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2 

Abstract 23 

Removing artifacts from nearby motor units is one of the main objectives when 24 

processing scanning-EMG recordings. Methods such as median filtering or masked least-25 

squares smoothing (MLSS) can be used to eliminate artifacts in recordings with just one 26 

discharge of the motor unit potential (MUP) at each location. However, more effective artifact 27 

removal can be achieved if several discharges per position are recorded. In this case, 28 

processing usually involves averaging the discharges available at each position and then 29 

applying a median filter in the spatial dimension. The main drawback of this approach is that 30 

the median filter tends to distort the signal waveform. In this paper, we present a new 31 

algorithm that operates on multiple discharges simultaneously and in the spatial dimension. 32 

We refer to this algorithm as the multi masked least-squares smoothing (MMLSS) algorithm: 33 

an extension of the MLSS algorithm for the case of multiple discharges. The algorithm is tested 34 

using simulated scanning-EMG signals in different recording conditions, i.e., at different levels 35 

of muscle contraction and for different numbers of discharges per position. Results 36 

demonstrate that the algorithm eliminates artifacts more effectively than any previously 37 

available method and does so without distorting the waveform of the signal. 38 

Keywords: Electromyography ・ Scanning-EMG ・ Signal processing ・ Motor unit 39 

1-Introduction40 

The scanning-EMG technique consists in recording the electrical activity of the motor unit 41 

(MU) at multiple locations throughout the motor unit territory [31]. A modified 42 

implementation of this technique makes it possible, in a single scan, to simultaneously record 43 

the electrical activity of not only one, but several MUs [38, 18, 28]. This has enabled study of 44 

the overlapping of MU territories within the muscle [38, 18]. The scanning-EMG technique is 45 

also useful for investigating the organization of muscle fibres within the MU territory [7, 12, 46 

24, 31, 34] and for studying neuromuscular pathologies [7, 10, 11, 12, 14, 15, 35, 2]. 47 

Analysis of a scanning-EMG signal usually consists on extracting several parameters from 48 

the signal, such as, the length of the MU territory [12], or some parameters concerning 49 

fractions (high amplitude signal regions  separated in time or space by low amplitude signal 50 

regions (<50 µV) [35]) and silent zones (signal regions with very low amplitude), being the most 51 

relevant ones the number and length of fractions [35], the number and length of polyphasic 52 

fractions [35], the temporal delay between fractions [24], and the number and length of silent 53 
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zones [35]. An alternative parametrization to analyse the scanning-EMG signal is the motor 54 

unit profile [4]. 55 

The scanning-EMG signal comprises a collection of motor unit potentials (MUPs) from a 56 

certain MU recorded, using a needle electrode, in different positions at different depths within 57 

the muscle. The recording can be configured to obtain either one or several discharges of the 58 

MUP at each position of the needle. When multiple discharges are recorded per position, the 59 

scanning-EMG signal has three dimensions (Fig. 1): the temporal dimension, since each MUP 60 

discharge is a signal varying with time; the spatial dimension, i.e., the different recording 61 

positions; and the discharge dimension.  62 

A raw scanning-EMG signal will usually be contaminated with different types of noise, the 63 

most troublesome of which is interference deriving from the activation of nearby MUs during 64 

the recording of the MUP [12, 13, 27]. This phenomenon results in a large number of artifacts - 65 

electrical activity that is not synchronized with the firing of the MU being tracked - 66 

superimposed on the recorded MUP [27] (Figs. 1 and 2 (a)).  67 

This kind of noise needs to be eliminated before the signal analysis, and various 68 

techniques have been used for this purpose. All of these techniques are based on the 69 

observation that artifacts, because they are not synchronized with the firing of the MU under 70 

study, are not repeated regularly in time throughout the series of recorded MUP discharges. 71 

This means that, both in the spatial and in the discharge dimension, artifacts are effectively 72 

impulsive noise, and it is this fact that is exploited by the processing techniques.  73 

When only a single discharge of the MUP is recorded at each position, the strategy used 74 

to eliminate artifacts is to filter in the spatial dimension (Fig. 2 (b)). Traditionally, the median 75 

filter (usually of 3, 5 or 7 points) [12, 13, 27] has been used for this purpose. However, this 76 

filter noticeably distorts the waveform of the scanning signal. Phenomena such as peak 77 

clipping [12, 13, 27] or stepping of the amplitude profile in the spatial dimension [5] have been 78 

reported when the median filter is used. A useful alternative to median filtering is the masked 79 

least-squares smoothing (MLSS) algorithm [5], which eliminates artifacts but preserves the 80 

signal waveform noticeably better than the median filter. 81 

When multiple MUP discharges per position are recorded, artifacts can be removed by 82 

averaging (using the mean or median) the different discharges existing at each position [33]. 83 

This strategy is well-known in quantitative electromyography (EMG), where it is used to extract 84 



