
1

Trabajo Fin de Grado

Iñaki Velasco Rodríguez

Daniel Paternáin Dallo

Pamplona, 21/01/2022

E.T.S. de Ingeniería Industrial,

Informática y de Telecomunicación

Study on the application of different image

preprocessing algorithms in image segmentation using

deep learning techniques

Grado en Ingeniería Informática

2

ABSTRACT

Semantic segmentation is one of the most important fields of computer vision due

to its applicability. In this case, semantic segmentation will be applied to images

taken from vehicles knowing the importance of autonomous driving for our future.

This project aims to achieve precise and fast results in the field of semantic

segmentation with the complication of using less powerful and more affordable

hardware than the one used nowadays.

Deep learning techniques will be used to solve this problem. More concretely, a

specific model of convolutional neural network will be trained and in charge of

making the predictions, a U-Net.

Different parameters of the U-Net will be changed to study how they affect the

results. Furthermore, various image sizes, color spaces or reduction methods will

be applied to study their impact on the speed and accuracy of the U-Net

predictions.

Finally, all those results will be compared in order to make a final decision in

which is the best combination and which fields impact the most and how.

KEYWORDS

Deep learning, computer vision, semantic segmentation, convolutional neural

network, reduction.

3

ACKNOWLEDGMENTS

I am really grateful to Daniel Paternáin Dallo, director of this project, and to every

other people that has contributed for guiding and helping me after so much work.

4

INDEX

1. Introduction and objectives .. 6

2. Starting point ... 8

2.1. Basis ... 8

2.2. Model (U-Net) ... 8

2.2.1. Basics ... 10

2.2.2. Architecture ... 14

2.3. Dataset .. 19

2.4. Hardware & Software .. 19

3. Preprocessing & Reduction techniques .. 21

3.1. Color spaces .. 21

3.1.1. RGB .. 21

3.1.2. HSV .. 22

3.1.3. Lab ... 22

3.2. Superpixels .. 23

3.3. Local Binary Pattern (LBP) ... 25

3.4. Image reduction methods ... 26

3.4.1. Sliding window (mean) .. 27

3.4.2. Bilinear interpolation .. 27

4. Experimental framework... 30

4.1. Metrics .. 30

4.1.1. Accuracy .. 30

4.1.2. Loss .. 30

4.1.3. Mean Intersection Over Union (Mean IOU) .. 31

4.1.4. Training time ... 32

4.1.5. Testing time ... 33

4.2. Number of classes ... 33

4.3. Image reduction method .. 35

5. Experiments & Analysis ... 37

5.1. Image size .. 37

5.2. RGB model ... 38

5.3. HSV model ... 39

5.4. Lab model .. 40

5.5. RGB + HSV + Lab model ... 41

5

5.6. RGB + Superpixels model .. 42

5.7. RGB + Local Binary Pattern model .. 43

5.8. Statistics .. 44

5.9. Result analysis ... 44

6. Conclusions and future lines ... 47

7. Bibliography and references ... 48

6

1. Introduction and objectives

Everybody has heard about artificial intelligence (AI), but not so many people

know about the real importance of this field. From improving daily photos taken

with a phone to cancer detection without human help, AI has strongly entered in

our daily lives and will revolutionize the world we know.

Even though there is a lot to learn and improve, AI has demonstrated that

machines can work better and faster than humans even in the most complex

tasks. Industry is investing more and more budget each year to implement AI

technologies that will improve their development. Why? Manufacturing

companies have experienced high increases in their productivity by introducing

robots or demand predictors, financial sector is implanting chatbots and fraud

detector mechanisms, automotive sector is developing driving aid in their

products or even creating self-driving vehicles…

Some of these complex tasks require, as can be assumed, complex “thinking”

processes that will enable them to solve those problems. Here is where deep

learning plays his role. Unlike machine learning algorithms, deep learning will

attempt to mimic the human brain [1]. While machine learning needs more human

intervention to learn and improve its predictions, deep learning learns by itself to

recognize the important patterns that will allow it to make its decisions.

One of the most important complex tasks is computer vision. It is easy for a

human being to see an incoming car and stop to avoid it or to see the cloudy sky

and take an umbrella. But to make these complex decisions it is firstly needed to

analyze the actual image and detect and correctly classify all the elements in it.

This is what is called semantic segmentation.

One of the most prominent applications of this field is autonomous driving.

Although driving is fun for some people, a necessary activity for others or even a

job for certain people. Anyway, self-driving vehicles will be part of our society in

a few years providing advantages like crash reduction, mobility for everyone (not

only those with license such as reduced vision people) or less traffic jams (this

will imply less contamination) [2]. This field will be the main application of this

study as it is considered to be a very prominent and important aspect in our

futures lives.

As stated before, it all starts with image segmentation. However, this simple task

for a human is not that simple for a computer. Therefore, deep learning will try to

imitate human brain and will use techniques such as deep neural networks with

the aim of reaching better and faster decisions than humans.

This will lead to another problem: having a device in charge of executing all those

operations. Currently, very powerful, expensive and scarce hardware is usually

7

needed. Therefore, it is necessary to study and develop cheaper hardware as

well as lighter models, so as to easily embed them into cars, or any other device.

One of the simplest methods to reduce model training time (very long when using

not so powerful devices) is the reduction of image resolution which allows to have

simpler and lighter models. This reduction can be achieved by applying

algorithms such as interpolation or sliding window, but these can cause accuracy

loss in the model. Therefore, image reduction will work along with more complex

algorithms that use superpixel models or even feature extractors.

With all the above, the objective of this work would be to analyze, based on deep

learning techniques involving convolutional neural network, different image

preprocessing algorithms with the aim of reducing computational cost while

maintaining accuracy. Specifically, we will deal with color spaces, superpixel

obtention, feature extraction processes such as Local Binary Pattern and image

reduction methods.

