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Abstract—Recurrent Neural Networks (RNN) model sequential
information and are commonly used for the analysis of time
series. The most usual operation to fuse information in RNNs is
the sum. In this work, we use a RNN extended type, Long Short-
Term Memory (LSTM) and we use it for image classification,
to which we give a sequential interpretation. Since the data
used may not be independent to each other, we modify the
sum operator of an LSTM unit using the n-dimensional Choquet
integral, which considers possible data coalitions. We compare
our methods to those based on usual aggregation functions, using
the datasets Fashion-MNIST and MNIST.

Index Terms—Long Short-Term Memory, Recurrent Neural
Network, Sequential Image Classification, Aggregation Functions,
Choquet Integral.

I. INTRODUCTION

Deep Neural Networks have proven to be a useful and
accurate tool, positioning itself at the forefront of machine
learning and pattern recognition [1], [2]. Deep Neural
Networks have been applied in a multitude of applications,
such as detection and segmentation in medical images [3], the
prediction of financial values [4] or the prediction of words
on the keyboard of the smartphones [5].
Recurrent Neural Networks (RNN) are a type of artificial
neural network used for modeling sequential or temporal
information, such as time series or Natural Language
Processing (NLP) [4]–[6]. These networks consist of an
architecture in which at each timestep, the output values
of the layer of the previous instant are connected with the
information of the current instant.
Classification is one of the most relevant problems in Machine

Learning. The objective of a supervised classifier is to obtain
intelligent knowledge from a set of labeled data where
each data is assigned a class. Recurrent neural networks are
usually used for classification based on strictly sequential
information.
Besides, the information fusion process [7] is a fundamental
process in many fields such as multi-criteria decision
making [8], image processing [9], machine learning [10] or
Convolutional Neural Networks (CNN) [11]. In the RNN, this
information is stored in vectors, it has a multi-dimensional
structure. To merge multivariate data, usually it is used the
sum operator between the vectors as a form of aggregation
of the sequential multivariate information.
However, there may be interaction between the recurrent
data generated by the network and the data from the dataset.
For this reason, we consider that it is convenient to use
aggregation operators that take this fact into account. In this
sense, in the aggregation functions literature fuzzy integrals
have been used [12], which are based on fuzzy measures.
These measures [13] allow us to take into account the
relationship between the elements to be added, assessing the
relevance of possible coalitions between the data [10]. One of
the most widely used fuzzy integrals is the Choquet integral
[14]. Until now, different generalizations of the Choquet
integral [10], [15], [16], have been presented in the literature
for one-dimensional data.
The objective of this work is to replace the classical
aggregation operator used in the LSTM by the
multidimensional Choquet integral, in such a way that
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we generate a multidimensional information aggregation
process in which the possible coalitions between the data are
taken into account.
To show the usefulness of modifying the recurrent neural
network aggregation process, we evaluate it in a classification
problem. In particular, we are going to interpret the images
as sequential information. We perform the sequential image
classification using a Long Short-Term Memory (LSTM) [17],
a widely used recurrent neural network. In the steps where
the recurrent information is added to the initial information,
we use the multidimensional version of the discrete Choquet
integral.
The structure of this work is as follows. First, we discuss
LSTM. In Section III, we explain the preliminary definitions
and apply them to modify a LSTM. The experimental
framework (used datasets and network architecture) is
presented in Section IV. The results are showed and
explained in Section V. Finally, some conclusions and future
research are described in Section VI.

II. LONG SHORT-TERM MEMORY (LSTM)
Recurrent Neural Networks (RNN) [18] were born with the

goal of modeling data with sequential or time dependence.
Since neural network learning algorithms are based on the
gradient, RNN may suffer from the vanishing gradient problem
[19]. This problem lies in the recurrent decrease in the value
of a variable at the output of the recurrent neural network. This
is an especially serious problem when trying to train networks
with long dependencies or time sequences, such as long time
series or long texts.
The Long Short-Term Memory (LSTM) arises mainly as a
response to this problem, representing a radical change in
the recurrent neural network training because the information
flow is regulated. The main idea of this architecture [17] is
a memory cell based in gates which model the information
enters or comes out.
Several modifications of the LSTM neurons have been con-
sidered in the literature [6], [20], [21]. In this work we are
going to use one of the most extended [6].
A detailed representation of an LSTM unit can be seen in Fig.
1, where it is important the highlighting of the forget gate (f )
[22], input gate (i), output gate (o)and candidate cell (c̃).
Next, we are going to explain the operation of the LSTM unit.
Let N be the input sequence length, H the hidden size of the
LSTM unit and T the number of timesteps. Then we get the
following weights [6] for the matrices and vectors associated
with the gates and the candidate cell:
• Input weight matrices: Wfx,Wix,Wcx,Wox ∈ RH×N
• Recurrent weight matrices: Wfh,Wih,Wch,Woh ∈

