

proportion of this figure came from the uptake of adalimumab biosimilars after 

Humira® lost its patent protection in October 2018: the increased use of adalimumab 

biosimilars delivered savings of approximately £110M in 2018/2019 [22]. Other 

biologic treatments also contributed substantially to these savings: £45M with the best 

value rituximab; £36M with the best value etanercept; £32M with the best value 

infliximab; and £24M with the best value trastuzumab [22]. Unfortunately, no data was 

reported on savings with insulin glargine biosimilars either in primary or secondary care, 

which was in line with the results from the CCG Biosimilar National Questionnaire 

suggesting that most CCGs only develop plans for the most frequently used biosimilars 

in secondary care. The reality is that savings with insulin glargine biosimilars in primary 

care (approximately £900K between October 2015 and December 2018) are minor 

compared with those of the best value adalimumab, rituximab, etanercept, infliximab 

and trastuzumab; it is also true, however, that the savings missed from not using insulin 

glargine in primary care in 2018 (£5.1M; Table 4.3) are at the level of the savings 

realised in 2018/2019 with the uptake of generics such as caspofungin (£8.5M), 
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valganciclovir (£3.8M) or voriconazole (£7.0M), as per the NHS LTP report [22]. 

 

Regulatory and reimbursement agencies affirm that no clinically meaningful differences 

exist between originators and biosimilars and, at the same time, the NHS have 

encouraged the use of the best value biologic treatment (1; 23; 24). In spite of this, 

considerable barriers exist for the adoption of biosimilars and, as a consequence, for 

achieving all potential savings (13; 25). For instance, a survey in UK hospitals 

concluded that physicians’ perception of efficacy and safety was crucial, showing that 

only 30% of diabetologists had no concern for starting treatment with insulin glargine 

biosimilars or switching treatment for patients already on treatment (25). This could be 

justified by the incidents reported when switching patients from Lantus® to 

Abasaglar®, posing an additional hurdle for a smooth uptake of insulin glargine 

biosimilars and the concerns regarding medical liability (26-29). In addition, the ABCD 

stated there is a real problem in diabetes care regarding the “lack of knowledge” among 

healthcare professionals about the characteristics of existing treatments, with biosimilar 

insulins adding to this complexity (5). The sparse evidence base comparing biosimilar 

insulins with their originators is a significant barrier contributing to this “lack of 

knowledge” (28; 29). Patients’ perceptions and resistance to changing treatments may 

also play a role. A patient survey conducted in Canada demonstrated that patients remain 

resistant to switching to biosimilars, which has implications on treatment adherence and 

subsequently on patient outcomes (30); despite differences between the Canadian and 

English healthcare systems, similar results may be expected in England. With all this, 

better and proactive education programmes about biosimilars for both clinicians and 

patients have been considered crucial to increase the use of biosimilars (28). Other 

barriers may include the costs of switching patients from Lantus® to an insulin glargine 

biosimilar (e.g. having prescribing pharmacists in GP practices, referring the patient to 

a specialist in a hospital or having to closely monitor patients’ blood glucose) and the 

fact that CCGs may simply focus on those molecules with the greatest potential to 

deliver substantial savings in a short period of time (13). The launch of Toujeo® and its 

quick uptake may have also played a role in limiting the use of insulin glargine 

biosimilars. 

    

According to the Commissioning framework for biological medicines, there is a 

significant opportunity to further benefit from biosimilar medicines if action is taken 

across the country and best practice is implemented (2). For this reason, and in order to 

optimise the use of NHS resources, implement best practice and reduce unwarranted 

variation, Regional Medicines Optimisation Committees (RMOC) were established in 

2016 (23). The role of RMOC is to provide advice to commissioner (such as CCGs) s 

and providers and, in turn, these are expected to follow and implement RMOC advice 
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(23). One example of advice is the one released by the Guilford and Waverley RMOC 

in December 2016, who recommended the use of “Abasaglar® for new patients who 

would previously have been initiated on Lantus®” (31). Initiating diabetes patients on 

insulin glargine biosimilars seems to be an accepted approach that budget holders across 

England are promoting; however, there is more resistance to switch stable patients 

currently on Lantus® (13; 27). A survey in UK hospitals revealed that diabetologists in 

secondary care believe that switching to insulin glargine biosimilars should be done by 

GPs in primary care, as it would be the primary care budget that would benefit (13). But 

switching patients and realising savings will be limited if the appropriate structure and 

incentives do not exist. Apart from following the advice given by RMOC, the NHS and 

CCGs may need to put in place certain incentive schemes to promote the uptake of 

biosimilars in primary care, such as reinvesting the savings within the CCG or practice 

that realised the savings; putting in place supporting staff to incentivise the uptake of 

insulin glargine biosimilars, as done by the Mid Essex CCG; or extending the Quality 

and Outcomes framework to include items on the use biosimilars in primary care (2; 

13). In case a wider implementation of incentive schemes such as these prove successful, 

current manufacturers would have to adapt their strategies to remain key players in the 

field; further pricing adjustments would be likely, and biosimilar manufacturers would 

need to adapt their production levels to avoid potential drug shortages and maintain their 

reputation. 

  

The atlas developed by the NHS Business Service Authority (i.e. Medicines 

Optimisation Dashboard) illustrates that variations in prescribing rates exist across NHS 

Trusts in the use of biosimilars of etanercept, infliximab, rituximab and trastuzumab 

[29]. For instance, in July 2018, the uptake of infliximab biosimilars ranged from 51% 

(in Bradford Teaching Hospitals NHS Foundation Trust) to 100% in several trusts; also 

in July 2018, the uptake of etanercept, rituximab and trastuzumab varied between 0% 

and 100% across NHS trusts. Similar results were reported by other studies that used 

the GP practice level prescribing data to analyse variations (across CCGs) in other 

products’ prescription rates, indicating that inequalities in prescription rates may be 

widespread across primary care in England [30-32]. Our results corroborate this reality: 

it seems that patients in certain areas are more likely to be initiated on or switched to 

insulin glargine biosimilars compared with other areas. This adds further evidence to the 

postcode lottery issue in England [33,34]. Although we tried to decipher some of the 

key determinants of the variation in the uptake of insulin glargine biosimilars by 

submitting two FOI requests, this was not the key focus of our analysis and remains a 

topic of future research. 
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Summary 

Two key conclusions can be drawn from this analysis: firstly, there are considerable 

savings that are not being realised and, secondly, there is substantial variation in the use 

of insulin glargine biosimilars across CCGs in England. We believe that the results from 

our analyses will encourage decision-makers in England, as well as healthcare managers 

in other settings, to promote a coordinated approach to the use of best value treatments 

in primary care and to re-evaluate variation in treatment patterns across GP practices 

and CCGs. Because switching to biosimilars is not just about generating savings, but 

about creating budget headroom for an increased access to best value treatments for all 

patients. 
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SUPPLEMENTARY MATERIAL 

 

 

Figure S1. Market shares of insulin glargine products in primary care in England. 
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Figure S2. Actual cost of insulin glargine products in primary care in England. 
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Figure S3. Market share of Abasaglar KwikPen®, from the total 3-ml pre-filled 

pen prescriptions, in December 2015. 
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Figure S4. Market share of Abasaglar KwikPen®, from the total 3-ml pre-filled 

pen prescriptions, in December 2016. 
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Figure S5. Market share of Abasaglar KwikPen®, from the total 3-ml pre-filled 

pen prescriptions, in December 2017. 
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Chapter 5 

 

Future research directions 
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In the health economics literature, there has been a debate over whether currently used 

methods of economic evaluation are appropriate for appraising advanced therapy 

medicinal products (ATMPs), some experts arguing that existing frameworks may not 

be the most suitable means of assessment [1]. Given the lack of evidence base to inform 

long-term efficacy and safety assumptions associated with ATMPs, it is important to 

fully consider the uncertainty around all critical inputs in economic models of ATMPs. 

Also, it is crucial for budget holders to understand the implications of reimbursing 

ATMPs under the traditional payment methods or, alternatively, whether the 

implementation of new payment models (e.g. performance-based arrangements or 

leasing schemes) could mitigate the risks of paying for such high-cost treatments [2]. 