The structure of this project is as follows. In 2. Starting point we describe the

starting point of this work by explaining the model, dataset and hardware &

software. In 3. Preprocessing and reduction techniques all those techniques

previously mentioned in the last paragraph. Then, in 4. Experimental

framework, important concepts involving experimentation such as metrics will be

described. This experimentation will take place in 5. Experiments and the

document will finish with conclusions and future research lines in 6. Conclusions

and future lines.

8

2. Starting point

In this chapter we explain the starting point of the project. First, we will describe

the paper which is the basis of this project as well as the deep learning based

model (U-Net) used to apply semantic segmentation. We will also analyze the

training set as well as hardware and software used to develop the experiments.

2.1. Basis

Mainstream techniques to deal with semantic segmentation is the use of

convolutional neural networks with an encoder-decoder architecture like U-

Net.

Some benchmarks of different procedures, methods and models applied to

the same dataset used in this project (Cityscapes dataset) can be consulted

in their official page [3].

One initial approach which resembles the objective of this project is the article

“Superpixel-based Road Segmentation for Real-time Systems using CNN” [4]

as it focuses on the issue of balancing accuracy and computational cost and

its core idea is to reduce the computational complexity of the problem.

2.2. Model (U-Net)

Detection and classification of objects in real life images requires a method

capable of determining the class of each pixel also taking into account

information about surrounding pixels. Deep convolutional neural networks are

the perfect approach to solve this problem.

Their strength resides in their layering which allows them to solve complex

problems by detecting different patterns. Several architectures exist

nowadays, but not all of them are valid in this scenario.

Some of them provide a unique classification result from a whole image, such

as the LeNet-5 architecture, one of the best known ConvNet architectures,

created in 1998 and commonly used for digit recognition. Its architecture is

shown below and the main concepts of each layer, such as convolutions or

pooling, will be explained later.

9

Image 1. LeNet-5 architecture [5]

However, this architecture is not useful for this application since, as discussed

above, we need to classify each pixel of the image to obtain the final

segmented one, and not a unique class for the whole image which is the main

purpose of the architecture shown above.

In order to obtain what we need, U-Net deep convolutional network

architecture will be used. This architecture will obtain an image with the same

size as the input one where every pixel will have its own classification.

Image 2. Example of U-Net architecture [6]

As it can be seen, its name is due to its shape which is caused by the two

parts that compose it: contracting path and expansive path.

10

2.2.1. Basics

First of all, some basic operations of deep convolutional neural networks

will be explained in order to clarify all concepts.

As will be mentioned later in 2.4 Hardware & Software, Python with Keras

and TensorFlow have been used in this project. Therefore, all code shown

below uses these technologies.

Convolution [7]:

This is the most important operation in the network. It involves the

multiplication of the weights of the kernel with the input. By performing this

operation several times during training, different patterns will be learnt so

that objects can be correctly classified.

Image 3. Example of convolutional filter applied to an image [8]

Code 1. Convolution (tensorflow.keras.layers.Conv2D)

As it can be seen, Keras offers a specific method for this operation with

multiple input parameters:

filters: number of output filters of the convolution. Thus, depth of the

resulting image.

11

3: it corresponds to kernel size (3x3 pixels) of the convolution window.

Hardcoded in this case as it remains the same for the whole

experiment.

padding: in this case “same” as it will allow to have the same output

size as the input. “same” will imply padding with zeros.

inputs: input layer for the convolution. It will be height X width X 3 for

the first layer of the network if images are RGB.

There are other parameters, but they will remain with their default

values.

Normalization [9]:

Overfitting is a problem in training. One of the methods to prevent it, obtain

a better generalization and speed up training is normalizing the values.

BatchNormalization has been used in this model.

Code 2. Normalization (tensorflow.keras.layers.BatchNormalization)

Parameters:

All function parameters will remain default.

x: input from the previous layer.

Activation [10]:

Convolutions are followed by a nonlinear activation function in this model.

ReLu (Rectified Linear Unit) function is used in this model, which will

replace negative numbers of the filters with zeros.

Image 4. Distribution of ReLu function.

Therefore, only the valid part of the convolution will be used.

Code 3. Activation (tensorflow.keras.layers.Activation)

12

Parameters:

“relu” parameter in this function indicates the activation function to use.

x: input from the previous layer.

There are other parameters, but they will remain with their default

values.

Pooling [11]:

The pooling/downsampling layer is the layer in charge of the reduction of

the spatial size of the activation maps.

Different types of pooling are available, but max pooling has been chosen

for this project. This pooling will propagate the maximum activation value

from each window to the next feature map.

Code 4. Pooling (tensorflow.keras.layers.MaxPool2D)

Parameters:

(2, 2): it corresponds to the window size. This means that the

MaxPool2D function will take the biggest value of every 2x2 window for

each input channel

x: input from the previous layer.

There are other parameters, but they will remain with their default

values. It is important to mention that there is a parameter called strides

that determines how much the window moves between each pooling

step. It will default to the window pooling size so windows will not

overlap between them.

Up sampling [12]:

This layer will use a learnt kernel to map each feature vector to the

corresponding window. Same as the convolution layer, it will be followed

by a nonlinear activation function already explained.

This layer will increase the spatial size, contrary to the pooling operation.

13

Image 5. Resulting image (right) of applying upsampling (Zeros will be calculated depending on

the method chosen in the following function) [13]

Code 5. Up sampling (tensorflow.keras.layers.UpSampling2D)

Parameters:

(2, 2): upsampling factors for rows and columns so one cell will be

transformed into a 2x2 window

b1: input from the previous layer.

interpolation: interpolation method used to obtain the new values. In

this case “bilinear” interpolation which is a way to calculate values

depending on the average value of the corners.

Concatenation [14]:

This layer will make its operations after the upsampling layer. This will work

along to constitute the expansive path and the concatenation layer will

concatenate maps obtained by the upsampling layer with those of the

contracting path (explained in more detail later).

