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Abstract—Restricted dissimilarity functions (RDFs) were in-
troduced to overcome problems resulting from the adoption
of the standard difference. Based on those RDFs, Bustince et
al. introduced a generalization of the Choquet integral (CI),
called d-Choquet integral, where the authors replaced standard
differences with RDFs, providing interesting theoretical results.
Motivated by such worthy properties, joint with the excellent
performance in applications of other generalizations of the CI
(using its expanded form, mainly), this paper introduces a gener-
alization of the expanded form of the standard Choquet integral
(X-CI) based on RDFs, which we named d-XC integrals. We
present not only relevant theoretical results but also two examples
of applications. We apply d-XC integrals in two problems in
decision making, namely a supplier selection problem (which is
a multi-criteria decision making problem) and a classification
problem in signal processing, based on motor-imagery brain-
computer interface (MI-BCI). We found that two d-XC integrals
provided better results when compared to the original CI in the
supplier selection problem. Besides that, one of the d-XC integrals
performed better than any previous MI-BCI results obtained with
this framework in the considered signal processing problem.

Index Terms—Choquet integral, restricted dissimilarity func-
tions, d-Choquet integral, d-XC integral, multi-criteria decision
making, motor-imagery brain-computer interface

I. INTRODUCTION

THE discrete Choquet integral [1] has been widely dis-
seminated in the literature for its interesting property of

taking into account the relationship among data when perform-
ing aggregation tasks [2], which is carried out by the fuzzy
measure used in its definition. This popularity can be noticed
in a large variety of applications of the Choquet integral and its
generalizations and extensions [3], e.g., in classification [4],
[5], [6], [7], multi-criteria (group) decision making [8], [9],
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[10], [11], [12], deep learning [13], [14], multi-source data
fusion model [15], preference modeling [16], [17], multi-
decision sorting [18], purchasing decision process [19], image
processing [14], [20], risk analysis [21], ensemble-based solar
irradiance forecasting [22], and multimodal brain-computer
interface systems [23].

On the other hand, the introduction of generalizations and
extensions of the Choquet integral has either improved the
performance or adapted the concept to specific applications.
For example, generalizations such as the CT -integrals [4],
CC-integrals [5], CF -integrals [6], and CF1F2

-integrals [7], in
which the product operator was replaced by aggregation or pre-
aggregation functions [4], [24] have been applied to enhance
the performance of fuzzy-rule based classification systems [7],
multimodal brain-computer interface systems [23], [25], deci-
sion making problems [9], and image processing models [20].
Among those generalizations, the CC-integrals (based on
copulas [26]) and the CF1F2 -integrals (based on pseudo pre-
aggregation pairs) are built on the expanded form of the
Choquet integral (X-CI).

Although such generalizations have allowed for consider-
able improvements in the performance of diverse applications,
the difference operator (distance metric on the real line) in
their formulation might be a drawback in their definitions, as
properly discussed in [27]. In many knowledge-based appli-
cations (both algorithms and models), numerical data analysis
and comparisons are usually performed by using the difference
operator (as, for example, when measuring errors as stopping
criteria of iterative methods). This may raise some issues when
the difference is not properly defined in the application do-
main [27], or even by adding undesirable effects, like the width
degradation/overestimation when dealing with interval-valued
data [28], [29], [30]. The latter is a serious problem when the
variables are correlated [31], since it provides interval results
with too large widths and meaningless information [30], [32].

To solve this particular problem, Bustince et al. [33] in-
troduced the restricted dissimilarity functions (RDFs), which
generalizes the difference operation and open possibilities for
performing data comparison in the unit interval in different
ways. With this concept in hand, Bustince et al. [27] intro-
duced the d-Choquet integrals, where the Choquet integral
was generalized by restricted dissimilarity functions, replacing
the difference operator in the standard Choquet integral by
restricted dissimilarity functions, of which the difference is
just a particular case. However, the authors have not provided
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an application of this generalization.

A. The theoretical objectives

Inspired by the generalizations of the expanded form of the
Choquet integral (X-CI) and by the adoption of restricted dis-
similarity functions in the d-Choquet integral, the theoretical
objective of this paper is to introduce a generalization of the X-
CI using RDFs, called d-XC integrals. We present a theoretical
study of the most important properties of d-XC integrals, as
the conditions for them to present some kind of increasingness
(e.g, monotonicity, directional monotonicity [24], [34], and
ordered directional monotonicity [35]), boundary conditions,
idempotency, and the averaging property. Those properties
are especially useful for the intended applications, namely,
decision making and motor-imagery brain-computer interface
framework. We study the behavior of d-XC integrals with
six different restricted dissimilarity functions, one of then
retrieving the original definition of the Choquet integral in
its exoanded form (XCI).

B. The examples of applications

The objective of the applied part of this paper is to use d-XC
integrals, including the original X-CI definition, in two distinct
decision-making problems with an analysis and comparison
among the behaviors of six different approaches of d-XC
integrals. The first is a supplier selection problem and the
second is a classification problem in signal processing:

1) A separation measure based on the d-XC integral for
the Group Modular Choquet Random Technique for Order of
Preference by Similarity to Ideal Solution (GMC-RTOPSIS) for
multi-criteria decision making (MCDM): In the first applica-
tion of d-XC integrals, we present a new version of GMC-
RTOPSIS multi-criteria decision-making method, introduced
by Lourenzutti et al. [8]. More precisely, we use the d-XC
integral in the separation measure step of the method, where
values for the criteria’s separation are calculated. To evaluate
the method, we apply it in a supplier selection problem [8],
which is commonly found in businesses. Then, since we use
six different restricted dissimilarity functions in the process,
we proceed to classify them in order to select the best possible
alternative by using the ∆R1,R2 [10] approach, that is, by using
the d-XC integral that provides the highest difference between
the alternative ranked first and the second one.

2) Motor-imagery brain-computer interface (MI-BCI)
framework: In the second application, we show how the
d-XC integrals can be applied in the decision-making phase of
the MI-BCI Enhanced Multimodal Fusion (EMF) framework
[25]. This framework presents a decision-making phase in
which two aggregation functions are used: (1) first, to fuse
the outputs from the classifiers trained on different wave
bands, and (2) secondly, to fuse the outputs obtained in this
procedure for different classifiers. Previous works showed
that the best aggregation functions for this task are obtained
by combining a fuzzy integral in the first fusion phase with
an n-dimensional overlap function [36] in the second fusion
phase. Here we use different combinations of d-XC integrals
in the decision-making phase of the EMF to look for better

alternatives than the actual Choquet and Sugeno [37] integrals
of the original proposal.

C. Organization of the paper

This paper is organized as follows. Section II presents the
preliminary concepts required for understanding the work.
Section III introduces the concept of d-XC integrals and the
theoretical study of its features, with several illustrative exam-
ples. Section IV presents the application to GMC-RTOPSIS,
with a comprehensive discussion of the obtained results, and
Section V presents the results obtained in the MI-BCI EMF
framework. Finally, in Section VI we give our final remarks
and conclusions for this work.

II. PRELIMINARIES

In this section, the main concepts and notations related with
the study are presented. A fuzzy set (FS) F on a universe
U is given by a membership function µF : U → [0, 1], as
follows [38]: F = {〈x, µF (x)〉 | x ∈ U}.

In this paper, we also use the concept of intuitionistic
fuzzy set (IFS) [39] IF on a universe U . It is defined by a
membership function µIF : U → [0, 1] and a non-membership
function νIF : U → [0, 1], such that 0 ≤ µIF (x) + νIF (x) ≤
1, for all x ∈ U : IF = {〈x, µIF (x), νIF (x)〉 | x ∈ U}.

Consider U = [0, 1], and let µ̃ITF , ν̃ITF ∈ [0, 1],
such that 0 ≤ µ̃ITF + ν̃ITF ≤ 1, be the maxi-
mum membership degree and the minimum non-membership
degree of an IFS, respectively. Then, an intuitionistic
trapezoidal fuzzy number (ITFN) ITF is defined by
ITF = 〈(a1, a2, a3, a4), (b1, b2, b3, b4), µ̃ITF , ν̃ITF 〉, where
a1, a2, a3, a4, b1, b2, b3, b4 ∈ R, b1 ≤ a1 ≤ b2 ≤ a2 ≤ a3 ≤
b3 ≤ a4 ≤ b4, with a1 6= a2, a3 6= a4, b1 6= b2, b3 6= b4, and
both µITF and νITF are given, respectively, for all x ∈ R,
by:

µITF (x) =


x−a1
a2−a1 µ̃ITF , if a1 ≤ x < a2

µ̃ITF , if a2 ≤ x ≤ a3
a4−x
a4−a3 µ̃ITF , if a3 < x ≤ a4
0, otherwise,

νITF (x) =


1−ν̃ITF

b1−b2 (x− b1) + 1, if b1 ≤ x < b2

ν̃ITF , if b2 ≤ x ≤ b3
1−ν̃ITF

b4−b3 (x− b4) + 1, if b3 < x ≤ b4
1, otherwise.