 

Features of ATMPs and the supporting evidence base that might limit the validity of 

conventional economic modelling methods and assumptions include: 

• Discounting: using traditional payment methods health systems would have to 

face high upfront costs with ATMPs, whereas benefits would be accrued over 

time. In that case, discount rates would have a considerably larger effects on 

benefits compared with costs. For this reason, health technology assessment 

(HTA) agencies such as the National Institute for Health and Care Excellence 

(NICE) have suggested that a discount rate of 1.5% may be appropriate in cases 

that meet certain conditions [3]. 

• Extrapolation of treatment effects: regulatory approvals may be based on clinical 

trials of relatively short duration, creating uncertainty in the understanding of 

long-term treatment effects and therefore posing a substantial financial risk to 

payers. 

• Time horizon: with potential curative effects, lifetime horizons might best 

demonstrate the value of ATMPs, but might be challenging to justify based on 

clinical trials of limited duration. 

• Assessment of value: as ATMPs may provide benefits substantially larger than 

those typically seen in HTA, there is a lack of clarity as to whether there are facets 

of value beyond classic health gain measures that should be considered [2,4]. 

 

One of the diseases for which ATMPs and, more specifically, gene therapies can bring a 

significant benefit is haemophilia A. Haemophilia A is a rare genetic disorder 

characterised by the deficiency of the clotting Factor VIII in the blood, which may lead 

to excessive bleeding from injuries and surgeries, as well as pain, swelling and limitation 

of movement [5]. A recent study quantified the costs of severe haemophilia in Europe at 

approximately €200,000 per patient per year and highlighted the importance of the 

indirect impact of haemophilia on the patient and caregivers [6]. 
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As far as we know, two economic models analysing the cost-effectiveness of gene 

therapies in haemophilia have been published to date, both from the US healthcare payer 

perspective [7,6]. Both models compared a gene therapy vs. standard of care, consisting 

of prophylactic Factor VIII [7,6]. In terms of model structure, however, these two 

models present a key difference: one was a Markov model whereas the other was a 

microsimulation model [7,6]. 

  

Our plan is to replicate the microsimulation model, as such a structure would provide 

the opportunity to appropriately capture heterogeneity among individuals regarding key 

inputs (e.g. duration of response and costs) [7]. Following this, we plan to fully analyse 

the uncertainty of all key variables in model results in order to understand the values 

that these would need to take in order to reach certain cost-effectiveness or budget 

impact results. We will focus our efforts in those variables that have been deemed critical 

for the evaluation of ATMPs (e.g. discounting, extrapolation of treatment effect or time 

horizon) and will shed light on how these affect economic model results. Also, we will 

implement various innovative payment methods to gauge, from both the manufacturer 

and payer perspective, how different payment mechanisms would affect cash flows. 

With this, we would like to assist all stakeholders in a fair evaluation of the upcoming 

wave of high-cost, most innovative technologies and ensure that all payment options are 

appropriately studied and discussed so that these treatments eventually reach those in 

need. 
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Chapter 6 

Concluding remarks 

 

 

  



146 

English 

• Healthcare decision-makers can use and combine the power of randomised

controlled trials (RCTs) with real-world evidence (RWE) to maximise the

possibilities of making a good decision under uncertain conditions. The

importance of such an approach lays in the fact that healthcare budgets are

increasingly tight and the sizable pipeline of high-cost drugs lining up to come to

market in the coming years. In our example, we used both data sources (RCTs

and RWE) to demonstrate that the reimbursement of KRd (the combination of

carfilzomib, lenalidomide and dexamethasone) for multiple myeloma patients is

likely to represent an efficient allocation of available resources.

• Nevertheless, the distribution of innovative drugs across the population may not

be fair nor efficient. With our analyses we demonstrated that significant variation

or inequalities exist in the anti-osteoporosis drugs prescription levels across the

English primary care. These inequalities are particularly striking in the case of

denosumab, a high-cost monoclonal antibody, with prescriptions

disproportionately concentrated in the less deprived areas in England. We believe

our results should be a cause of concern for healthcare authorities, prompting

them to take the necessary steps to prevent obvious situations of inequality in

access to not only anti-osteoporosis treatments but all other therapies.

• Similarly, we demonstrated that even though guidelines and initiatives to promote

the use of biosimilars exist, their uptake in England is not being as swift and

successful as could have been expected, at least for certain products. Our study

reveals that, since the insulin glargine biosimilar was launched in 2015, the

savings generated in the English primary care is only a small proportion of the

potential savings that could have been generated. These results indicate that the

implementation of guidelines that promote the use of biosimilars in primary care

is not being straightforward and, consequently, the treatments that bring highest

value to the health system may not be being used. In addition, we observed

substantial variations in the use of insulin glargine biosimilars across England,

with certain regions showing a high market share whereas biosimilars were non-

existent in others. The use of biosimilars could contribute to the availability of

resources that may be allocated to other innovative treatments and, consequently,

differences in the uptake of biosimilars across regions may cause differences in

the probability of access to innovative treatments. This is yet another example of

inequalities in the access to therapy and stresses the need to take the necessary

steps to guarantee equity in access and long-term sustainability of the healthcare

system.

• All three projects demonstrate the power of combining high-quality, large data
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sources, and the value that results from thorough data analyses can provide. We 

are witnessing just the beginning of the data analytics era and we hope that our 

approaches can be used by others in the future to present the scientific community 

with ideas that will make our health systems more equitable and efficient.  

• In summary, even though in many cases ample evidence exists to assist healthcare 

authorities making resource allocation decisions, we have demonstrated that 

resource allocation in the real world may not be optimal. We hope that our 

methods and results provide useful insights so that healthcare authorities, in 

England but also in other countries, adopt measures that ensure the key objective 

of our healthcare systems is achieved: to improve the average level of the 

population health and to reduce health inequalities in the population. 
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Euskara 

 

• Osasun-sistemako erabakitzaileek ziurtasunik gabeko egoeretan erabaki honak 

har ditzaten aukerak maximizatzeko honako informazio iturriak ustia eta konbina 

ditzakete: entsegu kliniko aleatorioak (EKA) eta mundu errealeko ebidentzia 

(MEE). Erabakitzaileek erabilgarri duten aurrekontua geroz eta murritzagoa 

izanik, eta kostu altuko terapien eskaintza geroz eta zabalagoa izanik, eskuragarri 

dagoen jakinduria guztia ahalik eta modurik egokienean erabiltzea geroz eta 

garrantzitsuagoa bilakatzen ari da. Gure adibidean, bai EKA baita MEE erabilita, 

mieloma anizkuna duten pazienteak tratatzeko KRd (karfilzomib, lenalidomida 

eta dexametasonaren konbinazioa) erabiltzea eskuragai dauden baliabideen 

esleipen egokia izan litekeela erakutsi dugu. 

• Hala ere, litekeena da sendagai berritzaile hauek populazioari modu ez-eraginkor 

eta zuzengabean eskaintzea. Gure analisiek frogatu dutenez, bariazio edo 

desparekotasun esanguratsuak existitzen dira osteoporosia tratatzeko sendagaien 

preskripzio-mailan Ingalaterran. Desparekotasun hauek bereziki adierazgarriak 

dira denosumaben kasuan, kostu altuko antigorputz monoklonala, zeinen 

preskripzio mailarik altuenak, Ingalaterran, gabezia edo beharrik baxuena duten 

eskualdeetan biltzen diren. Gure ustetan emaitza hauek kezkagarri beharko lukete 

osasungintza sektoreko agintariendako, horrelako desparekotasun egoerak 

ekiditeko neurriak hartzera bultzatuz. 

• Era berean ikusi dugu biosimilarren erabilera sustatzeko eta kostu altuko 

sendagaien ondoriozko aurrekontu-inpaktuaren eragina minimizatzeko gidak 

publikatu eta iniziatibak aurrera eramanda ere, biosimilarren erabilera tasa 

merkatu ingelesean ez dela hasiera batean pentsa litekeena bezain zabala, 

produktu batzuen kasuan behinik behin. Gure analisien arabera, 2015. urtean 

insulina glarginaren biosimilarra merkaturatu zenetik, gauza litezkeen 

aurrezkietatik proportzio txiki bat besterik ez da gauzatu. Gure emaitzen arabera, 

biosimilarren erabilera sustatzeko existitzen diren gidek proposatzen dituzten 

arauak eguneroko bizitzan ezartzeko zailtasunak daude eta, ondorioz, osasun 

sistemari balore handieneko sendagaien erabilera ez da behar bezalakoa. Gainera, 

insulina glarginaren biosimilarren erabilera maila nabarmen aldatzen da 

Ingalaterrako eskualdetik eskualdera, batzuetan merkatu-kuota altua izatetik 

beste batzuetan inolako erabilerarik ez izatera. Biosimilarrak erabiltzeak 

baliabide gehiago eskuragarri izatea ekar lezake, beste sendagai berritzaile 

batzuk erabiltzera bidera litezkeenak eta, honela, eskualdeen arteko 

desberdrintasunen ondorioz baliteke sendagai berritzaileak jasotzeko 

probabilitatea altuagoa izatea eskualde batzuetan beste batzuetan baino. Hau, 

beraz, desparekotasunaren beste adibide bat da eta ekitatea eta sistemaren epe 
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luzeko jasangarritasuna bermatzeko ekimenak behar-beharrezkoak direla argi 

uzten du.  