Code 6. Concatenation (tensorflow.keras.layers.Concatenate)

Parameters:

All function parameters will remain default.

[u1, x3]: input from the previous layer, list of vectors to concatenate.

14

2.2.2. Architecture

As it is mentioned before, U-Net architecture is divided in two main parts:

contracting and expansive path. This special structure allows the network

to obtain great results.

Image 6. Contracting and expansive path of the U-Net architecture

Contracting path:

As it can be seen in the previous image (rounded in orange), it is the first

part of the architecture and is also called encoder.

While we get down, we increase the “what” and reduce the “where” as

more convolutions and pooling are being applied. This means that the

spatial resolution of the feature maps is reduced by the pooling operations,

while increasing number of convolutions in deeper layers produces a big

number of feature maps.

In this project two U-Net models have been used with slight differences

between them: one with 3 steps and one with 4 steps that will be compared

afterwards.

Each contracting steps will be constituted by one convolution block

following the next structure:

15

(All operations can be consulted in 2.2.1 Basics)

1) Conv2D

2) BatchNormalization

3) Activation

4) Again operations 1, 2 and 3

5) MaxPool2D

Code 7. Convolution block

As it can be observed in the conv_block function, not every call will be the

same as some input parameters can be modified:

inputs: input from the previous layer. All operations mentioned before

will be applied to this input.

filters: number of Conv2D to apply, this will determine output’s depth.

pool: this last parameter controls whether the MaxPool2D operations is

applied or not. It will default to True and will only be False during the

expansive path as no pooling operations will be needed.

Code 8. First call of the convolution block of the 4 step U-Net model.

In code 8 the number of filters used is 16, this number will vary in each

contracting step.

For the 4 step U-Net model, four calls to the conv_block function will be

made with 16, 32, 64 and 128 as filters values. By doing this, the depth of

the vector increases, provoking an augmentation of the “what” as more

filters and pooling will be applied.

16

Expansive path:

Rounded in purple in image 6, we show the second part of the architecture

and is also called decoder.

The objective of this expansive path is to create a high-resolution

segmentation map providing the desired results for the experiment.

The number of expansion steps will depend on the model steps in the

same way as the contracting path.

This expansion consists of a sequence of up-convolutions and

concatenations with the corresponding high features of the contracting

path.

(All operations can be consulted in 2.2.1 Basics)

[1] UpSampling2D

[2] Concatenate

[3] Conv2D

[4] BatchNormalization

[5] Activation

Code 9. First step of the expansive path of the 4 step U-Net model.

As it can be seen in code 9, conv_block function is called with its “pool”

parameter to False so no pooling is applied.

Some variables of this last code image should be explained:

b1: corresponds to the bridge (explained afterwards) and it is the input

for the first UpSampling2D as it is the output obtained after the

contracting path is finished.

u1: output of the UpSampling2D that will serve as input for the

Concatenate function.

x4: high feature map of the corresponding contracting step that will be

concatenated to the result of the UpSampling2D operation so better

results can be obtained. This concatenation will help the

UpSampling2D method to better represent localization.

c1: output of the Concatenate function

17

x5: output of the conv_block function without pooling that will serve as

input for the UpSampling2D function of the next expansion step.

The expansive path will end in the output layer (explained later).

Bridge:

This part of the architecture is in charge of “joining” both main parts of the

model, the contracting and expansive path.

Image 7. Zoomed image showing the bridge of the U-Net

This bridge will consist of a last convolution block without pooling and it is

the part of the U-Net where depth takes its maximum value.

Code 10. Bridge.

Following depths of the contracting path, the number of filters will be 256

for the 4 step U-Net model (last convolution block of the contracting path

had 128 filters).

Output layer:

The last step to obtain the results of the U-Net model where the high-

resolution segmentation with all predictions is located.

18

Image 8. Zoomed image showing the output layer of the U-Net

This layer’s depth will be the number of output classes that the U-Net

model is learning.

Code 11. Output layer.

As it can be observed in Code 11, the output layer is just a call to the

Conv2D function with some slight changes from the one of the conv_block:

num_classes: number of classes to predict, number of filters to apply.

1: kernel size.

padding: “same”, equal than before.

activation: “softmax” is used as the prediction activation function which

will obtain a weight for each class. With softmax, the sum of all final

probabilities will be 1.

x8: input from the previous layer, it will correspond to the output from

the conv_block of the last expansive step.

After having constructed the whole architecture, the model is ready to be

trained with different parameters that will be explained later.

Once trained, as it is told before, it will obtain pixelwise classification for

the whole image.

Image 9. Example of two training images with their corresponding masks overlapped (each

color represents a different class)

19

2.3. Dataset

Cityscapes dataset has been used for the realization of this work. This dataset

focuses on semantic understanding of urban street scenes [15].

It consists of images taken from a vehicle in 50 different cities during several

months, daytimes and good weather conditions [15], as the application of this

project concerns self-driving vehicles.

Each pixel of those 2048x1024 pixels images is classified as one of the 30

initial classes. These 30 initial classes are grouped into 8 different categories:

void, flat, construction, object, nature, sky, human and vehicle.

Image 10. Example of annotated image taken in Zurich (Overlayed colors correspond to the 30

semantic classes) [16]

The whole dataset consists of 5000 images divided into 3 segments:

 Train: 2975 images

 Val: 500 images

 Test: 1525 images

All these images are labeled so different metrics can be applied to

evaluate and compare different methods.

2.4. Hardware & Software

As previously discussed, applying different techniques in order to be able to

use more accessible is one of the main aspects of this project.

20

The same hardware will be use along the experiments to make sure all

obtained results are comparable to each other. In this case, not very powerful

hardware has been used so better time results may be obtained with more

powerful devices.

