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1. Introduction 
Streaming entertainment makes for a great fraction of the global Internet traffic. This is true even more 
so nowadays – due to the pandemic, Comcast (a well-known Internet Service Provider in the USA) 
registered in 2020 a 32% increase over pre-pandemic levels in peak Internet traffic, with 71% of 
downstream traffic accounting for video streaming [18]. 

Netflix is one of the most popular video streaming platforms as of 2022. It should come as no surprise 
that a great deal of Internet traffic must belong to Netflix. In 2015, Netflix decided to implement TLS 
(HTTPS) to video streams [19], to adapt to the demands of security in the modern Internet. The purpose 
of this work is to demonstrate that, despite the encrypted delivery of video, Netflix content can be 
identified with ease, accuracy and very quickly, questioning the end user’s privacy. 

This has a very important repercusion because information is power and this leaves the door open to 
Internet Service Providers to inspect client connections at will, extracting the user’s entertainment 
consumption habits in the process. This also may give rise to traffic identification for similar 
entertainment platforms such as YouTube, Amazon Prime, HBO or Spotify; which actually raises the 
question of how compatible are pseudo-streaming protocols with privacy, in the moment of highest 
demand on security and highest demand on streamed entertainment. 

We have implemented an algorithm which just by looking at the TCP traffic with Netflix is able to tell 
what the user is watching. Our concept improves the existing state of the art by identifying the videos 
much faster, which is achieved by basing our algorithms in very different foundational concepts 
compared to previous works. Also, during the process, we have developed techniques to gain access to 
Netflix catalog database, to Netflix videos themselves and to Netflix internal APIs. 

Not even HTTPS is able to protect your Netflix traffic. Any streaming service which makes use of 
pseudo-streaming protocols as they are conceived nowadays is condemned to privacy vulnerability. We 
hope that this work about pseudo-streaming and its complicated relationship with security is of your 
interest.  

2. State of the art 
This project builds upon two pioneer works in identification of Netflix encrypted content. The first 
paper [1] by A. Reed and B. Klimkowski implements the mechanics required to identify pseudo-
streamed content, focusing on Netflix. It begins explaining why any VBR encoded content delivered 
via pseudo-streaming can be unequivocally identified by observing the pattern of sizes of downloaded 
video segments or video chunks. The VBR encoding for Netflix content results in each video having 
video chunks with sizes that differ from video to video. This set of sizes configures a fingerprint which 
allows the identification of Netflix content. 
 
The identification process defined in [1] consists of three steps. The first step infers the throughput over 
a live, wireless interface by observing the received BlockACKs (control frames used by 802.11n WiFi 
standard which acknowledges multiple data frames at once). They do so by [1]: 

1. Assuming that a BlockACK’s starting sequence number correlates to the receipt of the data 
frame with the same sequence number. 

2. Inserting missing data frames between the received BlockACKs. 
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3. Assuming that all data frames carry a full-size packet, which corresponds to 1460 bytes of 
application layer data. 

 
Let us take Fig. 2.1. and Fig. 2.2. as an example of their approach. Fig. 2.1. represents the captured 
802.11n control traffic between a client watching Netflix and the Wireless Access Point (WAP). In this 
capture, three different BlockACKs have been received. The timespan between the first and the last 
BlockACK arrivals is 5.1 ms, and all three BlockACKs altogether confirm frames ranging from 
Sequence Number (SN) 3290 to 3297. As Fig. 2.2. depicts, that is equivalent to receiving 8 full-size 
packets. Therefore, 11.68 kB have been captured in 5.1 ms. 
 

Time    Source  Dest.  Info 
 

05:42.5028   WAP   Client  RTS 
05:42.5028   Client  WAP   CTS 
05:42.5028   Client  WAP   BlockACK Start: 3290 
 
05:42.5028   WAP   Client  RTS 
05:42.5028   Client  WAP   CTS 
05:42.5028   Client  WAP   BlockACK Start: 3295 
 
05:42.5028   WAP   Client  RTS 
05:42.5053   Client  WAP   CTS 
05:42.5053   WAP   Client  RTS 
05:42.5053   Client  WAP   CTS 
05:42.5079   Client  WAP   BlockACK Start: 3297 

 
Fig. 2.1. Sample snippet from a wireless capture of Netflix traffic. [1] 

 
Time    SN  App. Layer Data 
05:42.5028  3290   1460   //BlockACK received 
05:42.5028  3291   1460   //inferred 
05:42.5028  3292   1460   //inferred 
05:42.5028  3293   1460   //inferred 
05:42.5028  3294   1460   //inferred 
05:42.5028  3295   1460   //BlockACK received 
05:42.5053  3296   1460   //inferred 
05:42.5079  3297   1460   //BlockACK received 

 
Fig. 2.2. Estimating throughput using the capture depicted in Fig. 2.1. [1] 

 
The second step uses the captured information to isolate video chunks. Isolation is important to estimate 
the size of each of the downloaded chunks individually. This is performed taking into consideration 
that: 

1. As of 2016, Netflix videos were divided in chunks which lasted 4 seconds. 
2. As of 2016, Netflix used Microsoft’s Silverlight player [16]. This player seeked to fill a 4-

minute buffer as quickly as possible. 
3. Once the buffer is filled, the player would request a new video chunk each time a segment in 

the buffer was consumed. This resulted in the arrival of a new segment every 4 seconds 
approximately. 
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Consequently, every 4 seconds a burst of BlockACK frames could be isolated, corresponding to the 
ACKs generated by the download of a new video segment. The chunk size could be calculated for each 
isolated burst as explained earlier. For example, the capture depicted in Fig. 2.3. isolates two video 
chunks. The download for the first segment required 390 data frames, which corresponds to a 569.4 kB 
segment. Analogously, the size of the second segment is 658.46 kB. 
 

Time    SN  App. Layer Data 
07:32.3821  5821  1460   //BlockACK received 
... 
... 
... 
07:32.3962  6210  1460   //BlockACK received 
    
...  //no more BlockACK traffic takes place in 4 seconds 

 
11:33.0059  6211  1460   //BlockACK received 
... 
... 
... 
11:33.0172  6661  1460   //BlockACK received 
 
...  //no more BlockACK traffic takes place in 4 seconds 
 

Fig. 2.3. Estimating video chunk sizes. 
 
The final step predicts the played Netflix content based on the estimated sizes of the chunks captured. 
The segment size estimation carried out in step 2 does not return the real size of the downloaded chunk, 
but rather an approximated value. This loss of accuracy is due to: 

1. the last 802.11n frame within a segment download not necessarily having a 1460-byte payload 
size. 

2. not taking into consideration for the segment size calculation any possible headers that the 
application data may contain. 

To be able to match a set of captured video chunks to a certain Netflix video considering these segment 
size deviations, it was decided to group adjacent video chunks into 30-segments-long sliding windows. 
It takes two minutes to capture the sufficient video chunks to fill such a window. For each sliding 
window, a six-dimensional key is calculated. The key for each window is obtained as follows [1]: 

● 1st Dimension: Total Size. This is the total amount of data contained in the window, measured 
in bytes. 

● 2nd – 6th Dimensions: Data Allocations. The two minute window is divided into five 24-second 
slices. Then, the percentage of the entire window’s data contained in each slice is calculated 
(no units; these are numbers between 0.0 to 1.0). 

They provide an example of key calculation for a 30-segments-long sliding window captured while 
watching Legally Blonde, reintroduced here as the Fig. 2.4.  
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Fig. 2.4 . Key construction for segments 61 through 90 of Legally Blonde (3000 kbps encoding). 
Figure from [1]. 

 
This window’s 6D key is: [48128915, 0.227, 0.185, 0.154, 0.198, 0.236]. 
 
Every possible two-minute sliding window obtainable from a Netflix video was stored in a database 
and indexed with its 6D key. For the record, Legally Blonde was 1440 segments long back in the day 
(around 96 min), so each encoding resulted in 1411 sliding windows. As this film was encoded in 8 
different bitrates, it yielded 11,288 individual windows in total. 
 
In order to obtain a match: 

1. They run the calculation of the 6D key of the captured two-minute sliding window. 
2. They search in the database for the closest resembling window. To do so, they first obtain 

candidate windows by looking in the database for all windows with a key whose dimensions 
were within a predetermined set of thresholds relative to the capture window. Then, for each 
candidate window, the sizes of the segments of both the candidate and the capture window were 
plotted as an x,y scatter plot and its Pearson’s correlation (r) was calculated. Any candidate 
window yielding r above a given threshold was considered a match. [1] 
 

Their approach to identify Netflix content has several technical limitations: 
● Their algorithm has a 90% accuracy. Furthermore, we must take into account that this hit rate 

was calculated with a very small dataset (50 movies and a season of a TV show). 
● As the estimation of segment sizes is obtained via 802.11n BlockACK control frames, content 

identification renders impossible in Ethernet setups and in setups using other WiFi standards 
which do not define BlockACK control frames. 
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● As 30 segments (two minutes) are required to obtain a searchable key for the database, the 
identification process takes two minutes at least. 
 

In 2017, the paper [2] was published by A. Reed and M. Kranch, building upon [1]. This time, their 
approach consisted in analyzing IP and TCP headers to infer segment sizes, rather than deducting them 
from BlockACK bursts. Thus, Ethernet captures were no longer a problem. 
 
Once again, the sizes of video chunks were not 100% accurately calculated. Application layer payload 
size has an overhead due to HTTP and TLS headers. They decided to subtract such overhead by 
considering [2]: 

1. HTTP headers add ~520 bytes to each video segment. 
2. TLS overhead adds ~0.18% to the combined video content plus HTTP headers. 

This works as an approximation, but fails to obtain the exact size of a video segment. Hence, to 
overcome this lack of accuracy, a technique involving six-dimensional keys for two-minute sliding 
windows had to be implemented again, as in [1]. Furthermore, the matching algorithm works very 
similar to its preceding work. 
 
As this work is also based on the two-minute sliding window technique, two minutes are required at 
least to find a match. In fact, out of 200 video streams used for testing, 51% found a match before 2:26 
min. It took 8:09 min to identify 90% of the videos and as long as 13:00 min to identify the whole set 
with a success ratio of 99.5%. 
 
This paper improves the original work by: 

● Enabling Ethernet captures and captures based on any WiFi scheme. 
● Implementing a 6D key database for the whole American Netflix catalog (as of 2017). Only 50 

movies and an entire season of a TV show were introduced into the dataset in the first work. 
Out of curiosity, 38,780 episodes of TV shows and 3,247 movies made up the dataset this time. 
This yielded a total amount of 184,248,110 sliding windows, inserted in the database with their 
corresponding keys. 

● Improving hit rate (from 95% to 99.5%). 
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3. Objectives
Technology evolves quickly, and Netflix has evolved as well since 2017. Microsoft’s Silverlight player 
has been replaced by Netflix’s own player, video segments do not last strictly for 4 seconds anymore, 
their catalog keeps expanding, and new video codecs and resolutions have come to stay. The techniques 
described up to now for identification of Netflix content are now outdated. 

In this thesis, we are going to demonstrate that the identification of encrypted Netflix videos is still 
possible nowadays, and we are going to improve the techniques that our preceding works deployed by: 

● Perfecting the accuracy of the calculation of segment sizes.
None of the methods proposed until now was able to calculate the exact size that a captured
segment has. We have implemented a technique which calculates accurately the size of a
downloaded video chunk. As we do not have to tackle the lack of precision anymore, we no
longer have to use sliding windows paradigms to find matches.

● Reducing encrypted video identification from minutes to just a few seconds.
As filling two-minutes sliding windows will no longer be required, the identification process
speeds up immensely. Now, we will be able to capture a few segments within a few seconds to
firmly determine the played Netflix content in an encrypted capture.

● Improving the technique used to download the entirety of Netflix catalog.
A web scraper is used in [2] to determine all movies and TV shows that made up the catalog
back then. We are going to use Netflix’s internal API to retrieve all Netflix content without
parsing any HTML.

● Improving the technique used to retrieve the sizes of the segments of every video in the
catalog.
As explained in 4.2., the first bytes of all Netflix videos contain the header which describes the
sizes of the subsequent segments that make up a given video. Both [1] and [2] dumped the
segment sizes by actively capturing the first seconds of a video stream to obtain the
aforementioned header. In order to implement a database with all Netflix videos, as done in [2],
a bot had to be programmed to watch every single video for a few seconds to extract the header.
This was a very tedious and slow process: it took 4 entire days to retrieve all 42,027 video
segments using 4 MacBook Pros simultaneously. We propose a much faster method to extract
segment sizes which does not require active captures but makes use of another internat Netflix
API.
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4. Streaming of Netflix content
4.1. Adaptive pseudo-streaming 
Pseudo-streaming is the transfer of digital media from server to client which enables the beginning of 
the content’s playback prior to its complete download. At a technical level, this is done by splitting the 
content into video chunks or segments. As the user consumes chunks, more are requested to the server. 
Playback and download happen simultaneously. 

