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Equivalency of four research‑grade 
movement sensors to assess 
movement behaviors and its 
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surveillance
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 the benefits of physical activity (PA) and sleep for health, accurate and objective population‑based 
surveillance is important. Monitor‑based surveillance has potential, but the main challenge is the 
need for replicable outcomes from different monitors. This study investigated the agreement of 
movement behavior outcomes assessed with four research‑grade activity monitors (i.e., Movisens 
Move4, ActiGraph GT3X+, GENEActiv, and Axivity AX3) in adults. Twenty‑three participants wore four 
monitors on the non‑dominant wrist simultaneously for seven days. Open‑source software (GGIR) 
was used to estimate the daily time in sedentary, light, moderate‑to‑vigorous PA (MVPA), and sleep 
(movement behaviors). The prevalence of participants meeting the PA and sleep recommendations 
were calculated from each monitor’s data. Outcomes were deemed equivalent between monitors if 
the absolute standardized difference and its 95% confidence intervals  (CI95%) fell within ± 0.2 standard 
deviations (SD) of the mean of the differences. The participants were mostly men (n = 14, 61%) and 
aged 36 (SD = 14) years. Pairwise confusion matrices showed that 83–87% of the daily time was equally 
classified into the movement categories by the different pairs of monitors. The between‑monitor 
difference in MVPA ranged from 1  (CI95%: − 6, 7) to 8  (CI95%: 1, 15) min/day. Most of the PA and sleep 
metrics could be considered equivalent. The prevalence of participants meeting the PA and the sleep 
guidelines was 100% consistent across monitors (22 and 5 participants out of the 23, respectively). 
Our findings indicate that the various research‑grade activity monitors investigated show high 
inter‑instrument reliability with respect to sedentary, PA and sleep‑related estimates when their 
raw data are processed in an identical manner. These findings may have important implications for 
advancement towards monitor‑based PA and sleep surveillance systems.
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In the light of the unquestionable benefits of physical activity (PA) on humans’  health1,2, and the globally esti-
mated physical inactivity  levels3,4, it is of utmost importance to establish population-based surveillance systems 
for regular PA assessment and  reporting5,6. Self-reports are the most common method of surveillance as they 
are inexpensive, unobtrusive, and adaptable to different contexts. However, most of the self-reports used in sur-
veillance systems present considerable measurement errors and desirability  bias7–9. Instead, as suggested by the 
World Health Organization (WHO), activity monitors can theoretically strengthen PA surveillance with more 
accurate device-based  measures10. Self-reports assess a person’s perception and recall of their movement behavior, 
while devices enable assessment of movement behavior through the continuous recording of the accelerations 
produced by a certain body part (e.g., arm, hip, thigh). Likewise, devices could potentially expand surveillance 
to other related variables, such as sedentary behavior and sleep. Yet there also exist challenges relative to the use 
of wearable technology for  surveillance5,10.

Challenges related to consumer-marketed activity monitors are data ownership, population representative-
ness, the short lifespan of devices, and the use of proprietary non-replicable  algorithms5. The deployment of 
research-grade monitors (i.e., devices specifically developed for research purposes; they usually provide no 
feedback to participants and allow to download the raw accelerations) by public health and surveillance systems 
could overcome most of these limitations. However, the replicability of the measures obtained from different 
devices would be a major  concern11,12, since it is unfeasible that the same monitor would be used by all surveil-
lance systems worldwide. For example, Japan has repeatedly used pedometers (Yamasa Co, Ltd, Tokyo, Japan) for 
PA  surveillance1313, Canada has collected PA measures with the Actical (Philips Respironics, Oregon, USA)14, the 
USA used ActiGraph devices (ActiGraph, Pensacola FL, USA) in the National Health and Nutrition Examination 
Survey (NHANES)15,16, or the UK opted for the ActiGraph in the Health Survey for  England17.