CPU: Intel Core i7-6700HQ

Total cores: 4

Total threads: 8

Max turbo frequency: 3.5 GHz

Processor base frequency: 2.6 GHz

GPU: NVIDIA GeForce GTX 950M

 Cuda cores: 640

 Memory size: 2 GB

 Memory type: DDR3

RAM: 8192MB

 Memory type: DDR3

 Memory speed: 2133 MHz

Due to previous knowledge and all facilities provided by Python, it has been

chosen as the coding language for the project. Every code file is a .py file,

from the ones used for the setup of the dataset to the ones testing the models.

Spyder IDE has been used, but any other IDE can be used as long as the

user feels comfortable with it. However, Spyder offers syntax highlighting,

code completion and easy variable exploring (very useful when you are

working with images, matrices, etc).

Keras (neural network library) and TensorFlow (open-source library for

machine learning) have been used along Python to work with deep

convolutional neural networks as they provide easy to use and comprehend

methods and implementations.

21

3. Preprocessing & Reduction techniques

In this chapter, we will show which preprocessing and reduction techniques

will be tested.

3.1. Color spaces

Not only the chosen model and its architecture is important for the results.

Some other variables will vary along the experiments in order to improve

classification. Color spaces is one of the other variables to consider. Just as

color is very important to humans in terms of sight item recognition, it will also

determine the convolutional neural network performance.

A color space is a specific organization of colors which is usually represented

with X, Y and Z axis (3D), but more axis or less could be used. However,

bigger ones will be able to hold more color combinations.

The use of one color space instead of another will be determined by the

application as different results will be obtained with different ones. Colors “out

of bounds” will not be captured accurately leading to worse results that will

depend on how the chosen color space handles these values.

Taking into account the above considerations, several color spaces will be

used in this project to compare the obtained results of using each one.

3.1.1. RGB

RGB (Red-Green-Blue) is one of the most popular color spaces. It is

commonly used by most cameras, computer monitors and printers and it

is easy to use as the color obtained is a mixture of the 3 values of the RGB

scale.

Image 11. RGB color space

22

3.1.2. HSV

HSV (Hue-Saturation-Value) or HSB (Hue-Saturation-Brightness) is

another color space used in this project. It is widely used to generate high

quality computer graphics and it has a different representation that RGB.

Image 12. HSV color space

Code 12. Image reading and HSV transformation

HSV main advantage over RGB is that it is usually more robust towards

lightning changes. This is very useful when tracking colored objects in

different light conditions.

3.1.3. Lab

The last color space used in this project is Lab, which owes its name to its

3 components: L, a and b that determine the output color. L stands for

lightness, a for red-green value and b for blue-yellow value. It is used in

spectrophotometers (devices that measure light intensity absorbed by a

compound) or in hardware and software in charge of color measuring

systems.

Image 13. HSV color space

23

Code 13. Image reading and Lab transformation

In theory, lab is more similar to the color perception of humans so it will be

compared to compare if it obtains better results.

Image 14. Original dataset image in RGB (top left), image in HSV (top right), image in Lab

(bottom left), RGB image masked with colors (bottom right)

As it can be observed, there are significant variations from one image to

another. Model performance with each one will be evaluated afterwards.

3.2. Superpixels

Superpixels are the next variable that will be used to achieve the goal of this

project.

Superpixels consists of a structure, not necessarily matrix, where regions with

same color, texture or more characteristics are grouped into a same unity

called superpíxel.

24

Image 15. Example of superpixel obtention in two different images [17]

Many superpixel obtention algorithms exist nowadays, but SLIC (Simple

Linear Iterative Clustering), which is K-Means based, has been used in this

project. SLIC labels each pixel into a superpixel based on their color similarity

and proximity.

After having initialized each centroid formulas 1 and 2 are applied to classify

each pixel and update each centroid.

Formula 1. Calculation of distance between pixel(p) and centroid(ci). dc corresponds to color

distance and ds to spatial distance

25

Formula 2. Centroid (ci) update calculation by obtaining mean of every pixel (Ci) of that centroid

The aim of this method is to obtain more general shapes and simplify the

image by deleting small changes allowing the U-Net model to generalize

better.

However, superpixel algorithms tend to be slow and they may slow down the

experiment. Anyway, performance of the U-Net model will be evaluated with

this superpixel application.

3.3. Local Binary Pattern (LBP)

Different objects of the scene may have different textures. Textures on the

road will differ a lot from those textures on a tree or a person as road tend to

be flat while tree leaves have very different shapes.

Local Binary Pattern works with pixel windows to evaluate how different

textures on that part of the image are.

In each window the neighborhood of the center pixel is evaluated. Pixels with

a higher value than the center one will generate a 1 otherwise 0.

By doing this a binary number is generated. If the transformation of this binary

number to decimal corresponds to one of the 58 uniform binary patterns, then

that part of the image will be uniform.

Image 16. Transformation of a windows to a binary number with Local Binary Pattern

26

As it can be observed in image 16, the decimal number obtained will be

1*128+1*64+1*32+1*16+0*8+0*4+0*2+1=241 that corresponds to one of the

58 uniform binary patterns. This was predictable as the top 6 pixels have much

higher values than the 3 pixels below.

Image 17. Transformation of a windows to a binary number with Local Binary Pattern

In image 17 we obtain 1*128+1*64+1*32+0*16+1*8+0*4+0*2+1=233 that

does not correspond to a uniform binary pattern. This also makes sense as

the top left and the bottom right parts of the window have high values and are

“separated” by 3 lower values: 33, 18 and 81.

For this experiment LBP is calculated for a fixed window size and it is

concatenated as a fourth layer for RGB images providing more information

than just color to the U-Net. This layer is normalized as RGB values are also

normalized.

In this case, a specific parameter is used for the local_binary_pattern()

function that sets the evaluation of LBP to default. This means that it is not

rotation invariant which implies that the same image rotated will provide

different results. This make sense as images are supposed to be always

correctly oriented with floor below and sky on top.

3.4. Image reduction methods

As discussed before in 2.3 Dataset, images size is 2048x1024, but some size

reductions may be applied to increase speed.