• Hiru proiektu hauek kalitatezko datu base handiak konbinatu eta sakonki 

analizatzeak duen balioa agerian uzten dute, Datuen analisiaren aro berriaren 

hasiera besterik ez da hau eta espero dugu etorkizuneko ikerlariek, gure 

metodoak erabilita akaso, osasun-sistema ekitatibo eta eraginkorragoak izateko 

ideia berriak plazaratzea. 

• Laburbilduz, kasu askotan erabakitzaileek bide egokia hautatzeko nahikoa 

ebidentzia izan arren, litekeena da praktikan baliabideen esleipena eta erabilpena 

optimoa ez izatea. Espero dugu gure metodo eta emaitzek, bai Ingalaterrako baita 

gainontzeko herrialdeetako agintariendako ere, informazio baliagarria eskaintzea 

gure osasun-sistemen helburu nagusia betetzeko beharrezko diren neurriak 

hartzeko bidean, honela populazioaren osasuna hobetu eta desparekotasun 

egoerak ekiditeko. 
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Castellano 

 

• Los decisores del sistema sanitario tienen la posibilidad de utilizar y combinar el 

potencial de los ensayos clínicos aleatorios (ECAs) con la evidencia del mundo 

real (EMR) para maximizar las posibilidades de tomar una decisión correcta en 

situaciones de incertidumbre. Esto ha adquirido e irá adquiriendo más 

importancia en los próximos años si temenos en cuenta los cada vez más 

limitados presupuestos de los que disponen los decisores y la cada vez más 

amplia oferta de terapias de alto coste. En nuestro ejemplo, haciendo uso de las 

dos fuentes de información (ECAs y EMR), demostramos que el reembolso de 

KRd (la combinación de carfilzomib, lenalidomida y dexametasona) para 

pacientes de mieloma multiple supondría, probablemente, una asignación 

eficiente de los recursos disponibles. 

• Sin embargo, la puesta en práctica y distribución en la población de 

medicamentos innovadores puede no ser justa ni eficiente. Con nuestros análisis 

demostramos que existen variaciones o desigualdades significativas en los 

niveles de prescripción de medicamentos para la osteoporosis en Inglaterra. Estas 

desigualdades son especialmente visibles en el caso de denosumab, anticuerpo 

monoclonal de alto coste, cuyas prescripciones se concentran de forma 

desproporcionada en las zonas menos desfavorecidas de Inglaterra. Creemos que 

estos resultados deberían preocupar a las autoridades sanitarias y que éstas 

deberían tomar las acciones necesarias para evitar situaciones claras de 

desigualdad no solamente en el área de la osteoporosis sino en todas las demás 

áreas. 

• De la misma manera demostramos que, pese a que existan guías e iniciativas para 

promover el uso de biosimilares y así minimizar el impacto presupuestario 

generado por los medicamentos de alto coste, el acceso al mercado inglés no está 

siendo tan rápido y exitoso como cabría esperar, al menos para algunos 

productos. Nuestro estudio revela que, desde que se lanzó el biosimilar de 

insulina glargina en 2015, los ahorros que se han generado en Inglaterra son 

solamente una pequeña parte de lo que se podría haber ahorrado. Estos resultados 

indican que existe un problema de implantación de las guías para promover el 

uso de biosimilares en atención primaria y, en consecuencia, que no se están 

utilizando los medicamentos que más valor aportan al sistema sanitario. Además, 

observamos variaciones significativas en el uso de biosimilares de insulina 

glargina en Inglaterra, habiendo regiones con una alta cuota de mercado del 

producto y otras con una presencia inexistente del biosimilar. La penetración de 

biosimilares podría contribuir a la disponibilidad de recursos que podrían ser 

asignados a otros medicamentos innovadores y, en consecuencia, las diferencias 
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existentes entre regiones podrían significar que la probabilidad de recibir otros 

medicamentos innovadores es mayor en unas regiones que en otras. Este es, por 

tanto, otro ejemplo de las desigualdades existentes en el acceso a los 

medicamentos que incide en la necesidad de tomar acciones para garantizar la 

equidad y la sostenibilidad del sistema a largo plazo. 

• Estos tres proyectos demuestran el poder de combinar grandes bases de datos, de 

alta calidad, y resaltan el valor que los resultados de un análisis exhaustivo puede 

proporcionar. Estamos ante lo que es únicamente el principio de la era del análisis 

de datos, y esperamos que otros, tal vez utilizando nuestros métodos, presenten 

nuevas ideas en el future que lleven a nuestros sistemas de salud a ser más 

equitativos y eficientes. 

• En resumen, a pesar de que en muchos casos haya suficiente evidencia para 

informar la toma de decisiones sobre la asignación de recursos a medicamentos 

innovadores, hemos demostrado que la asignación de recursos en la práctica 

puede no ser óptima. Esperamos que nuestros estudios aporten métodos y datos 

útiles para que las autoridades sanitarias, tanto en Inglaterra como en el resto del 

mundo, adopten medidas que nos lleven a asegurar que se cumple el objetivo 

principal de nuestros sistemas sanitarios: mejorar la salud de la población y evitar 

situaciones de desigualdad.            
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Addendum 1 

 

Key R code scripts 

 

 

 

 

 
  



154 

 

Load libraries 

 
library(data.table); library(curl); library(bitops) 

library(dplyr) 

library(ggplot2) 

library(stringr) 

library(tictoc) 

library(readr) 

library(gridExtra) 
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Download, manipulate and clean characteristics of patients 

registered at GP offices 
 

# Code corresponding to "patient_characteristics.R" script 

# -------------------------------------------------------- 

 

# This code calculates the mean age and percentage of females per GP practice at each time point, if 

data are available, or creates the datasets to later interpolate the data from the two closest available 

data points. 

# Change working directory to save the files at a different location (use “setwd”) 

# Create a vector to capture the time points (as row number in the dataset) at which patient 

characteristics data are not available. 

pat.data.NA <- vector(mode = "numeric", length = 0) 

 

# Create a vector to capture all postcodes among all datasets 

postcode.data <- vector(mode = "character", length = 0) 

 

# Run for loop to create datasets of patient characteristics at the GP practice level 

for (i in 1:n.observations) { 

  if (!is.na(dataset$GP_patients_females[i]) && !is.na(dataset$GP_patients_males[i])) { 

    # Specify the availability of data and, if available, download the data. 

    # Create an indicator (pat.availability) to specify the situation regarding the available data on 

the characteristics of the patient population. 

    pat.availability <- 1 

    link.f <- dataset$GP_patients_females[i]; pat.data.f <- fread(input = link.f, nrows = -1, header = 

TRUE, showProgress = TRUE) 

    link.m <- dataset$GP_patients_males[i]; pat.data.m <- fread(input = link.m, nrows = -1, header = 

TRUE, showProgress = TRUE) 

    rm(link.f, link.m) 

  } else if (!is.na(dataset$GP_patients_all_1y[i])) { 

    pat.availability <- 2 

    link <- dataset$GP_patients_all_1y[i]; pat.data <- fread(input = link, nrows = -1, header = TRUE, 

showProgress = TRUE); pat.data <- tbl_df(pat.data) 

    rm(link) 

  } else if (!is.na(dataset$GP_patients_all_5y[i])) { 

    pat.availability <- 3 

    link <- dataset$GP_patients_all_5y[i]; pat.data <- fread(input = link, nrows = -1, header = TRUE, 

showProgress = TRUE); pat.data <- tbl_df(pat.data) 

    rm(link)  
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  } else { 

    pat.availability <- 4 

    pat.data.NA <- c(pat.data.NA, i) 

  } 

   

  # If pat.availability is either 1, 2 or 3, the code below manipulates the data to produce a consistent 

dataset reporting the mean age and the percentage of females in each GP practice. 