Until 2010, most accelerometers provided only proprietary count data limiting comparability between devices, 
being the most widely used, the “counts” from  ActiGraph18. Modern research-grade devices have enough battery 
life and storage capacity to provide the raw data collected, theoretically facilitating the generation of replicable 
outcomes from across brands. Open-source software, developed in the field, has the capacity to process these 
raw data using identical methods, irrespective of monitor brand, e.g.,  GGIR19. Whether the resulting movement 
behavior estimates (e.g., time in PA intensities, sedentary time, and sleep-related outcomes) are compatible across 
devices when the raw data are processed using consistent methods is still an open question. Some factors that 
could influence the comparability across brands are the monitor size, the sensor specifications (e.g., sampling 
frequency, dynamic range), and the body attachment site where the monitor is placed. Previous research have 
tested the comparability of the same monitor across different body attachment sites, with promising findings 
for data harmonization across  studies20.

Therefore, this study aimed to investigate the agreement of the daily time spent in various PA intensities, 
sedentary time, and sleep-related outcomes assessed with four different research-grade activity monitors (i.e., 
Movisens, ActiGraph, GENEActiv, and Axivity) in young adults. Based on previous  research11,21,22, we expect 
that differences in the movement behaviors estimates are small to negligible when the raw data from different 
monitors are processed similarly. The selected monitors are within the most-frequently used in  research18, and/or 
have been used in previous large  cohorts23–27. The wrist was selected as some of the largest cohorts are collecting 
data from wrist-worn accelerometers in their recent data  collections23,26,27. How different acceleration metrics 
compare across body sites using the same monitor has been previously  reported20. Additionally, the wrist provide 
a range of accelerations higher than other body sites, which makes the comparison between devices richer as it 
expands to higher movement intensities.

Results
The 23 participants included were 61% male (n = 14), aged 36 (SD = 14) years, and with a mean BMI of 26 
(SD = 5.5) kg/m2 (Table 1). Mean and SD of daily time accumulated in sleep, sedentary time, light, and MVPA 
are reported in Table 2.

Confusion matrices for the classification of behaviors (i.e., sleep, sedentary time, light, and MVPA) between 
each pair of monitors are shown in Fig. 1. For each metric, most of the daily time is equally classified between 
each pair of monitors, i.e., epochs equally classified (gray cells, Fig. 1)/epochs differently classified (white cells, 
Fig. 1) * 100 (Movisens vs. ActiGraph: 87% of the day; Movisens vs. GENEActiv: 83% of the day; Movisens 

Table 1.  Descriptive characteristics of participants. Data presented as mean (SD) or frequency (percentage) as 
appropriate. BMI  body mass index,  SD  standard deviation.

Characteristics All (n = 23) Men (n = 14) Women (n = 9)

Age (years) 36.04 (14.18) 33.21 (14.67) 40.44 (12.93)

Weight (kg) 75.62 (15.93) 76.99 (14.96) 73.5 (18.06)

Height (cm) 171.08 (10.59) 176.2 (9.82) 163.11 (5.86)

BMI (kg/m2) 25.88 (5.46) 24.82 (4.89) 27.52 (6.17)

Weight status, nr. (%)

Underweight 2 (9%) 1 (7%) 1 (11%)

Normal weight 10 (43%) 8 (57%) 2 (22%)

Overweight 7 (30%) 3 (22%) 4 (45%)

Obesity 4 (18%) 2 (14%) 2 (22%)
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vs. Axivity: 84% of the day; ActiGraph vs. GENEActiv: 86% of the day; ActiGraph vs. Axivity: 87% of the day; 
GENEActiv vs. Axivity: 86% of the day).