Many image reduction methods exist, but two have been evaluated in this

project. Each one will obtain different results and will have different image

processing speed.

27

3.4.1. Sliding window (mean)

Just the name serves as the description of the method. The reduction is

obtained with a window of a fixed size (4x4 in this case to reduce both axis

by 4).

This window will move along the image without overlapping with the

previous window. For each 4x4 matrix different operations can be made

(mean, minimum, maximum, etc), but mean value has been chosen for this

project.

Image 18. Schematic image of how the sliding window algorithm works

3.4.2. Bilinear interpolation

This second method computes the weighted average of the nearest pixels.

28

Image 19. Transformation of a windows to a binary number with Local Binary Pattern

In image 19, Z is the value to be calculated by breaking down the

interpolation into linear resizing operations. To obtain it the next steps will

be applied:

1) X = linear interpolation between A and B

2) Y = linear interpolation between C and D

3) Z = linear interpolation between X and Y

To apply this reduction, resize() function from OpenCV library.

Image 20. Original image from the dataset

29

Image 21. Zoomed image reduced with mean sliding window (left) and with bilinear interpolation

(right)

It is difficult to observe, but image reduced with mean sliding window seems

to be blurrier than the one reduced with bilinear interpolation. Anyway, these

two methods will be compared.

30

4. Experimental framework

This chapter will cover all previous concepts involving experimentation. After this

explanation, experiments will take place so that a final analysis allows to decide

the best model and preprocessing to apply.

4.1. Metrics

After having described the model to be used and the different variables that

will change along the experiment, an evaluation method need to be defined.

As discussed before, finding a balance between accurate results and speed

is necessary for this project in order to be able to embed these systems in

different devices without the need of powerful and expensive hardware.

4.1.1. Accuracy

Accuracy is the most common metric and is used in almost all evaluations.

It calculates how often pixel predictions equal their corresponding labels

by counting how many times they are equal and dividing that result by the

total of pixels.

4.1.2. Loss

Second metric that will be useful is loss. The loss function is used to

compute the quantity that the model should seek to minimize during

training [18].

In this case, cross entropy has been used, which is the most commonly

used function for classification models. To be more specific, categorical

cross entropy has been used as this is a multiclass classification model

where the output label is a one-hot vector obtained from the argmax of the

probabilities vector.

Formula 3. Categorical cross entropy

31

As it can be observed in formula 3, loss value will depend on the true label

of a prediction and the prediction for that class. In the following lines two

examples will show how this work:

Example 1:

 True label: [1 0 0 0] (one-hot vector)

 Model predictions: [0.1 0.5 0.2 0.3]

Loss = -1*log(0.1) – 0*log(0.5) – 0*log(0.2) – 0*log(0.3) = 2.303

Example 2:

True label: [1 0 0 0] (same vector as in example 1)

 Model predictions: [0.8 0.1 0.05 0.05]

Loss = -1*log(0.8) – 0*log(0.1) – 0*log(0.05) – 0*log(0.05) = 0.223

As a conclusion from examples 1 and 2 we can see that a higher loss value

is obtained if the prediction for the true class is lower. Therefore, a higher

correction will take place whether a higher loss is obtained, otherwise a

smaller correction will be applied.

4.1.3. Mean Intersection Over Union (Mean IOU)

Mean Intersection Over Union is one of the most significant evaluation

methods of an image segmentation process. It first computes the IOU for

each semantic class and then computes the average over classes [19].

IOU is defined as: true_positive / (true_positive + false_positive +

false_negative)

32

Image 22. Schema explaining IOU formula

An IOU score > 0.5 is normally considered as a “good” prediction.

4.1.4. Training time

Training time should also be considered as it will probably reflect how

heavy and slow some processes can be, but a high training time does not

always imply slow predictions.

It will highly depend on what is applied to each image (superpixels, LBP,

etc) and which architecture is being used.

Some model parameters will also be set:

Epochs: number of times the model goes through the training set. It will

be set to 20, but will stop if validation loss does not improve in several

epochs in a row (patience parameter).

Code 14. tensorflow.keras method that allows learning rate modification between epochs

33

Learning rate: it controls how fast the model adapts to the problem. It

will start in 1x10-4 and will be reduced (factor parameter) if validation

loss does not improve between several consecutive epochs (patience

parameter).

Code 15. tensorflow.keras method that allows learning rate modification between epochs

Batch size: it defines the number of samples that will be propagated

through the network. It will be set to 4 as higher values such as 8 are

not supported with this hardware (an out of memory error is produced

with 8 as batch size).

Image 23. Error message when trying to train with 8 as batch size

4.1.5. Testing time

Testing time is the last metric that will serve as evaluation. It is one of the

most important as autonomous vehicles need very fast image processing

methods to make better decisions.

It will be measured after the model is trained.

Even though some slower methods may be more accurate than faster

ones, a balance between speed and accuracy is needed so the faster

method could be chosen before the most accurate one.

In this case, testing time will be the total time to read and predict 150

images (50 from train, 50 from val and 50 from test).

4.2. Number of classes

As it has been already mentioned in 2.3 Dataset, segmented images of the

original dataset are originally divided into 30 classes grouped in 8 categories.

However, having 8 principal classes has been considered unreasonable for

this project.

34

The main application of the model is to segment images taken from a vehicle

so some classes will be more important than others. Therefore, some different

combinations have been evaluated:

8 classes:

Void, flat, construction, object, nature, sky, human and vehicle.

This is the original division of classes, but some of them are not strictly

necessary for the segmentation and joining them into the same group will

provide clearer segmentations and the model will learn better.

3 classes:

Flat, vehicle, rest of classes.

This is the simplest consideration of groups, but it is too limited as it does not

predict one very important class: human.

4 classes:

Flat, vehicle, human, rest of classes.

This is a very balanced split as considers flat (road, parking, etc), vehicles

(car, motorbike, bicycle, etc), human (person, rider) as separate classes from

the rest.