   

  if (pat.availability == 1) { 

    # PAT.AVAILABILITY == 1 

    # If patient characteristics are available for females and males, in separate files, and in 1-year 

brackets 

    # Add the postcode (pcs) to the dataset 

    pcs <- pat.data.f %>% 

      select(ORG_CODE, POSTCODE) %>% # To decide later whether CCG_CODE is added (as it's not available 

in all datasets, e.g. April 2017) 

      rename(PRACTICE = ORG_CODE) %>% 

      distinct() 

    head(pcs); tail(pcs) 

    # Calculations for females 

    if ("Number of patients" %in% colnames(pat.data.f)) { 

      colnames(pat.data.f)[which(colnames(pat.data.f) == "Number of patients")] <- "NUMBER_OF_PATIENTS" 

    } 

    pat.data.f <- tbl_df(pat.data.f) %>% 

      mutate(AGE = replace(AGE, which(AGE == "95+"), 95)) %>% 

      filter(AGE != "ALL") %>% 

      mutate(age_contrib = (as.numeric(AGE) + 0.5) * as.numeric(NUMBER_OF_PATIENTS)) %>% 

      rename(PRACTICE = ORG_CODE) %>% 

      group_by(PRACTICE) %>% 

      summarise(pat.ys.f = sum(age_contrib), N_FEMALES = sum(NUMBER_OF_PATIENTS)) 

    head(pat.data.f); tail(pat.data.f) 

    # Calculations for males 

    if ("Number of patients" %in% colnames(pat.data.m)) { 

      colnames(pat.data.m)[which(colnames(pat.data.m) == "Number of patients")] <- "NUMBER_OF_PATIENTS" 

    } 

    pat.data.m <- tbl_df(pat.data.m) %>% 

      mutate(AGE = replace(AGE, which(AGE == "95+"), 95)) %>% 

      filter(AGE != "ALL") %>% 

      mutate(age_contrib = (as.numeric(AGE) + 0.5) * as.numeric(NUMBER_OF_PATIENTS)) %>% 
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      rename(PRACTICE = ORG_CODE) %>% 

      group_by(PRACTICE) %>% 

      summarise(pat.ys.m = sum(age_contrib), N_MALES = sum(NUMBER_OF_PATIENTS)) 

    head(pat.data.m); tail(pat.data.m) 

    # Combine all available data in a single dataset 

    pat.data <- left_join(pat.data.f, pat.data.m, by = "PRACTICE") %>% 

      mutate(total.pat.ys = pat.ys.f + pat.ys.m,  

             NUMBER_OF_PATIENTS = N_FEMALES + N_MALES, 

             mean_AGE = total.pat.ys/NUMBER_OF_PATIENTS, 

             perc_FEMALES = 100 * (N_FEMALES / NUMBER_OF_PATIENTS)) %>% 

      left_join(pcs, by = "PRACTICE") %>% 

      select(PRACTICE, POSTCODE, NUMBER_OF_PATIENTS, mean_AGE, perc_FEMALES) 

    head(pat.data); tail(pat.data) 

    rm(pat.data.f, pat.data.m, pcs) 

  } else if (pat.availability == 2) { 

    # PAT.AVAILABILITY == 2 

    # If patient characteristics are available for females and males, within a single file, and in 1-

year brackets 

    # Create age matrix for calculating age contribution of each age band 

    age.v <- rep(seq(from = 0.5, to = 95.5, by = 1), times = 2) 

    age.m <- matrix(data = rep(age.v, nrow(pat.data)), nrow = nrow(pat.data), ncol = length(age.v), byrow 

= TRUE); rm(age.v) 

    # Identify the first column reporting age data 

    first.age.col <- which(colnames(pat.data) == "MALE_0_1") 

    # Calculate age contribution of each age band and calculate the total 

    pat.ys <- pat.data[, first.age.col:(first.age.col + 191)] * age.m; rm(age.m, first.age.col) 

    total.pat.ys <- rowSums(pat.ys); rm(pat.ys) 

    # Rename if needed 

    if ("Total_All" %in% colnames(pat.data)) { 

      colnames(pat.data)[which(colnames(pat.data) == "Total_All")] <- "TOTAL_ALL" 

    } 

    if ("Total_Female" %in% colnames(pat.data)) { 

      colnames(pat.data)[which(colnames(pat.data) == "Total_Female")] <- "TOTAL_FEMALE" 

    } 

    # Generate summary dataset 

    pat.data <- pat.data %>% 

      select(PRACTICE_CODE, POSTCODE, TOTAL_ALL, TOTAL_FEMALE) %>% 

      rename(PRACTICE = PRACTICE_CODE, NUMBER_OF_PATIENTS = TOTAL_ALL, N_FEMALES = TOTAL_FEMALE) %>% 

      mutate(total.pat.ys = total.pat.ys, 
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             mean_AGE = total.pat.ys/NUMBER_OF_PATIENTS, 

             perc_FEMALES = 100 * (N_FEMALES / NUMBER_OF_PATIENTS)) %>% 

      select(PRACTICE, POSTCODE, NUMBER_OF_PATIENTS, mean_AGE, perc_FEMALES) 

    head(pat.data); tail(pat.data) 

    rm(total.pat.ys) 

  } else if (pat.availability == 3) { 

    # PAT.AVAILABILITY == 3 

    # If patient characteristics are available for females and males, within a single file, and in 5-

year brackets 

    # Create age matrix for calculating age contribution of each age band 

    if (i < 54) { 

      age.v <- rep(c(seq(from = 2, to = 92, by = 5), 95.5), times = 2) 

    } else { 

      age.v <- rep(c(seq(from = 2, to = 82, by = 5), 85.5), times = 2) 

    } 

    age.m <- matrix(data = rep(age.v, nrow(pat.data)), nrow = nrow(pat.data), ncol = length(age.v), byrow 

= TRUE); rm(age.v) 

    # Identify the first column reporting age data 

    first.age.col <- which(colnames(pat.data) == "MALE_0-4") 

    # Identify the last column reporting age data 

    if (i < 54) { 

      last.age.col <- which(colnames(pat.data) == "FEMALE_95+") 

    } else { 

      last.age.col <- which(colnames(pat.data) == "FEMALE_85+") 

    } 

    # Calculate age contribution of each age band and calculate the total 

    pat.ys <- pat.data[, first.age.col:last.age.col] * age.m; rm(age.m, first.age.col, last.age.col) 

    total.pat.ys <- rowSums(pat.ys); rm(pat.ys) 

    # Rename if needed 

    if ("Total_All" %in% colnames(pat.data)) { 

      colnames(pat.data)[which(colnames(pat.data) == "Total_All")] <- "TOTAL_ALL" 

    } 

    if ("Total_Female" %in% colnames(pat.data)) { 

      colnames(pat.data)[which(colnames(pat.data) == "Total_Female")] <- "TOTAL_FEMALE" 

    } 

    # Generate summary dataset 

    # If postcode is provided 

    if ("POSTCODE" %in% colnames(pat.data)) { 

      pat.data <- pat.data %>% 
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        select(GP_PRACTICE_CODE, POSTCODE, TOTAL_ALL, TOTAL_FEMALES) %>% 

        rename(PRACTICE = GP_PRACTICE_CODE, NUMBER_OF_PATIENTS = TOTAL_ALL, N_FEMALES = 

TOTAL_FEMALES) %>% 

        mutate(total.pat.ys = total.pat.ys, 

               mean_AGE = total.pat.ys/NUMBER_OF_PATIENTS, 

               perc_FEMALES = 100 * (N_FEMALES / NUMBER_OF_PATIENTS)) %>% 

        select(PRACTICE, POSTCODE, NUMBER_OF_PATIENTS, mean_AGE, perc_FEMALES) 

      head(pat.data); tail(pat.data) 

      rm(total.pat.ys) 