In the scope of pseudo-streaming, the term “adaptive” means that the streamed content is able to adapt 
to the client’s changing network conditions. For example, an adaptive pseudo-streamed content can 
lower playback resolution automatically if a sudden decrease in the user’s bandwidth is detected, 
preventing the playback from interruption. Annex A offers a further intuitive introduction to adaptive 
pseudo-streaming. 

For the correct delivery of streamed content, client and server have to be in constant communication to 
cope with tasks such as new chunk requests or sudden changes in the network conditions. A protocol is 
needed to enable this client-server communication. The most common adaptive pseudo-streaming 
protocols are [4]: 

● Apple HLS (HTTP Live Streaming)
● Microsoft Smooth Streaming
● Adobe HDS (HTTP Dynamic Streaming)
● MPEG-DASH (MPEG’s Dynamic Adaptive Streaming over HTTP)

The use of HTTP to request chunks is common to all previous protocols. Availing HTTP requests 
simplifies serving the chunks, as the requests can be processed by standard web servers. 

Netflix pseudo-streams its content. In the days when Netflix implemented Microsoft Silverlight as the 
core player, Microsoft Smooth Streaming protocol was used, as it is the inherent streaming protocol to 
Silverlight. Nowadays, Netflix implements its own player with a proprietary streaming protocol which 
is heavily inspired by MPEG-DASH. Before explaining Netflix’s architecture and how Netflix provides 
its content to the end user, MPEG-DASH protocol must be understood first, as it defines multiple 
concepts and terms later on applied in Netflix’s protocol. 

4.2. MPEG-DASH 
MPEG-DASH [3] is MPEG’s adaptive streaming protocol, based on HTTP. MPEG-DASH defines a 
hierarchy based on periods, adaptation sets, representations and segments. This hierarchy is used to 
organize the chunks that make up any content according to parameters as their resolution or language. 

4.2.1. Periods 
A period is a temporal subdivision of the content defined by a start timestamp and a duration. 
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Fig. 4.1. Subdivision in periods for a Money Heist episode. 

 
An example of a subdivision of a video into periods is depicted in Fig. 4.1 (only the first 3 periods are 
shown). The start timestamp and the duration that defines each period are described in Table 4.1. 

 

 Period description Start timestamp [mm:ss] Duration [mm:ss] 

1 Pre-intro scene 00:00 05:50 

2 Intro 05:50 00:58 

3 First scene after intro 06:48 03:12 

 
Table 4.1. Period definition. 

 
The protocol does not require the content to be divided into multiple periods. Thus, media can be 
classified as single-period or multi-period content: 

● Multi-period content is made up of two or more periods. The content exemplified in Fig. 4.1 is 
clearly multi-period. 

● Single-period content is made up of a unique period, as conveyed in Fig. 4.2 and in Table 4.2. 
 

 
 

Fig. 4.2. Unique period for the same Money Heist episode. 
 

 Period description Start timestamp [mm:ss] Duration [mm:ss] 

1 Unique period 00:00 53:55 (entire episode) 
 

Table 4.2. Single-period definition. 
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4.2.2. Adaptation Sets 
Periods are made up of Adaptation Sets. Adaptation Sets are the media streams that enable the playback 
of a Period. For the playback of Netflix content, independent video and audio streams are required. 
Optionally, a subtitle stream could be introduced as well. In MPEG-DASH terms, any Netflix Period is 
made up of at least one video Adaptation Set, one audio Adaptation Set and, optionally, one subtitle 
Adaptation Set (Fig. 4.3). 

Fig. 4.3. Adaptation Set composition for a Period of Sex Education. 

Periods can be composed by multiple Adaptation Sets of the same category. 

For example, if a certain Netflix video offers the languages 
shown in Fig. 4.4 for audio playback, such content is made up 
of 6 audio Adaptation Sets, one per audio option. Switching 
from one language to another only changes the audio 
Adaptation Set that is being downloaded; video and subtitle 
streams remain unaltered. The same applies to switching 
subtitles from one language to another. 

Despite being able to have several audio and subtitle 
Adaptation Sets, Netflix content typically has a unique video 
Adaptation Set. This is because a single video stream is 
generally valid for all users, despite their language choice. 
However, MPEG-DASH can handle multiple video Adaptation 
Sets within the same Period. A practical use of including 
multiple video streams is depicted in Fig. 4.5. Each Adaptation 
Set offers different translations for the text within the video for 
the sake of language immersion. 

Fig. 4.4. Netflix audio options. 

Fig. 4.5. Multiple video Adaptation Sets for language immersion. 
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4.2.3. Representations 
An Adaptation Set is subdivided into different Representations. A Representation is a variant of a 
given media stream. The differences between variants are aspects such as playback resolution, target 
bitrate or the required codec. Fig. 4.6 offers an example of possible Representations that conform video, 
audio and subtitle Adaptation Sets. 

Fig. 4.6. Breakdown of Representations included within Adaptation Sets. 

The criteria used to pick a Representation among all available within an Adaptation Set depend on the 
client-side implementation. The chosen Representations often depend entirely on aspects foreign to the 
end user, such as the codecs supported by the end host. In some implementations, the user has some 
control over which Representations to obtain. This is the case of YouTube, as the user can freely choose 
the playback quality, influencing directly on the election of Representations. In other implementations, 
such as in Netflix, the user cannot pick the resolution; the chosen quality relies entirely on the detected 
user’s bandwidth. 
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4.2.4. Segments 
A Representation is split into Segments. A Segment is a fragment or chunk of a particular media. 
Segments are downloaded by the client and played back-to-back giving the desired streaming feeling. 
They comprise the smallest unit in which any media can be divided and they are the elements on which 
adaptive pseudo-streaming is based. An example of a subdivision of Representations into Segments is 
represented in Fig. 4.7. 

Fig. 4.7. Breakdown of Segments within video Representations, up to 8 seconds of playback. 

As depicted in Fig. 4.7, the nth Segment in each Representation must last the same timelapse. In this 
way, the client can switch to another Representation (i.e.: change playback quality) without altering the 
chronological continuity of the playback.  

Netflix uses the client’s bandwidth to choose the optimal Representation for playback. When 
downloading a Segment, Netflix keeps track of each chunk’s length and download time to estimate the 
bandwidth at a given point in time. Knowing the instantaneous bandwidth, the Netflix player will 
request the subsequent Segments from the most suitable Representation, in order to adapt to the 
changing network conditions and to never incur in an interruption. 

4.2.5. Media Presentation Description file 
MPEG-DASH hierarchy is synthesized in Fig. 4.8. A DASH client which intends to receive pseudo-
streamed content via MPEG-DASH must know the hierarchy for that particular content in order to 
request its Segments. The hierarchical subdivision into Periods, Adaptation Sets, Representations and 
Segments, for any given content, is represented in a Media Presentation Description (MPD) file [5]. 
The MPD file is an XML document which describes the hierarchy for a particular content that can be 
streamed. With this hierarchy, a DASH client can construct HTTP GET requests to download Segments 
from the corresponding Representations and Adaptation Sets, providing the streaming service to the 
end user. 
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Fig. 4.8. MPEG-DASH hierarchy. 

4.2.6. ISO Base Media File Format 
All the Segments that make up a video are stored in servers. Each Segment constitutes its own video 
file (e.g.: segment_1.mp4, segment_2.mp4, …) and, as all video files, they are stored on disk following 
the binary syntax defined by a video container. 

A video container wraps into a single file multiple streams (video, audio, subtitles) together with the 
metadata required for its synchronized playback. Containers define the binary syntax that video files 
must follow to multiplex the different streams that make up such video. For a further insight about video 
storage on computers, refer to Annex B. 

MPEG-DASH supports Segments with formats based on the following MPEG containers: 

● ISO Base Media File Format, defined in ISO/IEC 14496-12 – MPEG-4 Part 12.
● MPEG-2 Transport Stream, defined in ISO/IEC 13818-1.

These two containers are natively supported by MPEG-DASH because they both regard the 
subfragmentation of media, which is the most basic principle required for pseudo-streaming. Netflix in 
particular uses ISO Base Media File Format to store all its Segments. For this reason, we will now 
proceed to explain such container. 

ISO Base Media File Format (ISOBMFF) container is defined in MPEG-4 Part 12 [7]. It is used as the 
basis for more specific containers such as MP4 (i.e.: MP4 container is a particularization of ISOBMFF 
container). Any file compliant with ISOBMFF is known as an ‘ISO Base Media File’. 

The binary syntax that ISOBMFF defines is based on a hierarchy of boxes. Boxes are the building 
blocks of ISO Base Media Files; all data within these files (i.e.: media streams and metadata) is 
contained in various types of boxes. Fig. 4.9 represents the succession of boxes that an ISO Base Media 
File takes when the video it wraps is split into different segments. All the information related to a 
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segment is contained within a pair made of moof box + mdat box. While the mdat box contains the 
multiplexed samples of the different streams that make up the segment, the moof box contains the 
metadata necessary to retrieve the samples in the mdat box. 

Fig. 4.9. Structure of ISOBMFF-based subfragmented files. 

In subfragmented videos, the sidx box gathers the metadata related to the subdivision of the entire video 
into segments. The structure of sidx boxes is represented in Fig. 4.9. 

Fig. 4.10. Segment Index Box definition in the ISO Base Media File Format [7]. 

Among all fields defined within a sidx box, the most important ones in order to understand Netflix 
architecture later on are the following: 
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● timescale determines the timescale that must be used by other fields which are in some way
related to time. It is measured in samples per second. For example, timescale=8000 implies
that 1 second of playback corresponds to 8000 samples.

● reference_count provides the total number of segments which make up the content. For
example, reference_count=1250 implies that the video is split into 1250 segments. Each of the
1250 segments is described by the fields r, referenced_size, subsegment_duration, SAP_type
and SAP_delta_time. This group of fields is inserted as many times as total segments available.

● referenced_size provides the size (in bytes) of the segment that is being described.
● subsegment_duration provides the duration of the segment that is being described, measured

in samples per second. For example, if subsegment_duration=40000 (considering
timescale=8000), then the referenced segment lasts for 5 seconds.

Netflix stores all its content as subfragmented videos using ISOBMFF containers. This implies that the 
binary syntax of Netflix video files is the one depicted in Fig. 4.9, which means that every file will 
contain a sidx box describing the segments that make up the corresponding video. 

4.3. Netflix architecture 

Netflix does not use MPEG-DASH as its pseudo-streaming protocol, but it does implement a proprietary 
protocol which is heavily inspired in MPEG-DASH concepts and which also uses ISOBMFF containers 
for video storage. We can state this because when we analyzed requests performed by web browser 
Netflix clients in search of MPEG-DASH MPD files we ended up finding that Netflix sent the 
description of the Segmentation of its content in its own file, rather than using MPD files. 

All Netflix content is identified by an ID. Every video (i.e.: every movie and every episode of a TV 
show) has its own, unique ID. The URL uses that ID to trigger the playback of the corresponding video. 
For example, if we wanted to watch in a web browser the first episode of the first season of Stranger 
Things (whose video ID is 80077368), we would visit https://www.netflix.com/watch/80077368. 

All the content is stored in Netflix’s own CDN [8]. Such CDN consists of 60+ global data centers 
entirely run by Netflix, together with all the servers deployed at no cost in the data centers of ISPs which 
partner with Netflix. Netflix refers to the media servers spread across its own CDN as “Open Connect 
Appliances” (OCA for short). Deploying embedded OCAs within an ISP’s data center is beneficial for 
both Netflix and the ISP itself: Netflix shortens distances with the end user to its fullest, and the ISP 
offloads substantial Netflix traffic towards the Internet. The most common Netflix content distribution 
paradigm is depicted in Fig. 4.11. On one hand, the end user connects to an OCA found in its ISP’s data 
center to download the content to play. On the other hand, OCAs within ISPs can connect via a VPN to 
OCAs in Netflix’s own data centers to provide additional resiliency and to enable nightly content fill 
and update. Other paradigms involve clients with an ISP which does not have Netflix OCAs. In those 
cases, the client will connect directly to an OCA in one of Netflix's own data centers to download the 
desired content. 
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Fig. 4.11. The most common Netflix content distribution paradigm [8]. 

The OCAs store the entirety of Netflix’s catalog. Each Representation that makes up a given Netflix 
video is stored as a separate file. To illustrate this concept better, Fig. 4.12 shows a depiction of how 
Stranger Things S1-E1 (i.e.: 80077368)  Representations could be stored. 

Fig. 4.12. Different Representations being stored in separate files. 

Netflix stores its media using containers based on ISOBMFF (4.2.6.) following the structure previously 
defined in Fig. 4.9. 

