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Abstract. Traditionally, stability assessment of wind turbines has been performed by
eigenanalysis of the azimuthally-averaged linearized system after applying the Multi-Blade
Coordinate (MBC) transformation. However, due to internal or external anisotropy, the MBC
transform does not produce an exact Linear Time-Invariant (LTI) system, and a Floquet analysis
is required to capture the influence of all periodic terms, leading to a more accurate stability
analysis. In this paper exponential integration methods that use system linearizations at
different blade azimuth positions are used to integrate the perturbed system state and compute
the Floquet monodromy matrix. The proposed procedure is assessed for a simple 6 DOF wind
turbine model and a more complex aeroelastic model of a 5MW onshore wind turbine. The
defined along-the-path or moving-point exponential integrator is found to be the suitable in
order to perform a Floquet stability analysis even using a coarse linearization grid.

1. Introduction
An important aspect of the dynamic response of wind turbines is the potential presence of
instabilities or critically low-damped modes. Current tools for stability and modal analysis of
wind turbines can be classified as linear and non-linear (OMA, POMA, PARMAX...) [1]. Our
work falls within the scope of the linear ones.

Coleman [2] introduced a transformation of physical blade coordinates into multi-blade
coordinates (MBC) describing the rotor motion as a whole in the inertial or fixed reference frame.
For rotors with three or more isotropic blades, the Coleman or MBC transformation provides a
means to model an intrinsically periodic system such as a wind turbine so it closely resembles
Linear Time-Invariant (LTI) one, allowing the use of well-known LTI modal analysis and control
techniques. Hansen [3] used the MBC transformation to improve modal dynamics in order to
avoid stall-induced edgewise vibrations and later combined it with an eigenvalue approach to
obtain modal properties of a three-bladed wind turbine model [4]. Bir [5, 6] used MBC in
conjunction with the aeroelastic code FAST [7] to study stability and modal characteristics of
a 5 MW wind turbine and later implemented the MATLAB code MBC3.

For a Linear Time-Periodic (LTP) system, the MBC transformation does not produce an
exact LTI model. Interestingly, it filters out the periodic terms in the equations of motion
except the integral multiples of ΩNb, where Ω is the rotor speed and Nb is the number of
blades [5]. The MBC transformation only renders the system LTI when the system is internally
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(identical and symmetrically mounted blades) and externally (absence of tower shadow, wind
shear and gravity) isotropic. As system isotropy is difficult to asses and quantify a priori, a
Floquet analysis should be preferred to perform a strict stability and modal analysis of the wind
turbine [5, 8].

In the context of wind turbines, Stol and Balas [9] used classical Floquet analysis to study
the modal behaviour of a 2-bladed teetered rotor wind turbine for different DOF models. Later,
Stol [10] compared the results of using the MBC transformation and Floquet analysis to study the
modal parameters of the 5 MW NREL onshore wind turbine, finding only significant differences
for the idling extreme operation DLC of the IEC standard. Skjoldan and Hansen [11,12] showed
the similarity between Coleman and Lyapunov-Floquet (L-F) transformations, being the former
a special case of the L-F transformation when the rotor is internally and externally isotropic.
Skjoldan [11, 13] also used Floquet theory to show how blade anisotropy creates additional
harmonic terms in the solutions, and Tcherniak [14] proposed mode shape asymmetry of an
anisotropic rotor as a blade damage indicator. Following the approach of Peters et al. [15],
Bottasso and Cacciola [8] used Floquet theory and modal participation factors to analyze the
harmonics present in the response of a simple edgewise hinged blade model, including tower
side-side motion. They revealed infinite number of harmonics, with the most noticeable ones
around the frequency spectrum of the response.

Classical Floquet analysis requires the computation of the state transition matrix over a
period by integrating the system for a set of linearly independent initial conditions perturbing
the steady periodic trajectory. Ros et al. [16] showed that even if exponential integrators are
rare in multibody dynamics literature, they exhibit outstanding characteristics, demonstrating
it for a simple, rigid and flexible nonlinear mechanical systems.

In this paper innovative exponential integration methods of the perturbed system state are
proposed. These are based on a set of system linearizations at different blade azimuth positions.
They are used to compute the Floquet monodromy matrix, whose eigenvalues rule the stability
of the system. These exponential integration methods are assessed for integration and Floquet
stability analysis for a simple 6 DOF model and the well-known 5 MW NREL onshore aeroelastic
wind turbine model using the OpenFAST linearization capability. In this model, the effect of
adding rotor internal anisotropy is also assessed.