Table 3 shows the sensitivity and specificity values for the classification of the behaviors obtained with each 
monitor compared to the Movisens (i.e., reference). The sensitivity was substantial for light PA classified by the 
ActiGraph (i.e., 0.61), and moderate for the GENEActiv (i.e., 0.52) and the Axivity (i.e., 0.52) compared to the 
Movisens. In regards to MVPA, the sensitivity values were substantial for the ActiGraph (i.e., 0.73), GENEActiv 
(i.e., 0.66), and Axivity (i.e., 0.64) compared to the Movisens. The rest of sensitivity and specificity values using 
the Movisens as reference were almost perfect for all the metrics (i.e., ≥ 0.87). Similar findings were observed 
after alternating the referent monitor (i.e., moderate to substantial sensitivity for light and MVPA between pairs 
of monitors; supplementary material, Tables S1, S2 and S3).

The equivalency between pairs of monitors for the metrics investigated is shown in Fig. 2. Regarding sleep and 
sedentary time time, the Movisens, the ActiGraph and the Axivity were deemed equivalent, yet these monitors 
were not equivalent to the GENEActiv. For light PA, all the monitors were equivalent as the  CI95% of the differ-
ences fell within the equivalency band. In regards to MVPA, the GENEActiv was not equivalent to the Movisens 
and the Axivity, while the rest of pairwise comparisons resulted in equivalent values. All monitors agreed on 

Table 2.  Mean and SD for sedentary time, light PA, MVPA, and sleep, as determined with the different activity 
monitors (i.e., Movisens, ActiGraph, GENEActiv, and Axivity). PA physical activity, SD standard deviation.

Movisens ActiGraph GENEActiv Axivity

Sleep period time (min/day) 401 ± 66 399 ± 69 410 ± 69 396 ± 68

Sedentary (min/day) 651 ± 115 659 ± 118 636 ± 111 660 ± 12

Light (min/day) 184 ± 64 179 ± 64 184 ± 64 183 ± 58

MVPA (min/day) 101 ± 52 99 ± 49 106 ± 52 98 ± 48

Figure 1.  Pairwise confusion matrices for the sleep, sedentary time, light PA and MVPA expressed in min/day 
as determined by the different monitors. MVPA moderate-to-vigorous physical activity, PA physical activity.
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the prevalence of our sample which met the WHO PA guidelines (i.e., 22 out of the 23 participants reached the 
recommendation) and the national sleep foundation guidelines on sleep time (i.e., 5 out of the 23 participants).

Supplemental Figures S1 to S6 show high correlations between pairs of monitors for all the metrics studied 
(all r’s ≥ 0.947). Bland–Altman plots with the mean difference and 95% limits of agreement between pairs of 
monitors for the PA and sleep metrics can be found in the supplementary material (Figs. S7 to S12). No trends 
or heteroscedasticity were observed in any of the Bland–Altman plots performed.

Table 3.  Agreement between Movisens-defined and the other monitors (i.e., ActiGraph, GENEActiv and 
Axivity) in the definition of sleep, sedentary time, light PA, and MVPA. MVPA moderate-to-vigorous physical 
activity, PA physical activity.