In order to start the playback of a video, the client must first know the Adaptation Sets, Representations 
and Segments available for that content. MPEG-DASH would deliver this information to the client via 
a MPD file, but Netflix uses its own document with its own structure, yet embracing the concepts 
defined by MPEG-DASH. This is the only major difference between Netflix and MPEG-DASH clients. 
From this point onward, we will be referring to Netflix's MPD-equivalent file as “Netflix Manifest” or 
simply as “Manifest”. 

The Netflix client retrieves the Manifest for a particular video by making a request to a specific 
endpoint: 

https://www.netflix.com/nq/msl_v1/cadmium/pbo_manifests/%5E1.0.0/router 

In order to return a valid Manifest, such endpoint must know, among other information, the ID of the 
video that the user wants to download. All the required information is passed to the server via a POST 
request, only after ciphering all that information via MSL (Message Security Layer) [9], which is a 
flexible secure messaging framework implemented over HTTPS. This implies that a sniffer which has 
access to the decrypted HTTPS traffic (e.g.: debugging tools within browsers) will not have access to 
the plain text Manifest, as both its request and reply are implemented on-top of MSL. 
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Thus, the next step that the Netflix client performs is the decryption of the MSL message to retrieve the 
Manifest. In the particular scenario of browser clients, the player is based on JavaScript (cadmium-
playercore.js). This script will be in charge of handling all Segment requests, only after decrypting 
the received Manifest. The techniques used throughout the development of this work to obtain 
deciphered Netflix Manifests will be discussed in 5.2.1.1. 

Netflix Manifests use JSON format. The structure used in Manifests, alongside some annotations which 
describe the equivalences with MPEG-DASH MPD files, are represented in Fig. 4.13. 

 

Fig. 4.13. Snippet of a simplified Netflix Manifest. 

The Manifest shown in Fig. 4.13 is simplified. The actual Manifests have more fields which have not 
been included in the Figure for the sake of readability, but the ones depicted are those which represent 
the breakdown of the video into Adaptation Sets and Representations. The Manifest does not convey 
any subdivision into Periods because Netflix content is single-period (4.2.1.). 

The audio_tracks and timedtexttracks arrays contain multiple Adaptation Sets (i.e.: as many as 
different language options exist for audio and subtitle playback, respectively). The video_tracks array 
contains a single video Adaptation Set because Netflix does not implement different video variants 
depending on the language or any other possible factors (4.2.2.). 
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Within each Adaptation Set, the streams array wraps all its available Representations. The parameter 
bitrate within each Representation helps the Netflix client decide which Representation is the most 
suitable to download based on the current user’s network conditions.  

The urls array contains different endpoints which serve the Segments that make up the corresponding 
Representation. This array always includes 3 different endpoints, defined by their URL and by an ID 
which identifies the OCA. Taking into account Netflix’s CDN architecture, the endpoints offered to the 
user will vary depending on its ISP. These URLs are sorted from most to least preferred endpoint (i.e.: 
the client must first attempt to request the Segments to the first OCA, and if connection issues arise, the 
client can backup to the second OCA, and so on). The offered URLs include GET variables, which are 
used to internally pinpoint the corresponding Representation file. The structure of OCA’s URLs is as 
follows: 

https://ipv4-c040-mil001-ix.1.oca.nflxvideo.net/?o=1&v=70&e=1638394808&t=VEclzczW0n… 

Once the client chooses a Representation to download Segments from, it uses its URLs to build the 
Segments requests. For example, let us suppose that the client wants to download Segments from the 
1080p H.264 Representation of the video Adaptation Set of Stranger Things S1-E1. Let the endpoint 
chosen to request the Segments be https://nflx.oca.foo/?[identifier_GET_parameters], where  
[identifier_GET_parameters] represents the GET variables used to pinpoint the 1080p H.264 
Representation file If the client wanted to download the byte range 30000-75000 from the targeted file 
(because that corresponds to a desired Segment), then the URL that the player would have to generate 
to request that Segment would be: 

https://nflx.oca.foo/range/30000-75000?[identifier_GET_parameters] 

The client appends /range/{firstByte}-{endByte} in between the OCAs domain name and the GET 
parameters. The web server that processes this URL uses the GET variables to target the file (i.e.: the file 
for the 1080p H.264 video variant of Stranger Things S1-E1) and serves to the client the specified byte 
range from such file, serving the Segment as a result. But in order to start requesting Segments, the 
client must first know which Segments (i.e.: which byte ranges) are available for a given Representation 
(i.e.: which Segments make up the 1080p H.264 video variant of Stranger Things S1-E1) . 

For that reason, prior to start requesting any further Segment, the client first asks for the SIDX box of 
the targeted file. Recall that the SIDX box of ISOBMFF containers describes the subdivision of the 
content into Segments. The {firstByte} and {endByte} variables in URLs are processed by the web 
server by taking the first byte of the SIDX box as reference – that is, the web server maps the byte 0 to 
the first byte of the SIDX box of a file, as depicted in Fig. 4.14.  

 

Fig. 4.14. Reference bytes for the web server to process /range/{firstByte}-{endByte}. 

Thus, when the client requests the SIDX box of a Representation, it builds an URL as follows: 

https://nflx.oca.foo/range/0-{endByte}?[identifier_GET_parameters] 
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Web browser Netflix clients are programmed to perform their SIDX requests setting {endByte} to the 
value determined by the following formula (extracted from cadmium-playercore.js player):  

{endByte} = 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐(𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 [𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚]
2000

) · 12 + 2292 

The duration of Stranger Things S1-E1, as stated in its Manifest (Fig. 4.13), is 2931000 ms (48 mins 
51 seconds); therefore, if a Netflix client wanted to request any of its SIDX boxes, {endByte} would be 
19884. Thus, the resulting URL built for SIDX box requests would be: 

 https://nflx.oca.foo/range/0-19884?[identifier_GET_parameters] 

Once the client has access to a SIDX box, it parses it (based on the binary structure defined on Fig 4.10.) 
and gains access to all the Segments that make up that particular Representation. The Table 4.3 
represents the Segment composition for the 1080p H.264 video variant for Stranger Things S1-E1. All 
its information was obtained from parsing the Representation’s SIDX box. 

Segment 
number Size [bytes] Duration [seconds] Byte range to request 

1 58833 3.670 /range/22801-81633 

2 122763 1.335 /range/81634-204396 

3 131766 5.756 /range/204397-336162 

4 228934 5.756 /range/336163-565096 

… 

864 172922 10.010 /range/421528418-421701339 

865 187329 10.010 /range/421701340-421888668 

866 140097 8.592 /range/421888669-422028765 

Table 4.3. Segment breakdown for Stranger Things S1-E1 (1080p H.264), extracted from the 
Representation’s SIDX box. 

The parameter startByteOffset, defined for each Representation independently (Fig. 4.13), pinpoints 
the first byte of media content (see Fig. 4.14). The startByteOffset parameter, together with the sizes 
of each Segment, help build the byte ranges necessary for Segment requests. The byte ranges associated 
with each Segment of Stranger Things S1-E1 (1080p H.264) are also represented in Table 4.3. For this 
particular Representation, as startByteOffset=22801 (defined in Fig. 4.13) and the size of the first 
Segment is 58833 bytes, the byte range linked to the first Segment is /range/22801-81633. The 
subsequent byte ranges are calculated taking the immediately preceding range as reference. 

The player must download the SIDX box of all Representations it wants to have access to. Typically, 2 
SIDX boxes are downloaded when playback starts (as shown in Fig. 4.15, which captures the sequence 
of downloaded resources in a browser Netflix client). One SIDX will belong to the video Adaptation 
Set, and the other will belong to the audio Adaptation Set of choice. If the user changes language at 
some point during playback, or if the client detects major variations in bandwidth and decides to switch 
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to another resolution, the player will request more SIDX boxes to have access to the Segments of the 
most suitable Representations. 

Fig. 4.15. Sequence of downloaded resources on a browser Netflix client when starting playback. 

As the sizes of Segments are static, playing a certain video will always trigger the same Segment 
download sequence, which enables the identification of Netflix playback traffic despite being 
encrypted. 
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5. Identification of Netflix content
This work explains the process carried out to identify Netflix encrypted content based on the 
architecture that Netflix implements as of February 2022. The work is subdivided in 3 major tasks: 

1. Identification of Netflix Segment sizes in PCAP files.
This task tackles the processing of PCAP files to:

● identify which TCP packets belong to Netflix Segment downloads.
● calculate the size of all downloaded Segments.

2. Indexing of Netflix catalog.
This task entails the creation of databases which map all Netflix Segment sizes to video IDs,
and store video metadata.

3. Matching.
The matching stage determines precisely which Netflix video was being watched based on the
Netflix Segments spotted in a PCAP file. This task involves the algorithms developed to
correlate all Segment sizes identified in a PCAP file to the videos indexed in the databases.

While the task 2) Indexing of Netflix catalog constitutes its own process, the tasks 1) Identification of 
Netflix Segment sizes and 3) Matching are performed back to back in the process of identification of a 
video. 

5.1. Identification of Netflix Segment sizes in PCAP files 
In order to be able to tell which Netflix video was being watched based on a PCAP file, such capture 
file must be analyzed first to determine which Netflix Segments were downloaded while capturing. 
Thus, we implemented a program which takes a PCAP file as input and returns as output the sizes of 
all Netflix Segments downloaded within the capture. The workflow of the PCAP analyzer is synthesized 
as a black box diagram in Fig. 5.1. 

Fig. 5.1. PCAP analyzer workflow. 

Briefly, the PCAP analyzer takes a capture file and lists all the TCP connections established with OCAs. 
It later identifies all the HTTP requests within each of those TCP connections as they must belong to 
Segment requests, and it finally processes the reply to each of those requests to extract the size of each 
downloaded Segment. The subsequent sections offer a further explanation of each of the stages that 
make up the analyzer. 
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5.1.1. Identification of OCAs 
The first task that the PCAP analyzer must do is filter all traffic that does not imply communication 
with a Netflix OCA. Thus, the program must first know which endpoints, among all registered in the 
capture, correspond to an OCA. 

The script lists all IPs involved in TCP connections and requests their domain names individually 
(reverse DNS resolution). An OCA can be easily identified by its domain name because it contains 
“.oca.”. These domain name mappings do not change overtime in the timescale we were using. 
Therefore, all IPs whose domain name contains “.oca.” will be considered Netflix OCAs. All Netflix 
Segments available within the capture must belong to TCP connections established with OCAs. 

5.1.2. Identification of TCP connections with OCAs 
Once the program knows which endpoints correspond to OCAs, it will now isolate each TCP connection 
with an OCA to later on look for Segments in each connection individually. This process is done via 
tcpdump. 

As an example, let us imagine a PCAP file which captured traffic with 5 different OCAs (e.g.: 
23.246.50.158,   23.246.50.174,   23.246.51.146,   23.246.51.173,   23.246.51.175). By requesting 
tcpdump to output all TCP packets addressed to the HTTPS port of an OCA, and by parsing such output, 
the program can easily list all the TCP connections established with all OCAs. A snippet of the lines 
that tcpdump outputs in this stage is represented in Fig. 5.2. 

17:39:33.639240 IP 10.20.1.192.58806 > 23.246.50.158.443: tcp 0 
17:39:35.423383 IP 10.20.1.192.48800 > 23.246.51.173.443: tcp 0 
17:39:35.455741 IP 10.20.1.192.48800 > 23.246.51.173.443: tcp 0 
17:39:35.455936 IP 10.20.1.192.48800 > 23.246.51.173.443: tcp 517 
17:39:35.516662 IP 10.20.1.192.47732 > 23.246.51.146.443: tcp 0 
17:39:35.516693 IP 10.20.1.192.47734 > 23.246.51.146.443: tcp 0 
17:39:35.531063 IP 10.20.1.192.48800 > 23.246.51.173.443: tcp 0 
17:39:35.531182 IP 10.20.1.192.48800 > 23.246.51.173.443: tcp 0 
17:39:35.531275 IP 10.20.1.192.48800 > 23.246.51.173.443: tcp 0 
17:39:35.533945 IP 10.20.1.192.48800 > 23.246.51.173.443: tcp 64 

... 

Fig. 5.2. Outgoing packets of TCP connections with OCAs (tcpdump). 