2. Stability and modal analysis of wind turbines
A general first order linear differential equation can be expressed as:

ẋ(t) = A(t)x(t) +B(t)u(t), (1)

where x(t) and u(t) are the state and input vectors, respectively, and A(t) and B(t) are the
system state and input matrices. For a T -periodic linear dynamic system, the system and input
matrices are periodic, A(t + T ) = A(t) and B(t + T ) = B(t). Let the second order LTP
dynamical system

M(t)q̈(t) +C(t)q̇(t) +K(t)q(t) = 0, (2)

where q(t) is the vector of generalized coordinates and M(t) = M(t + T ), C(t) = C(t + T ),
K(t) = K(t + T ), are the mass, damping and stiffness matrices, respectively. Defining
x = [q⊤, q̇⊤]⊤, this system system can be cast into first order form given by (1). Then, the
system state matrix becomes

A(t) =

[
0 1

−M(t)−1K(t) −M(t)−1C(t)

]
. (3)
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2.1. Coleman transformation
For an internally (identical and symmetrically mounted blades) and externally (absence of tower
shadow, wind shear and gravity) isotropic system, the Coleman or Multi-Blade Coordinate
(MBC) transformation [2] for bladed rotors renders the system LTI. Then, stability and modal
analysis can be performed by simple eigenanalysis of the transformed system matrix.

Let
[
qj1, q

j
2, q

j
3

]⊤
be the blade coordinates in the rotating frame corresponding to the jth

degree of freedom (DOF) of a 3-bladed rotor. The MBC-transformed coordinates
[
aj0, a

j
1, b

j
1

]⊤
are defined through the following relation: qj1(t)

qj2(t)

qj3(t)

 = t̃(t)

 aj0(t)

aj1(t)

bj1(t)

 =

 1 cosψ1(t) sinψ1(t)
1 cosψ2(t) sinψ2(t)
1 cosψ3(t) sinψ3(t)

 aj0(t)

aj1(t)

bj1(t)

 , (4)

where ψi = Ωt + 2
3π(i − 1) is the azimuth angle of blade number i and Ω = 2π/T is the mean

rotational speed of the rotor. The physical interpretation of the transformed coordinates can be
found in [3–6].

The full state vector x(t) = [q(t)⊤, q̇(t)⊤]⊤ of a generic wind turbine system containing
DOFs in the rotating and fixed reference frames can be expressed in multi-blade coordinates
zC(t) using the following transformation:

x(t) = TC(t)zC(t), (5)

where

TC(t) =




INf

t̃(t)
. . .

t̃(t)


Nq

0Nq

d
dt


INf

t̃(t)
. . .

t̃(t)


Nq


INf

t̃(t)
. . .

t̃(t)


Nq


Ns

. (6)

Nf is the number of DOFs in the fixed reference frame, Nq the total number of DOFs of the
system, and Ns = 2Nq the number of elements in the state vector. By substitution of (5) into
system equation (1), the MBC-transformed system equation żC(t) = AC(t)zC(t) +BC(t)uC(t)
is obtained, where

AC(t) = T−1
C (t)

(
A(t)TC(t)− ṪC(t)

)
(7)

is the transformed system matrix, which will be time-invariant if the above mentioned isotropicity
conditions are fulfilled. For systems with isotropic blades under moderate wind shear conditions
in normal operation, the transformed system matrix is closely time-invariant, and aeroelastic
modal properties are usually calculated based on the eigenanalysis of the azimuthally-averaged
system matrix.