RH×H
• Bias weight vectors: bf ,bi,bc,bo ∈ RH

The operations description for each timestep t ∈ {1, . . . , T}
is the following:

i. The input values x(t) and h(t−1) enter to the gates f
(Eq. 2), i (Eq. 3), c̃ (Eq. 4) and o (Eq. 6). In each of
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Fig. 1. LSTM unit representation

them, the value of x(t) is multiplied by each of the input
weight matrices (Wgx, depending on the gate g). The
same occurs with the values of h(t−1) and the recurrent
weight matrices. The H-dimensional vectors obtained
from these multiplications with the corresponding bias
bg for each gate g are fused summing them.

ii. As activation function non-linear functions are used. As
gate activation function the sigmoid logistic function (Eq.
1) is used:

σ(x) =
1

1 + e−x
(1)

As activation function of the candidate cell the hyperbolic
tangent tanh(x) is used. Both of these functions are
defined on R. Here, on vectors are applied coordenate-
wise.

iii. The previous timestep long-term memory vector (c(t−1))
and the candidate cell one (c̃(t)) are combined in this
step. The Hadamard or element-wise product (◦) is
calculated between the values of the forget gate and input
gate respectively (Eq. 5). Both values are added obtaining
the current timestep value of the long-term vector (c(t)).

iv. Finally, the short-time memory vector (h(t)) is calculated.
First, the long-term information (c(t)) is evaluated by the
tanh(x) activation function. Subsequently, the Hadamard
product is calculated between the value of the output
gate (o(t)) and the information obtained from the last
activation function, obtaining the value of the short-term
memory vector (h(t)).

The equations that describe the explained process are the
following (Eq. 2-7):

f (t) = σ(Wfxx
(t) +Wfhh

(t−1) + bf ) (2)

i(t) = σ(Wixx
(t) +Wihh

(t−1) + bi) (3)

c̃(t) = tanh(Wcxx
(t) +Wchh

(t−1) + bc) (4)

c(t) = f (t) ◦ c(t−1) + i(t) ◦ c̃(t) (5)



o(t) = σ(Woxx
(t) +Wohh

(t−1) + bo) (6)

h(t) = o(t) ◦ tanh(c(t)) (7)

III. LONG SHORT-TERM MEMORY MODIFICATION

The objective of this section is to introduce a modification
in a LSTM architecture. In the first subsection we define
concepts as aggregation functions and the discrete Choquet-
like integrals. In the second subsection we take these concepts
to generalize the sum operation of the LSTMs, changing it.

A. Aggregation functions and Choquet-like integrals

For the fusion of the vectorial information in the recurrent
neural networks as yet it is used the sum. The sum can
be understood as an aggregation function. An aggregation
function is a real-valued function which objective is the
combination and merging of several values (usually numbers)
in only one.
Taking a real interval I = [a, b] ⊂ R which contents m values
to aggregate (x1, . . . , xm ∈ [a, b]), we can formally define an
aggregation function as follows. A mapping F : [a, b]m →
[a, b] is called an aggregation function if satisfies:

1) Non-decreasing monotonicity: for all
(x1, . . . , xm), (y1, . . . , ym) ∈ [a, b]m, if x1 ≤
y1, . . . , xm ≤ ym then F (x1, . . . , xm) ≤ F (y1, . . . , ym)

2) Boundary conditions: F (a, . . . , a) = a and F (b, . . . , b) =
b.

In this sense, the sum is an aggregation function on R.
We denote the set formed by the natural numbers from 1 to m,
{1, . . . ,m} by M . An aggregation function is symmetric if
for all x1, . . . , xm ∈ R and for any permutation σ :M →M
is fulfilled F (x1, . . . , xm) = F (xσ(1), . . . , xσ(m)).

Let us denote by bold letters the elements in Rn, that
is, x = (x1, . . . , xn) ∈ Rn. There is a partial order ≤P
induced by ≤ order of real numbers, given as follows:

x ≤P y if and only if xi ≤ yi
for all i ∈ {1, . . . , n}.
The aggregation functions obtain a representative value from
several inputs. It usually takes the data to be fused as inde-
pendent variables. In many cases, the data to be fused has
a correlation between them. In order to model correlation
between the data, throughout the literature of the aggregation
functions [7], [12], [23], [24] are used the fuzzy integrals.
These integrals are based on fuzzy measures [13], [25] to
model the possible coalition among the data. A function
ν : 2M → [0, 1] is called a fuzzy measure on the M set
if fulfills these two conditions:

1) Boundary conditions: ν(∅) = 0 and ν(M) = 1
2) Monotonicity with respect to the inclusion: ν(A) ≤ ν(B)

for every A ⊆ B ⊆M
A fuzzy measure is called symmetric if the value of ν(A)
depends only on the set cardinality, i.e., for all A,B ⊆M , if

|A| = |B| then ν(A) = ν(B).
A fuzzy measure considered in this work is the power measure,
which is also a symmetric measure. It is defined for all A ⊆M
as