The Table 5.1 presents all the TCP connections established with OCAs, obtained after parsing the entire 
output of tcpdump in the context of the aforementioned example. All Netflix Segments available within 
the capture must have been downloaded from these TCP connections: 
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OCA 
Client Port 

IP Name 

23.246.50.158:HTTPS ipv4-c056-mil001-ix.1.oca.nflxvideo.net:HTTPS 58800 
58802 
58804 
58806 

23.246.50.174:HTTPS ipv4-c088-mil001-ix.1.oca.nflxvideo.net:HTTPS 56024 
23.246.51.146:HTTPS ipv4-c034-mil001-ix.1.oca.nflxvideo.net:HTTPS 47732 

47734 
47744 
47746 

23.246.51.173:HTTPS ipv4-c093-mil001-ix.1.oca.nflxvideo.net:HTTPS 48800 
23.246.51.175:HTTPS ipv4-c095-mil001-ix.1.oca.nflxvideo.net:HTTPS 47194 

Table 5.1. TCP connections with OCAs. 

5.1.3. Identification of Segment requests in each connection 
The purpose of this stage is to identify all TCP packets involved in the download of a Segment. The 
workflow of this stage starts by identifying all HTTP GET packets within a TCP connection. The 
identification of HTTP packets will be explained in the following paragraphs. With all HTTP GET requests 
identified, all the downstream TCP packets associated with each request are grouped independently. 
These groups are parametrized by the SN range that the TCP packets cover. Grouping all downstream 
TCP packets by its originating HTTP GET request will help the following stage in the Analyzer calculate 
the exact size of each downloaded Segment independently. A depiction of the aim of this stage is 
represented in Fig. 5.3.  

Fig. 5.3. Pinpointing of all TCP packets involved in the download of a Segment. 

For example, the SN range 3499853619 - 3499947307 covers all the TCP packets involved in the 
download of the Segment triggered by the first HTTP GET request. It is important to remark that this SN 
range does not reveal the size of the downloaded Segment – that is, the size of this first Segment is not 
93689 bytes (where 93689 = 3499947307 – 3499853619 + 1). This is because the downloaded payload 
includes HTTP and TLS headers, which should be ignored for the calculation of the actual size of the 
Segment. The SN ranges are used by the next stage to access the corresponding TCP packets in order 
to process their payload and obtain the exact size of the Segment.   

In order to prevent prompting the calculation of the payload size for a requested resource which is not 
a Segment, it is important that all HTTP GET packets within the TCP connection correspond to Segment 
requests. If there exists any HTTP request for a resource other than a Segment, it must be ignored.  It is 
also important to remark that Netflix does not implement HTTP pipelining in its Segment requests: only 
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one Segment can be requested at a time per connection. Therefore, in terms of HTTP packets, a new 
HTTP GET packet will not be captured within a TCP connection until the Segment requested in the 
preceding HTTP GET request is fully downloaded. In other words, in between two consecutive HTTP GET 
packets there will only be TCP packets corresponding to the download of a Segment. The PCAP 
analyzer takes advantage of this to isolate all TCP packets in between two consecutive HTTP GET requests 
to later on reassemble the entire TCP payload, which is a necessary step for the calculation of the exact 
downloaded Segment size. 

Performing Deep Packet Inspection (DPI) to pinpoint all HTTP GET packets among all TCP frames is not 
an option because they are encrypted (HTTPS). Considering that a TCP connection with an OCA is 
only used to download Segments, all the traffic that we can expect from this sort of connections are: 

● Client —> OCA:443. HTTP GET packets (requesting Netflix Segments).
● Client <– OCA:443. TCP packets transporting a Segment, as a reply to a HTTP GET packet.
● Client —> OCA:443. ACKs.

The only data that the client ever sends are the HTTP requests for Segments. The rest of the packets 
that the client transmits are ACKs, which are very short in size since they do not contain any payload. 
When it comes to the HTTP GET packets, their size (physical level) averages around 900 bytes in the set 
of captures carried out throughout the development of this work. The program is able to pinpoint all 
HTTP GET packets within a TCP connection by isolating packets which comply with the following 
requirements: 

● The packet is sent to the HTTPS port of an OCA (Client —> OCA:443).
● The size of the packet is greater than 890 bytes.

Fig. 5.4 overlaps the distributions of the sizes of the following packets within a TCP
connection with an OCA:

1. TLS client_hello packets (the largest packets of the entire TLS handshake process).
2. HTTP GET requests for Segments.
3. HTTP GET requests for resources other than Segments.

 Attending to such figure, it is safe to assume that any packet greater than 890 will be an HTTP 
GET request for a Segment. 

Fig. 5.4. Packet size distributions for TLS client_hello packets and HTTP requests. 
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After removing all packets which do not comply with the previous criteria, the remaining frames must 
correspond to HTTP GET packets. Continuing with the example and filtering with tcpdump (following the 
previous criteria) the TCP connection with Client Port = 56024 and OCA = 23.246.50.174:HTTPS (Table 
5.1), the following packets remain (which must be HTTP GET packets): 

15:45:02.683874 IP 10.20.1.192.56024 > 23.246.50.174.443: Flags [P.],
seq 3084383485:3084384392, ack 3499853619 ... 

15:45:03.037701 IP 10.20.1.192.56024 > 23.246.50.174.443: Flags [P.],
seq 3084384392:3084385315, ack 3499947308 ... 

15:45:03.675901 IP 10.20.1.192.56024 > 23.246.50.174.443: Flags [P.],
seq 3084385315:3084386238, ack 3500033083 ... 

15:45:03.818196 IP 10.20.1.192.56024 > 23.246.50.174.443: Flags [P.], 
seq 3084386238:3084387163, ack 3500166719 ... 

... 

Fig. 5.5. HTTP GET packets in TCP connection with OCA = 23.246.50.174:HTTPS and  Client Port = 
56024 (tcpdump). 

Since the first HTTP GET packet has ack = 3499853619, the SN of the first byte of the server’s reply to 
that request will be 3499853619. Analogously, the SN of the first byte of the reply to the second HTTP 
request will be 3499947308, which implies that the byte with SN 3499947307 is the last byte of the first 
Segment. Consequently, the download for the first Segment is located between the SN range 
3499853619 - 3499947307. Table 5.2 collects the SN ranges that can be derived from Fig. 5.5. 

HTTP GET 
request num. SN range of reply 

1 3499853619 - 3499947307 

2 3499947308 - 3500033082 

3 3500033083 - 3500166718 

… 

Table 5.2. SN ranges for each Segment download. 

Knowing the SN range that covers the download of a particular Segment helps the program analyze the 
downstream TCP payload lying in that SN range to calculate precisely the size of the downloaded 
Segment in the next stage.  

5.1.4. Segment size calculation 
This stage performs the calculation of the exact size of a Segment using tcpflow, which is a UNIX 
command line program that extracts the payload of all TCP packets involved in the TCP connections 
described by a Wireshark DisplayFilter. 
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Let us take the example of the first HTTP GET request described in Table 5.2, whose reply covers SN 
range 3499853619 - 3499947307. To extract the payload of all TCP packets involved in the first Segment 
download, the PCAP analyzer calls tcpflow using the following filter: 

(src 23.246.50.174 and src port 443) and (dst 10.20.1.192 and dst port 56024) and 
tcp[4:4]>=3499853619 and tcp[4:4]<3499947308 

tcp[4:4] is the expression used by Wireshark’s DisplayFilters to refer to the SN of a TCP packet. The 
previous filter is referencing all TCP packets sent Client:56024 <– OCA:443 (where OCA = 
23.246.50.174) which comply with 3499853619 ≤ 𝑆𝑆𝑆𝑆 < 3499947308 – that is, the filter is pinpointing 
all downstream TCP packets involved in the download of the first Segment found in the Client:56024 
<–> OCA:443 TCP connection. 

The construction of the TCP packets involved in Segment downloads (whose payload will be extracted 
by tcpflow) is depicted in Fig. 5.6. 

Fig. 5.6. Construction of TCP packets involved in a Segment download. 

The application data stream (a) (i.e.: the Segment) is split and introduced (encrypted) into several 
consecutive TLS frames, forming the TLS stream (b). TLS frames are packets of the Transport Layer 
Security cryptographic protocol, used to provide secure communications over a network. HTTPS is 
implemented over TLS. 

The frame that yields after prepending a TLS header to the encrypted TLS payload (TLS payload = 
application payload + TLS tail) is denoted as a “TLS Record”. The communication with Netflix servers 
is implemented over TLSv1.3. The structure of a TLSv1.3 Record is depicted in Fig. 5.7. 

Fig. 5.7. Structure of a TLSv1.3 Record used for Application Data transportation. 

The TLS Record Header is made up of the following fields: 
● The field Type determines what sort of data is being transported on the encrypted payload. The

value 0x17 is used for “Application Data”. The HTTP replies (200 OK + Segment) are
considered Application Data . Other values are used during the TLS handshake process.
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● The field Version specifies the TLS protocol version.
● The field Length determines the size (in bytes) of the encrypted data.

The structure of the encrypted payload within TLSv1.3 Records is represented in Fig. 5.8: 

Fig. 5.8. Structure of the encrypted data in TLSv1.3 Records. 

The encrypted data in TLSv1.3 Records [11] arises from adding a 17-byte tail to the actual application 
data, and then ciphering it. The application data introduced within TLS Records can have a maximum 
size of 16KB (214 bytes = 16384 bytes) [10]. Since the encryption operation does not affect the overall 
payload size (e.g.: 500 bytes of encrypted content implies that the decrypted content was 500 bytes long 
as well), the size of the actual deciphered application data sent over a TLSv1.3 Record can be calculated 
using the Length field as follows: 

Deciphered application data size [bytes] = Length [bytes] – 17 

This formula is also represented in Fig. 5.8. Calculating and adding up the sizes of the “Application 
Data” field among all the TLS Records that make up the download of a Segment, results in the exact 
size of said decrypted Segment. Fig. 5.9 represents this summation process with a Segment which takes 
4 TLS Records to download. 

Fig. 5.9. Summation process resulting in the exact size of a downloaded Segment. 
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Performing this summation process for all requests found among all TCP connections with OCAs yields 
a list with the sizes of all the Segments downloaded within the capture. 

However, prior to any calculation, the algorithm must discard the first TLS header, as it always belongs 
to an independent TLS Record which contains exclusively the HTTP OK heading message (see Fig. 5.10), 
which is not relevant for the calculation of the size of the Segment itself. 

Fig. 5.10. HTTP OK header forming its own independent TLS Record. 

Once the first TLS Record is discarded, the remaining Records contain Segment Data. At this point, the 
first byte in the stream must correspond to the first byte of a TLS header (that of the TLS Record after 
the HTTP OK Record). The processing that this summation algorithm performs to scan the TLS Record 
headers across the reconstructed payload stream is depicted in Fig. 5.11.   

Fig. 5.11. Processing of TLS Record Headers. 

The processing of the Length field of the first TLS header adds 16384 bytes to the Segment size 
summation, but also contributes to skipping the entire TLS payload to the next TLS header (which starts 
in SN 16406 =  5 + 16401). This process is held iteratively until the end of the stream, concluding with 
an accurate size for the downloaded Segment. 
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As the calculation of Segment sizes considers exclusively the Length field of TLS Record Headers, 
TCP packets which happen to not contain any TLS Header are irrelevant in this process. For this reason, 
this summation process is resistant (to a large degree) to missing TCP packets which, for whatever 
reason, have not been captured. Fig. 5.12 highlights all special casuistry that can arise when processing 
TLS Record Headers. 

Fig. 5.12. Special scenarios in TLS Record Header processing. 

In the scenario (a), the 3rd TCP packet was not captured. However, that is not a problem for the algorithm 
because the Length field of the TLS header in the first TCP packet makes the program skip the 
calculation directly to the 4th TCP packet, where the next TLS header is. 

However, in (b) the 4th TCP packet is missing. This is fatal, because the algorithm is told to skip the 
calculation to a byte which was not captured. In this case, the summation process aborts and the program 
is unable to determine the exact size of the Segment. 

Finally, (c) demonstrates that the algorithm recognises when a TLS header happens to be split into 2 
consecutive TCP packets. The program reassembles the header and the summation process continues. 
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5.2. Indexing of Netflix catalog 
Now that the PCAP analyzer is able to tell which Netflix Segments were downloaded within a capture 
with encrypted traffic, the program needs to correlate such Segments to a Netflix video. We must store 
all the sizes of all the Segments that make up every single video in Netflix catalog to be able to perform 
a match down the line. This task entails the implementation of two different databases to store: 

1. Segment sizes, and their relationship to a Netflix video.
2. Video metadata (e.g.: movie or TV show title, season and episode number, episode name, etc.)

5.2.1. Indexing of Segments within a video 
As a brief summary, let us recall that all Netflix videos have a unique ID and are made up of Adaptation 
Sets (i.e.: different media streams) and Representations (i.e.: different variants in terms of resolution, 
bitrate or codec), which are split into Segments. The hierarchy of Adaptation Sets and Representations 
for a particular Netflix video is represented in a Netflix Manifest (4.3.), which the client requests to start 
performing Segment downloads. Prior to downloading any Segment, the client first retrieves a SIDX 
box (4.2.6.), which describes how the subdivision into Segments was performed for a given 
Representation. The client utilizes the SIDX box to build the HTTP requests for Segments (4.3.). The 
playback of the same Representation of the same Netflix video always triggers the same Segment 
download sequence, and this is why Netflix traffic is identifiable. 