However, for systems with higher degree of anisotropy, the Coleman transformation does not
produce an exact LTI system. Still, it provides strong reduction on the periodic time dependency
of the system matrix elements, leading to numerically well-conditioned system equations, which
is highly desirable if a subsequent Floquet analysis is to be performed. In order to assess the
stability of a generic LTP system it is necessary to introduce the so-called Lyapunov-Floquet
(L-F) transformation [17,18].
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2.2. Lyapunov-Floquet transformation
A fundamental solution of the T -periodic system (1) consists of N solutions calculated by
numerical integration over a period T with a linearly independent initial condition set. These
solutions are arranged as columns of the so-called fundamental solution matrix :

φ(t) =
[
φ1(t), φ2(t), . . . ,φN (t)

]
. (8)

Hence, φ̇(t) = A(t)φ(t). Periodicity in A(t) means that φ(t+T ) is a solution of the system,
φ̇(t+ T ) = A(t)φ(t+ T ), and φ(t+ T ) can be expressed as a linear combination of φ(t) as:

φ(t0 + T ) = φ(t0)C, (9)

where C = φ−1(t0)φ(t0+T ) is a non-singular matrix termed monodromy matrix of the system1.
The eigenvalues (ρ1, ρ2, ..., ρk) of the monodromy matrix known as characteristic or Floquet
multipliers rule the stability of the periodic system. The system will be asymptotically stable if
all the multipliers lie inside the open unit disk in the complex plane, |ρk| < 1; ∀ k.

The main theorem of Floquet theory, Floquet’s theorem [17], gives a canonical form for each
fundamental matrix solution of system, which consists in a product of a purely periodic matrix
and a matrix exponential:

φ(t) = L(t)L−1(t0)φ(t0)e
R(t−t0), (10)

where R is a constant non-singular matrix termed Floquet factor, φ(t) a fundamental solution
matrix of the system, L(t) the T -periodic Lyapunov-Floquet (L-F) transformation and the terms
L−1(t0) and φ(t0) are introduced to make the transformation independent of the choice of initial
conditions used to compute the fundamental solution matrix (8). Making t = t0 + T in (10) the
relationship between the monodromy matrix C and the Floquet factor R is obtained:

C = φ−1(t0)φ(t0 + T ) = eRT . (11)

The L-F transformation [17,18] is the bounded, periodic and invertible transformation of the
state vector defined as x(t) = L(t)zLF (t). The L-F transformed LTI system is given by:

żLF (t) = ALzLF (t), (12a)

AL = L−1(t)(A(t)L(t)− L̇(t)). (12b)

The transformed system matrix AL is proven to be time-invariant by substitution of
L(t) = φ(t)e−R(t−t0)φ−1(t0)L(t0) and its time derivative in (12b), yielding:

AL = L−1(t0)φ(t0)Rφ−1(t0)L(t0). (13)

Matrices AL and R have the same eigenvalues as they are similar, thus, either of them can
be used to asses the stability and extract the modal properties of the continuous system.

Matrix R can be computed form the monodromy matrix C as:

R =
1

T
ln(C). (14)

In this way matrix R is undetermined due to the indeterminacy of the matrix logarithm.
However, if matrix C is Jordan decomposed as C = PJP−1 with Jordan form J =
diag {ρ1, ρ2, . . . , ρN}, then in the Jordan decomposition R = VΛV−1, Λ will also be diagonal

1 Note that t has been set to the initial simulation time t0 without loss of generality.
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Λ = diag {λ1, λ2, . . . , λN}. The elements in the diagonal are called the characteristic exponents
of the continuous system, and are also the eigenvalues of the system matrix AL:

λk = σk + iωk = σk + i (ωp,k + jkΩ) , jk ∈ Z (15)

σk =
1

T
ln (|ρk|) (15a)

ωp,k =
1

T
arg (ρk) , ωp,k ∈]− Ω/2; Ω/2] (15b)

where σk, ωk and ωp,k are the modal damping, modal frequency and principal frequency of
mode k, respectively. Since the complex logarithm has an infinite number of branches, the
modal frequency ωk is undetermined within an integer multiple of the rotor speed Ω.

This indeterminacy does not affect the solution given by (10). However, several approaches
are present in the literature in order to handle this inherent frequency indeterminacy, that
is, the choice of jk. Stol [9] suggested to solve it to match modal frequencies present in the
frequency-response of the system. Skjoldan [11–13] suggested to select the principal solution
such that the harmonic components on the ground-fixed degrees of freedom are minimized, this
is, defining the modal frequency as the one to which corresponds the most constant mode shape
in multiblade or non-transformed inertial coordinates. Bottasso and Cacciola [8] employed the
concept of modal participation factors formerly defined by Peters et al. [15], where the norm of
the individual harmonic components of the periodic mode shape determines the proportion in
which that harmonic contributes to the response of each particular mode.