This allow the vehicle to identify the path to follow and what to avoid/dodge,

even if these decisions are not covered in this project.

5 classes:

Flat, vehicle, human, object, rest of classes.

This last division is also a very valid one as it adds one more class: object

(traffic light, traffic sign, etc). However, even though it is an important group

to add, it will not be used as traffic signs information will only be used for

decision making systems.

Taking into account all these considerations, the final number of classes for

this experiment will be 4.

35

Image 24. Original image in RGB (left) and its corresponding 4 class mask (right)

As it can be seen in image 24, the mask has only 4 different colors, each of

them associated to a specific class: flat (dark grey), vehicle (light grey), human

(white) and rest of classes (black).

To obtain these new masks, different from the original ones, some simple

python code has been executed with just a different mask.

Code 16. 8 class mask

Code 17. 4 class mask

As it is shown in codes 16 and 17, some classes are merged into the same

one reducing the total number of groups.

4.3. Image reduction method

Reduction could be applied if needed or if speed wants to be increased. Both

methods mentioned in 3.4 Image reduction methods will be tested to decide

which is better.

To make this comparison 10 images from the train dataset and their

corresponding masks have been read. All 10 images have been resized with

sliding window (mean) and bilinear interpolation to compare resizing times.

36

Graph 1. Reading + resizing time for both image reduction methods (time in seconds)

Time to read and resize 10 images and masks:

Sliding window (mean): ~139.643 s (13.964 s/image&mask)

Bilinear interpolation: ~12.788 s (1.279 s/image&mask)

As it can be observed, sliding window (mean) method is much slower than

bilinear interpolation (more than 10 times slower).

Considering that this project aims to obtain a balance between precision and

time, sliding window (mean) is too slow. Therefore, bilinear interpolation will

be used as image reduction method in case any reduction is necessary (this

will be discussed in 5.1 Image size).

37

5. Experiments & Analysis

After having made all previous considerations, experiments will be made to

finally obtain the trained model.

All experiments below will be made with both U-Net architectures (3 and 4

steps).

5.1. Image size

First training experiment will be image size as it might be fixed along the

experiments.

2048x1024:

This is the original size. At first, model training with this image size was tried,

but hardware used in this experiment runs outs of memory for such big

images.

Image 25. Error message when trying to train with original size images

512x256:

This is the only alternative size considered for the experiments as it is

previously mentioned in 3.4.1 Sliding window (mean) (height and width

reduced by 4 which means 2048/4 = 512 and 1024/4 = 256). It maintains

details in the image and enables model training.

It will be the resolution to use during the project as it allows reasonable times

considering the limited hardware and the method applied to obtain it will be

bilinear interpolation as previously discussed in 4.1.7 Image reduction

method.

38

5.2. RGB model

Graph 2. Accuracy, loss and mean IOU for training and validation (RGB model)

 3 steps 4 steps

Accuracy (train) 0.954 0.966

Accuracy (val) 0.939 0.945

Loss (train) 0.133 0.095

Loss (val) 0.184 0.166

Mean IOU (train) 0.716 0.745

Mean IOU (val) 0.691 0.704

Training time (s) 8890.957 8232.059

Testing time (s) 17.274 (0.115 s/image) 19.157 (0.128 s/image)

Table 1. Statistics for RGB model

39

5.3. HSV model

Graph 3. Accuracy, loss and mean IOU for training and validation (HSV model)

 3 steps 4 steps

Accuracy (train) 0.901 0.952

Accuracy (val) 0.889 0.908

Loss (train) 0.276 0.135

Loss (val) 0.302 0.278

Mean IOU (train) 0.578 0.677

Mean IOU (val) 0.563 0.616

Training time (s) 8863.644 8267.847

Testing time (s) 17.621 (0.117 s/image) 19.469 (0.130 s/image)

Table 2. Statistics for HSV model

40

5.4. Lab model

Graph 4. Accuracy, loss and mean IOU for training and validation (Lab model)

 3 steps 4 steps

Accuracy (train) 0.910 0.949

Accuracy (val) 0.890 0.913

Loss (train) 0.248 0.143

Loss (val) 0.296 0.243

Mean IOU (train) 0.631 0.695

Mean IOU (val) 0.598 0.630

Training time (s) 8832.470 8290.151

Testing time (s) 18.694 (0.125 s/image) 19.516 (0.130 s/image)

Table 3. Statistics for Lab model

41

5.5. RGB + HSV + Lab model

Graph 5. Accuracy, loss and mean IOU for training and validation (RGB + HSV + Lab model)

 3 steps 4 steps

Accuracy (train) 0.943 0.961

Accuracy (val) 0.927 0.936

Loss (train) 0.165 0.110

Loss (val) 0.208 0.186

Mean IOU (train) 0.686 0.720

Mean IOU (val) 0.664 0.674

Training time (s) 9076.352 8553.729

Testing time (s) 22.610 (0.151 s/image) 23.524 (0.157 s/image)

Table 4. Statistics for RGB + HSV + Lab model

42

5.6. RGB + Superpixels model

Graph 6. Accuracy, loss and mean IOU for training and validation (RGB + Superpixels model)

 3 steps 4 steps

Accuracy (train) 0.940 0.965

Accuracy (val) 0.921 0.936

Loss (train) 0.173 0.096

Loss (val) 0.233 0.197

Mean IOU (train) 0.679 0.735

Mean IOU (val) 0.670 0.683

Training time (s) 34962.019 35639.160

Testing time (s) 98.266 (0.655 s/image) 98.294 (0.655 s/image)

Table 5. Statistics for RGB + Superpixels model

43

5.7. RGB + Local Binary Pattern model

Graph 7. Accuracy, loss and mean IOU for training and validation (RGB + LBP model)

 3 steps 4 steps

Accuracy (train) 0.955 0.968

Accuracy (val) 0.940 0.945

Loss (train) 0.130 0.091

Loss (val) 0.170 0.160

Mean IOU (train) 0.717 0.743

Mean IOU (val) 0.692 0.697

Training time (s) 9626.007 8888.769

Testing time (s) 32.705 (0.218 s/image) 33.643 (0.224 s/image)

Table 6. Statistics for RGB + LBP model

44

5.8. Statistics

Some statistics will be calculated to help final conclusions.