Movisens

Sleep Sedentary Light PA MVPA

Movisens

min/d 431 700 199 110

ActiGraph

Sensitivity 0.99 0.92 0.61 0.73

Specificity 1.00 0.91 0.94 0.98

GENEActiv

Sensitivity 0.99 0.87 0.52 0.66

Specificity 0.99 0.90 0.92 0.97

Axivity

Sensitivity 0.98 0.89 0.52 0.64

Specificity 1.00 0.88 0.92 0.97

Figure 2.  Equivalence between pairs of monitors for sedentary time, light, moderate, and vigorous PA. Points 
represent the difference in min/day between a pair of monitors (as determined in the vertical axis) for every PA 
metric. Error bars represent the  CI95% of the difference. Perfect equivalence = 0 (solid line); proposed equivalence 
zone (± 0.2 SDs of the differences) represented by dashed lines. Black markers indicate that the  CI95% are within 
the equivalence zone, and grey markers indicate that they go beyond the equivalence zone. CI95% 95% confidence 
intervals, PA physical activity, SD standard deviation.
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Discussion
The main findings from this study indicate that the prevalence of our participants meeting the WHO PA guide-
lines and the sleep foundation guidelines was exactly the same when determined by the different monitors (i.e., 
Movisens Move 4, ActiGraph GT3X+, GENEActiv, and Axivity AX3). However, this finding should be considered 
with caution since we have a rather small and non-representative sample. The monitors agreed in the classifica-
tion of individual behaviors over 84% of the daily time for all pairings of monitors. We observed high sensitivity 
and specific values for the classification of sleep and sedentary time for all pairings; yet moderate-to-substantial 
sensitivities for the classification of light and MVPA and high specificities for these behaviors. Furthermore, the 
various research-grade activity monitors investigated provided equivalent estimations of the daily time spent 
in sleep, sedentary time, light, and MVPA. Some exceptions were observed in the comparisons including the 
GENEActiv monitor, likely due to the mounting of the device in this study. These findings stand as long as the raw 
data of these monitors are processed in an identical manner, which was allowed in this study by the open-source 
software  GGIR19. Altogether, these findings may have important implications to advance towards monitor-based 
PA and sleep surveillance systems.

Some previous studies have investigated the agreement between different research-grade activity monitors 
using consistent raw data processing  methods11,12,28. Rowlands et al. investigated the equivalency of the Acti-
Graph, the GENEActiv, and the Axivity for the accelerations recorded (sampling frequency: 100 Hz, dynamic 
range: ± 8 g) in the non-dominant wrist in different lab-based activities. They found that time spent sedentary 
and in light PA could be considered equivalent for all monitors, but time in MVPA only for the GENEActiv and 
 Axivity11. The fact that the GENEActiv and the Axivity were taped together to the same wristband, while the 
ActiGraph was independently attached and their location was not counterbalanced, may partially account for this 
finding. Standardized mounting of devices might be important for PA surveillance. In this study, we found similar 
compatibility between monitors attached to different wristbands (e.g., Movisens vs ActiGraph or ActiGraph vs 
Axivity) compared with monitors in the same wrist band (e.g., Movisens vs Axivity). The fact that the GENE-
Activ was slightly less compatible with the other devices in this study might be because it was attached laterally 
to the wrist. This position might have produced some extra noise in the acceleration signal and might have been 
more disturbing for participants, which might affect the compatibility with the other devices. Furthermore, the 
ecology of lab-based activities to infer conclusions over free-living behaviors is questionable. In another study 
by Rowlands et al., they compared the accelerations recorded during a two-day free-living assessment between 
the ActiGraph and the  GENEActiv12. Among the metrics, they included the daily time in MVPA and sleep and 
between-brand differences were negligible (i.e., 4 min/day for MVPA and 1 min/day for sleep). Plekhanova et al. 
found equivalent values for sleep between the ActiGraph, the GENEActiv and the Axivity collecting data at a 
sampling frequency of 100 Hz and a dynamic range of ± 8  g29.

Our study expands the previous studies by Rowlands et al.11,12 by including a seven-day free-living assessment, 
focusing on time in different movement behaviors frequently used in public health research and  epidemiology30, 
including another monitor (the Movisens), and counterbalancing the order of the wristbands across participants. 
In this regard, we found the Axivity and the ActiGraph were equivalent for all the metrics, while the GENEActiv 
was not equivalent with these monitors for sleep, sedentary and MVPA, which is contrary to the Rowlands et al. 
 findings11. However, our findings agree in that the time spent in the estimated PA and sleep-related behaviors 
were consistent across devices as Rowlands et al. found for sedentary  time11,12, MVPA and sleep  time12. Other-
wise, Crowley et al. compared the ActiGraph and the Axivity worn on the thigh for the identification of certain 
behaviors (i.e., sitting, standing, walking, running, stair climbing, cycling, or stepping) in free-living  conditions28. 
Overall, they found small differences between the ActiGraph and the Axivity (e.g., 3 min/day walking, resulting 
in 323 steps/day difference). Our findings agree with these in the small differences across devices when the raw 
data are processed in a consistent manner. Although caution is advised because the different body attachment 
site complicates the comparability between our findings and those by Crowley et al.28 as the range of accelera-
tions recorded from the wrist is expected to be higher than the thigh, which could exert higher between-brand 
differences.