The transient response of the system in physical coordinates corresponding to a sole
perturbation of mode k can be expressed as:

xk(t) = uk(t)e
λk(t−t0) = uk(t)e

(λp,k+ijkΩ)(t−t0), (16)

where λp,k = σk+iωp,k is the principal Floquet exponent of mode k and uk(t) the periodic mode
shape in physical coordinates, given by

uk(t) = φ(t)vke
−λk(t−t0) = φ(t)vke

−(λp,k+ijkΩ)(t−t0) = up,k(t)e
−ijkΩ(t−t0). (17)

In the above equation, up,k(t) = φ(t)vke
−λp,k(t−t0) is the principal periodic kth mode shape,

defined so that it does not depend on the integer jk and vk is the kth column of V, the kth
eigenvector obtained from Jordan decomposition of matrix R. Since the principal periodic
mode shape up,k(t) is T -periodic, it contains only harmonics of an integer multiple of Ω and its
elements can be expanded into complex Fourier series as:

up,k(t) =

∞∑
n=−∞

Un,ke
inΩt ≈

NF∑
n=−NF

Un,ke
inΩt, (18)

where Un,k is the vector containing the Ns Fourier coefficients of the nth harmonic for mode
number k and NF determines the number of Fourier harmonics used in the decomposition.
The relative contribution of the nth harmonic to the kth mode can be measured defining its
participation factor, ϕn,k, as:

ϕn,k =
∥Un,k∥∑
n ∥Un,k∥

. (19)

It may be desirable to choose jk so that the eigenvalues of R are coincident with or close
to those of the averaged, MBC-transformed system matrix. In the case of an internally and
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externally isotropic system this can be done exactly by repeating this analysis based on the
MBC-transformed principal periodic modal shape rp,k(t), defined as

rp,k(t) = T−1
C (t)up,k(t). (20)

In this case, rp,k(t) has a single harmonic, and its participation factor is equal to 1. Setting
jk to the corresponding harmonic number leads to the expected eigenvalues and the mode shape
of the MBC-transformed system rk(t) = T−1

C (t)uk(t) becomes constant. For mildly anisotropic
systems, by selecting jk as the nth harmonic with highest participation factor, the obtained
characteristic exponent will be similar to the corresponding eigenvalue of the averaged MBC
transformed system matrix and the periodic mode shape will be made as constant as possible.
However, for systems with a higher degree of anisotropy a certain mode may not be precisely
defined by a single modal frequency.

3. Exponential integrators in multibody dynamics
Exponential integrators have demonstrated interesting properties in the field of multibody
dynamics [16]. Based on the linearized system state and input matrices, provided by an
aeroelastic code such as OpenFAST, they integrate the system equations. Let the nonlinear
system

ẋ(t) = f(x(t),u(t)) (21)

linearized as
ẋ(t)− ẋ0 = A(x0,u0)(x(t)− x0) +B(x0,u0)(u(t)− u0), (22)

with A = ∂f
∂x and B = ∂f

∂u . The so-called a Zero Order Hold (ZOH) exponential discretization
shown in [16] takes the form:

xk+1 = x0
k + eA(x0

k,u
0
k)∆t

(
xk − x0

k

)
+∆tφ1(A(x0

k,u
0
k)∆t)(B(x0

k,u
0
k)

(
uk − u0

k

)
+ ẋ0

k) (23)

where xk and uk are the system state and input vectors at integration step k. ẋ0, x0
k and

u0
k are the state derivative, state and input vectors at the linearization point, and Ak and Bk

are the system state and input matrices given by that linearization. A nearby point at the
stationary periodic orbit is used at each integration step when determining the fundamental
solution matrix for Floquet stability analysis. Note that OpenFAST linearization provides all
the required information: ẋ0, x0

k, u
0
k, Ak and Bk.