 
4 

 

representative MUP waveforms, and several averaging algorithms, such as, [3, 32, 1, 16, 23, 85 

36, 22, 20, 19, 21] have been developed. 86 

With multi-discharge scanning-EMG recordings, artifact elimination is more effective if 87 

the averaging is applied not only for the various discharges at each position, but also in the 88 

spatial dimension. In [38], the discharges at each recording position are averaged, and then a 89 

spatial median filter is applied. However, this approach has two main drawbacks: the first one 90 

is that it is based on the median filter, and therefore tends to result in peak clipping and 91 

stepping of the amplitude profile; and the second one is that it performs the two processing 92 

stages sequentially, which is less effective than operating simultaneously in both dimensions. 93 

The aim of the present work is to present a new algorithm to remove the artifacts in 94 

multiple discharge scanning-EMG recordings. The algorithm operates simultaneously on the 95 

discharges recorded at each position and in the spatial dimension. We will refer to the process 96 

used by the algorithm, which is a development of MLSS, as multi masked least-squares 97 

smoothing (MMLSS). In this paper, the MMLSS algorithm is presented and described, and its 98 

ability to remove artifact noise in simulated scanning-EMG recordings is analysed and 99 

compared with that of previously available methods. 100 

2-Materials and methods 101 

2.1-Algorithm description 102 

We assume that several MUP discharges are recorded at each spatial position (Fig. 3 (a)). 103 

Before applying the algorithm itself, each discharge can be processed with a temporal band-104 

pass filter so as to eliminate baseline and instrumentation noise [27]. The MMLSS algorithm 105 

has three main steps: artifact detection, discharge averaging, and least-squares smoothing 106 

(Fig. 4).  107 

2.1.1-Artifact detection 108 

The first step of the algorithm is to detect, for each of the recorded discharges, which 109 

samples of recorded data are contaminated with artifacts (Fig. 4). To this end, artifact noise is 110 

estimated by computing the difference between the sample values of the input scanning signal 111 

and the sample values of a calculated median-filtered signal. Then, contaminated, i.e. invalid, 112 

samples are determined by thresholding the estimated artifact noise.  113 
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Let  𝑿 = {𝑥𝑛,𝑘
𝑗

} be the scanning-EMG signal at the input of the algorithm, where 1 ≤ 𝑛 ≤114 

𝑁 and 1 ≤ 𝑘 ≤ 𝐾 are the temporal and spatial location of the sample respectively, and 1 ≤115 

𝑗 ≤ 𝐽(𝑘) the discharge to which the sample belongs, where 𝑁 and 𝐾 are the number of 116 

temporal and spatial samples of the scanning signal respectively, and 𝐽(𝑘) is the number of 117 

discharges recorded in the position 𝑘.  118 

Computing the median-filtered signal 𝑮 = {𝑔𝑛,𝑘} consists on applying a median filter, 119 

then mean subtraction of each trace, and finally a second median filter. The aim of double 120 

median filtering is to improve artifact removal; the mean subtraction step helps to eliminate 121 

the bias of any remaining artifact noise.  122 

To obtain the filtered value at each space-time position (𝑛, 𝑘), the first filter computes 123 

the median of all sample values contained within a window of 𝐿 spatial positions centered at 124 

(𝑛, 𝑘) (Fig. 3 (a-b)). Notice that several sample values, corresponding to the different 125 

discharges, may exist at each spatial position of the window. In this way this first median filter 126 

is operating simultaneously among the spatial and discharge dimensions, namely 127 

𝑔𝑛,𝑘 = median{𝑥𝑛,𝑘+𝑙
𝑗

 | 1 ≤ 𝑗 ≤ 𝐽(𝑘), −(𝐿 − 1)/2 ≤ 𝑙 ≤ (𝐿 − 1)/2} ( 1 ) 

 128 

where the size of signal 𝑮 is 𝑁 × 𝐾, as the different discharges existing at each specific space-129 

time position have been combined into a single value. Once the first median filter is applied, 130 

the mean of each trace at each spatial position is subtracted, and then, a second 𝐿-point 131 

median filter is applied along the spatial dimension    132 

𝑔𝑛,𝑘 = median{𝑔𝑛,𝑘+𝑙  |  − (𝐿 − 1)/2 ≤ 𝑙 ≤ (𝐿 − 1)/2} ( 2 ) 

 133 

The validity mask, 𝑽 = {𝑣𝑛,𝑘
𝑗

}, is obtained by thresholding the difference between the 134 

input signal, 𝑿, and the median-filtered signal, 𝑮 (Fig. 3 (c)). The mask is set to 1 indicating that 135 

an artifact has not been detected and 0 otherwise (Fig. 3 (d)) 136 

𝑣𝑛,𝑘
𝑗

= {
1      |𝑥𝑛,𝑘

𝑗
− 𝑔𝑛,𝑘| < 𝑈 · (max(𝐺) − min(𝐺))