    } else { # If postcode is not provided 

      pat.data <- pat.data %>% 

        select(GP_PRACTICE_CODE, TOTAL_ALL, TOTAL_FEMALES) %>% 

        rename(PRACTICE = GP_PRACTICE_CODE, NUMBER_OF_PATIENTS = TOTAL_ALL, N_FEMALES = 

TOTAL_FEMALES) %>% 

        mutate(total.pat.ys = total.pat.ys, 

               mean_AGE = total.pat.ys/NUMBER_OF_PATIENTS, 

               perc_FEMALES = 100 * (N_FEMALES / NUMBER_OF_PATIENTS)) %>% 

        select(PRACTICE, NUMBER_OF_PATIENTS, mean_AGE, perc_FEMALES) 

      head(pat.data); tail(pat.data) 

      rm(total.pat.ys) 

    } 

  } 

   

  # Create a .csv file from the pat.data dataset 

  # All .csv files, i.e. for all months for which patient characteristics exist, will be initially 

created, 

  # to allow interpolation of data for the time points for which these data are not available (i.e. 

pat.availability == 4) 

   

  if (pat.availability != 4) { 

    filename <- paste0("pat.data_", dataset$Year[i], dataset$Month[i], ".csv") 

    write.csv(pat.data, file = filename, row.names = FALSE) 

    rm(filename) 

  } 

   

  # Create a file with all different postcodes among all datasets 

  if (pat.availability != 4 && ("POSTCODE" %in% colnames(pat.data))) { 

    current.unique.postcode <- unique(pat.data$POSTCODE) 

    postcode.data <- c(postcode.data, current.unique.postcode) 
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    postcode.data <- unique(postcode.data) 

    rm(current.unique.postcode) 

  } 

  rm(pat.data)  

} 

rm(i, pat.availability) 

 

# Write postcode file 

write.csv(postcode.data, file = "postcode.data.csv", row.names = FALSE) 

 

# Interpolate patient characteristics for time points for which these data are not available 

# Vector of time points with available patient data 

pat.data.av <- c(1:n.observations)[-pat.data.NA] 

 

for (i in 1:length(pat.data.NA)) { 

  # Identify the row in the dataset with data not available. 

  r <- pat.data.NA[i] 

  # Identify closest time point and dataset name with available patient data in the past Then read in 

the file. 

  close.past <- pat.data.av[min(which(pat.data.av > r))] 

  close.past.filename <-paste0("pat.data_", dataset$Year[close.past], dataset$Month[close.past], ".csv") 

  close.past.data <- read.csv(close.past.filename); rm(close.past.filename) 

  # Identify closest time point and dataset name with available patient data in the future. Then read in 

the file. 

  close.future <- pat.data.av[max(which(pat.data.av < r))] 

  close.future.filename <-paste0("pat.data_", dataset$Year[close.future], dataset$Month[close.future], 

".csv") 

  close.future.data <- read.csv(close.future.filename); rm(close.future.filename) 

  # Calculate interpolation factor (i.e. where does this time point land between the two known time 

points?) 

  interpol.f <- (r - close.past) / (close.future - close.past) 

  rm(close.past, close.future) 

  # Join both datasets, including practices for which there is no data 

  both.data <- full_join(close.past.data, close.future.data, by = "PRACTICE") 

  rm(close.past.data, close.future.data) 

  # Remove the "NA" from the dataset. 

  # If "NA" are present, assume the data from the closest data point in order to keep as many practices 

as possible 

  # in the dataset. Then some of these may be dropped by the lack of prescription data in the prescribing 
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datasets. 

  # If postcode is provided in both datasets 

  if ("POSTCODE.x" %in% colnames(both.data) && "POSTCODE.y" %in% colnames(both.data)) { 

    both.data.na.rm <- both.data %>% 

      mutate(POSTCODE.x = ifelse(is.na(POSTCODE.x), as.character(POSTCODE.y), as.character(POSTCODE.x)), 

             NUMBER_OF_PATIENTS.x = ifelse(is.na(NUMBER_OF_PATIENTS.x), NUMBER_OF_PATIENTS.y, 

NUMBER_OF_PATIENTS.x), 

             mean_AGE.x = ifelse(is.na(mean_AGE.x), mean_AGE.y, mean_AGE.x), 

             perc_FEMALES.x = ifelse(is.na(perc_FEMALES.x), perc_FEMALES.y, perc_FEMALES.x), 

             POSTCODE.y = ifelse(is.na(POSTCODE.y), as.character(POSTCODE.x), as.character(POSTCODE.y)), 

             NUMBER_OF_PATIENTS.y = ifelse(is.na(NUMBER_OF_PATIENTS.y), NUMBER_OF_PATIENTS.x, 

NUMBER_OF_PATIENTS.y), 

             mean_AGE.y = ifelse(is.na(mean_AGE.y), mean_AGE.x, mean_AGE.y), 

             perc_FEMALES.y = ifelse(is.na(perc_FEMALES.y), perc_FEMALES.x, perc_FEMALES.y)) 

  } else { 

    both.data.na.rm <- both.data %>% 

      mutate(NUMBER_OF_PATIENTS.x = ifelse(is.na(NUMBER_OF_PATIENTS.x), NUMBER_OF_PATIENTS.y, 

NUMBER_OF_PATIENTS.x), 

             mean_AGE.x = ifelse(is.na(mean_AGE.x), mean_AGE.y, mean_AGE.x), 

             perc_FEMALES.x = ifelse(is.na(perc_FEMALES.x), perc_FEMALES.y, perc_FEMALES.x), 

             NUMBER_OF_PATIENTS.y = ifelse(is.na(NUMBER_OF_PATIENTS.y), NUMBER_OF_PATIENTS.x, 

NUMBER_OF_PATIENTS.y), 

             mean_AGE.y = ifelse(is.na(mean_AGE.y), mean_AGE.x, mean_AGE.y), 

             perc_FEMALES.y = ifelse(is.na(perc_FEMALES.y), perc_FEMALES.x, perc_FEMALES.y)) 

  } 

  rm(both.data) 

   

  # Generation of the interpolated data. 

  if ("POSTCODE.x" %in% colnames(both.data.na.rm) && "POSTCODE.y" %in% colnames(both.data.na.rm)) { 

    interpol.d <- both.data.na.rm %>% 

      mutate(NUMBER_OF_PATIENTS = round(NUMBER_OF_PATIENTS.x + interpol.f * (NUMBER_OF_PATIENTS.y - 

NUMBER_OF_PATIENTS.x), 0), 

             mean_AGE = mean_AGE.x + interpol.f * (mean_AGE.y - mean_AGE.x), 

             perc_FEMALES = perc_FEMALES.x + interpol.f * (perc_FEMALES.y - perc_FEMALES.x)) %>% 

      rename(POSTCODE = POSTCODE.x) 

  } else { 

    interpol.d <- both.data.na.rm %>% 

      mutate(NUMBER_OF_PATIENTS = round(NUMBER_OF_PATIENTS.x + interpol.f * (NUMBER_OF_PATIENTS.y - 

NUMBER_OF_PATIENTS.x), 0), 
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             mean_AGE = mean_AGE.x + interpol.f * (mean_AGE.y - mean_AGE.x), 

             perc_FEMALES = perc_FEMALES.x + interpol.f * (perc_FEMALES.y - perc_FEMALES.x)) 

  } 

  rm(interpol.f, both.data.na.rm) 

   

  # Select variables for the final data frame. 

  if ("POSTCODE" %in% colnames(interpol.d)) { 

    pat.data <- interpol.d %>% 

      select(PRACTICE, POSTCODE, NUMBER_OF_PATIENTS, mean_AGE, perc_FEMALES) 

  } else { 

    pat.data <- interpol.d %>% 

      select(PRACTICE, NUMBER_OF_PATIENTS, mean_AGE, perc_FEMALES) 

  } 

  rm(interpol.d) 

   

  # Write the patient data .csv file 

  filename <- paste0("pat.data_", dataset$Year[r], dataset$Month[r], ".csv") 

  write.csv(pat.data, file = filename, row.names = FALSE) 

  rm(filename, r) 

  rm(pat.data) 

} 

rm(i, pat.data.av, pat.data.NA) 
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Download, manipulate and clean GP prescribing data 
 

# Code corresponding to "get_pr.R" script 

# -------------------------------------------------------- 

 

gps <- numeric() 

gps.no.pr.of.interest <- numeric() 

gps.pr.of.interest <- numeric() 

gps.pat.data.file <- numeric() 

gps.with.pr.and.pat.data <- numeric() 