Table 4.3 represented the sizes of the Segments that make up the 1080p H.264 video variant for Stranger 
Things S1-E1, which was obtained from just parsing its corresponding SIDX box. Analogously, if we 
parse the SIDX box of each video Representation available for all videos in the entire Netflix catalog, 
we obtain the complete mapping between Segment sizes and Netflix videos (i.e.: which Segment sizes 
correspond to which Netflix videos). 

The process that we have developed to retrieve the Segment sizes for a certain video is described in Fig. 
5.13. 

Fig. 5.13. Segment extraction workflow. 

First of all, the Manifest for the desired video is downloaded. Parsing the Manifest (which has a JSON 
structure) grants access to all the Representations that make up that video. Each Representation offers 
a list of URLs from where that Representation can be downloaded. The program uses the URLs of a 
Representation to trigger the download of its SIDX box, which later parses to extract all its Segment 
sizes. The subsequent sections offer a further explanation of each of the stages that make up the Segment 
extraction process. 
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5.2.1.1. Manifest request 

Prior to any other step, the program needs to obtain the Manifest of the video whose Segments we want 
to extract. As it was explained in 4.3., all the Manifest requests are processed by 
https://www.netflix.com/nq/msl_v1/cadmium/pbo_manifests/%5E1.0.0/router, and are sent over 
Netflix’s own Security Layer protocol (MSL). 

Throughout the development of this work, Manifest requests were handled with pymsl [12], which is a 
Python library that requests Netflix Manifests via MSL’s API. A pymsl client is initialized by 
authenticating as a real Netflix user. This client accepts multiple authentication methods, including the 
email and password for your Netflix account. An instance of this client implements the load_manifest 
method, which takes the ID of a Netflix video and returns its corresponding Manifest. 

A pymsl client accepts extra parameters (to be passed when initializing the client) which set specific 
configurations for the returning Manifest. One of these extra parameters is “profiles”, which is an 
array that includes the codecs supported by the user. This list is processed by the server to build a 
customized Manifest which includes Representations encoded with codecs that the client supports. Fig. 
5.14 includes the snippet of Python code necessary to initialize a pymsl client (setting specific profiles) 
and to download the Manifest for 80092521. 

p = ['playready-h264mpl30-dash', 'playready-h264mpl31-dash'...] 
client = pymsl.MslClient(user_auth_data,profiles=p) 
manifest = client.load_manifest(80092521) 

Fig. 5.14. Python code snippet to request the Manifest for 80092521. 

The JavaScript player used in browser clients (cadmium-playercore.js) includes a hardcoded list with 
all video, audio and subtitles codecs available for playback. To request a Manifest, the client first 
constructs a “profiles” array appending all the codecs it supports, among all defined in the hardcoded 
list. All the video codecs defined in “profiles” are gathered in Table 5.3. The nametags used to 
identify each codec follow, generally, the following syntax: 

[codec][profile][level][variant] 

For example, the nametag “playready-h264mpl30-dash” refers to the H.264 codec using the “Main 
Profile” (mp) and the level 3.0. For the sake of understanding what this nomenclature refers to, in the 
scope of codecs a profile defines a set of preconfigured capabilities enabled for the encoding process; 
while a level is a specified set of constraints that indicate a degree of required decoder performance for 
a profile. For instance, the H.264 codec defines 3 different profiles: Baseline Profile (bp), Main Profile 
(mp) and High Profile (hp). The difference between profiles (within the same codec) lies in the set of 
algorithms and features used during the encoding process (i.e.: higher profiles lead to higher 
compression efficiencies at the expense of a higher computational cost). H.264 also defines a wide set 
of levels, which range from L1 to L6.2. In particular, Level 3.0 aims for a 720x576@30fps output 
video, regardless of the chosen profile. The higher the profile and the higher the level, the better the 
quality of the output video. Each codec defines its own set of profiles and levels. 

As every codec defined within “profiles” leads to very different compressions, a same video, when 
compressed with the different codecs, leads to different Segment sequences. This behavior is depicted 
in Fig. 5.15. 
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Codec family Profiles 

playready-h264-dash playready-h264mpl30-dash      playready-h264hpl30-dash   
playready-h264mpl31-dash      playready-h264hpl31-dash 
playready-h264mpl40-dash      playready-h264hpl40-dash   
playready-h264hpl22-dash 

vp9-dash-cenc vp9-profile0-L21-dash-cenc    vp9-profile0-L31-dash-cenc 
vp9-profile0-L30-dash-cenc    vp9-profile0-L40-dash-cenc 

hevc-dash-cenc hevc-main10-L30-dash-cenc     hevc-main10-L41-dash-cenc  
hevc-main10-L31-dash-cenc     hevc-main10-L50-dash-cenc 
hevc-main10-L40-dash-cenc     hevc-main10-L51-dash-cenc  

hevc-dash-cenc-prk hevc-main10-L30-dash-cenc-prk     hevc-main10-L40-dash-cenc-prk 
hevc-main10-L31-dash-cenc-prk     hevc-main10-L41-dash-cenc-prk 

hevc-dash-cenc-prk-do hevc-main10-L30-dash-cenc-prk-do     hevc-main10-L41-dash-cenc-prk-do 
hevc-main10-L31-dash-cenc-prk-do     hevc-main10-L50-dash-cenc-prk-do 
hevc-main10-L40-dash-cenc-prk-do     hevc-main10-L51-dash-cenc-prk-do 

hevc-dv5-dash-cenc-prk hevc-dv5-main10-L30-dash-cenc-prk  hevc-dv5-main10-L41-dash-cenc-prk 
hevc-dv5-main10-L31-dash-cenc-prk  hevc-dv5-main10-L50-dash-cenc-prk 
hevc-dv5-main10-L40-dash-cenc-prk  hevc-dv5-main10-L51-dash-cenc-prk 

hevc-dv5-dash-cenc-prk-do hevc-dv5-main10-L30-dash-cenc-prk-do           hevc-dv5-main10-L41-dash-cenc-prk-do 
hevc-dv5-main10-L31-dash-cenc-prk-do           hevc-dv5-main10-L50-dash-cenc-prk-do 
hevc-dv5-main10-L40-dash-cenc-prk-do           hevc-dv5-main10-L51-dash-cenc-prk-do 

hevc-hdr-dash-cenc hevc-hdr-main10-L30-dash-cenc     hevc-hdr-main10-L41-dash-cenc 
hevc-hdr-main10-L31-dash-cenc     hevc-hdr-main10-L50-dash-cenc 
hevc-hdr-main10-L40-dash-cenc     hevc-hdr-main10-L51-dash-cenc 

hevc-hdr-dash-cenc-prk hevc-hdr-main10-L30-dash-cenc-prk  hevc-hdr-main10-L41-dash-cenc-prk 
hevc-hdr-main10-L31-dash-cenc-prk  hevc-hdr-main10-L50-dash-cenc-prk 
hevc-hdr-main10-L40-dash-cenc-prk  hevc-hdr-main10-L51-dash-cenc-prk 

hevc-hdr-dash-cenc-prk-do hevc-hdr-main10-L30-dash-cenc-prk-do           hevc-hdr-main10-L41-dash-cenc-prk-do 
hevc-hdr-main10-L31-dash-cenc-prk-do           hevc-hdr-main10-L50-dash-cenc-prk-do 
hevc-hdr-main10-L40-dash-cenc-prk-do           hevc-hdr-main10-L51-dash-cenc-prk-do 

av1-dash-cbcs-prk av1-main-L20-dash-cbcs-prk    av1-main-L40-dash-cbcs-prk 
av1-main-L21-dash-cbcs-prk    av1-main-L41-dash-cbcs-prk 
av1-main-L30-dash-cbcs-prk    av1-main-L50-dash-cbcs-prk 
av1-main-L31-dash-cbcs-prk    av1-main-L51-dash-cbcs-prk 

Table 5.3. Codecs and profiles supported by Netflix. 

Fig. 5.15. Different Segment subdivision depending on the codec. 
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To obtain the totality of Segments that make up all qualities for all the codifications for a certain video, 
we must configure the pymsl client to accept all codec variants. This, however, is not as easy as setting 
“profiles” to have all the variants declared in Table 5.3. This is because the Manifest server will build 
for the client a custom Manifest which exclusively points to videos encoded with the most favorable 
profiles among all profiles declared by the client. For example, if a client declares that it supports all 
H.264 and VP9 profiles, the server will only include the VP9-encoded videos in the returning Manifest,
as the server internally considers the VP9 codec to be preferable for playback over H.264.

In fact, H.264 is the least preferred codec, yet the Manifest server requires the “profiles” array to 
include the following H.264 profiles ("playready-h264mpl30-dash", "playready-h264mpl31-dash",

"playready-h264hpl30-dash", "playready-h264hpl31-dash"), otherwise the Manifest request fails. 
Crafting a “profiles” array which includes the compulsory H.264 profiles, together with the profiles 
whose Segments we actually want to extract, leads (on paper) to a Manifest pointing to the codec-
specific Representations. The theoretical strategy defined to extract all Segments (for all qualities for 
all the codifications) for a certain video is depicted in Fig. 5.16. 

Fig. 5.16. Strategy for the extraction of all Segments of 80092521. 

The previous strategy is only theoretical, as on practice we discovered that there are multiple factors 
which affect the profiles that the server includes in its Manifests (e.g.: user agent, user device, etc.). The 
server needs to verify a very particular set of conditions in order to correctly build a Manifest with the 
codecs described in “profiles”. If the conditions are not met (e.g: if the declared user agent is not what 
the server would expect for the codecs declared) the server limits to construct a Manifest with the 4 
compulsory playready-h264-dash codecs, ignoring any preference set in “profiles”. Throughout the 
development of this work we only managed to extract Segments from playready-h264-dash and vp9-
dash-cenc profile families. Extraction for the rest of families is pending investigation.  

5.2.1.2. SIDX box parsing 

Once a Manifest has been downloaded, it is time to parse it to access the URLs leading to the SIDX 
boxes. Considering the Manifest’s structure defined in Fig. 4.13, the parser must navigate to the urls 
array within each video Representation. Having the URL for each Representation pinpointed, we can 
request the SIDX box for each Representation as explained in 4.3.. Then, the program will parse each 
SIDX box individually to extract the Segment sizes for each video Representation. 

The SIDX box parser we developed takes a SIDX box as input and returns a list of Segment sizes as 
output. The extraction of the Segments (and the parsing of the box in general) is performed taking into 
consideration the binary structure of SIDX boxes, defined in Fig. 4.10. 
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Once the SIDX box for each video Representation has been parsed, the program has a list with all the 
Segment sizes that make up that video (for the codification included in the Manifest). 

5.2.1.3. Storage 

The previous stage yields a list of Segment sizes (which depend on the codec) associated with a video 
ID. These relationships must be stored in databases to enable the matching later on. 

To store the relationships between Segment sizes and videos, mongoDB [13] was chosen. Its non-
relational model and its orientation to documents is optimal for the sort of data that we want to store. 
The philosophy guiding the structure of our mongoDB database consists in having one file per Segment 
size and appending in that document all video IDs that have that Segment size within their Segments. 
Each file within the database is defined by the parameter “_id”, which takes the value of a Segment 
size, and is used internally by mongoDB’s searching algorithm. Alongside the “_id”, each file also 
defines the parameter “list”, which is an array that includes the IDs of all videos in the Netflix catalog 
which have a Segment whose size is the one defined in “_id”. A representation of this philosophy is 
defined in Fig. 5.17. 

Fig. 5.17. Structure of Segment sizes database (mongoDB). 

Fig. 5.17 exemplifies that videos 80166369, 70208599, 541018 
and 70281532 (among other IDs which have not been 
represented) have a Segment, somewhere in its Representations, 
whose size is 50376 bytes. The same reasoning can be applied 
for the Segment sizes 98589 and 112632. The database adopts 
this structure for the sake of efficiency for the matching 
algorithms. 

If the previous dataset was to be introduced in a SQL-based 
database (e.g.: MySQL), the Segment ⟷ ID mapping would 
have to follow the structure depicted in Fig. 5.18, where both 
the “segment” and “video_id” column would have to work as 
primary keys. 

Fig. 5.18. Structure of the equivalent 
Segment sizes database (MySQL). 
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To test the performance between implementations (mongoDB vs MySQL), we introduced in both 
databases all the Segments of a reduced set of 150 videos. Fig. 5.19 represents the timespan of the 
insertion of such dataset in both databases, where mongoDB results clearly faster. 

 

Fig. 5.19. Insertion times comparison between mongoDB and MySQL. 