0      |𝑥𝑛,𝑘
𝑗

− 𝑔𝑛,𝑘| ≥ 𝑈 · (max(𝐺) − min(𝐺))
 ( 3 ) 

 137 

where 𝑈 is the normalized artifact detection threshold. Note that there is a one-to-one 138 

correspondence between the sample points of the input scanning signal, 𝑿, and those of the 139 

validity mask, 𝑽, (Fig. 3 (a) and (d)), thus these matrices have the same size.  140 
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2.1.2-Discharge averaging 141 

The second step of the algorithm is to combine the information of the different 142 

discharges at each space-time position. An overall validity mask, 𝑾 = {𝑤𝑛,𝑘}, indicating the 143 

number of valid samples at each position is created by summing, at each position (𝑛, 𝑘), all the 144 

validity mask values associated with the different discharges (Fig. 4) 145 

 146 

𝑤𝑛,𝑘 = ∑ 𝑣𝑛,𝑘
𝑗

𝐽(𝑘)

𝑗=1

 ( 4 ) 

 147 

When it comes to building the output signal in the least-squares smoothing step (see 148 

section 2.1.3), the overall validity mask will be used to give to each position a weight 149 

proportional to the number of valid samples detected. 150 

An averaged scanning signal, 𝑭 = {𝑓𝑛,𝑘}, is obtained from the input scanning signal by 151 

averaging the samples of the different discharges at each position (𝑛, 𝑘) weighted by the 152 

validity mask (Fig. 4) 153 

𝑓𝑛,𝑘 = {

∑ 𝑣𝑛,𝑘
𝑗

 𝑥𝑛,𝑘
𝑗𝐽(𝑘)

𝑗=1

𝑤𝑛,𝑘
     𝑤𝑛,𝑘 > 0

0      𝑤𝑛,𝑘 = 0

 ( 5 ) 

 154 

Note that this ensures that the averaged signal contains only the information of artifact-155 

free samples, because invalid samples are given a weight of 0 in the averaging procedure.  156 

2.1.3-Least squares smoothing 157 

The third and last step of the algorithm is to build the output scanning signal by applying 158 

least-squares smoothing to the averaged signal (Fig. 4). For each space-time position (𝑛, 𝑘), a 159 

polynomial of order 𝑄 is fitted to the amplitude values of the samples contained in a window 160 

of length 2𝑀 + 1, selected along the spatial dimension and centered at the position under 161 

consideration. The criteria used for the polynomial fitting is weighted linear least-squares [37], 162 

where the weights are the overall validity mask values. In this way, the 𝑁 × 𝐾 output scanning 163 

signal, 𝒀 = {𝑦𝑛,𝑘}, is composed of the values of the calculated polynomials at the centre of the 164 

windows [5]. Therefore, at each position (𝑛, 𝑘), the output value is  165 

𝑦𝑛,𝑘 = 𝛽0 ( 6 ) 
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 166 

where the coefficients of the polynomial 𝜷 = [𝛽0, ⋯ , 𝛽𝑄]
𝑇

 are calculated as [37] 167 

𝜷 = (𝑺𝑇𝑨𝑺)−1𝑺𝑇𝑨𝒇 ( 7 ) 

 168 

where 𝒇 = [𝑓𝑛,𝑘−𝑀, ⋯ , 𝑓𝑛,𝑘 , ⋯ , 𝑓𝑛,𝑘+𝑀]
𝑇

 are the samples values within the window, the weight 169 

matrix 𝑨 is a diagonal matrix built from the overall validity mask values matched to the 170 

positions within the window  171 

𝑨 = diag{𝑤𝑛,𝑘−𝑀 , ⋯ , 𝑤𝑛,𝑘 , ⋯ , 𝑤𝑛,𝑘+𝑀}, ( 8 ) 

 172 

and the matrix 𝑺 is defined as 173 

𝑺 = {𝑠𝑞,𝑚},    𝑠𝑞,𝑚 = {
𝑚𝑞 𝑞 ≠ 0
1 𝑞 = 0

 ( 9 ) 

 174 

where −𝑀 ≤ 𝑚 ≤ 𝑀 and 0 ≤ 𝑞 ≤ 𝑄. Note that the weight matrix 𝑨, the window sample 175 

values 𝒇, and the polynomial coefficients 𝜷 (and therefore also 𝛽0), are calculated for every 176 

space-time position (𝑛, 𝑘), although this dependency has not been explicitly indicated in the 177 

equations. 178 

For spatial positions near to the edges of the scanning signal, where there do not exist 𝑀 179 

traces on each side, the output is calculated as described in [5].  180 

As noted in [5], the value of the polynomial order must be restricted in some space-time 181 

positions. This restriction avoids incorrect polynomial solutions that can arise if the polynomial 182 

order is high relative to the number of samples used. The condition applied is  183 