For convenience, when a1 = b1, a2 = b2, a3 = b3 and a4 = b4
we write the ITFN as ITF = 〈(a1, a2, a3, a4), µ̃ITF , ν̃ITF 〉.

In what follows, let N = {1, . . . , n}.

Definition 1. [2] A function A : [0, 1]n → [0, 1] is an
aggregation function (AF) if: (A1) A is increasing in each
argument: for each i ∈ {1, . . . , n}, if xi ≤ y, then
A(x1, . . . , xn) ≤ A(x1, . . . , xi−1, y, xi+1, . . . , xn); (A2) A
satisfies the boundary conditions: (i) A(0, . . . , 0) = 0 and
(ii) A(1, . . . , 1) = 1.

Notice that, a function F : [0, 1]n → [0, 1] is said to
be averaging if and only if: (AV) ∀(x1, . . . , xn) ∈ [0, 1]n:
min{x1, . . . , xn} ≤ F (x1, . . . , xn) ≤ max{x1, . . . , xn}.
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A function GO : [0, 1]n → [0, 1] is an n-dimensional
overlap function [36] if, for all x1, . . . , xn ∈ [0, 1], it holds
that: (G1) GO is symmetric; (G2) GO(x1, . . . , xn) = 0 if and
only if

∏n
i=1 xi = 0; (G3) GO(x1, . . . , xn) = 1 if and only if

xi = 1, for all i ∈ {1, . . . , n}; (G4) GO is increasing; (G5) GO
is continuous. An example of n-dimensional overlap function
is the geometric mean defined by GM(x) = (

∏n
i=1 xi)

1
n .

Let r = (r1, . . . , rn) be a real n-dimensional vector such
that r 6= 0 = (0, . . . , 0). A function F : [0, 1]n → [0, 1] is said
to be r-increasing if, for all x = (x1, . . . , xn) ∈ [0, 1]n and
c > 0 such that x + cr = (x1 + cr1, . . . , xn + crn) ∈ [0, 1]n,
it holds that F (x + cr) ≥ F (x) [34]. Similarly, one defines
an r-decreasing function.

Then, based on the idea of directional monotonicity, Lucca
et al. [4] introduced the concept of pre-aggregation functions:

Definition 2. [4] A function PA : [0, 1]n → [0, 1] is
said to be a pre-aggregation function (PAF) if the following
conditions hold: (PA1) PA is directional increasing, for some
r = (r1, . . . , rn) ∈ [0, 1]n, r 6= 0; (PA2) PA satisfies
the boundary conditions: (i) PA(0, . . . , 0) = 0 and (ii)
PA(1, . . . , 1) = 1. If F is a PAF with respect to a vector
r we just say that F is an r-PAF.

A function m : 2N → [0, 1] is said to be a fuzzy measure
(FM) [40] if, for all X,Y ⊆ N : (m1) m is increasing: if
X ⊆ Y , then m(X) ≤ m(Y ); (m2) m satisfies the boundary
conditions: m(∅) = 0, m(N) = 1.

Definition 3. [1] Let m : 2N → [0, 1] be a FM. The discrete
Choquet integral (CI) is the function Cm : [0, 1]n → [0, 1],
defined, for all of x ∈ [0, 1]n, by:

Cm(x) =

n∑
i=1

(
x(i) − x(i−1)

)
·m
(
A(i)

)
, (1)

where
(
x(1), . . . , x(n)

)
is an increasing permutation on the

input x, that is, 0 ≤ x(1) ≤ . . . ≤ x(n) ≤ 1, with x(0) = 0 by
convention, and A(i) = {(i), . . . , (n)}.

When the product operation is distributed in Eq. (1), we
obtain the CI in its expanded form (X-CI), given by:

Cm(x) =

n∑
i=1

(
x(i) ·m

(
A(i)

)
− x(i−1) ·m

(
A(i)

))
. (2)

In the MI-BCI application we also consider the Sugeno
integral [37] and its generalization called FG-Functional [41].

The Sugeno integral Sm : [0, 1]n → [0, 1] with respect to a
fuzzy measure m is defined, for all x ∈ [0, 1]n, by:

Sm(x) =

n∨
i=1

(
x(i) ∧m(A(i))

)
where x(i) and Ai, with 0 ≤ i ≤ n, are stated as in Def. 3.

Let m be a symmetric FM, that is for any A,B ⊆ N ,
|A| = |B| implies m(A) = m(B). Let F : [0,∞[×[0, 1] →
[0,∞[ be a binary function and G : [0,∞[n→ [0,∞[ be an
n-ary function. A Sugeno-like FG-functional is a function A :
[0,∞[n→ [0,∞[ given, for all x ∈ [0, 1]n, by:

A(x) = G
(
F
(
x(1),m(A(1))

)
, . . . , F

(
x(n),m(A(n))

))
,

where x(i) and Ai, 0 ≤ i ≤ n, are as in Def. 3. The function
A(x) =

∑n
i=1 x(i) ·m(A(i)) is an example of FG-functional.

Definition 4. [33] A restricted dissimilarity function (RDF)
δ : [0, 1]2 → [0, 1] is a function such that, for all x, y, z ∈
[0, 1]: (d1) δ(x, y) = δ(y, x); (d2) δ(x, y) = 1 if and only if
{x, y} = {0, 1}; (d3) δ(x, y) = 0 if and only if x = y; (d4) if
x ≤ y ≤ z, then δ(x, y) ≤ δ(x, z) and δ(y, z) ≤ δ(x, z).

Bustince et al. [27] introduced the discrete d-Choquet inte-
gral (d-CI) with respect to a FM m : 2N → [0, 1] and a RDF
δ : [0, 1]2 → [0, 1], as a mapping Cm,δ : [0, 1]n → [0, n], de-
fined, for all x ∈ [0, 1]n, by Cm,δ(x) =

∑n
i=1 δ

(
x(i), x(i−1)

)
·

m
(
A(i)

)
, where x(i), A(i), with 0 ≤ i ≤ n, are as in Def. 3.

For the sake of simplicity, we denote m(i) = m
(
A(i)

)
.

III. GENERALIZING THE X-CI BY RDFS

In this section, we consider the expanded form of the CI given
in Eq. (2), replacing the difference operator by RDFs:

Definition 5. The generalization of the expanded form of the
CI by RDFs δ : [0, 1]2 → [0, 1] with respect to a FM m :
2N → [0, 1], named d-XChoquet integral (d-XC), is a mapping
XCδ,m:[0, 1]2 → [0, n], defined, for all x ∈ [0, 1]n, by:

XCδ,m(x) = x(1) +

n∑
i=2

δ
(
x(i) ·m(i), x(i−1) ·m(i)

)
, (3)

where x(i), m(i), with 0 ≤ i ≤ n, were stated in Def. 3.

Proposition 1. Under the conditions given in Def. 5, XCδ,m
is well defined, for all RDF δ and FM m.

Proof. Observe that, for all i = 1, . . . , n, one has that
0 ≤ x(i) ≤ 1, and for all i = 2, . . . , n, we have that
0 ≤ m(i) ≤ 1. Also, one has that, for any z1, z2 ∈ [0, 1],
0 ≤ δ(z1, z2) ≤ 1. Then it is immediate that, for any x ∈
[0, 1]n, 0 ≤ XCδ,m(x) ≤ n, for any RDF δ : [0, 1]2 → [0, 1]
and FM m : 2N → [0, 1]. Now consider an input vector
x ∈ [0, 1]n, for which there may be different increasing
permutations, meaning that x has repeated elements. For the
sake of simplicity, but without loss of generality, consider that
there exists r, s ∈ {1, . . . , n} such that xr = xs = z ∈ [0, 1]
and, for all i ∈ {1, . . . , n}, with i 6= r, s, it holds that
xi 6= xr, xs. The only two possible increasing permutations
are:

(x(1), . . . , x(k−1) = xr,x(k) = xs, . . . , x(n)) (4)
(x(1), . . . , x(k−1) = xs,x(k) = xr, . . . , x(n)) (5)