 

for (i in 1:n.observations) { 

  # Read in prescribing dataset 

  link <- dataset$Prescribing_data[i] 

  pd <- fread(input = link, nrows = -1, header = TRUE, showProgress = TRUE) # nrows = -1 to read in all 

rows 

  pd <- tbl_df(pd) 

  colnames(pd) <- str_replace_all(colnames(pd), fixed(" "), "_") 

  pd <- pd %>% select(SHA, PCT, PRACTICE, BNF_CODE, BNF_NAME, ITEMS,NIC, ACT_COST, QUANTITY) 

  head(pd); tail(pd) 

  rm(link) 

   

  # Select the BNF section of interest 

  substr <- function(x, start, stop) { 

    x <- strsplit(x, "") 

    sapply(x,  

           function(x) paste(x[start:stop], collapse = ""),  

           USE.NAMES = FALSE) 

  } 

  start <-  1  

  stop <-  2 # Select based on the initial six characters 

  sections <- substr(pd$BNF_CODE, start, stop) 

  sel.section <- "06" # Endocrine system 

  sub.pd <- pd[which(sections == sel.section),] 

  rm(sections, sel.section, start, stop) 

  head(sub.pd); tail(sub.pd) 

   

  # Create dataset with unique SHA, PCT and PRACTICE for left_join (adding SHA and PCT to d) 

  level2.id <- pd %>%  
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    select(SHA, PCT, PRACTICE) %>% 

    distinct() 

  rm(pd) 

  gps <- c(gps, nrow(level2.id)) 

   

  # Select the chemicals of interest 

  start <- 3 

  stop <- 9 

  chemicals <- substr(sub.pd$BNF_CODE, start, stop) 

  sel.chem1 <- "06020A0" # Alendronic acid 

  sel.chem2 <- "06020Y0" # Alendronic acid and colecalciferol 

  sel.chem3 <- "06020Z0" # Denosumab 

  sel.chem4 <- "06020W0" # Ibandronic acid 

  sel.chem5 <- "06020R0" # Risedronate sodium 

  sel.chem6 <- "06020X0" # Strontium ranelate 

  sel.chem7 <- "04011X0" # Raloxifene 

  sub.sub.pd <- sub.pd %>% 

    mutate(CHEMICALS = chemicals) %>% 

    filter(CHEMICALS %in% c(sel.chem1, sel.chem2, sel.chem3, sel.chem4, sel.chem5, sel.chem6, sel.chem7)) 

  rm(chemicals, start, stop) 

  head(sub.sub.pd); tail(sub.sub.pd) 

   

  # The number of entries reporting chemicals not selected is: 

  nrow(sub.pd) - nrow(sub.sub.pd) 

  rm(sub.pd) 

   

  # Calculate total cost and summarise it in a new tbl. 

  # Bear in mind that it is possible that not all GP practices have a cost associated with the BNF 

section selected: 

  # Practices with zero prescriptions will be accounted for below. 

  # "pd.comb" reports the cost of all items of interest together 

  pd.comb <- sub.sub.pd %>% 

    group_by(PRACTICE) %>% 

    summarise(n = n(), total_NIC = sum(NIC), total_AC = sum(ACT_COST)) 

  head(pd.comb); tail(pd.comb) 

  if (nrow(pd.comb) == length(unique(sub.sub.pd$PRACTICE))) { 

    print("Number of practices included in the analyses so far is correct") 

  } else { 

    print("Please look at the number of practices included in the analyses so far") 
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  } 

   

  # Calculate the proportions of each chemical 

  # This code will manipulate the data to allow the assessment of potential differences in the treatment 

mix across England, 

  # as well as the evolution of the treatment mix over time. 

  start <- 3 

  stop <- 9 

  chemicals <- substr(sub.sub.pd$BNF_CODE, start, stop) 

  sub.sub.pd.ext <- sub.sub.pd %>% 

    mutate(CHEMICALS = chemicals) %>% 

    mutate(COST_DENOS_ALL = 0, COST_ALEN_ALL = 0, COST_ALEN_COL_ALL = 0, COST_IBAN_ALL = 0, COST_RISEN_ALL 

= 0, COST_SR_ALL = 0, COST_ZOL_ALL = 0) %>% 

    mutate(COST_DENOS_ALL = replace(COST_DENOS_ALL, which(chemicals == sel.chem1), 

ACT_COST[which(chemicals == sel.chem1)])) %>% 

    mutate(COST_ALEN_ALL = replace(COST_ALEN_ALL, which(chemicals == sel.chem2), 

ACT_COST[which(chemicals == sel.chem2)])) %>% 

    mutate(COST_ALEN_COL_ALL = replace(COST_ALEN_COL_ALL, which(chemicals == sel.chem3), 

ACT_COST[which(chemicals == sel.chem3)])) %>% 

    mutate(COST_IBAN_ALL = replace(COST_IBAN_ALL, which(chemicals == sel.chem4), 

ACT_COST[which(chemicals == sel.chem4)])) %>% 

    mutate(COST_RISEN_ALL = replace(COST_RISEN_ALL, which(chemicals == sel.chem5), 

ACT_COST[which(chemicals == sel.chem5)])) %>% 

    mutate(COST_SR_ALL = replace(COST_SR_ALL, which(chemicals == sel.chem6), ACT_COST[which(chemicals == 

sel.chem6)])) %>% 

    mutate(COST_ZOL_ALL = replace(COST_ZOL_ALL, which(chemicals == sel.chem7), ACT_COST[which(chemicals 

== sel.chem7)])) 

  # Group costs by practice and type of chemical 

  sub.sub.pd.ext.group <- sub.sub.pd.ext %>% 

    group_by(PRACTICE, CHEMICALS) %>% 

    summarise(ITEMS = sum(ITEMS), 

              NIC = sum(NIC), 

              ACT_COST = sum(ACT_COST), 

              COST_DENOS = sum(COST_DENOS_ALL),  

              COST_ALEN = sum(COST_ALEN_ALL), 

              COST_ALEN_COL = sum(COST_ALEN_COL_ALL), 

              COST_IBAN = sum(COST_IBAN_ALL), 

              COST_RISEN = sum(COST_RISEN_ALL), 

              COST_SR = sum(COST_SR_ALL), 
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              COST_ZOL = sum(COST_ZOL_ALL) 

    ) %>% 

    left_join(pd.comb, by = "PRACTICE") %>% 

    mutate(PERC_COST_DENOS = COST_DENOS / total_AC, 

           PERC_COST_ALEN = COST_ALEN / total_AC, 

           PERCT_COST_ALEN_COL = COST_ALEN_COL / total_AC, 

           PERC_COST_IBAN = COST_IBAN / total_AC, 

           PERC_COST_RISEN = COST_RISEN / total_AC, 

           PERCT_COST_SR = COST_SR / total_AC, 

           PERC_COST_ZOL = COST_ZOL / total_AC) 

  head(sub.sub.pd.ext.group); tail(sub.sub.pd.ext.group) 

  rm(chemicals, start, stop, substr) 

  rm(sub.sub.pd.ext) 

   

  # Add SHA and PCT data to the datasets 

  pd.bytmt <- left_join(sub.sub.pd.ext.group, level2.id, by = "PRACTICE") 

  rm(sub.sub.pd.ext.group) 

  head(pd.bytmt); tail(pd.bytmt) 

  pd.comb <- left_join(pd.comb, level2.id, by = "PRACTICE") 

  head(pd.comb); tail(pd.comb) 

   

  # Do all GP practices have a cost associated with the BNF section under study? 

  if (nrow(pd.comb) == nrow(level2.id)) { 

    print("All GP practices that prescribed bisphosphonates and other drugs prescribed at least once one 

drug of interest") 

  } else {print(paste0(nrow(level2.id)-nrow(pd.comb), " practices did not prescribe any of the drugs of 

interest"))} 

  gps.no.pr.of.interest <- c(gps.no.pr.of.interest, nrow(level2.id)-nrow(pd.comb)) 

  gps.pr.of.interest <- c(gps.pr.of.interest, nrow(pd.comb)) 

   