𝑄 <
1

2
∑ 𝔲𝑚

𝑀

𝑚=−𝑀

 ( 10 ) 

 184 

where 185 

𝔲𝑚 = {
1 𝑤𝑛,𝑘 > 0

0 𝑤𝑛,𝑘 = 0
 ( 11 ) 

 186 

For space-time positions at which this condition is not satisfied, the highest polynomial 187 

order 𝑄 that does satisfy the condition is chosen.  188 
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Once the scanning signal, 𝒀, has been obtained, the mean of each trace at each spatial 189 

position is subtracted to eliminate the bias of the remaining noise. 190 

 191 

2.2-Algorithm evaluation 192 

2.2.1-Model of scanning-EMG signals 193 

Simulated scanning-EMG signals were used in order to evaluate the performance of the 194 

MMLSS algorithm. The complete model for simulating scanning-EMG signals comprises several 195 

sub-models, all of them described in detail in [5]. 196 

Model of muscle and MU. The muscle was modelled with a circular cross section of 10 197 

mm diameter composed of 120 MUs [5]. The cross-sectional areas of MUs were distributed 198 

with an exponential function [9], with the smallest MU area being 1.96 mm2, and the largest 199 

one 22.48 mm2. MU territories were modelled circular in shape in agreement with [17, 24, 25]. 200 

Territories were placed within the muscle cross section so as to minimize the variance of the 201 

overlapping of the territories [25, 30]. The muscle fibres within each MU were distributed 202 

uniformly [8], with a fibre density of 10 fibres/mm2. The conduction velocity of the muscle 203 

fibres followed a Gaussian distribution whose mean varied among the different MUs according 204 

to an exponential function [9], with the smallest MU having a mean conduction velocity of 3.25 205 

m/s, and the largest one of 6.25 m/s, and whose coefficient of variation was 0.03. The 206 

innervation zone and the innervation position of MU fibres were modelled to emulate MU 207 

fractions following [5]. In a first step, the muscle cross section was randomly divided in 90 208 

different regions (MU fractions) by means of a Voronoi tessellation. Then, for each MU, the 209 

innervation positions of its fibres belonging to a certain MU fraction were uniformly 210 

distributed within a 1 mm wide region (innervation sub-band) [5]. The position of these sub-211 

bands was uniformly distributed within the overall innervation zone, which was 10 mm wide, 212 

and was located in the middle of the muscle, lengthwise [5].  213 

Model of the recruitment and firing pattern. The recruitment threshold of the different 214 

MUs during constant isometric contraction was modelled by an exponential function [8, 9], 215 

where the percentage of full recruitment was 70% [9]. The firing rate of the MUs was modelled 216 

as described in [8]. Firing rate increased linearly with increased percentage of voluntary 217 

contraction: an increment of 7 pulses per second for each 10% increase in the maximum 218 

voluntary contraction (MVC). The minimum and maximum firing rate was 8 and 35 pulses per 219 

second, respectively [8]. The firing pattern of each MU was modelled as a renewal point 220 
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process [8]. The interval between discharges followed a Gaussian distribution whose mean was 221 

the inverse of the firing rate, and whose coefficient of variation was 0.15. 222 

Model of the scanning-EMG signal. MUPs recorded with a concentric needle were 223 

modelled following [6, 29]. The time duration of the MUPs was 30 ms, and the sampling 224 

frequency 20 kHz. The physiological (noise-free) scanning-EMG signal was simulated as the 225 

sequence of MUPs simulated at each position of the needle [5]. The needle was inserted in the 226 

middle of the muscle in the muscle cross section plane; and 30 mm away from the innervation 227 

zone in the fibre direction. The recording positions taken by the needle comprised a linear 228 

corridor extending from the deepest part of the muscle to the shallowest in steps of 0.05 mm. 229 

The recording procedure of the scanning-EMG signal was modelled in order to obtain 230 

realistic signals in which noise and artifacts deriving from other MUs are present. At each 231 

position of the needle electrode, the convolution of the MUPs of all recruited MUs by the firing 232 

trains was calculated to obtain the complete EMG signal [5], and the recorded MUP discharges 233 

associated with the different MU firing times was extracted from this signal. The entire 234 

scanning signal was obtained by repeating this procedure at each recording position. The time 235 

interval that the electrode remained at each specific recording position was set to ensure a 236 

specific number of MUP discharges. The baseline was modelled as an ARMA process [26] by 237 

filtering white Gaussian noise of zero mean and 3.5 mV standard deviation with a low-pass 238 

filter. The filter used was a 5th-order Butterworth low-pass filter with a 3-dB cut-off frequency 239 

of 20 Hz. Instrumentation noise was simulated as a zero-mean additive white Gaussian noise 240 

process, with a standard deviation of 0.035 mV. 241 

2.2.2-Experiments with simulated signals 242 

Scanning-EMG signals were simulated in different recording scenarios. We evaluated 243 

different levels of activation of the muscle: 2%, 4%, 8% and 20% of the MVC which correspond 244 

to 19, 39, 58 and 84 recruited MUs respectively. Different degrees of muscle contraction imply 245 

different levels of artifact contamination. In addition, we studied the influence of the number 246 

of discharges recorded at each position of the scanning electrode, with simulations comprising 247 