The WHO called for the development and testing of digital technologies to strengthen the population PA 
 surveillance10. Some concerns have been raised regarding the use of consumer-marketed activity monitors, such 
as the influence of real-time feedback on screens, the data ownership, population representativeness, the short 
lifespan of device, and proprietary non-replicable  algorithms5. The deployment of research-grade devices by 
public health and surveillance systems might overcome these limitations. Data ownership and population repre-
sentativeness would be overcome as the surveillance agency would own the data and design the procedures for the 
data collection to ensure adequate population representativeness. Regarding the lifespan, research-grade devices 
stay in the market much longer than consumer-marketed devices. For example, the ActiGraph GT3X + has been 
(and is still) available since 2010, while consumer-marketed devices lifespan is usually 1–2 years. Furthermore, 
research-grade monitor manufacturers try to ensure data comparability across different generations of their 
monitors (e.g., ActiGraph GT3X + and GT9X Link). Therefore, the replicability of the algorithms applied to the 
raw data would be the major concern for monitor-based PA surveillance, which enhances the value of open-
source algorithms.

Although proprietary algorithms and data replicability have also been a major concern with former research-
grade activity  monitors31, important advances to enhance the data comparability have occurred since the moni-
tors allow access to the raw data collected. This study, together with previous  evidence11,12,28, demonstrate that 
it is possible to obtain similar estimations of PA and sleep-related behaviors from different monitors as long as 
the raw data are processed consistently. The comparability of the raw data collected mainly relies on the com-
ponents integrated in the different devices and their physical characteristics (e.g., weight, size). Although some 
of the manufacturers provide detailed information of their components, some others hide such information. 
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We encourage manufacturers to be transparent about the components and mounting of their devices, so that 
researchers can consider the similarities and differences across devices when designing the studies. It is notice-
able that we found the same proportion of our study sample meeting the WHO guidelines on aerobic PA (i.e., 
150 min per week of MVPA) and the sleep foundation guidelines (i.e., 7 to 8 h of sleep per day). However, caution 
is advised in the interpretation of this finding since we have a convenient, small, and non-representative sample. 
Future studies with larger and representative samples should corroborate this promising finding. What seems 
unquestionable from the evidence available is that there is potential to use different brands of research-grade 
accelerometers to obtain comparable estimates of movement behaviors and the proportion of people meeting 
PA and sleep guidelines, as long as the activity monitors allow for the storage of the raw data to be processed in 
a consistent manner with open-source and replicable algorithms.

The findings of this study should be interpreted under the consideration of its limitations: (i) the sample size 
analyzed is rather small (n = 23); (ii) it is a convenience sample which does not represent the population, although 
BMI was quite heterogeneous; (iii) the mounting of devices was not usual as we fitted four devices in the same 
wrist (e.g., the effect of proximality of the wristband was not tested; we encourage future studies to investigate the 
device mounting and its relevance for the movement behaviors assessment); (iv) the accelerometers settings (e.g., 
sampling frequency, dynamic range) were not identical across monitors, although we used the closest settings 
allowed by each brand; (v) differences in the accelerometer sensor components could not be considered since 
this information is not made publicly available by all the manufacturers included in this study; and (v) we lack a 
criterion for the measurement of the PA and sleep-related behaviors. A criterion would have provided informa-
tion on the accuracy of the devices, but it does not affect our main objective, which is to study the agreement 
across different activity monitors for the estimation of PA and sleep-related behaviors. Otherwise, some strengths 
of this study are worthy of mention: (i) we compared research-grade activity monitors which are widely used in 
the PA measurement  field18, and have been used in large cohorts for surveillance and epidemiological studies; 
and (ii) we processed the raw data of the monitors using the same protocol and open-source algorithms in the 
GGIR software, which is also widely used in the  field19.