Furthermore, Fig. 5.20 represents a scatter plot which describes the search times comparison between 
mongoDB and MySQL for 1000 different queries. Each query consists of returning all IDs associated 
with a given Segment size. A point x = 1.5 ms and y = 1.25 s (notice that each axis is measured in 
different units) implies that a query which took 1.5 ms to be solved in mongoDB took 1.25 seconds in 
MySQL. Despite having most of the points laying over the X axis (representing queries which took 
fairly the same to be solved in mongoDB and MySQL), a considerable amount of queries took much 
longer to be solved with MySQL. As it will be explained in 5.3, the matching algorithms conduct several 
queries before concluding which video was being watched, so mongoDB is definitely preferable over 
MySQL when it comes to searches. For our work, MongoDB clearly outperforms MySQL both in 
insertions and searches. 

 

Fig. 5.20. Search times comparison between mongoDB and MySQL. 

Data insertion into mongoDB’s Segment database works as follows: if a Segment size is not registered 
yet – that is, if a file for a specific Segment size does not exist, a new document is created, with its 
“_id” parameter set to the value of the new Segment size and its “list” parameter set to an array 
containing the Netflix video ID associated to such Segment size. From that point onward, when a 
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Segment size is already registered, any new insertion related to that Segment size appends the video ID 
to the existing “list” array. 

 

5.2.2. Indexing of video metadata 
While the video ID is used internally to store the Segment ⟷ video mappings for the entire Netflix 
catalog, it would be preferable to display to the user the metadata of the product visualized during 
capture (e.g.: movie or TV show title, season and episode number, episode name, etc.) rather than an 
unintuitive ID. 

To gain access to all this metadata, we used the API that Netflix clients internally use to retrieve this 
information: shakti. This API was designed for private use, but the community has managed to 
discover at least some of the requests that it can handle, which have been documented in [14]. Among 
all requests feasible, the following two stand out: 

● Request for all product IDs within a Netflix category (i.e.: Action & Adventure, Anime, Sci-fi, 
Comedy, etc.). 

● Request for video metadata. 

In order to request all video IDs within a Netflix category given the category ID (e.g.: category 6548 – 
comedies), the following array must be sent as payload to the API’s endpoint: 

["genres", 6548, {"from": 0, "to": 3500}] 

This request returns up to 3500 IDs associated with category 6548. The 3500 threshold was set 
arbitrarily to guarantee that all products linked to a category are returned in each request – no category 
does really have as many products.  

Within the returning list of IDs, TV shows (or in general any content split into episodes) are represented 
by an ID which refers to the entire TV show as a whole. For example, the TV show Disenchantment 
has 80095697 as its ID, which does not point to any video or episode but to the whole product. In fact, 
each episode has its own ID (first episode: 80117711, second episode: 80145115, third episode: 
80145116, etc.) but these episode IDs are not returned within this shakti request. 

In order to request all the metadata for a movie, it is enough to know its ID. For example, to request 
metadata for 60023642 (Spirited Away), the following arrays must be sent as payload to the API’s 
endpoint: 

["videos",60023642,["title","synopsis","maturity","summary","seasonCount"]], 
["videos",60023642,"boxarts","_1280x720","webp"] 

The metadata retrieved via shakti when sending the previous payload is represented in Fig. 5.21 in its 
JSON structure. 
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Fig. 5.21. Video metadata retrieved via shakti for 60023642. 

When it comes to TV shows, the metadata retrieved includes the information relative to its seasons and 
episodes. All the extra parameters that the API requires to access the metadata from seasons and 
episodes are detailed in [14]. A snippet of the information retrieved via shakti associated with the TV 
show 80095697 (Disenchantment) is represented in Fig. 5.22: 

 

Fig. 5.22. Video metadata retrieved via shakti for TV show 80095697. 
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All the retrieved metadata relative to movies and TV shows (together with its seasons and its episodes) 
was stored in a MySQL database. A relational database was chosen as it is the most straight-forward 
and intuitive method to operate with this sort of datasets. The implementation involves 4 tables: 

1. products. This table contains the ID, title, synopsis, boxart and maturity rating for all Netflix 
products. A flag is also stored which determines whether a given product is a movie or a TV 
show. 

2. id2product. This table relates the ID of each video to the ID of the product to which it belongs. 
For example, video_id 80117711 (Disenchantment S1-E1 ID) is linked to product_id 
80095697 (Disenchantment TV show ID). For movies, video_id = product_id. 

3. episodes. This table is populated with all the episodes that make up all Netflix’s TV shows. 
Each episode is defined by its video ID, the ID of the season to which it belongs, the number 
and title of the episode, a brief synopsis and its boxart. 

4. seasons. This table is populated with all the seasons that make up all Netflix’s TV shows. Each 
season is defined by its season ID, its full name, its short name and its length in episodes. 

 
Fig. 5.23 offers a depiction of all 4 tables and the relationships established among them. 

Fig. 5.23. MySQL tables for Netflix metadata storage and their interrelationship.  
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5.2.3. Crawler 
The crawler is the program which iterates through Netflix catalog and extracts their Segments (as 
described in 5.2.1.) and their metadata (as explained in 5.2.2.) to introduce them in their corresponding 
database. Its workflow is represented in Fig. 5.24 and further explained in the subsequent paragraphs. 

 

Fig. 5.24. Netflix catalog crawler workflow. 

The list of categories which feed the crawler is documented in [15], which describes absolutely every 
category used internally by Netflix. For each category, all its products are requested; and for each 
product: 

1. all its Segments are dumped (for the movie itself or for all its underlying episodes if the product 
is a TV show; in both cases for different profile families as represented in Fig. 5.15). 

2. all its metadata is dumped (for the product itself and for all its underlying episodes if the product 
is a TV show). 

Once the crawler runs out of categories to process, it sleeps for 12 hours and it then starts another 
crawling loop, cycling through the entire Netflix catalog again in search for new products, new episodes 
of already existing TV shows and new Representations.  

The crawler keeps track of all the Representations whose Segments have successfully been dumped on 
its own independent MySQL table called profiles. A snippet of this table is included in Fig. 5.25. 

 

Fig. 5.25. profiles table, storing all the Representations whose Segments are successfully introduced 
in mongoDB. 

Keeping track of all the Representations enables the crawler to detect if a never-seen Representation 
has arised for a given ID (based on its resolution, framerate or bitrate), prompting its Segment dump. 
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As of January 28th 2022, the databases are populated with Segments and metadata of 6069 products, of 
which 1804 correspond to TV shows (or in general, content split into episodes) and 4265 to movies. 
Overall, 45012 videos (among movies and episodes of TV shows) populate the Netflix catalog. 

 
 

5.3. Matching 
Matching is the stage which correlates the Segments downloaded in a capture with the Segment sizes 
and metadata indexed in the databases, resulting in an accurate identification of the captured Netflix 
content. 

Two different algorithms have been developed to perform the matching operation: ballot and 
deterministic. Each approach correlates the Segments in the capture with the sizes in mongoDB 
differently, resulting in different success ratios and computational costs. 

 

5.3.1. Ballot algorithm 

“Ballot” is a matching algorithm which correlates the Segments by performing a votation process in 
which the most upvoted ID will be considered to belong to the Netflix video captured. An example of 
this algorithm in action is depicted in Fig. 5.26 and further detailed in the paragraphs below. 

The list at the top of Fig. 5.26 contains the sizes of all the Segments downloaded within a capture of 
Netflix traffic. Such list outputs after analyzing the corresponding capture file with the method 
explained in 5.1. 

The algorithm retrieves from mongoDB the list of video IDs associated with each Segment size and 
keeps track of how many times has each ID appeared among iterations. The information that mongoDB 
returns includes the parameter list, which is an array listing all video IDs which have the Segment 
size in _id. For example, in the first iteration, the array mapped to Segment size 252711 is [81030842, 
81264749, 70244169, 80197874, 81043228, ...].  

As of the 1st iteration, all the IDs included in the array have appeared once overall. However, as of the 
2nd iteration, 81264749 has appeared twice; and as of the sixth, 6 times. In this particular iteration, the 
second most voted ID is 81030842, which has appeared 3 times overall.  

The ballot algorithm is set to hit a match when the difference between the most popular ID and the 
second most popular ID is 4 votes. For a justification for this threshold and a general performance 
comparison when setting the threshold to different values, refer to 6.2. For this example, the match hits 
after 7 iterations. 
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//List of captured Segments 

[252711, 922245, 10644, 969232, 629934, 113085, 169177, 282495, 727589, 922245, 
313072, 1478, 541701, 90091, 128567, 970490, 446675, 1062458, 369444, 1275858, 291205, 
144433, 996218, 615268, 727589, 220781, 308792, 1661478, 1031142, 914533, 969232, 
500858, 650343, 5214545, 544880, 2283410, 541701, 3436822, 832161, 2666657] 

 
Fig. 5.26. Ballot matching for the identification of 81264749. 
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5.3.2. Deterministic algorithm 

“Deterministic” is a matching algorithm that specifies which video was being watched on capture by 
intersecting the lists that mongoDB returns until a single ID remains. It is based on the theoretical fact 
that the ID of the captured content must be present in all the ID lists retrieved from mongoDB in each 
iteration. An example of this algorithm in action is depicted in Fig. 5.27 and further detailed in the 
paragraphs below. 

//List of captured Segments 

[252711, 922245, 10644, 969232, 629934, 113085, 169177, 282495, 727589, 922245, 313072, 
1478, 541701, 90091, 128567, 970490, 446675, 1062458, 369444, 1275858, 291205, 144433, 
996218, 615268, 727589, 220781, 308792, 1661478, 1031142, 914533, 969232, 500858, 
650343, 5214545, 544880, 2283410, 541701, 3436822, 832161, 2666657] 

 

Fig. 5.27. Deterministic matching for the identification of 70244169. 

The capture used for this example is the same used for the demonstration of the ballot algorithm in Fig. 
5.26 – that is why the list of captured Segments is identical. For each iteration, it is shown the JSON 
that mongoDB returns when querying for a Segment size. Such JSON includes the parameter list, 
which is an array listing all video IDs which have the Segment size in _id. For example, in the first 
iteration, the array to Segment size 252711 is [81030842, 81264749, 70244169, 80197874, 81043228, 
…]. In the second iteration, an intersection is calculated between the array that yields from the 1st 
iteration and the array that results after querying to mongoDB the list mapped to 922245. This 
intersection only contains 2 IDs, which are the only IDs common to the first and second Segment sizes. 
This intersection is used by the next iteration to calculate further intersections. The process finishes 
when the intersection has only one ID, which corresponds to the only Netflix video having all the 
Segments analyzed throughout iterations. In this example, the match hits after 3 iterations. 

There is one caveat worth studying for the Deterministic algorithm – together with video Segments, the 
client also downloads audio Segments. The PCAP analyzer cannot tell the difference between video 
and audio Segment requests, so it proceeds to calculate its size as expected. The distributions for audio 
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Segment sizes for the heaac-2-dash codec are plotted in Fig. 5.28 for both bitrates available: 64 kbps 
and 96 kbps. This is valid for all videos across Netflix; thus, the audio Segment sizes are not 
identificative of a Netflix video and must be discarded from the list of Segments to prevent poisoning 
the intersections and misleading the video identification. 

 
(a) 

 
(b) 

Fig. 5.28. Audio Segment sizes distribution for both bitrates available for heaac-2-dash codec. a) 64 
Kbps b) 96 Kbps 

Audio Segments are always requested in batch, in groups of 2 or in groups of 16 (i.e.: for audio 
download, the byte range requested within HTTP requests can cover up to 16 audio Segments). 
Considering the audio Segment sizes distributions as Gaussian, the confidence intervals (with 99.9999% 
confidence level) covering the sizes of the requests for audio Segments are represented, by bitrate and 
by batching type, in Table 5.4: 
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 64 kbps 96 kbps 

2 by 2 requests 31612 - 35297 47088 - 51833 

16 by 16 requests 252903 - 282374 376704 - 414661 

Table 5.4. Sizes for requests of batched audio Segments. 

Any Segment whose size falls within any of the ranges specified in Table 5.4 will be considered an 
audio Segment and discarded. Of course, it can occur that a retrieved video Segment happens to have a 
size within those ranges, being discarded unnecessarily. This, however, is a minority case. Let Fig. 5.29 
be an example of this – the distribution for the sizes of video Segments for 720p videos (H.264 codec) 
is represented, and the discarded ranges are represented in red. It is shown that only a minor fraction of 
Segments is discarded to prevent misleading calculations, which leaves a wide range of Segment sizes 
available in order to guarantee the operability of the Deterministic algorithm. 