Given that the system state and its derivative are known at the linearization points in the
stationary periodic orbit, we have devised an exponential method that computes the state
variation with respect to a moving point P in this orbit:

z(t) = x(t)− xP (t). (24)

We call along-the-path or moving-point exponential integration (MPEI) to the exponential
integration schemes that exploit this idea. In comparison, we call standard exponential
integration, as the previous one, Fixed-Point Exponential Integration (FPEI). Eq. (22) can
be recast to ż(t) = Az(t) + υ(t), where υ(t) = ż(t)−A(x0,u0)z(t) = B(x0,u0)(u(t)− uP (t)).
Then, for a ZOH discretization:

zk+1 = eA(x0
k,u

0
k)∆tzk +∆tφ1(A(x0

k,u
0
k)∆t)υk. (25)

From (24) the state vector is recovered as xk+1 − xP
k+1 = zk+1, leading to:

xk+1 = xP
k+1 + eA(x0,u0)∆tzk +∆tφ1(A(x0

k,u
0
k)∆t)B(x0

k,u
0
k)(uk − uP

k ). (26)
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In the equations above, ∆t denotes the integration time step and φ1 = (A∆t)−1
(
eA∆t − I

)
is

a matrix function that can be numerically computed using diagonal Padé approximants [19].
The filtering effect of the MBC transform can hopefully ease the system integration as

in the transformed state the system resembles more closely LTI one [5, 10]. When using a
MBC transformed state to integrate based on the previously defined fixed and moving point
exponential integrators, we will refer to them as MBC/FPEI and MBC/MPEI respectively.
Although the idea presented here can be used with any exponential integrator, its presentation
and results in this article are based on the ZOH exponential integrator type [16].

4. Application to wind turbine models
The described exponential integrators have been used in order to test the different integrators
and perform Floquet stability analysis for 3-bladed systems with different number of DOFs, as
well as a varying degree of anisotropy.

4.1. Simple rotor-drivetrain-tower model (6 DOF)
The 6 DOF system (Fig. 1) models a simple 2D wind turbine consisting of the tower/nacelle
structure, the drivetrain, and the 3-bladed rotor. A mass mN models the nacelle attached to the
ground by two spring-damper pairs, (kH , cH) and (kV , cV ) along the side-side xG and up-down
yG coordinates. The generator rotor, with angular position ψG, rotates with constant angular
velocity ψ̇G = 1 rad/s. The hub, with inertia moment ID, is attached to the generator rotor
by a torsional spring-damper pair, (kD, cD) along θD coordinate, modeling drivetrain elasticity.
The three blades, indexed with i = 1, 2, 3, are attached to the hub at a radius a, by torsional
spring dampers, (ki, ci) along coordinates ψi. They are modeled as point masses at a distance
b apart from the attachment point with the hub. Gravity force is considered along negative
y-axis direction. The numeric value of the parameters that approximate a generic 10 MW wind
turbine model are the ones used by Tcherniak [14] and are shown in Table 1.

Figure 1. Simplified 6 DOF wind turbine model.
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Table 1. Main parameters of the 6 DOF wind turbine model.

Parameter Symbol Value Units

Tower up-down stiffness kV 5.2× 108 N/m
Tower up-down damping cV 1.588× 106 Ns/m
Tower side-side stiffness kH 2.6× 106 N/m
Tower side-side damping cH 3.636× 104 Ns/m
Nacelle mass (including hub) mN 4.46× 105 kg
Drivetrain stiffness kD 108 N/m
Drivetrain damping cD 5.894× 106 Ns/m
Drivetrain moment of inertia ID 2.6× 107 kgm2

Blade mass (movable part) mi 4.17× 104 kg
Blade edgewise stiffness ki 2.006× 108 N/m
Blade edgewise damping ci 9.813× 105 Ns/m
Blade hinge offset a 13.1 m
Distance from hinge to blade CG b 13.1 m

4.2. Complex aeroelastic model (15 DOF)
The more realistic land-based NREL 5MW reference wind turbine model (NREL 5MW WT) [20]
is used. Normal operating conditions are chosen: Rated velocity (12.1 rpm), torque (43.1 kNm)
with incoming uniform sheared (0.2 power law exponent) wind of 14 m/s. Collective blade pitch
is found to be 6◦ by prior trim analysis. The 15 enabled DOFs include the tower fore-aft (1st
and 2nd assumed modes) and side-side (1st and 2nd modes) bending, drivetrain torsion, blade
flapwise (1st and 2nd modes) and edgewise (1st mode) bending and nacelle yaw rotation. Once
the steady state is achieved, linearizations are determined using OpenFAST [21] at azimuth
steps of 1◦ in the tower vicinity, to account tower induction, and 5◦ otherwise.