Denote by m
(1)
(i) = m(1)(A(i)) and m

(2)
(i) = m(2)(A(i)), with

i ∈ {1, . . . , n}, the fuzzy measures of the subsets of A(i) of
indices corresponding to the n− i+ 1 largest components of
x with respect to the permutations (4) and (5), respectively.
Observe that it holds that

m
(1)
(i) = m

(2)
(i) , (6)

for all i 6= k, and

m
(1)
(k) = m({s, (k + 1), . . . , (n)}) (7)

m
(2)
(k) = m({r, (k + 1), . . . , (n)}), (8)
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which means that it may be the case that m(1)
(k) 6= m

(2)
(k). Now

denote by XC
(1)
δ,m and XC

(2)
δ,m the d-XC integrals with respect

to the permutations (4) and (5), respectively, and suppose that

XC
(1)
δ,m(x) 6= XC

(2)
δ,m(x). (9)

From Eqs. (6), (7) and (8), whenever k 6= 1, it follows that:

XC
(1)
δ,m(x)−XC

(2)
δ,m(x)

=δ
(
x(k) ·m

(1)
(k), x(k−1) ·m

(1)
(k)

)
− δ

(
x(k) ·m

(2)
(k), x(k−1) ·m

(2)
(k)

)
= δ
(
xs ·m({s, (k + 1), . . . , (n)}),

xr ·m({s, (k + 1), . . . , (n)})
)

− δ
(
xr ·m({r, (k + 1), . . . , (n)}),

xs ·m({r, (k + 1), . . . , (n)})
)

=δ
(
z·m({s, (k + 1), . . ., (n)}), z ·m({s, (k + 1), . . ., (n)})

)
−δ
(
z ·m({r, (k + 1), . . ., (n)}), z·m({r, (k + 1), . . ., (n)})

)
= 0 by (d3)

which is in contradiction to (9). Similarly, one can show
that there is a contradiction for k = 1. The result can be
easily generalized for any subsets of repeated elements in the
input x. The conclusion is that for any different increasing
permutations of the same input x one always get the same
output value of XCδ,m(x). This completes the proof that
XCδ,m is well defined.

Remark 1. Observe that the first element of the summa-
tion in the definition of XCδ,m is just x(1) instead of
δ
(
x(1) ·m(1), x(0) ·m(1)

)
. This is to avoid the initial dis-

crepant behavior of non-averaging functions in the initial
phase of the aggregation process, as pointed out in [7].
For example, consider an unitary vector x = (0.1) and
δ4(x, y) = |x2 − y2|. If we included the first element inside
the summation the result would be:

XCδ,m(x) = δ4
(
x(1) ·m(1), x(0) ·m(1)

)
=
∣∣(0.1 · 1)2 − (0 · 1)2

∣∣ = 0.01.

Observe here the large discrepancy of the result (a relative
error of 90%), since one expects that the aggregated value
would be 0.1. Using our definition of d-XC integral (Eq. (3))
this unexpected behavior is avoided and the result is 0.1.

The following proposition gives an alternative way to ex-
press the d-XC integrals:

Proposition 2. Let δ : [0, 1]2 → [0, 1] be an RDF and XCδ,m :
[0, 1]n → [0, 1] be the derived d-XC integral for any fuzzy
measure m : 2N → [0, 1]. Let δ0 : [0, 1]2 → [0, 1], defined for
all x, y ∈ [0, 1], by δ0(x, y) = |x− y|. If, for all x, y ∈ [0, 1]
and p, q ∈ R+, it holds that:

δ(x, y) = (δ0(xq, yq))
p (10)

TABLE I: RDFs and their respective d-XChoquet integrals,
using Eq. (11), used in the applications of this study.

δ RDF d-XC

δ0 |x− y| x(1) +
∑n
i=2m(i)(x(i) − x(i−1))

δ1 (x− y)2 x(1) +
∑n
i=2m

2
(i)

(
x(i) − x(i−1)

)2
δ2

√
|x− y| x(1) +

∑n
i=2
√
m(i)

√
x(i) − x(i−1)

δ3 |
√
x−√y| x(1) +

∑n
i=2
√
m(i)

(√
x(i) −

√
x(i−1)

)
δ4 |x2 − y2| x(1) +

∑n
i=2m

2
(i)

(
x2
(i)
− x2

(i−1)

)
δ5

(√
x−√y

)2
x(1) +

∑n
i=2m(i)

(√
x(i) −

√
x(i−1)

)2

then the d-XC integral can be given, for all x ∈ [0, 1]n, by:

XCδ,m(x) = x(1) +

n∑
i=2

δ(0,m(i))δ(x(i), x(i−1)). (11)

Proof. Let δ : [0, 1]2 → [0, 1] be an RDF such that Eq. (10)
is true. Then, for any x ∈ [0, 1] and FM m, we have that:

XCδ,m(x)

= x(1) +

n∑
i=2

δ(x(i) ·m(i), x(i−1) ·m(i))

= x(1) +

n∑
i=2

[
δ0((x(i) ·m(i))

q, (x(i−1) ·m(i))
q)
]p

= x(1) +

n∑
i=2

∣∣∣xq(i) ·mq
(i) − x

q
(i) ·m

q
(i)

∣∣∣p
= x(1) +

n∑
i=2

∣∣∣mq
(i)

∣∣∣p ∣∣∣xq(i) − xq(i−1)∣∣∣p
= x(1) +

n∑
i=2

δ(0,m(i))δ(x(i), x(i−1)) by (10).

And this proves the proposition.

Remark 2. Notice that all RDFs presented in the left column
of Table I satisfy Eq. (10) and, therefore, the derived d-XC
integral can be given using Eq. (11), as shown in the right
column of the table. In fact, all such RDFs were constructed
accordingly to [42, Prop. 2]. Nevertheless, it is possible to
define an RDF that is not derived from δ0. For example, let
δ : [0, 1]2 → [0, 1] be given, for all x, y ∈ [0, 1], c ∈ (0, 1), by

δ(x, y) =


1, if {x, y} = {0, 1},
0, if x = y,

c, otherwise.

The d-XC integral derived from this RDF is not a transforma-
tion from the one derived from δ0, and therefore can not be
used in the form of Eq. (11).

Now observe that since the range of d-XC integrals are in
the interval [0, n], it makes no sense to talk about their bound-
ary conditions in general, unless one considers increasing d-
XC integrals. Then, in the context of this paper, the boundary
conditions of AF and PAF (conditions (A2) and (PA2)), are
refereed just by 0, 1-conditions. Furthermore, notice that for
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the applications presented in this work the range of the d-XC
integral need not be in [0, 1].

Theorem 1 (0, 1-conditions). The d-XC integral satisfies the
0, 1-conditions for any FM m and any RDF δ.

Proof. (i) Consider x = 0 = (0, . . . , 0). Then, we have:
XCδ,m(0) = 0 +

∑n
i=2 δ

(
0 ·m(i), 0 ·m(i)

)
= 0.

(ii) Consider x = 1 = (1, . . . , 1). Then, we have:
XCδ,m(1) = 1 +

∑n
i=2 δ

(
1 ·m(i), 1 ·m(i)

)
= 1 + 0 = 1.

Therefore, the 0, 1-conditions are satisfied.

In what follows, denote the range of a d-XC integral XCδ,m
by Ran(XCδ,m).

Remark 3. Whenever the range of a d-XC integral is [0, 1],
then the 0, 1-conditions are equivalent to boundary conditions.
Also, if a d-XC integral is increasing then it is immediate that
its range is [0, 1]. Now, notice that whenever a d-XC integral
XCδ,m is not increasing then, even if it satisfies the 0, 1-
conditions, there may exist y ∈ [0, 1]n, 0 < y < 1 such that
XCδ,m(y) > 1. In fact, consider the RDF δ2 of Table I, and
a FM m given, for all X ⊆ 2N and X 6= ∅, by m(X) = 1.
Take y = (0.1, 0.5, 0.8). It follows that:

XCδ2,m(y) = 0.1 +
√

0.5− 0.1 +
√

0.8− 0.5 ' 1.28.

The following proposition states the condition to be verified
whenever it is necessary to guarantee Ran(XCδ,m) ⊆ [0, 1].

Proposition 3. Let m and δ be a FM and an RDF, respectively.
Then, Ran(XCδ,m) ⊆ [0, 1] if the following condition holds,
for any 0 ≤ z1 ≤ . . . ≤ zn ≤ 1:

n∑
i=2

δ (zi ·mi, zi−1 ·mi) ≤ 1− z1, (12)

where mi = m(Ai), for Ai = {i, . . . , n}.