ν(A) =

(
|A|
m

)q
(8)

where q > 0 and |A| is the cardinality of the set A. The q
parameter allows the modeling of the interaction of the data.
Throughout the literature, in the use of the power measure both
fixed values and evolutionary methods [26] have been used to
give value to the exponent q. In this work, the parameter is
modeled by the stochastic gradient descent method, which is
used in the learning process of the recurrent neural network
obtaining most suitable q value [10].
Once the fuzzy measure is introduced, we present a concrete
fuzzy integral: the discrete Choquet integral, which is also an
example of aggregation function. The discrete Choquet integral
[14], [27] with respect to the fuzzy measure ν : 2M → [0, 1]
is defined as a mapping Chν : Rm → R such that

Chν(x1, . . . , xm) =

m∑
i=1

(
xσ(i) − xσ(i−1)

)
ν
(
Aσ(i)

)
(9)

where σ is a permutation on M where xσ(1) ≤ . . . ≤ xσ(m)

with the convention xσ(0) = 0 and Aσ(i) := {σ(i), . . . , σ(m)}
is the subset of indices.
In many cases and concretely in the case of a recurrent neural
network, the operations that are generally performed are
using multidimensional structures like vectors. We take as an
objective the aggregation of vectors in a single one, taking
into account the modeling of the possible coalition between
data. For this issue we are going to define the n-dimensional
Choquet integral, which is a function that merges m vectors
x1, . . . ,xm ∈ Rn in one.

Let m,n be positive integers. In this case, n represents
the length (or dimensionality) of the vectors and m the
number of vectors. Let ν = (ν1, . . . , νn) be a sequence of
fuzzy measures on M and Chν1 , . . . , Chνn : Rm → R be
Choquet integrals with respect to ν1, . . . , νn. A function
Chrν : (Rn)m → Rn given by:

Chrν(x1, . . . ,xm) = (Chν1(x11, . . . , xm1), . . . ,

Chνn(x1n, . . . , xmn))
(10)

for all x1, . . . ,xm ∈ Rn is called a representable discrete
Choquet-like integral with respect to ν. The Choquet-like
integral Chrν is called representable since it is obtained
by using n Choquet integrals on R separately for each
component (Eq. 10, Fig. 5). As we can see, this expression
is a generalization of the standard Choquet integral, since
the input vectors are n-tuples with the same coordinates, i.e.
x = (x, . . . , x) and ν1 = . . . = νn = ν, the output is an
n-tuple with the same coordinates equal to the input of Chν .



x1 = ( x11, x12 , . . . , x1n)

x2 = ( x21, x22 , . . . , x2n)

xm = (xm1, xm2 , . . . , xmn)y y y
Chrν(x1, . . . ,xm) = (Chν1 , Chν2 , . . . , Chνn)

Fig. 2. Graphical representation of the representable discrete Choquet-like
integral

B. LSTM modification based on aggregation functions and
representable Choquet integral

The objective of the present section is the application
of the definitions explained in the previous one in order to
modify and improve the LSTM architecture. In this sense,
we modify the aggregation operator of the LSTM network
(vector summation) for the representable Choquet integral.
With this new approach, Eqs. 2-7 are transformed into the
following set of equations (Eqs. 11-16) to describe the process:

f (t) = σ
(
Chrν(Wfxx

(t),Wfhh
(t−1),bf )

)
(11)

i(t) = σ
(
Chrν(Wixx

(t),Wihh
(t−1),bi)

)
(12)

c̃(t) = tanh
(
Chrν(Wcxx

(t),Wchh
(t−1),bc)

)
(13)

c(t) = f (t) ◦ c(t−1 + i(t) ◦ c̃(t) (14)

o(t) = σ
(
Chrν(Woxx

(t),Wohh
(t−1),bo)

)
(15)

h(t) = o(t) ◦ tanh(c(t)) (16)

As we have shown before, the main modification in the unit
performance is the replacement of the sum operation for Chrν .
Nevertheless, for completeness in the study, in the fusion
of multidimensional vectorial information in the LSTM unit
we will use different aggregation functions. The aggregation
functions we are going to use will be the following:
• Maximum function
• Chrν using ν as power measure (νq , Eq. 8). In that sense

we will use q in two cases:
– With a fixed value , q = 2
– Learning q ∈ R+ with the stochastic gradient descent

in the neural network
• Sum operation, to compare with the rest of the operators.

IV. EXPERIMENTAL FRAMEWORK

In the present section we explain the datasets, neural
network architecture performance as well as the selected
hyperparameters and optimizer.