1, 3, 5 and 7 discharges. For each case, 20 independent muscle realizations were simulated. 248 

Note that the arrangement of the MUs within the muscle, and the specific parameters of each 249 

individual muscle fibre are different for each simulation run of the muscle. For each muscle 250 

realization, one scanning signal was obtained for each of the MUs whose territory was 251 

traversed by the scanning electrode (Fig. 5).  252 
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 253 

The MMLSS algorithm was tested and compared with other algorithms typically used in 254 

scanning-EMG recordings. Each signal was processed with the MMLSS algorithm using the 255 

following operating parameters: median filter order, 𝐿 = 5; artifact detection threshold, 𝑈 = 3 · 256 

10−2; polynomial order, 𝑄 = 8; and window semi-length, 𝑊 = 13. Optimal parameter values 257 

were obtained following the optimization procedure described in [5] (note that both the MLSS 258 

and the MMLSS algorithms share the 𝐿, 𝑈, 𝑄 and 𝑊 parameters). This procedure consisted in 259 

minimizing the error power of the processed signal for 100 simulation runs by means of a 260 

genetic algorithm [5]. The parameter values obtained for the MMLSS are very close to the 261 

optimal values obtained in [5] for the MLSS operating parameters. 262 

Additionally, the signals were processed with different median filter-based algorithms, all 263 

of which first averaged the different discharges at each recording position, and then applied a 264 

median filter in the spatial dimension [38]. Algorithms using discharge averaging based on the 265 

mean, will be referred to as mean-median algorithms; those using discharge averaging based 266 

on the median, will be referred to as median-median algorithms. In both cases, three different 267 

numbers of points (3, 5 and 7 points) were used for the spatial median filter. Therefore, a total 268 

of six median filter-based algorithms were used: the mean and 3 point median (m-M3), the 269 

mean and 5 point median (m-M5), the mean and 7 point median (m-M7), the median and 3 270 

point median (M-M3), the median and 5 point median (M-M5) and the median and 7 point 271 

median (M-M7). 272 

For experiments with only one discharge per position, note that the mean-median and 273 

the median-median algorithms are identical, consisting only in application of a spatial median 274 

filter, as no discharge averaging is performed in this case. Therefore, a total of three median-275 

filter based algorithms were used: the 3 point median (M3), the 5 point median (M5) and the 7 276 

point median (M7). Analogously, with only one discharge per position, the MMLSS algorithm is 277 

equivalent to the MLSS [5].   278 

For each processed signal, the error power within the physiological active region [5], 𝑃, 279 

was calculated  280 

𝑃 = 10 log10

∑ ∑ 𝑧𝑛,𝑘|𝑦𝑛,𝑘 − 𝑠𝑛,𝑘|
2𝑁

𝑛=1
𝐾
𝑘=1

∑ ∑ 𝑧𝑛,𝑘
𝑁
𝑛=1

𝐾
𝑘=1

 ( 12 ) 

 281 

where 𝑦𝑛,𝑘 is the processed scanning-EMG signal, and 𝑠𝑛,𝑘 is the physiological (ideal noise-282 

free) scanning-EMG signal. The mask 𝑧𝑛,𝑘 indicates whether a space-time sample is inside the 283 
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physiological activity region of the signal (mask set to 1) or not (mask set to 0) [5]. For each 284 

trace at each spatial position 𝑘, the physiological activity region is defined as the sample 285 

interval between the first 𝑛𝑎𝑘
 and last sample 𝑛𝑏𝑘

 for which the signal exceeds 9% of the 286 

maximum amplitude value of the entire physiological scanning signal: 287 

𝑧𝑛,𝑘 = {
1 𝑛𝑎𝑘

≤ 𝑛 ≤ 𝑛𝑏𝑘

0 otherwise
 ( 13 ) 

 288 

For each of the simulated scanning signals, the gain in performance of the MMLSS 289 

algorithm with respect to the other algorithms, 𝐺𝑎𝑙𝑔𝑜𝑟𝑖𝑡ℎ𝑚, was defined as 290 

𝐺𝑎𝑙𝑔𝑜𝑟𝑖𝑡ℎ𝑚 = 𝑃(𝑎𝑙𝑔𝑜𝑟𝑖𝑡ℎ𝑚) − 𝑃(𝑀𝑀𝐿𝑆𝑆) ( 14 ) 