Remark 4. Observe that Prop. 3 states a sufficient (but not
necessary) condition for having Ran(XCδ,m) ⊆ [0, 1]. That
is, it may be the case that Ran(XCδ,m) ⊆ [0, 1] and it holds
that

∑n
i=2 δ

(
x(i) ·m(i), x(i−1) ·m(i)

)
> 1 − x(1), for some

x ∈ [0, 1]n and 0 ≤ x(1) ≤ . . . ≤ x(n) ≤ 1.

A. Directional Monotonicity of d-XC integrals

In this subsection, we analyze the conditions under which
d-XC integrals are directional monotonic, in particular, 1-
increasing. In addition, we discuss the cases in which d-XC
integrals satisfy the 0, 1-conditions and have the range in the
unit interval, so satisfying all the requirements to be a PAF.

Theorem 2 (1-increasingness). Let m and δ be a FM and an
RDF, respectively. XCδ,m is 1-increasing if and only if one of
the following conditions hold:
(i) the RDF δ is 1-increasing;
(ii) For all 0 ≤ z1 ≤ . . . ≤ zn ≤ 1 and c > 0, such that
zi + c ∈ [0, 1], for all i = 1, . . . , n, it holds that:

n∑
i=2

δ((zi + c) ·mi, (zi−1 + c) ·mi) (13)

≥
n∑
i=2

δ(zi ·mi, zi−1 ·mi)− c,

where mi = m(Ai), for Ai = {i, . . . , n}.

Proof. (⇐)(i) Suppose that δ is 1-increasing and let c =
(c, . . . , c), c > 0, such that x,x + c ∈ [0, 1]n. Then:

XCδ,m(x + c)

=(x(1) + c) +

n∑
i=2

δ
(
(x(i) + c) ·m(i)), (x(i−1) + c) ·m(i)

)
=(x(1) + c) +

n∑
i=2

δ
(
x(i) ·m(i) + c ·m(i),

x(i−1) ·m(i) + c ·m(i)

)
>x(1) +

n∑
i=2

δ
(
x(i) ·m(i), x(i−1) ·m(i)

)
=XCδ,m(x).

Now suppose that (ii) holds. Then, for all x ∈ [0, 1]n and c =
(c, . . . , c), with c > 0, such that xi+ c ∈ [0, 1], ∀i = 1, . . . , n,
it follows that:

n∑
i=2

δ((x(i) + c) ·m(i), (x(i−1) + c) ·m(i))

≥
n∑
i=2

δ(x(i) ·m(i), x(i−1) ·m(i))− c

⇒(x(1) + c) +

n∑
i=2

δ((x(i) + c) ·m(i), (x(i−1) + c) ·m(i))

≥ x(1) +

n∑
i=2

δ(x(i) ·m(i), x(i−1) ·m(i))

⇒XCδ,m(x + c) ≥ XCδ,m(x).

Therefore, if (i) or (ii) holds, then XCδ,m is 1-increasing.
(⇒) Suppose that XCδ,m is 1-increasing, that is XCδ,m(x +
c) ≥ XCδ,m(x). Then it follows that

(x(1) + c) +

n∑
i=2

δ((x(i) + c) ·m(i), (x(i−1) + c) ·m(i))

≥ x(1) +

n∑
i=2

δ(x(i) ·m(i), x(i−1) ·m(i)),

which implies that condition (ii) holds.

Example 1. Consider the RDF δ4 of Table I, which is 1-
increasing, since, whenever x ≥ y, it holds that:

δ4(x+ c, y + c)

= (x+ c)2 − (y + c)2 = (x2 − y2) + 2c(x− y)

≥ x2 − y2 = δ4(x, y),

for any c > 0 with x, y, x + c, y + c ∈ [0, 1]. Therefore, by
Theorem 2, we have that XCδ4,m is 1-increasing, for any FM
m. The same holds for the RDFs δ0, δ1 and δ2 of Table I.

From Theorems 1 and 2, and Prop. 3 it is immediate that:
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Theorem 3 (PAF). Let m : 2N → [0, 1] and δ : [0, 1]2 →
[0, 1] be a fuzzy meaure and an RDF, respectively. Then, the d-
XChoquet integral XCδ,m is an 1-PAF of signature [0, 1]2 →
[0, 1] if and only if one of the conditions (i) or (ii) of Theorem
2 holds and, additionally, Prop. 3 holds.

Example 2. Take the RDF δ3 from Table I and the FM m
given by m(X) = 1 (which is the greatest FM on N ), for any
X ⊆ 2N and X 6= ∅. Then, for any x ∈ [0, 1]n, we have that:

n∑
i=2

√
m(i)

(√
x(i) −

√
x(i−1)

)
=
√
x(n) −

√
x(1) (14)

≤1−√x(1) ≤ 1− x(1),

and, then, Prop. 3 holds. However, δ3 is not 1-increasing,
since, for example, for x = 0.4, y = 0.2 and c = 0.5 one has

δ3(0.4 + 0.5, 0.2 + 0.5) (15)
' 0.112 ≤ 0.185 ' δ3(0.4, 0.2),

and, thus, the condition (i) of Theorem 2 does not hold.
Also, it is easy to verify that neither the condition (ii) of
Theorem 2 holds. In fact, consider, for example, the input
x = (0.1, 0.2, 0.8) and c = 0.00001. Then, by Equations (13)
and (14), it follows that:

3∑
i=2

δ3(x(i) + 0.00001, x(i−1) + 0.00001)

=
√

0.8 + 0.00001−
√

0.2 + 0.00001 = 0.44715706.

However,
3∑
i=2

δ3(x(i), x(i−1))− 0.00001

=
√

0.8−
√

0.2− 0.00001 = 0.4472035955.

and 0.44715706 < 0.44720360. Therefore, although the cor-
responding d-XChoquet integral satisfies the 0, 1-conditions,
it is not a PAF, according to Theorem 3.

Example 3. An example of 1-increasing d-XChoquet integral
that is not a PAF is when one considers the RDF δ4, which,
by Example 1, is 1-increasing. In fact, take the input x =
(0.15, 0.23, 0.99) with the FM given m(X) = 1, for any X ⊆
2N such that X 6= ∅. Then, by Eq. (12), we have that:

3∑
i=2

δ(x(i) · 1, x(i−1) · 1)

= 0.232 − 0.152 + 0.992 − 0.232 = 0.9576

> 1− 0.15 = 0.85,

and, thus, Prop. 3 does not hold, and, then, neither Theorem
3 is satisfied. Now, by Remark 3 and Example 1, whenever
one takes the RDF δ2 and the same FM as above, then the
corresponding d-XChoquet integral is also 1-increasing but its
range is not included in the interval [0, 1], and, thus, although
it satisfies the 0, 1-conditions, it is not a PAF.

Example 4. Consider the RDF δ0 of Table I and the FM m
given by m(X) = 1 for any X ⊆ 2N and X 6= ∅. By Example

1, δ0 is 1-increasing then the condition (i) of Theorem 2 holds.
Also, by an analogous argument used in Example 2, Prop. 3
holds. Therefore, by Theorem 3, the corresponding d-XChoquet
integral is a PAF.

B. Monotonicity of d-XC integrals
In this subsection, we analyse the conditions under which d-
XC integrals are full monotonic and satisfy the 0, 1-conditions,
so satisfying all the requirements to be an AF.

Theorem 4 (Monotonicity). Consider a FM m : 2N → [0, 1].
XCδ,m is non-decreasing if and only if the following condi-
tions hold for the RDF δ : [0, 1]2 → [0, 1]:
(i) For all z1, z2, z3, z4 ∈ [0, 1], with z1 ≤ z2 ≤ z3 ≤ z4,
w1, w2 ∈ [0, 1], with w1 ≥ w2:

δ(z1 · w1, z3 · w1) + δ(z3 · w2, z4 · w2) (16)
≥ δ(z1 · w1, z2 · w1) + δ(z2 · w2, z4 · w2);

(ii) For all z1, z2, z3 ∈ [0, 1], with z1 ≤ z2 ≤ z3, w ∈ [0, 1]:

z2 + δ(z3 · w, z2 · w) ≥ z1 + δ(z3 · w, z1 · w). (17)

Proof. (⇐) Take x,y ∈ [0, 1]n, where for some k ∈
{1, . . . , n} and h ≥ 0, we have that x(k) = y(k) + h and,
for every i ∈ {1, . . . , n}, i 6= k, x(i) = y(i), such that

x(k−1) = y(k−1) ≤ y(k) ≤ x(k) = y(k) + h ≤ x(k+1) = y(k+1).