An additional anisotropic rotor simulation has been performed increasing by 10% the stiffness
of one of the blades, while decreasing the stiffness of the remaining blades by 5%.

5. Results and discussion
5.1. Evaluation and comparison of exponential integrators
The proposed exponential integrators are tested for the above models using an initial state
deviating from the periodic trajectory. The error w.r.t. the reference integral (MATLAB ode45
AbsTol= 10−14 RelTol= 10−14 for the simple rotor, and OpenFAST Adams-Bashforth 4 for
NREL 5MW WT), ε(t) = ∥x(t)− xref (t)∥ ∥xref (t)∥−1, is shown in Fig. 2. For MBC/FPEI and
MBC/MPEI state is transformed to non-MBC so that errors are measured on equal basis.

For the simplified rotor model results are shown in Fig. 2a. MPEI and MBC/MPEI
integrators show excellent performance, outperforming FPEI and MBC/FPEI, as they show
a considerably smaller value and fluctuation. Using MBC is clearly advantageous for FPEI, a
bit less for the anisotropic rotor. MPEI and MBC/MPEI performance on par is attributed to the
much better performance of MPEI vs FPEI. MBC based integration benefits are questionable
in this case.

Higher error values on NREL 5MW WT simulations, are attributed to a higher model
complexity. There is a more compelling dynamics due to the tower and wind shear effects and
the higher numerical-stiffness of the dynamic model. A smaller performance difference between
FPEI and MBC/FPEI integrators is seen, that gets smaller (as expected) for the anisotropic
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rotor case (see Fig. 2c), showing somehow bigger error values. This is related to higher variability
of system matrix in the anisotropic case. Therefore using MBC for FPEI integration still shows
an edge w.r.t. the simple model.

For all the studied systems of different complexity and anisotropy levels, MPEI and
MBC/MPEI integrators show outstanding performance and are clearly suitable for Floquet
analysis. MBC based integration benefits are questionable for MPEI integrators.

(a) (b) (c)

Figure 2. Relative error of different exponential integrators against the reference for the
following wind turbine models: (a) simple 6 DOF model, (b) NREL 5MW WT (isotropic)
and (c) NREL 5MW WT (anisotropic).

5.2. Floquet stability analysis of the proposed models
The exponential MBC/MPEI has been used in order to perform the Floquet stability analysis for
the same cases presented above. Once the stationary periodic trajectory and the linearizations
are obtained, the fundamental solution matrix φ(t), t ∈ [t0, t0 + T ] is determined by a
set of simulations spanning a single rotation period T starting from initial conditions that
separately perturb each state vector component from the initial stationary state. Subsequently,
the monodromy matrix C and its eigenvalues, the Floquet multipliers, are determined. Then,
the Floquet factorR for jk = 0 is calculated and its principal mode shapes expanded into Fourier
series. Eigenvalue indeterminacy gets resolved by setting jk such that its harmonic participation
factor, ϕjk,k, is maximum.

The stability results in terms of Floquet multipliers and characteristic exponents for the
simple model are shown in Figs. 3a and 3b, respectively. MBC use takes the system very close
to LTI, and therefore Floquet and traditional stability approaches give almost identical results.
Modal participation factors approach unity for the dominant harmonics in each mode. This
result validates our approach and implementation.

As for the isotropic NREL 5MW WT (Figs. 3c and 3d), once again the results do not differ
greatly from those obtained with the traditional method. With a maximum of 0.76% deviation
in modal damping (real part of the characteristic exponent) between traditional and Floquet
approaches. Participation factors are lower than in the previous case with dominant harmonics
clearly defined.

More relevant differences are found in modal properties for anisotropic NREL 5MW WT
(Figs. 3e and 3f), where larger maximum deviations (8.45%) in modal damping between
traditional and Floquet approaches are seen. Indeed, modal participation factors are smaller,
with some close to the highest one due to the presence of various harmonics as discussed
in [12,13]. These modes shall not be described by a unique modal frequency, as argued in [8].
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(a) (b)

(c) (d)

(e) (f )

Figure 3. Floquet multipliers (left) and characteristic exponents (right): (a)-(b) simple 6 DOF
model, (c)-(d) NREL 5MW WT (isotropic) and (e)-(f ) NREL 5MW WT (anisotropic).

