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A- Introduction

A.1 Case study: the BeeMon project

BeeMon [1] is a project developed by students and staff of the Appalachian State

University’s Computer Science Department, with the objective of gathering information

about the state of monitored beehives with the ultimate goal of helping beekeepers

recover the bee populations.

For this purpose, audio processing is performed to detect anomalies in the beehives,

and so it is of strong interest to be able to automatically separate the sound generated

by the beehive itself from other sources of environmental noise, such as human, animal,

or meteorological noise.

With this work it is intended to contribute to the development of the project through tools

and information of value to the aforementioned task. In this document 4 interesting

methods will be discussed.

B. Background

B.1 STFT and spectrograms

It is well known that working in the frequency domain brings many benefits while

processing audio, so a good way to represent a recording is combining both time and

frequency domains, making a graphical (two-dimensional) image of the audio through

spectrograms.

The aforementioned are calculated using the short-time Fourier transform (STFT),

which needs to be tuned through the length and overlap of its sliding window.

Performing STFT comes with a tradeoff between resolution in both domains, but with a

correct choice of its parameters is of very good use for many purposes, and leads to a
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complex value for every time point and frequency bin, ultimately forming a complex

matrix.

These complex matrices computed with STFT are the base for the source separation

methods discussed in the following sections of this paper.

B.2- Audio source separation

One of the the main challenges in the audio processing field could be summarized in

being able to improve the quality of certain recordings, separating the desired source of

audio from interferent sounds, like all kinds of noise or other captured sources. For this

purpose, numerous techniques have been developed over the decades, involving

statistical analysis, different kinds of filtering and deep learning, among others.

Audio separation techniques can be classified into informed and blind, depending

whether they work with provided training data or without it. In this document the 4

different methods for audio source separation are informed, all four being based on

matrix factorizations.

B.3 MM algorithms

MM algorithms [2] are a type of algorithm based on the iterative optimization of a family

of auxiliary functions as a way to optimize a target function. “MM” stands for both

minorize-maximize and majorize-minimize algorithms, which means that they can refer

to the solution of a problem where either a maximum or a minimum of a certain function

is seeked.

In the case of a minimization problem, for it to be suitable, the auxiliary function needs

to fulfill certain constraints:

For any θ: , (1)𝐴(θ|θ
𝑚

) > 𝑓(θ) 𝐴(θ
𝑚

|θ
𝑚

) = 𝑓(θ
𝑚

)
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With these conditions, updating and optimizing the auxiliary function over𝐴(θ|θ
𝑚

)

iteration m will always result in a value of the target function not superior to the one𝑓(θ)

obtained over iteration m-1. Using the convexity of the target function, as m tends to

infinity, the algorithm will converge to a local minimum.

The challenge to use these kinds of algorithms is to discover an auxiliary function

complying with the mentioned constraints, for which strategies like the Jensen’s

inequality or the Cauchy-Schwarz inequality are used, among some others.

Understanding this was relevant to the study of this project as 2 of the algorithms

implemented are MM algorithms.

C. Non-negative Matrix Factorization

C.0 Description

Non-negative matrix factorization [3] is a family of algorithms used in the decomposition

of matrices in typically 2 matrices whose product is an approximation of the original.

This method is used in a wide spectrum of fields, with applications like pattern

recognition [4], air emission quality analysis, spectral processing or text mining [5].

These algorithms usually work iteratively updating the calculated matrices, which are

nonnegative, to minimize the error between the reconstructed (resulting) matrix and the

original one. Intuitively enough, there is always more than one pair of matrices whose

product will be a good solution to the problem. Calculating these matrices is an

optimization problem that is approached differently by the many types of NMF

implementations, like active sets or the gradient descent. In this work NMF through

multiplicative update rules [6] is presented, which is the most popular solution due to its

efficiency and simplicity of implementation.

C.1 NMF in audio source separation
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Combining what was seen in the previous sections, NMF can be used to factorize an

audio spectrogram V into a matrix W of nonnegative spectra and a matrix H of temporal

activations [7]. Nevertheless, this itself can not be used directly in audio source

separation, as deciding which bases among the matrix W belong to each source is not a

trivial task.

Being able to do so would make NMF a good blind source separation method. In reality,

NMF based techniques use training data which is decomposed into the aforementioned

matrices W and H. The bases generated with this training data can be later fixed as

bases for the decomposition of a target audio, in which multiple sources can be

separated as the spectral matrix's components’ source are known beforehand. An

alternative method to this would be to use as basis the STFT of specific small pieces of

audio.