Supposing the conditions in the theorem hold, we have three
cases to prove:
(i) k = 1: In this case, denote z1 = y(1), z2 = y(1) + h,
z3 = y(2) and w = m(2). Then, we have that:

XCδ,m(x)

= x(1) + δ
(
x(2) ·m(2), x(1) ·m(2)

)
+

n∑
i=3

δ
(
x(i) ·m(i), x(i−1) ·m(i)

)
= (y(1) + h) + δ

(
y(2) ·m(2), (y(1) + h) ·m(2)

)
+

n∑
i=3

δ
(
y(i) ·m(i), y(i−1) ·m(i)

)
= z2 + δ (z3 · w, z2 · w)

+

n∑
i=3

δ
(
y(i) ·m(i), y(i−1) ·m(i)

)
≥ z1 + δ (z3 · w, z1 · w)

+

n∑
i=3

δ
(
y(i) ·m(i), y(i−1) ·m(i)

)
by (17)

= y(1) + δ
(
y(2) ·m(2), y(1) ·m(2)

)
+

n∑
i=3

δ
(
y(i) ·m(i), y(i−1) ·m(i)

)
= XCδ,m(y)

(ii) 1 < k < n: In this case, denote z1 = y(k−1), z2 =
y(k), z3 = y(k) + h, z4 = y(k+1), w1 = m(k) and w2 =
m(k+1). Then we have:

XCδ,m(x) = x(1) +

k−1∑
i=2

δ
(
x(i) ·m(i), x(i−1) ·m(i)

)
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+ δ
(
x(k) ·m(k), x(k−1) ·m(k)

)
+ δ

(
x(k+1) ·m(k+1), x(k) ·m(k+1)

)
+

n∑
i=k+2

δ
(
x(i) ·m(i), x(i−1) ·m(i)

)
= y(1) +

k−1∑
i=2

δ
(
y(i) ·m(i), y(i−1) ·m(i)

)
+ δ

(
(y(k) + h) ·m(k), y(k−1) ·m(k)

)
+ δ

(
y(k+1) ·m(k+1), (y(k) + h) ·m(k+1)

)
+

n∑
i=k+2

δ
(
y(i) ·m(i), y(i−1) ·m(i)

)
= y(1) +

k−1∑
i=2

δ
(
y(i) ·m(i), y(i−1) ·m(i)

)
+ δ (z3 · w1, z1 · w1) + δ (z4 · w2, z3 · w2)

+

n∑
i=k+2

δ
(
y(i) ·m(i), y(i−1) ·m(i)

)
≥ y(1) +

k−1∑
i=2

δ
(
y(i) ·m(i), y(i−1) ·m(i)

)
+ δ (z2 · w1, z1 · w1) + δ (z4 · w2, z2 · w2)

+

n∑
i=k+2

δ
(
y(i) ·m(i), y(i−1) ·m(i)

)
by (16)

= y(1) +

k−1∑
i=2

δ
(
y(i) ·m(i), y(i−1) ·m(i)

)
+ δ

(
y(k) ·m(k), y(k−1) ·m(k)

)
+ δ

(
y(k+1) ·m(k+1), y(k) ·m(k+1)

)
+

n∑
i=k+2

δ
(
y(i) ·m(i), y(i−1) ·m(i)

)
= XCδ,m(y)

(iii) k = n: In this case, we have:

XCδ,m(x) = x(1) +

n−1∑
i=2

δ
(
x(i) ·m(i), x(i−1) ·m(i)

)
+ δ

(
x(n) ·m(n), x(n−1) ·m(n)

)
= y(1) +

n−1∑
i=2

δ
(
y(i) ·m(i), y(i−1) ·m(i)

)
+ δ

(
(y(n) + h) ·m(n), y(n−1) ·m(n)

)
= y(1) +

n−1∑
i=2

δ
(
y(i) ·m(i), y(i−1) ·m(i)

)
+ δ

(
y(n) ·m(n) + h ·m(n), y(n−1) ·m(n)

)
≥ y(1) +

n−1∑
i=2

δ
(
y(i) ·m(i), y(i−1) ·m(i)

)
+ δ

(
y(n) ·m(n), y(n−1) ·m(n)

)
by (d4)

= XCδ,m(y)

(⇒) It is analogous.

Theorem 5 (AF). Let m : 2N → [0, 1] be a FM. Let δ :
[0, 1]2 → [0, 1] be an RDF satisfying the conditions (i) and
(ii) of Theorem 4. Then, the d-XChoquet integral XCδ,m is an
AF of signature [0, 1]2 → [0, 1].

Proof. If the conditions (i) and (ii) of Theorem 4 hold, then
XCδ,m is increasing. Furthermore, by Theorem 1, it satisfies
the boundary conditions and its range is [0, 1]. It follows that
XCδ,m is an aggregation function.

Example 5. The d-XChoquet XCδ0,m is an AF for any FM
m, since δ0 satisfies the conditions (i) and (ii) of Theorem 4.
In fact, by Eq. (16), for all z1, z2, z3, z4 ∈ [0, 1], with z1 ≤
z2 ≤ z3 ≤ z4, w1, w2 ∈ [0, 1], with w1 ≥ w2 one has that

δ(z1 · w1, z3 · w1) + δ(z3 · w2, z4 · w2)

= w1(z3 − z1) + w2(z4 − z3)

= z3(w1 − w2)− w1z1 + w2z4

≥ z2(w1 − w2)− w1z1 + w2z4

= δ(z1 · w1, z2 · w1) + δ(z2 · w2, z4 · w2).

Also, by Eq. (17), for all z1, z2, z3 ∈ [0, 1], with z1 ≤ z2 ≤ z3,
w ∈ [0, 1], it holds that:

z2 + δ(z3 · w, z2 · w) = z2 + w(z3 − z2) = z2(1− w) + wz3

≥ z1(1− w) + wz3 = z1 + δ(z3 · w, z1 · w).

C. Ordered Directional Monotonicity of d-XC integrals

One important feature of aggregation-like operators is to
present some kind of “increasingness property” to guarantee
that the more information is provided the higher is the ag-
gregated value in the considered direction (conditions (A1) of
Def. 1 and (PA1) of Def. 2). See [3] for more details.

One can notice (see Table II) that there may exist d-XC
integrals that are neither increasing nor directional increasing,
which is the case of XCδ3,m, for instance. Nevertheless,
any d-XC integral do present some kind of “increasingness
property”. In fact, those are denoted as Ordered Directionally
(OD) monotone functions [35]. Such functions are monotonic
along different directions according to the ordinal size of the
coordinates of each input.

Definition 6. [35] Consider a function F : [0, 1]n → [0, 1]
and let r = (r1, . . . , rn) be a real n-dimensional vector, r 6=
0. F is said to be ordered directionally (OD) r-increasing
if, for each x ∈ [0, 1]n, any permutation σ : {1, . . . , n} →
{1, . . . , n} with xσ(1) ≥ . . . ≥ xσ(n), and c > 0 such that 1 ≥
xσ(1)+cr1 ≥ . . . ≥ xσ(n)+crn, it holds that F (x+crσ−1) ≥
F (x), where rσ−1 = (rσ−1(1), . . . , rσ−1(n)). Similarly, one
defines an ordered directionally (OD) r-decreasing function.

Theorem 6. For any FM m : 2N → [0, 1], RDF δ : [0, 1]2 →
[0, 1] and k > 0, the d-XChoquet integral XCδ,m is an (OD)
(k, 0, . . . , 0)-increasing function.

Proof. For all x ∈ [0, 1]n and permutation σ : {1, . . . , n} →
{1, . . . , n}, with xσ(1) ≥ . . . ≥ xσ(n), and c > 0 such that
xσ(i) + cri ∈ [0, 1], for i ∈ {1, . . . , n}, and 1 ≥ xσ(1) + cr1 ≥
. . . ≥ xσ(n)+crn, for rσ−1 = (rσ−1(1), . . . , rσ−1(n)), one has:

XCδ,m(x + crσ−1)
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TABLE II: Properties of d-XChoquet integrals for any fuzzy measure m.

d-XC 0, 1-cond. 1-inc. Ran ⊆ [0, 1] PAF inc. AF (OD)-inc ≥ min ≤ max Aver.