 3 steps 4 steps

Accuracy (val)
Mean 0.918 0.931

Median 0.924 0.936

Loss (val)
Mean 0.232 0.205

Median 0.221 0.192

Mean IOU (val)
Mean 0.646 0.667

Median 0.667 0.679

Training time
Mean 13375.242 12978.619

Median 8983.655 8421.940

Testing time
Mean

34.528 (0.230
s/image)

35.601 (0.237
s/image)

Median
20.652 (0.138

s/image)
21.52 (0.143

s/image)

Table 7. Mean and median for validation metrics and time

 3 steps 4 steps

Accuracy (val)
Min 0.889 0.908

Max 0.940 0.945

Loss (val)
Min 0.170 0.160

Max 0.302 0.278

Mean IOU (val)
Min 0.563 0.616

Max 0.692 0.704

Training time
Min 8832.470 8232.059

Max 34962.019 35639.160

Testing time
Min

17.724 (0.118
s/image)

19.157 (0.128
s/image)

Max
98.266 (0.655

s/image)
98.294 (0.655

s/image)

Table 8. Min and max for validation metrics and time

5.9. Result analysis

Now that all models have been trained and statistics have been calculated is

time to deliberate which is the best model.

First, observing both tables we can see that there is at least one experiment

much slower than the rest. This can be checked by looking table 7 (training

45

and testing time median value is much lower than the mean) and table 8

(training and testing time both have a very high difference between their

corresponding maximum and minimum value)

After this consideration, looking at 5. Experiments, we can see that this

slower experiment is the one concerning the use of superpixels (comparing

its testing time to the RGB model we can see that it is more than 5 times

slower). This makes sense as superpixel obtention is a slow process.

Therefore, 5.6 RGB + Superpixels model is discarded.

Now there are 5 models remaining. As previously discussed, mean IOU is

more representative than accuracy in image segmentation to evaluate how

well is the model performing.

If we observe table 8, there is a high difference between min and max for

mean IOU so there are some models much better than others. After checking

again results obtained in 5. Experiments, HSV and Lab models will be

discarded due to their lower IOU compared to the rest.

After this last decision, models left are: RGB, RGB + HSV + Lab and RGB +

LBP.

Once again, testing time will discard a model. RGB and RGB + HSV + Lab

models testing times for 150 images are between 17.274 s (RGB with 3 U-

Net steps) and 23.524 s (RGB + HSV + Lab with 4 steps) while RGB + LBP

testings times are 32.705 s (3 steps) and 33.643 s (4 steps). So RGB + LBP

model is discarded.

The final factor that will decide which model is better for this project will be

mean IOU. While mean IOU for the RGB + HSV + Lab model is 0.664 (3 step

model) or 0.674 (4 steps model), the RGB model reaches a mean IOU of

0.691 (3 steps model) and 0.704 (4 steps model). In addition, testing time is

also better for the RGB model.

There is still one more decision to be made and it is to choose if a 3 steps U-

Net architecture is better or worse than 4 steps one. Next table will show the

final comparisons.

 3 steps 4 steps

Mean IOU (val) 0.691 0.704

Testing time (s) 17.724 (0.115 s/image) 19.157 (0.128 s/image)

Table 9. Mean IOU and testing time of RGB model

As it can be observed in table 9, mean IOU of the 4 steps U-Net RGB model

is better than the 3 steps one (1.88% better). However, single image testing

time of the 4 steps model is worse than the 3 step one (11.30% slower).

46

Taking into account these 2 last comparisons, the 3 steps U-Net model is

considered to be better as it offers results just 1.88% worse in terms of IOU

but is 11.30% faster which is very important for self-driving vehicles (main

application of this study where fast decisions are necessary).

Table 10. Metrics of the chosen model: RGB 3 steps U-Net

Image 26. Examples of images (left) and the predicted mask obtained by the 3 steps RGB model

 3 steps

Accuracy (train) 0.954

Accuracy (val) 0.939

Loss (train) 0.133

Loss (val) 0.184

Mean IOU (train) 0.716

Mean IOU (val) 0.691

Training time (s) 8890.957

Testing time (s) 17.274 (0.115 s/image)

47

6. Conclusions and future lines

In this project we have developed an in-depth study on different processes that

allow to reduce the computational cost on deep convolutional neural network, U-

Net in this case.

According to the results, not always more complex methods obtain the best

outcome for every application. Even though they can obtain more accurate

predictions, in some cases, like self-driving vehicles where speed is key, simpler

and faster methods are better.

Taking into account this consideration, we have chosen bilinear interpolation as

image reduction method as it is much faster than sliding window. We have also

seen that 3 steps U-Net architectures are faster than 4 steps, but they obtain less

accurate results. Anyway, speed gain is much more considerable than IOU loss

(11.3% speed gain vs 1.88% mean IOU loss in RGB 3 steps U-Net).

In the future, we expect to continue analyzing more preprocessing methods that

allow to maintain or increase speed without losing or even improving accuracy

(mean IOU). Some of the new methods to apply could be color correction

processes such as gamma correction or other image reduction techniques.

Another aspect to consider would be postprocessing. As it can be observed in

the last image, some pixel predictions are far to be correct. This could be fixed

by applying postprocessing methods always keeping in mind that speed is key.

One last consideration would be using better hardware. This will allow more

testing and more comparisons, but remembering the importance of accessible

hardware.