Let’s use an example to illustrate this; let us have some audio in which the intervention

of 2 speakers needs to be separated. Using NMF over a set of small recordings of both

speakers alone (training data), a certain amount of spectral bases could be prepared for

each of them. The resulting bases are combined into a nonnegative spectral matrix

which is used as input to separate the audio with the two speakers. In this new usage of

NMF, only the temporal activations’ matrix is updated, as the spectral information needs

to be fixed to keep track of what bases correspond to each speaker.

The bases that are to be used need to properly model the mixed signal (so that a good

reconstruction can be performed) but they also need to be as different as possible

between sources, so that the audio corresponding to each of them can be separated

well.

Nevertheless, at this point some would notice an important flaw in this method: spectral

information is complex and NMF is strictly nonnegative, and so phase information needs

to be discarded. In sections E and F a solution to this problem will be addressed.
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C.2 NMF implementation

As said in C.0, the NMF version chosen for this project is based on multiplicative update

rules, a method proposed by D. Lee and H. Seung [6]. It seeks the optimization of one

of two cost functions based in:

a) Euclidean distance: (2)
𝑓𝑡
∑(𝑉

𝑓𝑡
− (𝑊𝐻)

𝑓𝑡
)2

b) Divergence: (3)
𝑓𝑡
∑(𝑉

𝑖𝑗
𝑙𝑜𝑔

𝑉
𝑓𝑡

(𝑊𝐻)
𝑓𝑡

− 𝑉
𝑓𝑡

+ (𝑊𝐻)
𝑓𝑡

)

The implementation used for this work will use the first option, for which the

multiplicative rules are:

, (4)𝐻 ← 𝐻 𝑊𝑇𝑉

𝑊𝑇𝑊𝐻
𝑊 ← 𝑊 𝑉𝐻𝑇

𝑊𝐻𝐻𝑇

A simple python implementation [8] has been used in this work, without major

modifications in the original code.

C.3 Generating bases with NMF

A common usage of NMF in audio processing is performing NMF with factorization rank

1 (using only one base). This methodology provides a spectral vector that well

describes the original audio, whenever it is a sound with constant frequency to a certain

extent (meaning that its amplitude can vary but its frequency distribution remains

somewhat constant along time).

In this work, this method was performed in a database containing over 1350 1-minute

pieces of audio sampled at 48kHz that were collected in the beehives studied by the

BeeMon project. The errors between the reconstructed single base matrices and the

original spectrograms were analyzed, and the best 100 bases were grouped together to
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be used as bases for further analysis; these bases being the cleanest pieces of audio,

as with only one spectral vector is enough to describe the audio over time.

Fig. 1. Spectral representation of the 100 best bases grouped

It can be seen that the best bases, corresponding to the cleanest pieces of audio (as

noise would be poorly reconstructed with rank-1 NMF), are similar spectral descriptors

of the sound produced by the beehives. Presumably, a number of bases like the one

selected may be enough to separate this source of audio due to their similarity. For

other purposes like speech separation many more would be needed.

D- β-NMF

D.0- Description

β-NMF is a sub-family of algorithms based on the β-divergence [9], which is a

divergence estimation method that groups in one expression the Euclidean distance,

the Kullback Leibler divergence and the Itakura-Saito divergence. These are famous

cost functions commonly used in applications like our case study; the ones mentioned

are special cases for β = 2, 1 and 0 respectively. In the case of the Euclidean distance,
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it can be classified as a divergence too [10] even if divergences are not usually

classifiable as distances. It can be defined as follows [11]:

(5)

Since its first and second derivatives are continuous, the same implementation of

β-NMF, dependent on the parameter β, can be used for the different cost functions.

D.1- Implementation

In [11] multiple algorithms (ME, MM, Heuristic) proposed by previous authors were

compared for popular cases of β. In this work a heuristic algorithm based on

multiplicative updates (as in the previous section) was implemented for informed audio

separation, where only the temporal activations are updated and the bases are

predefined and obtained as was explained before.

The Python implementation was based on the NMF code used previously. The updates

are performed as follows:

, (6)𝐻 ← 𝐻 𝑊𝑇[(𝑊𝐻)β−2𝑉]

𝑊𝑇(𝑊𝐻)β−1 𝑊 ← 𝑊 [(𝑊𝐻)β−2𝑉]𝐻𝑇

(𝑊𝐻)β−1𝐻𝑇

In this implementation it can be easily deducted how the updates for the Euclidean

distance case (β = 2) are the same as in the previous section.

D.2- Value comparison

A set of 100 audios was prepared to compare the efficiency of the algorithm for values

β={0, 0.5, 1, 1.5, 2, 2,5} over 100 iterations. In the following figures it is shown the
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average absolute difference between the original and reconstructed data for a cell, over

every iteration.