XCδ0,m yes yes yes yes yes yes yes yes yes yes
XCδ1,m yes yes yes yes no no yes yes yes yes
XCδ2,m yes yes no no no no yes yes no no
XCδ3,m yes no yes no no no yes yes no no
XCδ4,m yes yes no no no no yes yes no no
XCδ5,m yes no yes no no no yes yes no no

= x(1) + c · rσ−1(1)

+

n−1∑
i=2

δ((x(i) + c · rσ−1(i)) ·m(i),

(x(i−1) + c · rσ−1(i−1)) ·m(i))

+ δ((x(n) + c · rσ−1(n)) ·m(n),

(x(n−1) + c · rσ−1(n−1)) ·m(n))

= x(1) + c · 0

+

n−1∑
i=2

δ((x(i) + c · 0) ·m(i), (x(i−1) + c · 0) ·m(i))

+ δ(x(n) ·m(n) + c · k ·m(n), (x(n−1) + c · 0) ·m(n))

≥ x(1) +

n−1∑
i=2

δ(x(i) ·m(i), x(i−1) ·m(i))

+ δ(x(n) ·m(n), x(n−1) ·m(n)) by (d4)
= XCδ,m(x).

Thus, any d-XC integral is (OD) (k, 0, . . . , 0)-increasing.

D. Other Important Properties
In this section, we provide the study of some additional
relevant properties. The following three results are immediate:

Proposition 4. For any RDF δ and FM m, XCδ,m(x) ≥
min(x), for all x ∈ [0, 1].

Proposition 5. XCδ,m(x) ≤ max(x) if and only if the RDF
δ satisfies, for all 0 ≤ a1 ≤ . . . ≤ an and for a FM m:∑n
i=2 δ(ai ·mi, ai−1 ·mi) ≤ an − a1, where mi = m(Ai),

for Ai = {i, . . . , n}.

Corollary 1 (Averaging). XCδ,m is averaging if and only if
it satisfies Prop. 5.

Proposition 6 (Idempotency). For any RDF δ and FM m, it
holds that XCδ,m is idempotent.

Proof. If x = (x, . . . , x), then, by (d3), one has that:
XCδ,m(x) = x +

∑n
i=2 δ

(
x ·m(i), x ·m(i)

)
= x + 0 = x.

Therefore, the d-XChoquet is idempotent.

Table II summarizes the properties satisfied by the d-
XChoquet integrals that are studied in this paper, considering
the RDFs of Table I and any fuzzy measure m. Notice that
d-XChoquet integrals are richer than other generalizations of
the CI found in the literature, in the sense that they satisfy
the properties studied in this paper (which are the same
properties studied for other previous generalizations of the CI)
under a lower number of restrictions when compared to other
generalizations.

IV. MODIFIED GMC-RTOPSIS

In this section, we present an application of the d-XC integrals
in the Group Modular Choquet Random Technique for Order
of Preference by Similarity to Ideal Solution (GMC-RTOPSIS)
[8] method for decision-making.

A. The modified method to use the d-XC integral

We begin by defining the notation used in this subsection. We
represent by q the q-th decision maker of a total of Q ∈ N =
{1, 2, 3, . . .}. Additionally, let A = {A1, . . . , Am} be the set
of m alternatives for the problem, which are the same for
all decision makers. Let Cq = {C1, . . . , Cnq

} represent the
criteria set for the q-th decision maker, and C =

⋃Q
q=1 Cq =

{C1, . . . , Cn}, where n =
∑Q
q=1 nq , represents the criteria set

of all the decision makers.

Example 6. Take for example the problem described in the
Section IV-C. In that case, we have three decision makers,
Q = 3, and also have four distinct alternatives, repre-
sented by A = {A1, A2, A3, A4}. With respect to the cri-
teria, we have the following criteria set for each decision
maker: C1 = {price(1), warranty(1), payment options(1)},
C2 = { price(2), delivery time(2), production capacity(2),
product quality(2), support waiting(2)} and C3 = { product
lifespan(3), responsibilities(3), certifications(3), price(3)}. This
means that n =

∑3
q=1 nq = 12, where n1 = 3, n2 = 5 and

n3 = 4, and the complete criteria set is C = C1 ∪C2 ∪C3.

Each q-th decision maker provides his/hers rating for each
criterion and alternative in the form of the following matrix,
denoted as a decision matrix (DM), where each value sqij(Y

q),
with 1 ≤ i ≤ m and 1 ≤ j ≤ nq , is the rating of the criterion
j for alternative i:

DMq=



C1 C2 · · · Cnq

A1 sq11(Y q) sq12(Y q) · · · sq1nq
(Y q)

A2 sq21(Y q) sq22(Y q) · · · sq2nq
(Y q)

...
...

... · · ·
...

Am sqm1(Y q) sqm2(Y q) · · · sqmnq
(Y q)

.
Additionally, each rating can be a function which depends

on factors that model random and deterministic events, given
by Y = (Yrand, Ydet). Random events are modeled by
stochastic processes, while deterministic events are those
which are not random, such as time, location or even a
parameter of a random event. Each fixed value x ∈ X of Ydet
is called a state, where X is the set of states for the problem.
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After all the decision makers have provided their opinions in
the form of DMs, the method (steps below) is applied. Notice
that, since the GMC-RTOPSIS is an extension of the standard
TOPSIS, the steps are similar. The methods work by finding
the alternative that is closer to the Positive Ideal Solution (PIS)
and farther from the Negative Ideal Solution (NIS), as defined
in step 2 below. One of the advantages in using the GMC-
RTOPSIS is that for each criterion one may use a different data
type. Additionally, by using the d-XC integral, the interaction
among the criteria can be used in the process.

In the following, we present our modified version from the
original method [8], where the main modification is done in the
step 4, when we use the d-XC integral instead of the standard
CI (see Fig. 1 for the diagram of the below steps):
0) Select a state x ∈ X not yet processed;
1) Normalize the complete DM matrix;
2) Select the Positive Ideal Solution (PIS), denoted by s+j (Y ),
and the Negative Ideal Solution (NIS), denoted by s−j (Y ),
considering, for each j ∈ {1, . . . , n}, respectively:

s+j (Y ) =

 max
1≤i≤m

sij , if it is a benefit criterion,

min
1≤i≤m

, sij if it is a cost/loss criterion,
(18)

s−j (Y ) =

 min
1≤i≤m

sij , if it is a benefit criterion,

max
1≤i≤m

sij , if it is a cost/loss criterion;

3) Calculate the distance measure of each criterion Cj , with
j ∈ {1, . . . , n}, to the PIS and NIS solutions:

d+ij = d
(
s+j (Y ), sij(Y )

)
, d−ij = d

(
s−j (Y ), sij(Y )

)
,

where i ∈ {1, . . . ,m} and d : Rn → [0, 1] is a distance
measure associated with the criterion data type.
4) For each alternative i ∈ {1, . . . ,m}, calculate the separation
measure using the d-XC integral, with an RDF δ, as follows:

S+
i (Y ) =

[(
d+i(1)

)2
+

n∑
j=2

δ

((
d+i(j)

)2
·mY

(
C+

(j)

)
,

(
d+i(j−1)

)2
·mY

(
C+

(j)

))] 1
2

S−i (Y ) =

[(
d−i(1)

)2
+

n∑
j=2

δ

((
d−i(j)

)2
·mY

(
C−(j)

)
,

(
d−i(j−1)

)2
·mY

(
C−(j)

))] 1
2

where d+i(1) ≤ . . . ≤ d+i(n), d
−
i(1) ≤ . . . ≤ d−i(n), for

each j ∈ {1, . . . , n}, C+
(j) is the criterion correspondent

to d+i(j), C
−
(j) is the criterion correspondent to d−i(j), mY is

the learned fuzzy measure by a particle swarm optimization
(PSO) algorithm [43] (for more details on how the PSO
algorithm works for finding the measure see [8]) and C+

(j) =

{C+
(j), C

+
(j+1), . . . , C

+
(n)}, C−(j) = {C−(j), C

−
(j+1), . . . , C

−
(n)},

C+
(n+1) = C−(n+1) = ∅, d+i(0) = d−i(0) = 0. Notice that for each

state we may have a different fuzzy measure, which means
that the fuzzy measure is dependent on Ydet;

Fig. 1: Diagram of the steps of the GMC-RTOPSIS method
described in Section IV-A. Source: [10]

5) For each alternative i ∈ {1, . . . ,m}, calculate the relative
closeness coefficient to the ideal solution with:

CCi(Y ) =
S−i (Y )

S−i (Y ) + S+
i (Y )

;

6) When using probability distributions in the DM, it is
introduced a bootstrapped probability distribution in the CCi
values, so as a point representation for this distribution we
minimize a pre-defined risk function:

cci = arg min
c
R(c)

= arg min
c

∫
R
L(c, CCi(Y )) dF (CCi(Y )); (19)

7) If there is at least one non-processed state x, return to 0;
8) Aggregate the cci values from all the states with ĉci =
fx∈X (cci(x)), where f is an aggregation function;
9) Rank the alternatives from the highest to the lowest ĉci
values.