  # Code for including explicitly rows for drugs not prescribed (include zeros) in the extended and 

grouped (pd.bytmt) dataset 

  # Produce all possible combinations of practices and prescription drugs of interest 

  le <- nrow(level2.id) 

  sel.chems <- c(rep(sel.chem1, le), rep(sel.chem2, le), rep(sel.chem3, le), 

                 rep(sel.chem4, le), rep(sel.chem5, le), rep(sel.chem6, le), rep(sel.chem7, le)) 

  all.poss.comb <- bind_rows(level2.id, level2.id, level2.id, level2.id, level2.id, level2.id, 

level2.id) %>% 

    bind_cols(CHEMICALS = sel.chems) 
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  rm(le, level2.id, sel.chem1, sel.chem2, sel.chem3, sel.chem4, sel.chem5, sel.chem6, sel.chem7, 

sel.chems) 

  # Extract all combinations available in the prescription dataset 

  all.avail.comb <- data_frame(SHA = pd.bytmt$SHA, PCT = pd.bytmt$PCT, PRACTICE = pd.bytmt$PRACTICE, 

CHEMICALS = pd.bytmt$CHEMICALS) 

  # Select combinations in "all.possible.combinations" that do not have a match in 

"all.available.combinations" 

  zero.pr <- setdiff(all.poss.comb, all.avail.comb) 

  rm(all.avail.comb, all.poss.comb) 

  # Create data frame of zeros for variables other than "PRACTICE" and "CHEMICALS" 

  m <- nrow(zero.pr) 

  n <- ncol(pd.bytmt) - 4 # "PRACTICE" and "CHEMICALS" are already available in the "zero.pr" data frame. 

  zeros.df <- data.frame(matrix(data = rep(0, m*n), nrow = m, ncol = n)) 

  colnames(zeros.df) <- colnames(pd.bytmt[3:(ncol(pd.bytmt) - 2)]) 

  rm(m, n) 

  # Generate final zeros data frame 

  zero.pr <- bind_cols(zero.pr, zeros.df) 

  rm(zeros.df) 

   

  # Bind the data frame reporting zeros with the prescription dataset 

  # THIS IS THE FINAL EXTENDED AND GROUPED DATASET: 

  pd2.bytmt <- bind_rows(pd.bytmt, zero.pr) 

  rm(pd.bytmt, zero.pr) 

   

  # Dataset with item numbers 

  pd.items <- sub.sub.pd %>% 

    group_by(PRACTICE) %>% 

    summarise(total_ITEMS = sum(ITEMS)) 

   

  # Generate the dataset combining prescription data per GP practice 

  pd2.comb <- left_join(pd.comb, pd.items, by = "PRACTICE") 

  pd2.bytmt.red <- pd2.bytmt %>% 

    select(PRACTICE, SHA, PCT, CHEMICALS, ITEMS, NIC, ACT_COST) 

  rm(pd.comb, pd.items, sub.sub.pd) 

   

  head(pd2.bytmt); tail(pd2.bytmt) 

  head(pd2.bytmt.red); tail(pd2.bytmt.red) 

  head(pd2.comb); head(pd2.comb) 
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  # Combine datasets with the corresponding patient characteristics datasets: 

  

  # Read in the corresponding patient characteristics data file (use “setwd” if working directory is 

different) 

  pat.filename <- paste0("pat.data_", dataset$Year[i], dataset$Month[i], ".csv") 

  pat.data <- read_csv(paste0("C:/Users/iagirrez/Desktop/Personal/UPNA/Data/Prescribing/Patient data 

files/", pat.filename)) 

   

  # Number of practices in each dataset, to compare 

  gps.pat.data.file <- c(gps.pat.data.file, length(unique(pat.data$PRACTICE))) 

   

  # Combine datasets: use inner_join to capture only practices for which patient characteristics are 

available. 

  # The other data points (practices) will not be considered to avoid issues with potential patient 

identification 

  # in practices with low patient numbers (< 100 patients). 

  pd2.bytmt.with.pat <- inner_join(pd2.bytmt, pat.data, by = "PRACTICE") 

  pd2.bytmt.red.with.pat <- inner_join(pd2.bytmt.red, pat.data, by = "PRACTICE") 

  pd2.comb.with.pat <- inner_join(pd2.comb, pat.data, by = "PRACTICE") 

   

  gps.with.pr.and.pat.data <- c(gps.with.pr.and.pat.data, length(unique(pd2.bytmt.with.pat$PRACTICE))) 

  rm(pat.data, pat.filename, pd2.bytmt, pd2.bytmt.red, pd2.comb) 

   

  # Combine datasets with the deprivation datasets: 

  # Read in the deprivation data file 

  depr <- read_csv("deprivation-by-postcode.csv") # This is available on the internet 

   

  # Combine datasets with deprivation data 

  pd2.bytmt.with.pat.depr <- left_join(pd2.bytmt.with.pat, depr, by = "POSTCODE") 

  pd2.bytmt.red.with.pat.depr <- left_join(pd2.bytmt.red.with.pat, depr, by = "POSTCODE") 

  pd2.comb.with.pat.depr <- left_join(pd2.comb.with.pat, depr, by = "POSTCODE") 

   

  rm(depr, pd2.bytmt.with.pat, pd2.bytmt.red.with.pat, pd2.comb.with.pat) 

  # IMPORTANT NOTE: This dataset (depr) includes ethnicity data and rural/urban category. 

 

  # Add month and year 

  # ------------------ 

  pd2.bytmt.with.pat.depr <- pd2.bytmt.with.pat.depr %>% 

    mutate(MONTH = dataset[[i, 2]], YEAR = dataset[[i, 1]]) 
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  pd2.bytmt.red.with.pat.depr <- pd2.bytmt.red.with.pat.depr %>% 

    mutate(MONTH = dataset[[i, 2]], YEAR = dataset[[i, 1]]) 

  pd2.comb.with.pat.depr <- pd2.comb.with.pat.depr %>% 

    mutate(MONTH = dataset[[i, 2]], YEAR = dataset[[i, 1]]) 
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Combine all monthly datasets into a single dataset 
 

# Empty list for merging with the datasets. This will constitute the complete dataset. 

d.all.bytmt <- list() 

 

for (i in 1:n.observations) { print(i) 

  # Read in the dataset by treatment 

  filename1 <- paste0("d.byChemical_", dataset$Year[i], dataset$Month[i], ".csv") 

  d <- read_csv(paste0("PASTE WORKING DIRECTORY ADDRESS", filename1)) 

   

  # Select the variables needed (to reduce the size) 

  d <- d %>% 

    mutate(perc_WHITE = as.numeric(perc_WHITE)) %>% 

    select(-SHA, -NIC, -`Postcode Status`, -`LSOA code`, -`LSOA Name`, -`IDACI Rank`, -`IDACI Decile`, 

- `IDACI Score`, -`IDAOPI Rank`, -`IDAOPI Decile`, -`IDAOPI Score`, 

           -RUC11CD) 

  # Merge datasets 

  d.all.bytmt <- bind_rows(d.all.bytmt, d) 

} 

 

rm(d, filename1, i) 

d_all_bytmt <- d.all.bytmt 

rm(d.all.bytmt) 

 

# Add available time points as numeric 

d_all_bytmt <- d_all_bytmt %>% 

  mutate(times = paste(YEAR, MONTH, sep = " "), 

         MONTH.num = MONTH) %>% 

  mutate(MONTH.num = replace(MONTH.num, which(MONTH.num == "January"), 0/12), 

         MONTH.num = replace(MONTH.num, which(MONTH.num == "February"), 1/12), 

         MONTH.num = replace(MONTH.num, which(MONTH.num == "March"), 2/12), 

         MONTH.num = replace(MONTH.num, which(MONTH.num == "April"), 3/12), 

         MONTH.num = replace(MONTH.num, which(MONTH.num == "May"), 4/12), 

         MONTH.num = replace(MONTH.num, which(MONTH.num == "June"), 5/12), 

         MONTH.num = replace(MONTH.num, which(MONTH.num == "July"), 6/12), 

         MONTH.num = replace(MONTH.num, which(MONTH.num == "August"), 7/12), 

         MONTH.num = replace(MONTH.num, which(MONTH.num == "September"), 8/12), 

         MONTH.num = replace(MONTH.num, which(MONTH.num == "October"), 9/12), 

         MONTH.num = replace(MONTH.num, which(MONTH.num == "November"), 10/12), 
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         MONTH.num = replace(MONTH.num, which(MONTH.num == "December"), 11/12) 

  ) %>% 

  mutate(time.num = as.numeric(YEAR) + as.numeric(MONTH.num)) 

 