Fig 2. Average cost over iteration for a range of values β={0,1,1.5,2,2.5} while factoring

a set of random audios from the BeeMon project.

For the type of audio signals that need to be processed in this project, a value of β=1

proves to work more effectively over 100 iterations, which corresponds to the Kullback

Leibler divergence. This value converges to better results than β={0,1.5,2,2.5} and
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faster to similar results than β=0.5. It may be noted that the Itakura-Saito divergence in

this implementation reaches a minimum after 22 iterations and later converges to a

higher value and that values greater than β=2 (Euclidean distance) tend to increase the

cost over the first iterations.

For simplicity, from now on in this work we will refer as β-NMF to this documented

implementation for β=1 and we will refer as NMF to the previous implementation using

the Euclidean distance, even if both are particular cases of the β-NMF.

E- CNMF

E.0- Introduction to CNMF

As was seen in the previous section, NMF is a method which discards the phase

information inherent to the frequency domain when performed in audio processing

tasks. Let's consider that NMF is performed to decompose a spectrogram S, that is a

mixture of source spectrograms S1 and S2. The addition of the absolute values of its

sources does not equal the absolute value of the mixture due to phase cancellation.

but (7)𝑆 =  𝑆1 +  𝑆2 |𝑆| ≠  |𝑆1| +  |𝑆2|

The nonnegativity of the method, even when performing at its best, comes with some

inherent noise when reconstructing the spectrograms. Apart from that, reconstructing

the separated audio with the phase-less calculated spectrograms produces noise too,

as it requires using the mixture’s phase information or else reconstructing the phase

information with other techniques [12].

As a solution to these problems, a new variant of NMF was proposed, first named

Complex NMF [13]. “Nonnegative” was kept in the name because the method updates

nonnegative matrices and phase matrices separately. Nevertheless, some posterior
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publications refer to this algorithm as CMF because the nonnegativity may lead to

confusion.

E.1- Description

The original majorization-minimization algorithm proposed by Kameoka et al. can be

found in their paper. As a summary, the algorithm iteratively updates the three

necessary components for the reconstruction of the spectrograms, these being the

bases with the spectral information, the temporal activations, and the phase information,

as well as the auxiliary terms used by the algorithm. However, for informed source

separation it is common to fix the spectral bases, so these are not updated by the

algorithm.

The same authors later proposed a different algorithm that used the Kullback Leibler

divergence [14] instead of the Euclidean distance, which they demonstrated to have

slightly better results. Nevertheless, some consider its source separation capabilities to

be insufficient, being further variants proposed, including the Phase Constrained CNMF

[15] [16], that uses constraints like the phase evolution or phase unwrapping (to better

predict the phase of a frequency component belonging to a source over time) or the

repetition of audio events.

E.2- CNMF implementation and problems

In this work a Python implementation of the same author as in the previous section was

used, with very slight modifications. The majority of the matricial operations conducted

in this program use the Numpy method Einsum. This utility has the flexibility to allow the

user to perform linear multi-dimensional operations following the Einstein summation

convention as well as other types of operations.

However, CNMF presents a big disadvantage in its usage, which is its

overparameterization. Every iteration updates the phase information, which means
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working with a 3 dimensional matrix of size (F frequency bins * T time points * K bases).

In the case of the audios to be processed in this project, using the same spectrograms

as in the previous section (K=1025, T=5627) and K=100 bases, the matrix size for the

phase would be of 576,767,500 numpy 64-bit complex numbers. The computational

power needed makes the algorithm very inaccessible for a normal PC, especially

knowing that even 100 bases is a small number for this purpose (to separate the audio

of a beehive may be enough but not for other types of audio like speech). It is highly

illustrating how the author of the implementation that was used in this project capped

the maximum number of time points to 100 to run the program.

With the limitation that the author set, the results obtained after factoring a few random

pieces of audio were within the limits of the ones that were recorded for NMF (results

that will be shown later in this document). Of course, trying an algorithm like this one

with a low number of samples is not significant enough to compare it with the rest of the

methods discussed in this paper.

So, even if the results recorded in literature about this algorithm are better than the ones

with other variants of NMF, a compromise between what is needed in terms of audio

separation quality and its cost in terms of computational power and time has to be met.

For this reason this method was discarded for the experimentation phase of the project.

F- CNMF-WISA

F.0- Introduction

In his work [17], Brian King proposes two alternative algorithms for solving the problems

mentioned in the previous section about complex nonnegative matrix factorization.