Since we run the algorithm above for multiple d-XC in-
tegrals defined by the functions δ in Table I, we use the
∆R1,R2 [10] to calculate the biggest separation between alter-
native ranked first and the second one: ∆R1,R2 = max (ĉ1)−
max (ĉ2), where ĉ1 = {ĉci | i ∈ {1, . . . ,m}} and ĉ2 =
ĉ1−{max (ĉ1)}. We, then, consider the d-XC integral with δ
that has the biggest ∆R1,R2 value. Observe that, although the
∆R1,R2 value does not give the “full picture” of the rank in the
problem, it gives a straightforward way to compare the ranks
from multiple d-XC integrals. This means that the higher the
∆R1,R2 value, the more likely the d-XC integral has separated
the two better ranked alternatives.

B. Methodology

The parameters for the simulation are described in this section
and are the same as those presented in [8], [10]. Since we
are using probability distributions in the DM, we use 10,000
samples from the complete DM matrix in each of the states.
We apply a particle swarm optimization [43] to learn the fuzzy
measure using 30 particles and 100 interactions. The PSO is
used since the original method presented good results.
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For the risk function, given in Eq. (19), we use the squared
loss: L(cc, CCi) = (cc − CCi)

2 . This gives the mean
function as the point estimator for the values. Also, we use
the weighted arithmetic mean as the aggregation function in
step 8: WAMi = w(S1) · cci(S1) + w(S2) · cci(S2), where
S1 and S2 are the states of the problem.

Lastly, notice that we only changed the Choquet function to
the d-XC integral. Therefore, for each used RDF δ, the method
maintains its original computation complexity.

C. The considered problem

In this subsection we describe the problem used as an example
in this article, which was first studied in [8]. A company is
evaluating four suppliers, namely A1, A2, A3 and A4, for
a provision and it asks three of its managers to give their
opinions by specifying ratings in the DM.

The first is the budget manager. He/she considered the
following criteria: C(1)

1 - price per batch (in thousands); C(1)
2

- warranty (in days); and C(1)
3 - payment conditions (in days).

Since it is known that the demand for the product is higher in
December, he/she used a binary variable τ , defined as:

τ =

{
0, if the month is from January to November,
1, if the month is December.

Lastly, he/she assigned a weight for each of his/her criteria
with the following weighting vector: w(1) = (0.5, 0.25, 0.25).

The next is the product manager; he/she considered the
following criteria: C(2)

1 - price; C(2)
2 - delivery time (in hours);

C
(2)
3 - production capacity; C(2)

4 - product quality; and C
(2)
5

- time to respond to a support request (in hours). Also, the
reliability in the supplier’s production was modeled by a
random variable Pi such that:

Pi =

{
0, no failures in production of supplier Ai,
1, failures occurred in production of supplier Ai.

Additionally, since in December the production accelerates,
the chance of a failure increases as a result. Therefore he/she
included this characteristic as a stochastic process using the
following function: fi(x, y) = x

(
1 + y(Pi + τ)2

)
.

Furthermore, the suppliers’ production capacity was mod-
eled by ITFNs as follows:

s213 =
(
(0.81+P1 , 0.91+P1 , 1.01+P1 , 1.01+P1), 1.0, 0.0

)
s223 =

(
(0.81+4P2 , 0.91+4P2 , 1.01+4P2 , 1.01+4P2), 0.7, 0.1

)
s233 =

(
(0.61+2P3 , 0.71+2P3 , 0.81+2P3 , 1.01+2P3), 0.8, 0.0

)
s243 =

(
(0.51+3P4 , 0.61+3P4 , 0.81+3P4 , 0.91+3P4), 0.8, 0.1

)
.

Lastly, this manager assigned the same weight for all their
criteria, i.e, w(2) = (0.2, 0.2, 0.2, 0.2, 0.2).

The third is the commercial manager, which adopted the
following criteria: C(3)

1 - product lifespan (in years); C(3)
2

- social and environmental responsibility; C(3)
3 - quantity

of quality certifications; and C
(3)
4 - price. The weighting

vector for the criteria provided by this manager was w(3) =
(0.25, 0.12, 0.23, 0.4).

TABLE III: Decision matrices as given by three managers
when analyzing four alternative suppliers based on their cri-
teria

.

(a) Budget manager

Alternatives C
(1)
1 C

(1)
2 C

(1)
3

τ = 0 τ = 1

A1 260.00(1 + 0.15τ) 90 G G
A2 250.00(1 + 0.25τ) 90 P W
A3 350.00(1 + 0.20τ) 180 G I
A4 550.00(1 + 0.10τ) 365 I W

(b) Production manager

Alternatives C
(2)
1 C

(2)
2 C

(2)
3 C

(2)
4 C

(2)
5

A1 260.00 U(f1(48, 0.10), f1(96, 0.10)) s213 I [24, 48]

A2 250.00 U(f2(72, 0.20), f2(120, 0.20)) s223 P [24, 48]

A3 350.00 U(f3(36, 0.15), f3(72, 0.15)) s233 G [12, 36]

A4 550.00 U(f4(48, 0.25), f4(96, 0.25)) s234 E [0, 24]

(c) Commercial manager

Alternatives C
(3)
1 C

(3)
2 C

(3)
3 C

(3)
4

A1 Exp(3.5) W 1 260.00

A2 Exp(3.0) W 0 250.00

A3 Exp(4.5) P 3 350.00

A4 Exp(5.0) I 5 550.00

TABLE IV: Linguistic variables and their respective trape-
zoidal fuzzy numbers used in criteria C(1)

3 , C(2)
4 and C(3)

2

.

Linguistic variables Trapezoidal fuzzy numbers

Worst (W) (0.0, 0.0, 0.2, 0.3)
Poor (P) (0.2, 0.3, 0.4, 0.5)
Intermediate (I) (0.4, 0.5, 0.6, 0.7)
Good (G) (0.6, 0.7, 0.8, 1.0)
Excellent (E) (0.8, 0.9, 1.0, 1.0)

To define the Pi distribution the company used historical
data of each supplier as follows: for τ = 0: p(P1 = 0|S1) =
0.98, p(P2 = 0|S1) = 0.96, p(P3 = 0|S1) = 0.97, p(P4 =
0|S1) = 0.95. And for τ = 1: p(P1 = 0|S2) = 0.96, p(P2 =
0|S2) = 0.92, p(P3 = 0|S2) = 0.96, p(P4 = 0|S2) = 0.90.

Notice that, considering all the DMs, the underlying factors
are given by a random component Yrand = (P1, P2, P3, P4)
and a deterministic component Ydet = τ . Since τ can have two
distinct values, there are two states for the problem: the first
occurs when τ = 0 and the second when τ = 1, represented
by S1 and S2 respectively. Therefore, the underlying factors
can be represented by Y = (Yrand, Ydet). Additionally, since
the production is higher in December, the managers decided
that the state S2 is more important than S1, hence they gave it
a higher weight in the aggregation step (step 8 of the method)
by setting w(S1) = 0.4 and w(S2) = 0.6.

Table III shows the DMs for each manager. Linguistic
variables W, P, I, G, and E are defined in Table IV.

Thereafter, the company favored the opinion of the product
manager over the others by assigning a higher weight for
him/her in the weighting vector for the decision makers:
w = (0.3, 0.4, 0.3). Lastly, the company allowed a variation
of up to 30% for each fuzzy measure, when finding it via the
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TABLE V: Results from the execution of the algorithm using
the d-XC integral for each RDF δ presented in Table I.

d-XC Rank 1 Rank 2 Rank 3 Rank 4 ∆R1,R2

δ4 A3(0.6812) A4(0.5747) A1(0.4439) A2(0.3522) 0.1064
δ1 A3(0.6217) A4(0.5723) A2(0.4168) A1(0.4102) 0.0494
δ3 A3(0.5527) A4(0.5368) A1(0.4769) A2(0.4401) 0.0159
δ0 A3(0.5821) A4(0.5701) A1(0.4346) A2(0.3977) 0.0120
δ5 A3(0.5454) A4(0.5429) A2(0.4575) A1(0.4486) 0.0024
δ2 A4(0.5610) A3(0.5609) A1(0.4622) A2(0.3906) 0.0001

PSO algorithm, in respect to the coefficient in the additive
fuzzy measure [44]. This means that the fuzzy measure mY

can be in the range 0.7 ·mA ≤ mY ≤ 1.3 ·mA of the additive
fuzzy measure mA. This was done to allow interaction among
the criteria.

D. Results

The aggregated results in Table V are ordered by the highest
to the lowest ∆R1,R2 in the last column. For each RDF δ used
in the d-XC integral, the alternatives ranked first to fourth are
shown in columns Rank 1 to Rank 4. Inside the parenthesis
are the final aggregated values for the alternatives.