 291 

3-Results 292 

3.1-Error power for the MMLSS algorithm 293 

The results of error power obtained for the MMLSS algorithm at different levels of muscle 294 

contraction and for different numbers of discharges are shown in Fig. 6. Note that, the larger 295 

the number of discharges used, the lower the error power. The use of seven discharges with 296 

respect to the use of just one reduces the median error power by approximately 9 dB. This 297 

reduction is practically the same irrespective of the level of muscle contraction. Also, with 298 

regard to muscle contraction, the higher the contraction level, the higher the error power. At 299 

2% MVC, the median error power ranged between -32.40 dBm and -23.22 dBm; at 4%, 300 

between -23.32 and -14.20 dBm; at 8%, between -17.28 and -8.87 dBm; and at 20%, between -301 

10.65 and -2.32 dBm. 302 

 303 

3.2-Comparison with other methods 304 

The gain in performance of the MMLSS algorithm relative to other algorithms was 305 

evaluated at the three different levels of muscle contraction and for different numbers of 306 

discharges. The results are shown in Fig. 7. Note that performance gain was positive in almost 307 

all comparisons and scenarios.  308 

In the multi-discharge cases, the median gain ranged between 6.52 dB (20% MVC, 3 309 

discharges) and 10.07 dB (2% MVC, 7 discharges) with respect to the m-M3 algorithm; 310 

between 4.40 dB (20% MVC, 3 discharges) and 9.35 dB (2% MVC, 7 discharges) with respect to 311 
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the m-M5; between 3.25 dB (20% MVC, 3 discharges) and 9.76 dB (2% MVC, 7 discharges) with 312 

respect to the m-M7; between 3.27 dB (2% MVC, 7 discharges) and 4.82 dB (4% MVC, 3 313 

discharges) with respect to the M-M3; between 2.67 dB (20% MVC, 3 discharges) and 4.3 dB 314 

(2% MVC, 3 discharges) with respect to the M-M5; and between 1.60 dB (20% MVC, 3 315 

discharges) and 5.48 dB (2% MVC, 3 discharges) with respect to the M-M7. 316 

In the single-discharge cases, the median gain ranged between 4.69 dB (8% MVC) and 317 

4.93 dB (20% MVC) with respect to the 3-point-median algorithm; between 2.10 dB (8% MVC) 318 

and 3.49 dB (2% MVC) with respect to the 5-point-median; and between 0.65 dB (20% MVC) 319 

and 3.93 dB (2% MVC) with respect to the 7-point-median. 320 

The median-median algorithms performed better than the mean-median algorithms: in 321 

all the recording conditions studied, the MMLSS gain values were lower when calculated 322 

against the median-median algorithms than when calculated against the mean-median 323 

counterparts (Fig. 7)).  324 

 325 

3.3-Case of use of the MMLSS algorithm 326 

Figure 8 shows an example of a simulated scanning-EMG signal (five discharges at 4% 327 

MVC) processed by different algorithms. The signal processed with the MMLSS algorithm has a 328 

smoothed amplitude profile in the spatial dimension (Fig. 8 (c)), with a similar shape to that of 329 

the noise-free ideal signal (Fig. 8 (d)). The signal processed with the M-M5 algorithm has a 330 

distorted amplitude profile with a stepped waveform (Fig. 8 (b)). Accordingly, the error power 331 

of this signal relative to the ideal signal was higher than that of the MMLSS algorithm (-18.68 332 

dBm for the M5, and -22.04 dBm for the MMLSS). The signal processed with the m-M5 333 

algorithm also has a stepped amplitude profile in the spatial dimension, and artifact noise has 334 

not been removed completely (Fig. 8 (a)). The error power was -14.52 dB in this case.  335 

 336 

4-Discussion 337 

In the processing of scanning-EMG signals, in order that subsequent signal analysis can be 338 

performed correctly and accurately, it is essential to remove artifact superimpositions 339 

produced by the activation of nearby MUs [12, 13, 27]. The use of a processing algorithm that 340 

can handle multi-discharge as opposed to single-discharge recordings makes elimination of this 341 

kind of noise noticeably more workable. Here, we have presented and evaluated the MMLSS 342 
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algorithm, which is a development on the MLSS algorithm [5] and which has been designed to 343 

be able to process multi-discharge scanning-EMG recordings.  344 

Test results presented in Section 3.2 indicate that the MMLSS algorithm removes artifact 345 

noise while preserving the physiological waveform of the scanning signal in a more effective 346 

way than any other previously used median filter-based method. The gain in performance 347 

achieved with the MMLSS is positive relative to all other algorithms tested, at all levels of 348 

muscle contraction studied and with all the numbers of discharges evaluated (Fig. 7). For 349 

single-discharge recordings, a similar conclusion concerning the advantages of the MLSS 350 

algorithm over the median algorithm has been previously reported in [5]. 351 

The effectiveness of the MMLSS algorithm in correctly removing artifact noise can be 352 

understood in a deeper way by looking at a specific case of the algorithm in use (see Section 353 