These two methods are based on hard assumptions that we wanted to check to be

good fitting in our project, as the advantages of this new variant can be very appealing if

its performance is better or at least good enough.
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For this purpose, we will make a revision of the first of these methods: complex

nonnegative matrix factorization with intra-source additivity (or CNMF-WISA).

F.1- Description

The alternative method proposed is based on a big assumption: the components

belonging to a single source can share the same phase information. This obviously

solves in part the problem of overparameterization that was mentioned above, as now

one dimension of the phase matrices is drastically reduced in size; however, the

operations still require much more computational power than the other compared

methods.

Some parts of the algorithm remain similar to its predecessor, although the operations

are now performed differently in many cases (some spectrogram-like matrices are now

grouped by source instead of having independent matrices for each base component).

To start the MM algorithm for informed source separation, W must be a set of known

values, H must be initialized with random values around 1, and the matrix Φ with the

phase information is initialized to the same values of the observed matrix V. After this,

the values of β, , Φ and H are updated iteratively until a threshold is satisfied or a𝑋

number of repetitions is completed. Here β is a 3 dimensional nonnegative matrix

whose summation of all elements must be lower than 1, but it is updated to optimize the

process (this β does not refer to the divergence explained earlier). is the auxiliary𝑋

function used by the algorithm in the majorization step, and Φ and H are updated in the

minimization step.

About the actual code, it may be relevant to note that most of the operations between

matrices were performed using Numpy’s einsum, except whenever Numpy’s dot could

be used, as it proves to be faster for matricial products in these dimensions.
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In the following section the results obtained from this method will be compared with the

other algorithms studied in this project.

G- Comparison and results

In this section 3 implementations were compared to discuss the performance of
β-NMF (β=1), NMF (Euclidean distance) and CNMF-WISA. It must be noted that one of

the the main initial objectives of the project was to analyze the original CNMF algorithm,

although after testing it, its requirements made it very difficult to obtain results. It was

later decided to test and compare only the other algorithms discussed. It is important to

note that even if CNMF-WISA is a method proposed to solve the overparameterization

problem inherent in CNMF, performing the same task takes up to 200 times more

computational power than β-NMF and NMF.

To compare the methods, a data set was prepared with 100 audios of 1 minute duration

recorded in the BeeMon project. The audios were selected to be clean, without any

major sources of noise (such as strong wind, rain or human noises). The audios were

sliced into 30 second pieces, half of them mixed with car noise and half of them with

wind noise, properly adapting the power to make the RMS of both sources similar. The

final dataset was composed of 200 original recordings and 200 mixed audios.

Fig 3. Wind and car added noise spectrograms with linear y-axis to better compare with future figures

The way it is designed is to be able to compare, not only how well can these methods

factorize a single matrix, but also how well can they separate a single source using
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appropriate bases. Here, a good reconstruction would imply low error between the

reconstructed and the original spectrograms for clean audios, and a good separation

would imply low error between the reconstructed spectrograms obtained from the

mixture and the original audios. All of the factorizations were made updating only the

temporal activations matrices, using the fixed spectral bases obtained as was explained

in section C.3.

After obtaining the results, multiple statistical tests were performed to better understand

the efficacy of the methods. In this first set of figures, the average absolute cost per cell

for each 100 spectrograms is shown, as well as its variance. A low variance would

mean that the average cost per cell for every spectrogram analyzed converges to

similar values. Presumably, a good algorithm would start at a higher variance (as the

activations are initialized at random values and so the first iteration is not as effective for

every pair of matrices), and it would converge to a lower variance (as for similar sounds

the final reconstructions may be similarly fitting after enough iterations). In this case a

decreasing variance would correspond to a converging algorithm and an increasing

variance would correspond to an inconsistent algorithm.
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Fig 4. Average and variance of cost over iteration when factoring the original and the mixed audios with

the 3 techniques discussed in this section

For the sake of comparison, the average cell value in a non mixed audio is 0.004, in the

wind mixtures it is 0.007 and in the car mixtures 0.006. However, in these figures we

need to focus on how the learning curves develop; removing any background noise

would lead to high reconstruction error but would be considered a good separation of

the targeted source.

With these experiments it is shown that this implementation of CNMF-WISA leads to

non-monotonic cost functions and increasing variances. Even if the algorithm converges

in around 40 iterations to lower costs, with this method the worst results are obtained;

not only because of its higher costs but also because of its increasing variance, leading

to inconsistency. The best results are obtained using β-NMF, with lower costs and
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decreasing variance. However, this only proves the method to be better at

reconstructing matrices with the provided bases.