One can notice that 5 of the 6 results agreed in the top of
the rank order. The one that disagreed, δ2, had a quite small
difference in the values of the alternatives ranked first and
second, which may be the reason to this change in the top
of the rank, as also discussed in [10]. Notice that when using
δ4 we have the highest ∆R1,R2 with 0.1064. It is more than
double the second highest value, δ1, which resulted ∆R1,R2 =
0.0494.

It is important to remark that the standard X-Choquet
integral, which is the d-XC integral given by using the RDF δ0,
has achieved one of the lowest separations between positions
1 and 2 of the rank. Thus, non standard d-XC integrals
(with RDFs different from δ0) offered further trustful decision
making, in the sense that there are no doubts when choosing
alternative rank first instead of second.

V. ENHANCED-MULTIMODAL FUSION BCI FRAMEWORK

In this section we present an application of d-XC integrals
in the Enhanced Multimodal Fusion (EMF) BCI Framework.
The EMF is a Motor Imagery based BCI framework that
classifies electroencephalogram (EEG) signals [25] into dif-
ferent commands, and has been tested in tasks consisting of
discriminating among left hand, right hand, foot and tongue
movements. The EMF consists of 5 different phases:
1) Apply the Fast Fourier transform (FFt) to the EEG signals.
Then, perform a differentiation of the FFt output.
2) Divide the data into five wave bands: δ (1− 4Hz), θ (4−
8Hz), α (8− 14Hz), β(14− 30Hz) and All (1− 30Hz).
3) Compute the common spatial pattern (CSP) on each wave
band to extract features with maximal spatial separation [45].
4) Train a set of classifiers for each wave band: linear
discriminant analysis (LDA), quadratic discriminant analysis
(QDA), support vector machines (SVM), k-nearest neighbours
(KNN) and gaussian process (GP). Where one of each kind
was trained for each wave band. For example, considering the

case of the LDA we would obtain a δ-LDA, θ-LDA, . . ., All-
LDA; and so on with QDA, KNN, SVM and GP.
5) Perform the multimodal decision with two aggregation
functions. First, we fuse all the classifiers from the same kind
in the frequency fusion phase. Then, we fuse the outputs of
the frequency fusion phase using another aggregation function.
So, we first fuse all the LDA classifiers and the same for the
remaining classifiers. Then, we aggregate the output for each
of these fusions using another aggregation function. The best
results in [25] were obtained using Choquet/Sugeno integrals
in the frequency fusion phase and an n-dimensional overlap
function in the classifier fusion phase.

A visual scheme of the components of EMF can be found
in Fig. 2. We used different d-XC integrals in the multimodal
decision step of the EMF. We have tested all possible combi-
nations of the d-XC integrals in both phases of the multimodal
decision making phase, and studied how the d-XC performs
when used alongside n-dimensional overlap functions.

A. Methodology

For our experiment, we have considered the BCI Competition
IV 2a dataset, consisting of 4 classes of motor imagery
tasks: tongue, foot, left-hand and right-hand, performed by
9 subjects. For each task, 22 EEG channels were collected. A
total of 288 trials for each participant was equally distributed
among the 4 classes. In the experimental setup, we used 4
out of the 22 channels (C3, C4, CP3, CP4), according to
[25]. From each subject, we generated 10 partitions of the
288 trials consisting of 50% for train (144 trials) and 50% for
test (144 trials) chosen randomly. Since there are 9 subjects,
this produces 90 different datasets. The average accuracy of
all partitions was used as evaluation metric.

B. Results

In Table VI, we show the results using the different d-XC
integrals in both phases of the decision making. We found
that XCδ1,m used in both phases provided the best results,
with an average accuracy of 77.03, followed by the results
obtained using XCδ1,m in the first phase of the fusion and,
finally, the results from XCδ1,m.

In Table VII, we have reported the results in the EMF
using other existing aggregation functions and the d-XC in-
tegrals with n-dimensional overlap functions. We tested some
combinations of fuzzy integrals with n-dimensional overlap
functions, as they reported very satisfactory results when
considering the original EMF. Some classical aggregation
functions, such as the arithmetic mean, were also adopted.
It was revealed that the best result overall was obtained using
the XCδ,m integral with δ1 in the first phase of the decision
making phase, and then the geometric mean in the second
phase.

VI. CONCLUSIONS

This paper brought a novel approach for generalizing the
expanded form of the CI using RDFs, namely the d-XChoquet
integral, of which the X-CI standard form based on the
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Fig. 2: Visual scheme for the Enhanced Multimodal Fusion BCI framework (Fig. taken from [25] with permission from the
authors). 1. EEG signals are measured and preprocessed. 2. We compute the FFt over the signals in order to obtain five different
wave bands. 3. We differentiate the signals. 4. We use CSP to extract a feature vector for each signal. 5. We train different
kinds of classifiers for each wave band. 6. We fuse the classifiers output in two phases: first we fuse all the classifiers of the
same kind, and then we fuse the resulting outputs.

TABLE VI: Average accuracy obtain for all the partitions in
the BCI Competition IV 2a dataset using two d-XC integrals
in the decision making phase of the EMF framework. The
rows correspond to the RDF δ used in the d-XC integral in
the first phase, and the columns to the one used in the second
phase. The highest value is in bold.

XCδ,m δ0 δ1 δ2 δ3 δ4 δ5

δ0 68.93 68.04 65.54 70.42 68.03 68.26
δ1 69.84 77.03 42.43 31.17 76.72 73.81
δ2 64.53 58.30 63.32 63.35 61.60 57.81
δ3 52.37 62.13 35.54 50.02 58.00 62.26
δ4 70.40 75.97 48.65 46.98 75.74 74.52
δ5 63.71 67.31 43.66 56.63 67.17 67.41

difference operator is a special case. The definition of the X-
CI in terms of restricted dissimilarity functions may enlarge
its application to several cases in which the difference in
not properly defined and/or causes the degradation of the
information quality of the result. Moreover, since one may
define different types of restricted dissimilarity functions, this
approach offers further flexibility in the choice of the function
to use according to the considered application.

Concretely, the theoretical contributions of this paper were
the definition of the d-XChoquet integral and the study of the
main properties usually required for aggregation functions in
applications, such as some kind of monotonicity, 0, 1-condi-
tions, idempontency and the averaging property. In particular,
we analyzed the behaviors of d-XC integrals concerning six
different restricted dissimilarity functions. We showed that the

TABLE VII: Average accuracy obtained for all the partitions
in the BCI Competition IV 2a dataset using fuzzy and d-XC
integrals in the decision-making phase of the EMF framework.
We also use the geometric mean in the second fusion phase, as
the n-ary overlaps performed best in this part of the decision
making in the original results.

Agg. 1 Agg. 2 Avg. Accuracy

Arith. Mean Arith. Mean 78.38
Choquet Int. Choquet Int. 77.98
Sugeno Int. Sugeno Int. 67.60
FG-Sugeno FG-Sugeno 78.80
Choquet Int. Geo. mean 82.57
Sugeno Int. Geo. mean 67.60
FG-Sugeno Geo. mean 82.84

d-XC with δ0 Geo. mean 82.91
d-XC with δ1 Geo. mean 85.55
d-XC with δ2 Geo. mean 83.28
d-XC with δ3 Geo. mean 79.15
d-XC with δ4 Geo. mean 85.20
d-XC with δ5 Geo. mean 82.56

range of d-XC integrals may be larger than the unit interval for
some restricted dissimilarity functions. Nevertheless, this issue
is unremarkable when d-XC integrals are used in a decision-
making step.

To showcase the role of our developments in concrete
applications, we presented two case studies. First, we showed
an application to MCDM, introducing a novel version of the
GMC-RTOPSIS decision making method, by using the d-XC
integral in the separation measure step of the proposed algo-
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rithm. We showed that the standard X-CI using the difference
presented the lowest separation value between ranks 1 and 2.
The results showed that non standard d-XC integrals based on
restricted dissimilarity functions different from the difference
may provide a more trustful decision making, guaranteeing no
doubts when choosing rank 1 over of rank 2.

Finally, we showed how the d-XC integral performed on
the multimodal decision making scheme of the EMF MI-BCI
framework. In this case, it was revealed that the combination
of a d-XC integral and an n-dimensional overlap function per-
formed better than any of the previous MI-BCI classification
results obtained with this framework.

Ongoing work is concerned with the use of d-XC integrals
in fuzzy-rule based classification systems (as in [7]) and to
image processing, e.g., to edge feature fusion (as in [20]).
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