48

7. Bibliography and references

[1] IBM, “Deep Learning”, 2020

https://www.ibm.com/cloud/learn/deep-learning

[2] Toyota, “Ventajas y desventajas de los coches autónomos”

https://www.toyota.es/world-of-toyota/articles-news-events/ventajas-

desventajas-coches-autonomos

[3] Cityscapes dataset, Benchmarks Suite

https://www.cityscapes-dataset.com/benchmarks/

[4] Farnoush Zohourian, Borislav Antic, Jan Siegemund, Mirko Meuter

and Josef Pauli, “Superpixel-based Road Segmentation for Real-time

Systems using CNN”

https://www.is.uni-

due.de/fileadmin/literatur/publikation/zohourian18visapp.pdf

[5] Yann LeCun, Léon Bottou, Yoshua Bengio and Patrick Haffner,

“Gradient-Based Learning Applied to Document Recognition”, 1998, page

7

http://yann.lecun.com/exdb/publis/pdf/lecun-01a.pdf

[6] Olaf Ronneberger, Philipp Fischer and Thomas Brox, “U-Net:

Convolutional Networks for Biomedical Image Segmentation”, 2015, page

2

https://arxiv.org/pdf/1505.04597.pdf

[7] Tensorflow, Conv2D

https://www.tensorflow.org/api_docs/python/tf/keras/layers/Conv2D

[8] Antónia Vojteková, “Neural network noise reduction of astronomical

images”, 2019/2020, page 14

https://is.muni.cz/th/urvgk/Diploma_thesis__37_.pdf

[9] Tensorflow, BatchNormalization

https://www.tensorflow.org/api_docs/python/tf/keras/layers/BatchNormalizati

on

[10] Tensorflow, Activation

https://www.tensorflow.org/api_docs/python/tf/keras/layers/Activation

[11] Tensorflow, MaxPool2D

https://www.ibm.com/cloud/learn/deep-learning
https://www.toyota.es/world-of-toyota/articles-news-events/ventajas-desventajas-coches-autonomos
https://www.toyota.es/world-of-toyota/articles-news-events/ventajas-desventajas-coches-autonomos
https://www.cityscapes-dataset.com/benchmarks/
https://www.is.uni-due.de/fileadmin/literatur/publikation/zohourian18visapp.pdf
https://www.is.uni-due.de/fileadmin/literatur/publikation/zohourian18visapp.pdf
http://yann.lecun.com/exdb/publis/pdf/lecun-01a.pdf
http://yann.lecun.com/exdb/publis/pdf/lecun-01a.pdf
https://www.tensorflow.org/api_docs/python/tf/keras/layers/Conv2D
https://is.muni.cz/th/urvgk/Diploma_thesis__37_.pdf
https://www.tensorflow.org/api_docs/python/tf/keras/layers/BatchNormalization
https://www.tensorflow.org/api_docs/python/tf/keras/layers/BatchNormalization
https://www.tensorflow.org/api_docs/python/tf/keras/layers/Activation

49

https://www.tensorflow.org/api_docs/python/tf/keras/layers/MaxPool2D

[12] Tensorflow, UpSampling2D

https://www.tensorflow.org/api_docs/python/tf/keras/layers/UpSampling2D

[13] Technical Fridays, “Autoencoder: Downsampling and Upsampling”,

2019

https://kharshit.github.io/blog/2019/02/15/autoencoder-downsampling-and-

upsampling

[14] Tensorflow, Concatenate

https://www.tensorflow.org/api_docs/python/tf/keras/layers/Concatenate

[15] Paperswithcode, Cityscapes

https://paperswithcode.com/dataset/cityscapes

[16] Cityscapes dataset, Examples Zurich

https://www.cityscapes-dataset.com/examples/

[17] Radhakrishna Achanta, Appu Shaji, Kevin Smith, Aurélien Lucchi,

Pascal Fua and Sabine Süssstrunk, “SLIC Superpixels Compared to

State-of-the-art Superpixel Methods”, 2011, page 2

https://www.researchgate.net/figure/Images-segmented-using-SLIC-into-

superpixels-of-size-64-256-and-1-024-pixels_fig1_225069465

[18] Ajitesh Kumar, “Keras – Categorical Cross Entropy Loss Function”,

2020

https://vitalflux.com/keras-categorical-cross-entropy-loss-function/

[19] Keras, Image segmentation metrics (MeanIoU class)

https://keras.io/api/metrics/segmentation_metrics/#:~:text=Mean%20Intersec

tion%2DOver%2DUnion%20is,true_positive%20%2B%20false_positive%20

%2B%20false_negative

https://www.tensorflow.org/api_docs/python/tf/keras/layers/MaxPool2D
https://www.tensorflow.org/api_docs/python/tf/keras/layers/UpSampling2D
https://kharshit.github.io/blog/2019/02/15/autoencoder-downsampling-and-upsampling
https://kharshit.github.io/blog/2019/02/15/autoencoder-downsampling-and-upsampling
https://www.tensorflow.org/api_docs/python/tf/keras/layers/Concatenate
https://paperswithcode.com/dataset/cityscapes
https://www.cityscapes-dataset.com/examples/
https://www.researchgate.net/figure/Images-segmented-using-SLIC-into-superpixels-of-size-64-256-and-1-024-pixels_fig1_225069465
https://www.researchgate.net/figure/Images-segmented-using-SLIC-into-superpixels-of-size-64-256-and-1-024-pixels_fig1_225069465
https://vitalflux.com/keras-categorical-cross-entropy-loss-function/
https://keras.io/api/metrics/segmentation_metrics/#:~:text=Mean%20Intersection%2DOver%2DUnion%20is,true_positive%20%2B%20false_positive%20%2B%20false_negative
https://keras.io/api/metrics/segmentation_metrics/#:~:text=Mean%20Intersection%2DOver%2DUnion%20is,true_positive%20%2B%20false_positive%20%2B%20false_negative
https://keras.io/api/metrics/segmentation_metrics/#:~:text=Mean%20Intersection%2DOver%2DUnion%20is,true_positive%20%2B%20false_positive%20%2B%20false_negative