 

Fig. 5.29. Discarded Segment size range along the Segment size distribution for 720p videos in H.264 
codec. 
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6. Results 
6.1. Generation of the set of captures for testing 
For the purpose of testing, debugging and measuring the hit rates for the developed algorithms, an 
extensive set of Netflix captures was required, which was generated with an automated system that we 
developed. This capture generation system is possible thanks to Selenium [17]: a tool which enables the 
automation of web browsers. Our system uses Selenium to take control of a Google Chrome instance, 
programmed to visualize back to back all the Netflix videos listed in a randomly generated set of IDs. 
All the random IDs in the set are retrieved from our databases. Programming a web browser instance 
with Selenium to automate Netflix playback is as easy as telling the browser to visit the URL 
https://www.netflix.com/watch/[ID], replacing [ID] iteratively with each ID of the list. As the 
Google Chrome bot plays a video, the traffic is captured with tcpdump and stored on disk. 

Actually, to make the capture set truly representative of the variety of Netflix catalog, the playback for 
each video is triggered at 4 different timestamps. The initial instant of playback can be forced within 
web browser clients with the GET parameter ‘t’, setting its value to the exact second in which we want 
the playback to begin. For example, visiting https://www.netflix.com/watch/70244169?t=600 
triggers the playback of 70244169 (Code Lyoko S1-E1) starting at the 10:00 timemark. Implementing 
this into our Selenium bot enables us to capture the download of 4 different Segment sequences for the 
same video, which will allow us to test our algorithms in a great variety of different scenarios. 

With this tool, we created 2 different capture sets: 

● Capture set A. The purpose of this set is to conduct a representative performance test for both 
algorithms. In this set, the captures are triggered when the Netflix client starts to fill the buffer, 
which is the moment of the entire playback with the highest density of Segment downloads. 
This allows for short captures with a high number of Segments, ideal for an intensive test of 
our algorithms. This set consists on 5000 captures (1250 videos captured at 4 different 
timestamps) which last for 15 seconds each. 

● Capture set B. The purpose of this set is to capture the traffic generated once the initial buffer 
filling finishes, which is when the Segment requests slow down as they now occur only when 
a Segment has been popped from buffer. With this set, we will test whether the algorithms are 
able to identify a Netflix video based on traffic not recently started. As the Segment requests 
are now scattered in time, captures have to be longer to obtain a representative set of Segments. 
Captures start 15 seconds into playback (one the buffer is filled) and last for one minute. This 
set consists on 300 captures (75 videos captured at 4 different timestamps). 

Throughout the explanation of the performance results for both algorithms, we will be focusing 
primarily on the Capture Set A, as it is the one specifically designed to measure the hit rate for both 
approaches. It is important to remark that the algorithms were run at a moment in development which 
had the Segments for 23328 videos introduced in mongoDB. The total amount of videos in Netflix 
catalog approximates 45000. Having indexed the Segments of more than half the catalog is enough to 
determine if the algorithms work with big Segments datasets. 
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6.2. Ballot algorithm 

 

Fig. 6.1. Hit rate of the Ballot algorithm. 

When testing the Ballot algorithm with the capture set A, out of 5000 captures: 
● 4852 captures have been correctly identified. 
● 8 captures have been wrongly identified (e.g.: the algorithm identified the traffic to belong to 

video 81085381 when it truly belonged to 81295950).  
● 140 captures have not been identified, which means that the algorithm has not been able to 

associate the traffic to any Netflix video. 

The reasons as to why a capture can be identified incorrectly will be exposed later. Besides that, 
unidentified captures are always caused by the algorithm running out of Segments to keep the votation 
going before arriving to the match condition. We found 3 possible scenarios that lead to unidentified 
captures. Out of the 140 unidentified captures: 

● 9 captures fell into what we called an ID tie. 
● 7 captures correspond to Netflix videos which happen to be mapped to multiple IDs, 

confounding the algorithm. All these captures are gathered in Table 6.2. 
● 124 captures incurred in what we called the “Undetectable ID” scenario. 

We will now proceed to explain the previous three scenarios independently. 

An ID tie occurs when the votation is on the right track to identify the correct video, but as iterations 
go by the matching criteria is never met due to the small difference in votes between the real ID and an 
interfering one. Let us take the capture 1 in Table 6.1 as an example of an ID tie. After 7 iterations, 
81313928 has been voted 6 times while 81313924 has been voted 5 – the difference is not big enough to 
end up identifying the correct video (81313928) and the algorithm run out of Segments to keep the 
voting going. Notice that both IDs correspond to chapters of the same TV show, which share the same 
intro, causing them to share a considerable number of Segment sizes. If the capture had lasted for longer 
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and more Segments had been captured, the algorithm would have presumably ended up identifying the 
video. All the captures that incur in an ID tie are gathered in Table 6.1. 

Capture 
num. 

Real captured 
video Iterations Most voted Second most voted 

1 81313928 7 
81313928 

Kongsuni and Friends (S2-E9) 
6 votes 

81313924 
Kongsuni and Friends (S2-E5) 

5 votes 

2 80174284 61 
70258366 
Oh My God 

7 votes 

80174284 
Boddy Keneddy for President (S1-E1) 

7 votes 

3 80174284 67 
80174284 

Boddy Keneddy for President (S1-E1) 
9 votes 

80209629 
Busted! (S1-E5) 

6 votes 

4 81000864 53 
81000864 

Abducted in Plain Sight 
9 votes 

70014611 
Mobile Suit Gundam I 

5 votes 

5 81000864 51 
81000864 

Abducted in Plain Sight 
7 votes 

81189912 
Drive 

6 votes 

6 81208560 8 
81208532 

Kid-E-Cats (S1-E3) 
8 votes 

81208560 
Kid-E-Cats (S1-E31) 

8 votes 

7 81208539 8 
81208539 

Kid-E-Cats (S1-E10) 
8 votes 

81244369 
Brothers 
5 votes 

8 81208572 8 
81208572 

Kid-E-Cats (S1-E43) 
8 votes 

81208530 
Kid-E-Cats (S1-E1) 

7 votes 

9 81200812 43 
81200808 

Meet the Adebanjos (S2-E16) 
5 votes 

81200812 
Meet the Adebanjos (S2-E20) 

5 votes 

Table 6.1. Captures that incurred in an ID tie. 

Among all captures that fall into an ID tie, the ones with the most unexpected behavior are 2 – 5 and 9. 
In all of these, the number of iterations is significantly bigger than the number of votes of the most 
popular ID. This phenomenon is pending investigation, to determine why there are so many Segments 
which do not contribute to the identification of the actual video. 

Having a video mapped to multiple IDs also unables the ballot algorithm to identify a video. For some 
reason, Netflix has the movie “Wild Dog” mapped to 4 different IDs at least: 81444683, 81444684, 
81444685 and 81427455. Therefore, it is not surprising that the captures 10 – 13 fall into an ID tie, as 
the real ID (81444684) interferes with an equivalent ID (81444685). Furthermore, the indian movie 
“Kurup” is mapped to 2 different IDs (81555298 and 81555313), each featuring a different playback 
language (for this film, the multi-language feature is not handled as the rest of Netflix catalog does). 
Thus, it should come as no surprise that captures 14 – 16 incur in an ID tie. A solution to this scenario 
has not been implemented yet, but it would involve the identification of all multi-mapped videos in our 
databases. All the captures in Set A corresponding to videos mapped to several IDs are gathered in 
Table 6.2. 
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Capture 
num. 

Real captured 
video Iterations Most voted Second most voted 

1 81444684 54 
81444684 

Wild Dog 
54 votes 

81444685 
Wild Dog 
51 votes 

2 81444684 84 
81444685 

Wild Dog 
84 votes 

81444684 
Wild Dog 
84 votes 

3 81444684 117 
81444685 

Wild Dog 
117 votes 

81444684 
Wild Dog 
117 votes 

4 81444684 85 
81444685 

Wild Dog 
85 votes 

81444684 
Wild Dog 
85 votes 

5 81555313 68 
81555298 

Kurup (Hindi) 
68 votes 

81555313 
Kurup (Tamil) 

85 votes 

6 81555313 32 
81555313 

Kurup (Tamil) 
32 votes 

81555298 
Kurup (Hindi) 

29 votes 

7 81555313 57 
81555298 

Kurup (Hindi) 
57 votes 

81555313 
Kurup (Tamil) 

57 votes 

Table 6.2. Captures of videos mapped to multiple IDs. 

Last, a capture incurs in a “Undetectable ID” scenario when, after a huge amount of iterations, the 
expected ID is nowhere to be seen. Table 6.3 represents one of these captures, where after 111 iterations, 
the most voted and second most voted IDs have obtained 16 and 15 votes respectively and neither of 
them corresponds to the expected ID – thus, being undetectable. This phenomenon is also pending 
investigation, but two plausible hypothesis could explain this behavior: 

● The Segment sizes for video 80025221 may have not been introduced correctly in mongoDB. 
● The sizes of the Segments within the capture were incorrectly calculated by the PCAP Analyzer. 

Real captured video Iterations Most voted Second most voted 

80025221 
El Internado (S7-E2) 111 

70229498 
Players 
16 votes 

80236314 
Mission: Impossible – Fallout 

15 votes 

Table 6.3. Example of a capture that incurred in an ID tie. 

 

 

Leaving the unidentified captures aside, the Table 6.4 collects all the captures which were incorrectly 
identified. 
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Capture 
num. Real captured video Algorithm result Iterations Most 

voted 
Second 

most voted 

1 81468690 
Mr. Robot (S2-E11) 

70225597 
Vettai 37 70225597 

20 votes 
80104257 

15 votes 

2 
81468695 

Mr. Robot (S3-E4) 

80998890 
Upstarts 37 80998890 

19 votes 
70014611 

14 votes 

3 81016196 
Mersal 74 81016196 

27 votes 
80188823 

23 votes 

4 

81323630 
F is for Family 
(Season 4 Recap) 

81001887 
6 Underground 115 81001887 

27 votes 
80166185 

27 votes 

5 81001887 
6 Underground 76 81001887 

22 votes 
80166185 

17 votes 

6 81144150 
Sooryavanshi 74 81144150 

20 votes 
70229046 

15 votes 

7 81001887 
6 Underground 101 81001887 

25 votes 
70229046 

20 votes 

8 80025136 
El Internado (S6-E13) 

80017528 
Happy New Year 126 80017528 

22 votes 
80188823 

17 votes 

Table 6.4. Incorrectly identified captures. 

What all 8 incorrectly identified captures have in common is that the number of total iterations is 
significantly bigger than the number of votes of the most popular ID. Furthermore, neither of the most 
voted IDs is the expected one. These characteristics fit the description of the “Undetectable ID” 
scenario. In fact, all these 8 captures can be conceived as “Undetectable ID” captures which, by chance, 
happen to hit the matching criteria before running out of Segments. 

All the results explained up to now represent the behavior of the Ballot algorithm when the difference 
threshold between the most voted and second most voted ID is set to 4 votes. Table 6.5 represents the 
hit rates when setting the threshold to other values. 

Threshold Correct identifications Wrong identifications Unidentified captures 

2 97.06% 0.76% 2.18% 

3 97.08% 0.26% 2.66% 

4 97.04% 0.16% 2.80% 

5 97.02% 0.14% 2.84% 

6 96.94% 0.06% 3.00% 

Table 6.5. Ballot algorithm hit rates for different threshold values. 
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As the Ballot algorithm gets more selective increasing its threshold, the wrong identifications decrease, 
but so tend to do the correct identifications. The ratio of unidentified captures increases with the 
threshold. The threshold was set to 4 during the testing of the algorithm, offering a reasonable trade-off 
between all three parameters.  
  

6.3. Deterministic algorithm 

 

Fig. 6.2. Hit rate of the Deterministic algorithm. 

When testing the Deterministic algorithm with the capture set A, out of 5000 captures: 
● 4328 captures have been correctly identified. 
● 135 captures have been wrongly identified.  
● 537 captures have not been identified. 

It is important to remember that this algorithm calculates the intersection between successive ID lists 
until only one remains. Such ID, by definition, is the only one common to all Segment sizes analyzed 
among all iterations. The hit rate that this algorithm should theoretically achieve is 100%. Having 135 
wrongly identified captures and 537 unidentified captures when using a deterministic algorithm can 
only mean that: 

● either the PCAP analyzer calculated wrongly the size of at least one Segment in the capture, 
● or the PCAP analyzer started a Segment size calculation over a HTTP request which in reality 

did not correspond to a Segment request. 

Both scenarios involve misleading Segment sizes which poison the intersections calculated by this 
algorithm, corrupting the identifications as a result. The source of this problem lies on the PCAP 
analyzer – further investigation and debugging is required to improve the deterministic algorithm to 
obtain the 100% hit rate that it should achieve on paper. 
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6.4. Comparison of algorithms 
The Table 6.6 compares several statistical metrics between the ballot and deterministic algorithms: 

Ballot algorithm Metric Deterministic algorithm 

97.04% 
Hit rate 

 

Ratio of correctly identified captures 
relative to the total.  