# Add other mutations 

d_all_bytmt <- d_all_bytmt %>% 

  mutate(NUMBER_OF_PATIENTS_1000s = NUMBER_OF_PATIENTS / 1000, 

         perc_INCOME_score = `Income Score` * 100, 

         perc_EMPLOYMENT_score = `Employment Score` * 100, 

         IMD_rank_1000s = `Index of Multiple Deprivation Rank` / 1000, 

         educ_rank_1000s = `Education and Skills Rank` / 1000, 

         health_rank_1000s = `Health and Disability Rank` / 1000, 

         crime_rank_1000s = `Crime Rank` / 1000, 

         housing_rank_1000s = `Barriers to Housing and Services Rank` / 1000, 

         envir_rank_1000s = `Living Environment Rank` / 1000, 

         perc_WHITE = 100 * perc_WHITE) 

 

# Set working directory for saving the newly created file 

# Write the data as an .csv file 

filename <- "d_all_bytmt.csv" 

write.csv(d_all_bytmt, file = filename, row.names = FALSE) 

rm(filename) 
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Calculate concentration indices and plot concentration curves 
 

library(gridExtra) 

library(RColorBrewer) 

library(magrittr) 

library(multipanelfigure) 

library(broom) 

library(caTools) 

 

# Calculate concentration index for each treatment 

# ------------------------------------------------ 

 

# Identify chemical categories 

d_all_bytmt <- d_all_bytmt %>% filter(CHEMICALS != "06020X0") 

chemicals <- unique(d_all_bytmt$CHEMICALS) 

 

# Chemicals' names 

chemicals.names <- chemicals 

chemicals.names[which(chemicals == "06020A0")] <- "Alendronic acid" 

chemicals.names[which(chemicals == "06020Y0")] <- "Alendronic acid and colecalciferol" 

chemicals.names[which(chemicals == "06020Z0")] <- "Denosumab" 

chemicals.names[which(chemicals == "06020W0")] <- "Ibandronic acid" 

chemicals.names[which(chemicals == "04011X0")] <- "Raloxifene" 

chemicals.names[which(chemicals == "06020R0")] <- "Risedronate sodium" 

 

# Identify available time points 

timepoints <- unique(d_all_bytmt$times); timepoints <- rev(timepoints) 

timepoints.num <- unique(d_all_bytmt$time.num); timepoints.num <- rev(timepoints.num) 

 

# Generate the objects to capture concentration indices: 

# one for easy printing and another one for creating a tbl for ggplot 

conc.m <- matrix(data = NA, nrow = length(chemicals), ncol = length(timepoints)) 

rownames(conc.m) <- chemicals.names 

colnames(conc.m) <- timepoints 

 

names <- rep(chemicals.names, length(timepoints.num)); names <- tbl_df(names) 

timepoints.rep <- numeric() 

for (i in 1:length(timepoints.num)) { 

  timepoints.rep <- c(timepoints.rep, rep(timepoints.num[i], length(chemicals.names))) 
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} 

rm(i) 

timepoints.rep <- tbl_df(timepoints.rep) 

conc.tbl <- bind_cols(names, timepoints.rep) 

 

# For loop through chemicals 

for (i in 1:length(chemicals)) { 

   

  # Filter dataset to capture the specific treatment only 

  d.conc <- d_all_bytmt %>% 

    filter(CHEMICALS == chemicals[i]) %>% 

    filter(!is.na(NUMBER_OF_PATIENTS)) 

   

  # For loop through time 

  for (j in 1:length(timepoints)) { 

     

    # Filter dataset to capture the specific year only, 

    # and arrange (sort) according to the IMD rank (from most to least deprived) 

    d.conc2 <- d.conc %>% 

      filter(times == timepoints[j]) %>% 

      arrange(`Income Rank`) 

 

    # Calculate the cumulative number of prescriptions 

    cumuls <- d.conc2 %>% 

      select(ITEMS, NUMBER_OF_PATIENTS) %>% 

      mutate(cumul_ITEMS_ranked = cumsum(as.numeric(ITEMS)), 

             perc_cumul_ITEMS_ranked = 100 * cumul_ITEMS_ranked / sum(as.numeric(ITEMS)), 

             cumul_PATS_ranked = cumsum(as.numeric(NUMBER_OF_PATIENTS)), 

             perc_cumul_PATS_ranked = 100 * cumul_PATS_ranked / sum(as.numeric(NUMBER_OF_PATIENTS))) 

    rm(d.conc2) 

     

    # Calculate concentration index 

    auc <- trapz(cumuls$perc_cumul_PATS_ranked / 100, cumuls$perc_cumul_ITEMS_ranked / 100) 

    c.index <- 2 * (0.5 - auc) 

     

    # Assign the result to the corresponding entry in the concentration index matrix 

    conc.m[i, j] <- c.index 

    rm(auc, c.index) 
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  } 

  rm(d.conc)  

} 

 

# Add concentration index to conc.tbl for ggplot 

CI <- numeric() 

for (j in 1:ncol(conc.m)) { 

  CI <- c(CI, conc.m[, j]) 

} 

CI <- tbl_df(CI) 

conc.tbl <- bind_cols(conc.tbl, CI) 

colnames(conc.tbl) <- c("Product", "Time point", "Concentration index") 

 

# Plot 

my_palette1 <- c(brewer.pal(12, "Paired"))[c(5,6,2,4,8,10,12)] 

conc.indices2 <- ggplot(data = conc.tbl, aes(x = `Time point`, y = `Concentration index`, color = 

Product)) + 

  geom_smooth(size = 1.2, se = FALSE, na.rm = TRUE) + 

  geom_hline(yintercept = 0, size = 1.5) + 

  ylim(-0.1, 0.2) + 

labs(x = "Time (year)",  

     y = "Concentration index") + 

  theme(plot.title = element_text(size = 16, colour = "black", hjust = 0.5), 

        axis.title = element_text(size = 13, colour = "black"), 

        axis.text = element_text(angle = 0, size = 11, color = "black")) + 

  scale_colour_manual(values = my_palette1) + 

  theme(legend.text=element_text(size = 10)) + 

  annotate("text", x = 2018, y = 0.0085, label = "Line of equality", size = 3.5) 

rm(my_palette1) 

 

my_palette1 <- c(brewer.pal(12, "Paired"))[c(5,6,2,4,8,10,12)] 

conc.indices2 <- ggplot(data = conc.tbl, aes(x = `Time point`, y = `Concentration index`, color = 

Product)) + 

  geom_smooth(size = 1.2, se = FALSE, na.rm = TRUE) + 

  geom_hline(yintercept = 0, size = 1.5) + 

  geom_vline(xintercept = 2018.67, size = 1, linetype = "dashed") + 

  ylim(-0.1, 0.225) + 

  xlim(2013, 2019.8) + 

  labs(x = "Time (year)",  
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       y = "Concentration index") + 

  theme(plot.title = element_text(size = 16, colour = "black", hjust = 0.5), 

        axis.title = element_text(size = 13, colour = "black"), 

        axis.text = element_text(angle = 0, size = 11, color = "black")) + 

  scale_colour_manual(values = my_palette1) + 

  theme(legend.text=element_text(size = 10)) + 

  annotate("text", x = 2017.5, y = 0.0085, label = "Line of equality", size = 3.5) + 

  annotate("text", x = 2019.2, y = 0.015, label = "0.019", size = 3.5) + 

  annotate("text", x = 2019.2, y = -0.029, label = "-0.033", size = 3.5) + 

  annotate("text", x = 2019.2, y = 0.202, label = "0.202", size = 3.5) + 

  annotate("text", x = 2019.2, y = 0.098, label = "0.101", size = 3.5) + 

  annotate("text", x = 2019.2, y = 0.080, label = "0.088", size = 3.5) + 

  annotate("text", x = 2019.2, y = 0.030, label = "0.026", size = 3.5) + 

  annotate("text", x = 2019.4, y = -0.070, label = "September", size = 3.5) + 

  annotate("text", x = 2019.4, y = -0.082, label = "2018", size = 3.5) + 

rm(my_palette1) 

 

 

# Create figure 

# ------------------------------------------------------------- 

setwd("C:/Users/ionag/Documents/UPNA/Reports/Bone metabolism/Figures/High resolution/") 

jpeg("Conc_indices_income.jpeg") 

pdf("Conc_indices_income.pdf", width = 8, height = 5) 

grid.arrange(conc.indices2, 

             ncol = 1) 

dev.off() 