In conclusion, our findings indicate that the various research-grade activity monitors investigated (i.e., Mov-
isens Move 4, ActiGraph GT3X + , GENEActiv, and Axivity AX3) have a high agreement (> 80%) for estimations 
of the daily time spent in sleep, sedentary time, light, and MVPA when their raw data are processed in an identical 
manner. Importantly, the prevalence of our participants meeting the WHO PA guidelines was identical when 
determined by the different monitors. These findings may have important implications for advancement towards 
monitor-based PA and sleep surveillance systems.

Methods
Study design and participants. The data analyzed in this study were collected in Granada (Spain) as a 
local branch of the EU-funded CoCA project (“Comorbid Conditions of Attention-deficit/hyperactivity dis-
order”). CoCA aims to provide new knowledge and tools to prevent adolescent and young adult attention-
deficit/hyperactivity disorder from escalating into detrimental comorbidities (https:// coca- proje ct. eu/). Among 
other treatments, the CoCA project tests the effect of a mHealth-deployed exercise program with continuous 
PA monitoring with the Movisens Move 4 (Movisens GmbH, Karlsruhe, Germany). One of the secondary aims 
of CoCA was to investigate the convergent validity of this activity monitor against widely-used research-grade 
monitors in the PA measurement field. As such, we recruited a convenience sample of 25 young adults from the 
AMPACHICO association (Granada, Spain). We asked them to wear four activity monitors on the non-domi-
nant wrist for seven days (i.e., the Movisens Move 4, the ActiGraph GT3X+, the GENEActiv [ActivInsights Ltd., 
Cambridgeshire, UK], and the Axivity AX3). The activity monitors were placed on participants’ non-dominant 
wrist attached to two wristbands. The Movisens and the Axivity were attached to one wristband, and the Acti-
Graph and the GENEActiv to the other (Fig. 3). The order of the wristbands regarding the proximality to the 
body was counterbalanced. Two participants were excluded for not wearing the Movisens/Axivity wristband 

Figure 3.  Attachment of the devices in two wristbands. The proximality of the wristbands was counterbalanced 
across participants.

https://coca-project.eu/
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(n = 1), or for not wearing any monitor during the sleeping periods (n = 1). Thus, 23 participants were included 
in these analyses. All participants provided written informed consent, and this study was approved by the Ethics 
Committee on Human Research (CEIH) of the University of Granada. This study was conducted according to 
the Declaration of Helsinki.

Activity monitors. The Movisens Move 4 contains a triaxial accelerometer which captures accelerations 
within a dynamic range of ± 16 G’s (where 1 G represents the gravitational acceleration, i.e., ~ 9.8  m/s2) at a 
sampling frequency of 64 Hz. The ActiGraph GT3X + is a monitor which includes a triaxial accelerometer with a 
dynamic range of ± 8 G’s. The sampling rate can be set from 30 to 100 Hz in increments of 10 Hz, for this study, 
a sampling rate of 60 Hz was set. The “idle sleep mode” was disabled for this monitor. The GENEActiv contains 
a triaxial accelerometer capturing accelerations in a range of ± 8 G’s; it was set at a sampling rate of 60 Hz. Lastly, 
the Axivity AX3 is the smallest of the monitors used in this study, and contains a triaxial accelerometer with a 
configurable dynamic range, which was set to ± 8 G’s for this study. The sampling rate was set at 50 Hz in the 
Axivity AX3. The sampling rates in the ActiGraph, the GENEActiv, and the Axivity were selected to be as close 
as their respective software allowed to the sampling frequency of the Movisens (which is fixed to 64 Hz). Like-
wise, the dynamic range was pre-fixed by manufacturers for all the devices, except for the Axivity, in which we 
selected 8 G’s to approximate most of the rest of devices. We used 10 units of each device for the data collection.