3.3). When the algorithm is used to process multi-discharge scanning signals (Fig. 8 (c)), not 354 

only is the processed signal clear of artifacts but also the amplitude profile is smooth in shape; 355 

and furthermore, the processed signal closely resembles that of the ideal noise-free signal (𝑃 = 356 

-22.04 dBm). These observations further evidence that the MMLSS barely distorts the 357 

waveform of the scanning signal. Low distortion has been previously reported for the MLSS 358 

algorithm when processing single-discharge recordings [5]. The MMLSS algorithm extends this 359 

excellent behavior to multi-discharge recordings, markedly reducing error powers for this 360 

essential processing (Fig. 6).  361 

When used in scanning-EMG signal processing, the median filter was found to distort the 362 

waveform of the signal. For this reason, although this filter is suitable for artifact detection, it 363 

is not the best option for signal restoration. The median filter tends to clip the peaks of the 364 

scanning signal if they are sharp [12, 13, 27, 5]. In addition, instead of the smooth profile of a 365 

physiological signal, signals processed with the median filter present a stepped amplitude 366 

profile in the spatial dimension [5]. In the present work, waveform distortion was observed 367 

when median filter-based methods were used to process multi-discharge scanning-EMG 368 

signals. Stepping in the spatial dimension was evident in signals processed with mean-median 369 

and median-median algorithms (Fig. 8 (a) and (b)). As a consequence of the distortion 370 

produced by the median filter, median filter-based algorithms have a higher error power than 371 

the MMLSS algorithm (Fig. 7).  372 

The reason why spatial median filtering has been widely used to eliminate artifacts in 373 

scanning-EMG signals is because this type of averaging is very robust to outliers. Keeping this 374 

in mind, another option that could be considered for artifact removal is the use of a trimmed 375 
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mean to average in the discharge and in the spatial dimension. Note that this type of 376 

averaging, like the median, is also robust against outliers. In fact, trimmed mean has already 377 

been used in quantitative EMG as a method to extract representative MUP waveforms from 378 

MUP discharges [19, 21]. However, although the treatment of the outliers carried out by the 379 

trimmed mean and the median is effective, it can also be improved. These two algorithms are 380 

based on sorting the amplitude samples and then discarding a certain percentage of the data 381 

at both ends of the sorted set (in the case of the median, all the data except the central value). 382 

This is a blind criterion in the sense that it does not take into account what is the difference in 383 

amplitude between the sample values and the central tendency. On the other hand, the 384 

MMLSS algorithm first estimates the central tendency by obtaining a provisional processed 385 

signal (see section 2.1.1), and then detects outliers based on an amplitude difference criterion. 386 

Subsequently, the MMLSS algorithm reconstructs the noise-free scanning-EMG signal 387 

discarding the samples detected as outliers. This effective outlier detection is one of the 388 

reasons why the MMLSS has superior performance to any artifact removal method based on 389 

the median. 390 

The suitability of processing multiple-discharge scanning-EMG recordings is evident 391 

because the improved scanning-EMG recording protocol proposed in [38, 28, 18] necessarily 392 

implies the recording of several discharges at each spatial position. Note that this new kind of 393 

recording allows to scan several MUs in a single insertion of the needle, implying a noticeable 394 

improvement over the original scanning-EMG. Additionally, processing recordings of more 395 

than one discharge makes it feasible to work at higher levels of muscle contraction, at least as 396 

long as the level of EMG activity is not so high as to prevent to correctly extract the firing of 397 

the MU from the trigger signal. Being able to work at higher levels of voluntary contraction is 398 

important because in this way it is possible to scan MUs that otherwise would not be active. 399 

Note that the additional artifact noise generated at a higher muscle contraction levels can be 400 

compensated for by recording and processing several discharges instead of only one. In the 401 

simulation experiments (Fig. 6), the error power of the MMLSS algorithm was similar when 402 

processing one discharge at 2% of MVC (median of 𝑃, -23.22 dBm) to when processing seven 403 

discharges at 4% of MVC (median of 𝑃, -23.31 dBm). In the same way, the error power was 404 

similar when processing one discharge at 4% of MVC (median of 𝑃, -14.2 dBm) to when 405 

processing five discharges at 8% of MVC (median of 𝑃, -15.85 dBm); and also, when processing 406 

one discharge at 8% of MVC (median of 𝑃, -8.87 dBm) to that for five discharges at 20% of 407 

MVC (median of 𝑃, -9.17 dBm). In summary, the effective elimination of artifacts by the 408 
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MMLSS algorithm facilitates working with multi-discharge scanning-EMG recordings, which in 409 

turn makes it easier to work at higher levels of voluntary contraction of muscle. 410 