The next figures show normalized distributions of the difference between a cell in the

reconstruction of an original spectrogram and the same cell in the reconstruction of the

mixture of the same audio. The same analysis is performed for each of the methods

proposed.

Fig 5. Distribution of the difference between the reconstruction of a cell from an original audio and its

mixture.
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Several properties that can be observed in these distributions:

1. They are centered around 0 and unimodal.

2. They are more heavily tailed to the negative values.

3. The smallest tails are found in β-NMF.

The first property means that, whenever the one mode is fairly narrow, the

reconstruction and separation is good; there are no modes that represent frequential

components being added or removed incorrectly and the error is not widely spread .

The second property can be explained with two reasons. The first being that the added

noise is generating an output that overestimates the sound produced by the beehive,

but does not affect its frequential shape, as will be shown in the next figures. The

second reason is the following inequality referring to the addition of complex

spectrograms:

(8)|𝑆1| +  |𝑆2| ≥  𝑆1 +  𝑆2

Since the bases are absolute values obtained to describe complex spectral information,

their combination over time to approximate a spectrogram tends to overestimate its

power.

The reason behind the third property is related to the previous point. The β-divergence

for a value of β=2 is symmetric, which means that values greater or lower than the

target are equally penalized. However, as it was seen, the algorithms tend to

overestimate the values in the spectrogram. For values β<2, the algorithm better

penalizes the overestimation, proving to achieve more accuracy for the Kullback Leibler

divergence than the Euclidean distance.

Lastly, the only complex factorization method, since it introduces phase information, it

would be more likely than the others to underestimate the results. However, its
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intra-source additivity in single source separation makes it irrelevant, and we can still

appreciate harder negative tails in the distributions calculated.

The purpose of the next set of figures is to analyze if the error found while separating a

single source follows a pattern over frequency, as controlled error is much more

convenient in any data processing task. For a better understanding of the figures, we

will first show the ratio of the original spectrograms divided by their mixtures, averaged

over frequency.

Fig 6. Averaged ratio over frequency between the original spectrograms and their mixtures.

Comparing these figures with the spectrograms shown previously, it is clear how the

mixed components affect the outcome of the ratio. This last set of figures represents the

averaged ratio over frequency between the original audios’ reconstructions and the

ones from the mixed audios.
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Fig 7. Averaged ratio over frequency between the reconstructed original spectrograms and their

reconstructed mixtures.

It can be seen that in all cases the reconstruction of the mixtures tends to overestimate

the outcome while trying to respect the frequential shape that the basis can describe.

However, again the best results are proven to be delivered by the β-NMF

implementation. In this set of results, there is still some residual error that belongs to the

sources of noise. However, in the rest of the frequency range the mixed noise seems to

disappear. Combining these figures and the previous one we can also tell that NMF

seems to be able to separate the car noise but does not perform well with the wind

mixtures.

Since the reconstruction of a mixed signal leads to similar frequency distributions as

reconstructing an original recording, we can tell that the sources of noise were correctly

eliminated, and since the bases describe well the sound produced by the beehive, the
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outcome is representative. The decreasing variance in the error over iteration of the

experiments shown also proves the consistency of the method.

H- Conclusion and future work

In this paper multiple methods of matrix factorization for beehive audio separation were

discussed and tried. As it was seen, the best of the algorithms that were implemented

was the β-NMF for β=1. The lack of symmetry in its cost function, the β-divergence,

proved to be useful in factoring the absolute value of spectrograms. To reconstruct the

audio recordings with the separated source, the phase of the original spectrogram could

be copied (which would maintain the same level of error) or other methods to calculate

a phase could be used (which would increase the final reconstruction cost but could be

better for the separated audio).

It was also seen in this work that the overparameterization of the CNMF makes it

difficult to experiment with in a regular PC, especially with the dimensions required in

real audio spectrograms. As an alternative, CNMF with intra-source additivity was

proposed and implemented, seeming an attractive alternative that included phase

information while partly solving the problems of its predecessor. However, the results

provided by its implementation were not as satisfactory as the ones from the methods

tested during this time. A reason for this could be that the assumption that every base

used to characterize a source of audio can share the same phase information does not

apply to this precise case.

Some other alternatives that include phase information in the factorization of

spectrograms could be studied, like the ones using phase constraints (phase evolution

or phase unwrapping). It would be also very beneficial to implement these methods in

TensorFlow, to improve the operation with the volume of matrices that is needed.

It would also be helpful to the development of the project to characterize and categorize

anomalies in the frequency distribution of the sound produced by the beehive; it could
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be used to form bases whose presence in the reconstruction of an audio would help

detect abnormal conditions.
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