Raw data from the monitors were downloaded in the respective software made available by their manufac-
turers. This is, the Movisens Move 4 files were downloaded in the SensorManager software (Movisens GmbH, 
Karlsruhe, Germany) in binary format; the ActiGraph files were downloaded and converted to csv files in the 
ActiLife software v.6.13.4 (ActiGraph, Pensacola FL, USA); the GENEActiv raw data were downloaded using 
the GENEActiv PC software (ActivInsights Ltd., Cambridgeshire, UK) as binary files; and the Axivity files were 
downloaded in the OmGui open-source software (OmGui, Open Movement, Newcastle University, Newcastle 
upon Tyne, UK) and saved in cwa format.

Raw data processing. Raw data from all monitors were processed in the open-source R package  GGIR19. 
The processing methods were the same for all devices, and they involved: (i) autocalibration of the data accord-
ing to the local  gravity32; (ii) calculation of the Euclidean Norm Minus One G with negative values rounded 
to zero (ENMO) over 5-s epochs; (iii) detection of the non-wear time based on the standard deviation (SD) 
and magnitude of each axis’ raw  acceleration33; (iv) detection of sustained abnormal high accelerations (i.e., 
each acceleration recorded close to the dynamic range limits of each monitor, for example accelerations higher 
than 7.5 g’s for the ActiGraph, GENEActiv and Axivity); (v) classification of waking and sleeping times with an 
automated  algorithm34,35; (vi) removal of every epoch classified as non-wear time or abnormal high acceleration 
by at least one of the monitors. Time in sleep (time from sleep onset to wake up), sedentary (< 35 mg), light 
(35–99.9 mg), and moderate-to-vigorous (MVPA, > 100 mg) physical activities were considered for  analyses34–37.

Sociodemographic data and anthropometrics. As part of the protocol, participants reported their age 
and sex; and we measured their body weight and height to the nearest 0.1 kg and 0.1 cm using an electronic scale 
(SECA 861, Hamburg, Germany) and a precision stadiometer (SECA 225, Hamburg, Germany), respectively. 
Body mass index (BMI) was calculated as kg/m2.

Data analysis. Participants’ descriptive data were reported as mean and SD or frequencies and percentages, 
as appropriate. All analyses were performed with the reference monitor selected according to this hierarchy: 
Movisens, ActiGraph, GENEActiv and Axivity. This decision was arbitrary as none of the monitors used can be 
considered the gold standard. Confusion matrices were built between each pair of monitors with the minutes per 
day classified in each time-based category (i.e., sleep, sedentary time, light, and MVPA). Then, sensitivity (i.e., 
true positives) and specificity (i.e., true negatives) values were calculated for each monitor, using the Movisens 
as the reference. Sensitivity and specificity values were considered slight (0.00–0.20), fair (0.21–0.40), moderate 
(0.41–0.60), substantial (0.61–0.80), or almost perfect (0.81–1.00) following pre-defined  standards38. To explore 
if the referent monitor affected the findings, we alternated the monitor used as reference in this analysis. Next, 
the equivalence between each pair of monitors was investigated by determining whether the mean difference 
and 95% confidence intervals  (CI95%) for each pair of monitors fell within a proposed equivalence zone. To 
account for the specific variability in each metric investigated, the equivalence zone was defined as ± 0.2 SDs 
from the mean of the between-monitor differences, as this is the minimum relevant standardized difference 
considered by the Cohen’s D  standards39. Likewise, bivariate correlations and Bland–Altman plots were drawn 
for each pair of monitors to investigate the agreement between the metrics of interest as determined by the dif-
ferent monitors. Finally, the prevalence of participants meeting the WHO PA guidelines (i.e., ≥ 150 min per week 
of MVPA)1 and the national sleep foundation guidelines (i.e., 7 to 8 h of sleep per day)40 were determined based 
on the total time in MVPA per week and total sleep time per day estimated from each monitor.
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