5-Conclusion 411 

A new algorithm to remove artifacts from superimposed MUPs in scanning-EMG 412 

recordings has been proposed and evaluated. The method, based on the MLSS algorithm, is 413 

designed to process both single- and multi-discharge scanning-EMG signals. To test the 414 

algorithm, experiments were performed in different recording conditions, i.e., with different 415 

levels of muscle contraction, and with different numbers of discharges recorded at each 416 

scanning step. The results of these tests indicate that the algorithm adequately eliminates 417 

artifact noise while preserving the physiological waveform of the signal, and is more effective 418 

than any previously available algorithm at processing both single- and multi-discharge 419 

scanning-EMG signals.  420 

 421 
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 525 
 526 

Fig. 1. Representation of all MUP discharges recorded at five consecutive positions in a scanning-EMG 527 

signal. Note that three discharges are recorded at each position. The horizontal and vertical axis represent 528 

the discharge and spatial dimension respectively. Each MUP discharge is a signal that varies with time. 529 

Note that evident artifacts are present in the locations marked with a cross (+).   530 
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532 

 533 
Fig. 2. Three-dimensional representation of a single-discharge scanning-EMG signal: (a) raw signal, in 534 

which there are artifacts, i.e. activity that is not synchronized with the recorded MUP; (b) after applying a 535 

spatial median filtering algorithm. 536 

 537 
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 539 

 540 

Fig. 3. (a) The scanning-EMG signal at the input of the algorithm comprises a set of different discharges at 541 

each recording position 𝑘. In the figure, the discharges corresponding to the positions 𝑘0 − 1, 𝑘0 and 𝑘0 +542 

1 are shown; (b) the median of all discharges contained in the positions 𝑘0 − 1, 𝑘0 and 𝑘0 + 1 (the median 543 

filter order,  𝐿, is 3); (c) the difference between the input discharges and the median-filtered signal in the 544 

position 𝑘0. The dashed lines represent the positive and negative threshold respectively; (d) validity mask 545 

values associated with the different discharges at position 𝑘0. Note that 1 corresponds to a valid sample 546 

and 0 to a non-valid one.   547 

 548 

 549 

 550 

Fig. 4. Block diagram showing the steps of the MMLSS algorithm. In a first main step (boxed with a dashed 551 

line), the artifact-free samples of the input signal, 𝑿, (which is the complete data for each set of discharges 552 

at each recording position) are determined by calculating a validity mask, 𝑽. To calculate 𝑽 a signal, 𝑮, is 553 

prepared by applying a double median filter to the input signal 𝑿. The signal 𝑮 is then subtracted from 𝑿, 554 

and this difference is thresholded to give the validity mask, 𝑽. After that, the different discharges 555 

contained in 𝑿 at each position are weight-averaged using the validity mask values, 𝑽, as weights, so that 556 

an averaged signal, 𝑭, is obtained based on the information of valid samples only. Also, an overall validity 557 

mask, 𝑾 is obtained by summing at each position the different values of the validity mask 𝑽 associated 558 

with the different discharges. In the last step, the output of the algorithm, 𝒀, is calculated by applying a 559 
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least-squares smoothing procedure to the averaged signal 𝑭 along the spatial dimension, using the overall 560 

validity mask values 𝑾 as weights. 561 

 562 

 563 

 564 

Fig. 5. Schematic representation of a cross section of simulated muscle. The MU territories of active MUs 565 

are represented by circles, and the corridor through which the electrode passes, by a dashed vertical line. 566 

Only signals corresponding to active MUs whose territory is traversed by the scanning corridor (solid line 567 

circumferences) were simulated. 568 

 569 
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Fig. 6. Boxplot representation of the error power, 𝑃, of the signals processed with the MMLSS algorithm 571 

for different number of discharges and different percentages of MVC; (a) 2% MVC; (b) 4% MVC; (c) 8% 572 

MVC; (d) 20% MVC.   573 

 574 

 575 

 576 

Fig. 7. Boxplot representation of the gain, 𝐺𝑎𝑙𝑔𝑜𝑟𝑖𝑡ℎ𝑚, of the MMLSS algorithm with respect to the other 577 

algorithms for different levels of muscle contraction and for different numbers of discharges. The other 578 

algorithms studied were: the 3-point-mean-median (m-M3), the 5-point-mean-median (m-M5), the 7-579 

point-mean-median (m-M7), the 3-point-median-median (M-M3), the 5-point-median-median (M-M5), 580 

the 7-point-median-median algorithm (M-M7) for multi-discharge scanning signals; and the 3-point-581 

median (M3), the 5-point-median (M5) and the 7-point-median algorithm (M7) for single-discharge 582 

scanning signals. 583 
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Fig. 8. Simulated scanning-EMG signal processed using different algorithms: (a) 5-point-Mean-median, 𝑃 589 

= -14.52 dBm; (b) 5-point-Median-median, 𝑃 = -18.68 dBm; (c) MMLSS, 𝑃 = -22.04 dBm; (d) Ideal noise-590 

free signal.  591 
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