86.56% 

≤ 100% 
Maximum theoretical hit rate 

 

Maximum hit rate that the algorithm 
should achieve theoretically once all 
the PCAP analyzer bugs are fixed. 

100% 

90.33% 

Exclusive hits 
 

Ratio of correct identifications 
achieved exclusively by each 
algorithm, relative to the total 
amount of unidentified or 
misidentified captures from the other 
algorithm. 

72.86% 

Table 6.6. Comparison of hit rate statistics between both algorithms. 

While on paper the deterministic algorithm should obtain a 100% hit rate, the tests performed 
demonstrate that this is not the case because, as of right now, the intersections can be poisoned by 
misleading Segment sizes. The ballot algorithm is more resistant to those misleading Segments and, in 
fact, it obtains a hit rate very close to 100%.  

Furthermore, with the current state of development of both algorithms, the ballot approach was able to 
correctly identify 607 captures out of the 672 captures (90.33%) that the deterministic approach was 
not able to tackle (those being 537 unidentified + 135 misidentified captures). On the other hand, the 
deterministic algorithm was able to identify 102 captures out of 148 (72.86%) that the ballot algorithm 
could not (those being 140 unidentified + 8 misidentified captures). Each algorithm has a great potential 
to tackle the captures that result problematic to the other algorithm. Therefore, a third algorithm could 
be developed as the merge of the ballot and the deterministic approach, to solve each capture by the 
most effective method. However, still the only way to obtain a 100% hit rate would be to address the 
issues related to misleading Segments. 

 

6.5. Behavior towards in medias res captures 
We call “In medias res captures” to all the captures in the Set B, which were triggered once the buffer 
was filled, from when the Segments start to be requested only once another Segment is popped from 
buffer. These captures are less convenient to test the algorithms quickly, but get closer to a real capture 
environment, in which a capture can be triggered with the Netflix traffic already started. The hit rates 
for both algorithms analyzing Capture Set B are represented in Fig. 6.3. 
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Fig. 6.3. Hit rates for both algorithms for the “in medias res” capture set. 

The hit rates demonstrate that video identification is still possible for both algorithms despite capturing 
already started traffic. The pie charts depict that the ratios of correct identifications have worsened for 
both algorithms when comparing them with the results obtained with Capture Set A. This, however, is 
not a problem – the statistics demonstrate that video identification is still possible for in medias res 
captures. These ratios would tend to the ratios obtained with Set A if the in medias res captures were 
held for longer than a minute, but the important milestone is that the general operation of the algorithms 
is still possible when capturing already started traffic. 
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7. Conclusions 
We have demonstrated that the identification of Netflix videos via the characterization of its encrypted 
traffic is still feasible as of 2022. In fact, we have developed a solution for video identification which 
improves the previous existing work in several aspects. 

The fundamental concept on which our algorithms are based is the accurate calculation of the sizes of 
downloaded Segments, instead of estimating them with sliding windows. Despite introducing a minor 
percentage of miscalculations, this deterministic approach for the obtention of Segment sizes made 
possible the identification of videos with few Segments, which speeds up the identification process to 
a few seconds. 

Our work also improves the state of the art by implementing a much faster method to extract an up-to-
date snapshot of Netflix catalog. This is done by using Netflix's internal API (shakti) to obtain the 
products deterministically, instead of having to scrap Netflix front-end. Furthermore, we managed to 
use another Netflix API (via pymsl library) to gain access to sizes of Segments much faster than having 
to download them by visualizing each video for a few seconds. Our method also leads to a higher level 
of customization, as we can specify which profiles we want to download the Segments from. 

All these led to the development of Netflix identification algorithms capable of successfully identifying 
a video based on its encrypted traffic. With a set of 5000 captures and 23328 videos registered in the 
databases, we obtained a practical 97.04% success rate for our algorithms  – although a theoretical 100% 
success rate can be achieved with further development. 

8. Future work 
We have implemented an efficient algorithm for the identification of Netflix encrypted content, but 
there are some extra features pending development which would enhance the operability of our 
programs. The most remarkable pending features are: 

● Improving the Deterministic algorithm until 100% hit rate. This task involves: 
○ Investigation as to why “Undetectable ID” captures (6.2.) exist. 
○ Identification of Netflix videos associated with multiple IDs (6.2.). 
○ Registering in our databases the Segments for all profiles available across all Netflix 

clients (5.2.1.1.). 
● Improving the Segment size calculator (5.1.4.) to prevent calculations coming to a halt when a 

TCP packet with TLS header is missing. 
● Enabling our algorithms to work in live capture environments with multiple Netflix videos 

being played simultaneously.  
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Appendix 

A. Intuitive introduction to adaptive pseudo-streaming. 
Multiple paradigms exist when it comes to content delivery. Let us take an example of a video that 
wants to be consumed by an end user. Let the size of that video be 3 GB. Let us also suppose that the 
server delivering such video sends that particular content to the client at 250 Mbps. The client will 
receive its desired content at, approximately, 250 Mbps. 

The first paradigm treats the video being delivered as a single binary file. As such, the video cannot be 
decoded and played on destination until the whole binary stream is fully downloaded on the client. A 3 
GB video at a 250 Mbps delivery rate would take around 100 seconds to be fully delivered to the end 
host. Thus, the content playback cannot start until around two minutes have passed at least. 

 

Fig. A.1. Content delivery based on direct download. 
 

This approach has several technical limitations, but the biggest one is that playback cannot start until 
the content is completely downloaded. 

Desirably, users would like to start the playback of content as fast as possible. As direct download 
cannot solve this issue, pseudo-streaming arises as the natural evolution to full-download in content 
distribution. 

Pseudo-streaming is based on dividing the content that wants to be delivered into small, accessible 
chunks that can be requested individually as the content playback takes place. 

Let us now suppose that the 3 GB video is split into 100 MB chunks, resulting in 30 divisions. As each 
video chunk is now its own unique file and can be requested individually, content playback can start as 
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soon as the first chunk is fully downloaded. An uninterrupted and smooth playback experience will take 
place if the client downloads the subsequent chunks as it plays the already downloaded ones. 

 

Fig. A.2. Content delivery via pseudo-streaming. 
 

As the first chunk’s size is 100 MB, and the server delivers it at a 250 Mbps rate, the client will take 
around 3.2 seconds to download it and to start playback, instead of two minutes. In order to guarantee 
a smooth experience, the second chunk must already be downloaded when the first chunk’s playback 
finishes. Otherwise, a playback interruption will happen, as depicted in Fig. A.3. 
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Fig. A.3. Playback interruption due to the lack of buffered chunks. 
 
Clients implement a buffer which stores several adjacent chunks before starting playback. Playback 
starts when the buffer is sufficiently filled. As buffered chunks are consumed, subsequent chunks are 
requested to keep filling the buffer. Thus, interruptions never happen as long as the buffer keeps being 
fed. This behavior is represented in Fig. A.4. 
 

 
 

Fig. A.4. Smooth playback thanks to buffered chunks. 
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Pseudo-streaming overcomes the technical limitations that direct download has. To get started, playback 
can start without having the whole content downloaded, which allows for a much more immediate 
playback experience. Also, pseudo-streaming leads to a more efficient memory usage. 

 
Fig. A.5. Playback bar for pseudo-streamed content. 

 
While direct download would require to store the entirety of the content on a hard drive, pseudo-
streamed content only requires to keep on RAM the buffered chunks (Fig. A.5). Previous chunks are 
popped from RAM whenever they are consumed (thus, they free up resources) and future chunks will 
be requested whenever they are needed (they do not use resources if they are not going to be consumed 
in the short term). Direct download content makes use  of hard drive resources, even when the content 
is not being played. 
 
Furthermore, letting the client decide when to request chunks allows it to react to changing network 
conditions. To illustrate this point, let us consider a video whose chunk composition is depicted in Fig. 
A.6. 
 

 
 

Fig. A.6. Chunk composition for a Money Heist episode displayed in 720p. 
 
The figure represents the first 8 seconds of an episode of Money Heist with a 720p resolution. Those 
first seconds are made up of 3 chunks. The size of each chunk is represented within each subdivision 
(i.e.: the size of the first chunk is 875 KB). The target minimum bitrate for optimal playback is 5 Mbps. 
If the user receives the chunks at a bitrate lower than 5 Mbps, interruptions will occur.  

This interruption behavior is outlined in Fig. A.7. The first two chunks are downloaded when the client’s 
available bandwidth is 5 Mbps. Playback starts when 2 chunks are available in buffer. When the second 
chunk download finishes, the client’s available bandwidth drops from 5 Mbps to 1 Mbps, which causes 
the third chunk download to last for almost 6 seconds. This download takes so long that the third chunk 
is not available when the second chunk has finished its playback, which leads to an interruption. 
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Fig. A.7. Playback interruption due to client’s bandwidth decrease. 
This interruption could have been avoided if the download of the last chunk lasted shorter in order to 
be introduced in buffer on time. To make such download faster, the only solution would have been to 
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download a chunk smaller in size. Let us now consider the same content with the same chunk 
composition but with 3 alternative resolutions (Fig. A.8). 
 

 
 

Fig. A.8. Chunk composition for a Money Heist episode for multiple resolutions. 
 

In the same way that the client has total control over when to request new chunks, it does also have 
control over which kind of chunks to request. If the client detects the bandwidth drop, it can request a 
lower resolution chunk to accomodate to the worsened network conditions.  

 
Fig. A.9. Chunk request sequence to accomodate to worsened bandwidth. 
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If the client requested the chunks as portrayed in Fig A.9, no interruption would occur (Fig A.10). 
 

 
 

Fig. A.10. Uninterrupted playback using multiple video resolutions. 
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Overall, pseudo-streaming offers great advantages compared to direct download: 
● Immediate playback without having the whole content downloaded. 
● Content does not need to be stored on hard drive. 
● Adaptability to changing network conditions. 

 
The client has total control over chunk requests by deciding their quality and when to download them. 
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B. Digital media storage. Containers. 
The Segments that any pseudo-streaming protocol delivers are, ultimately, video, audio or subtitle 
chunks. All this media is stored in servers. When it comes to digital media storage [6], three concepts 
must be clear: codecs, containers and formats. 

A codec is a program or hardware able to both encode and decode a digital stream. Video and audio 
encoding is generally performed for the sake of compression. The difference from codec to codec lies 
in the algorithm used to compress the raw media signal and in the syntax used to store the information. 
Different algorithms lead to varying compression rates. As technology has evolved, codecs have 
become more efficient, achieving greater compression rates without significant drops in perceived 
quality. For example, some of the most popular video codecs are H.264 (a.k.a. AVC), H.265 (a.k.a. 
HEVC) and H.262 (a.k.a. MPEG-2); and indisputably, the most well-known image codecs to the general 
public are JPEG, PNG and GIF. 

A container allows multiple data streams to be introduced into a single file. Containers define how all 
individual streams are multiplexed. The difference between containers lies in the multiplexing 
technique and in the metadata introduced for further detailing those multiplexed streams.  

The use of containers is very common in digital video storage. For example, if video.mp4 is a video 
that a user has stored on a hard drive, the user expects both video and audio to play (and sometimes 
even subtitles) when opening such file. Clearly, video.mp4 is a container which wraps different media 
streams into a single file. Some of the most remarkable video containers to the general public are AVI, 
MP4 or QuickTime File Format.  

In another vein, the use of containers is not applicable to images, as there are no supplementary streams 
required for the delivery and rendering of pictures. 

The format represents the binary syntax used to store the information. The format used by a particular 
file is generally denoted by its extension. For example, the document chapter_1.pdf has .pdf as its 
extension, and this lets a computer know that such file must be processed by a PDF viewer. This 
program understands the binary format used by the PDF file to store the information and, therefore, 
such information can be retrieved by the program to be displayed to the user. 

In the field of images, the format is directly related to the codec used. For instance, the file photo.jpeg 
is the binary stream that outputs when encoding a raw image using the JPEG codec (ignoring metadata). 
The extension .jpeg tells the computer that such file must be processed by a program that implements 
the JPEG codec, in order to decode the information and render the image on screen. 

However, in the scope of videos, the extension is not related to the codecs used. For example, the file 
video.mp4 is the binary stream that outputs when multiplexing several encoded media streams in 
accordance to the syntax defined by the MP4 container. The extension .mp4 tells the computer that such 
file uses a MP4 container to combine multiple media streams, but it tells nothing about the codecs used. 
Any program able to interpret a MP4 container will see that video.mp4 wraps several encoded streams. 
The container itself includes the metadata that specifies the codec required to decode each stream for 
playback. This makes it clear that codecs and containers work independently: a container can wrap 
multiple streams encoded with a wide range of codecs. 
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