6. Conclusions
Exponential integration methods based on system linearizations at several azimuth positions
were tested and proposed with focus on Floquet stability analysis of wind turbines. Three
different cases of varying complexity and anisotropy levels were analysed. The proposed along-
the-path or moving-point exponential integrator, with or without MBC transformation, was
found to be the most suitable one.

The proposed moving-point exponential integrator was successfully used for Floquet stability
analysis of the three different cases. Quantitative (changes in modal damping) and qualitative
(similar modal participation of different harmonics for each mode) differences w.r.t. traditional
MBC eigenanalysis were found for the NREL 5MW WT model with an anisotropic rotor. This
puts into perspective the relevance of Floquet analysis in wind turbine design.



The Science of Making Torque from Wind (TORQUE 2022)
Journal of Physics: Conference Series 2265 (2022) 032026

IOP Publishing
doi:10.1088/1742-6596/2265/3/032026

11

Acknowledgments
This work has been funded by Gobierno de Navarra’s call “Convocatoria 2020 de ayudas a
centros tecnológicos y organismos de investigación para la realización de proyectos de I+D
colaborativos” under the project PC001-002 AdaptFoil3D II.

References
[1] Holierhoek J G 2020 Aeroelastic Stability Models Handbook of Wind Energy Aerodynamics ed B Stoevesandt

et al (Springer) ISBN 978-3-030-05455-7
[2] Coleman R P 1943 Theory of self-excited mechanical oscillations of hinged rotor blades Tech. Rep. NACA-

WR-L-308. Langley Memorial Aeronautical Laboratory, Langley Field, Va.
[3] Hansen M H 2003 Improved Modal Dynamics of Wind Turbines to Avoid Stall-induced Vibrations Wind

Energy 6 pp 179–95
[4] Hansen M H 2004 Aeroelastic Stability Analysis of Wind Turbines Using an Eigenvalue Approach Wind

Energy 7 pp 133–43
[5] Bir G S 2008 Multi-Blade Coordinate Transformation and Its Application to Wind Turbine Analysis Proc.

of the AIAA Wind Energy Symposium, Reno, Nevada
[6] Bir G S 2010 User’s Guide to MBC3: Multi-Blade Coordinate Transformation Code for 3-Bladed Wind

Turbines Tech. Rep. NREL/TP-500-44327. Golden, CO: National Renewable Energy Laboratory (NREL)
[7] Jonkman J M and Buhl Jr M L 2005 Fast user’s guide Tech. Rep. NREL/TP-500-38230. Golden, CO:

National Renewable Energy Laboratory (NREL)
[8] Bottasso C L and Cacciola S 2015 Model-independent periodic stability analysis of wind turbines C.L. Wind

Energy 18 pp 865–887
[9] Stol K, Balas M and Bir G 2002 Floquet Modal Analysis of a Teetered-Rotor Wind Turbine J. of Solar

Energy Engineering, Trans. of the ASME 124 pp 364–71
[10] Stol K, Moll H, Bir G and Namik H 2009 A Comparison of Multi-Blade Coordinate Transformation and

Direct Periodic Techniques for Wind Turbine Control Design 47th AIAA Aerospace Sciences Meeting, Jan
5-8 2009, Orlando, Florida, AIAA 2009-0439

[11] Skjoldan P F 2011 Aeroelastic modal dynamics of wind turbines including anisotropic effects Ph.D. thesis
Danmarks Tekniske Universitet, Risø Nationallaboratoriet for Bæredygtig Energi. Risø-PhD No. 66

[12] Skjoldan P F and Hansen M H 2009 On the similarity of the Coleman and Lyapunov-Floquet transformations
for modal analysis of bladed rotor structures J. of Sound and Vibration 327 pp 424–39

[13] Skjoldan P F 2009 Modal Dynamics of Wind Turbines with Anisotropic Rotors Proc. of 47th AIAA Aerospace
Sciences Meeting, Orlando, Florida 327

[14] Tcherniak D 2015 Rotor anisotropy as a blade damage indicator for wind turbine structural health monitoring
systems Mechanical Systems and Signal Processing 74 pp 183–198

[15] Peters D A, Lieb S M and Ahaus L A 2011 Interpretation of Floquet Eigenvalues and Eigenvectors for
Periodic Systems J. of the American Helicopter Society 56
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