A. Datasets

The datasets used in this work are the following:
• Fashion-MNIST (F-MNIST) [28]. It consists of a training

set of 60,000 images of dimensions 28×28 distributed in
10 classes. The test set consists of similar 10,000 images.
Both sets are balanced. The images correspond to 10
different items from clothing categories .

• MNIST [29]. It consists of a training set of 60,000 images
of dimensions 28 × 28 distributed in 10 classes. The
test set consists of similar 10,000 images. Both sets are
balanced. It is a subset of the NIST dataset and consists
of a handwritten 0 to 9 digit image dataset.

Both F-MNIST and MNIST datasets have been extensively
used in benchmarks, in pattern and isolated digit handwriting
classification [30] respectively. In this case, we consider the
data contained in an image as sequential information [31].
We transform both F-MNIST and MNIST input values into a
sequence classification problem by scanning the images from
up to down using horizontal slices of the image [30].

Fig. 3. F-MNIST and MNIST dataset average histograms

Fig. 4. F-MNIST and MNIST dataset average histograms between 0 and 3

In Fig 3 we show the mean histograms of all the images of the
F-MNIST and MNIST datasets respectively. However, as the
value 0 predominates well above the rest, in Fig 4 we show the
histogram but limiting the y-axis to 3. In this case, we can see
the difference in the distribution of the pixels of the images of
both datasets. We can observe that in the case of the F-MNIST
dataset there may be more distributed information, but there
may also be greater correlation and interaction between the
data.

B. Architecture

In this case, as we can see in Fig. 5, we set an architecture
where the images are taken as sequential data. In each timestep
t ∈ {1, . . . , T} a row of the image is taken as a vector. This
vector is the input data x(t) ∈ [0, 1]N , and in the used dataset
concretely, it holds T = N = 28.
The used architecture (Fig. 5) consists in two layers:



• LSTM unit (Section II and III-B): With hidden size fixed
in H . We have done the experiment with different sizes
for this parameter. To test the performance of our new
way of fusing vectorial data in LSTM, we have fixed to
H = 32, H = 64 and H = 128.

• Fully connected layer: In second place, we have used a
fully connected layer which connects the H nodes of the
LSTM unit with the number of classes of nodes, in this
case, 10. A probability value in [0, 1] is assigned to each
of them. It is classified in the class number corresponding
to the maximum probability value of the vector.

In this experiment 10 independent runs of 40 epochs each
have been executed. The fixed learning rate for it has been
α = 0.1 and the optimization method for the learning has
been the Stochastic Gradient Descent (SGD) [32]. The used
loss function has been the Cross-Entropy Loss function [33],
given by the following expression (Eq. 17):

L(y) = 1

|C|

|C|−1∑
p=0

− log

(
eyp∑|C|−1

j=0 eyj

)
(17)

where y corresponds to the real values of the dataset, C is
the set of the classes, |C| the number of classes and p the
predicted class.
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ŷ(2)

x(s)

LSTM

FC
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Fig. 5. Graphical representation of the used network architecture

V. RESULTS

In this section, we present the obtained accuracy results for
the discrete multidimensional Choquet integral performance
in LSTM units. In Table I the average results done for 10
independent runs for 40 epochs for each aggregation function
are shown.

In Table I the results for each aggregation function as well as
for each hidden size and dataset are shown.
In the F-MNIST case, all the best results are obtained when
we aggregate the values through the Choquet integral, but
when the exponent q > 0 is learned by the recurrent neural
network itself. This means that when the q-learned Choquet
integral is used, the algorithm models better the interaction
and the possible coalition between the data. In this way, when
the hidden size of the LSTM unit is fixed to 128, we obtain
a performance that allows a data weighting which improves
1.01 accuracy points with the respect to the classical form of
aggregation in this architecture, the sum. In the case of smaller
hidden sizes (64 and 32) the average performance is better than
the sum one, but only 0.17 and 0.21 accuracy points better,
respectively.
On the other hand, with the respect to the MNIST dataset,
the improvement is much less, where fixing a hidden size of
128 units is 0.03 points better. One reason to justify this non-
improvement may be the fact that the data are less correlated
with each other and there is less interaction between them as
we have seen in Fig. 4 and Section IV.

VI. CONCLUSSION

In this work we have proposed the use of a new method for
the fusion of multidimensional vectors, in the process of fusion
of sequential information in a concrete type of the recurrent
neural networks. Likewise, an improvement in precision in
the experiments carried out has been corroborated. We have
observed that better results are obtained when we substitute
the sum for the Choquet integral.
Regarding future lines of research, in the theoretical aspect our
intention is to continue investigating new forms of fusion of
vectors based on the Choquet integral, such as the generaliza-
tion of expressions. On the applied side, future lines go in the
direction of modifying more complex architectures, as well
as the use of these architectures of other types of problems
(sentiment analysis, prediction of time series, etc.)
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