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Abstract 

The Amazon rainforest is one of the most important biodiversity reservoirs of the 
Earth and suffers environmental pressure due to the exploitation of its resources and 
the conversion of forest areas into farming areas. In recent years, the climate crisis 
has become a political weapon that makes these protected areas vulnerable to 
government changes and their new environmental policies. Its monitoring can help 
to preserve the biome and control the international standards and agreements 
compliance. To carry out such surveillance, satellite images are one of the best 
available resources. They allow computing indexes to study burned and/or 
deforested areas. The present work aims to determine the burned area in the 
Brazilian state of Rondonia during August from 2011 to 2019 using a classification 
algorithm and some statistical techniques with R programming language. The results 
obtained are compared to those provided by the National Institute for Space 
Research (INPE) from Brazil and NASA’s burned area product. 

 

 

Resumen 

El Amazonas es uno de los reservorios de biodiversidad más importantes a nivel 
global y sufre una gran presión medioambiental debido a la explotación de sus 
recursos y a la conversión de espacios forestales en zonas agrícolas. En los últimos 
años la crisis climática se ha convertido en un arma política que hace que estas 
áreas protegidas sean muy vulnerables a cambios en los gobiernos y en sus nuevas 
políticas medioambientales. Su monitorización puede ayudar a preservar el bioma 
y controlar el cumplimiento de normativas y acuerdos internacionales. Para llevar a 
cabo dicha vigilancia, las imágenes satelitales son uno de los mejores recursos 
disponibles. Permiten el cálculo de índices para el estudio de zonas incendiadas o 
deforestadas. El presente trabajo pretende determinar el área quemada en el estado 
brasileño de Rondonia en agosto desde 2011 hasta 2019 mediante un algoritmo de 
clasificación y diferentes técnicas estadísticas utilizando R. Los resultados 
obtenidos se comparan con aquellos facilitados por el Instituto Nacional de 
Pesquisas Espaciales (INPE) de Brasil y con los datos disponibles en la base de 
datos de la NASA. 
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1 Introduction 

1.1 Wildfires and fire management policies 

Fire is a natural disaster that plays different roles in Earth’s ecosystems. On the one 
hand, it contributes to the global climate system emitting greenhouse gases and 
trace gases like carbon dioxide or nitrous oxide, which change the atmospheric 
chemistry. On the other hand, fires promote diversity and natural regeneration. Some 
species require wildfires for survival and others are sensitive to them (Kelly and 
Brotons, 2017). 

But the human factor breaks the balance of the fire effect in Earth’s ecosystems. 
Fires are one of the most common tools used for land management, and if 
appropriately used, they can be an important tool to improve and control vegetation 
and to prevent deforestation and big wildfires. The aim of controlled fires for land 
management goes from cleaning unwanted vegetation to reduce fuel loads until 
promoting seed germination and vegetation regeneration. But fires are also used for 
deforestation and clearing land for farming. These uncontrolled applications carry 
damages on critical biomes for the Earth ecosystem. 

In some developed countries government policies tend to suppress all kinds of 
wildfires. A good example is the European Union. The “FOREST FIRES: Sparking 
firesmart policies in the EU” report (Directorate-General for Research and Innovation 
of the European Commission, 2018) gives scientific-based recommendations to 
legislate, in order to improve forest fire risk management and to reduce their 
catastrophic consequences. This report presents a good approach for a permanent 
dialog between science, management, and policy makers. The fire management 
cycle and the recommendations in each phase are summarized in Fig. 1. 

 

Figure 1: The fire management cycle (Directorate-General for Research and 
Innovation of the European Commission, 2018) 
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But other countries promote uncontrolled fires, directly or indirectly, for land 
management. Some underdeveloped countries or regions, like Central Africa, have 
less restrictive laws in this aspect, and they see fires as a tool for deforestation and 
economic opportunities. 

Somewhere in between is Brasil that has implemented strong policies like the 
monitorization of land change carried out by the Brazilian National Institute for Space 
Research (INPE). Also, the Action Plan and Control of Legal Amazon Deforestation 
(PPCDAM) presented in 2004 has helped to control deforestation, which is related 
to wildfires (one of the most common tools used for clearing forest vegetation). But 
the political changes in 2019 have resulted in an unprecedented fire activity during 
August since 2010 (the period 2011-2018 the fire activity and the burned area were 
almost stable), although some studies indicate this increase around the average of 
the full-time series (Lizundia-Loiola, J et al., 2020). 

Many studies about wildfire modeling have been developed in the last 20 years. The 
aim of these studies is to prevent wildfires in protected ecosystems with different 
approaches. Some of them develop models that predict the behavior of fires 
(Rodriguez-Aseretto et al., 2013). Other studies are centered on mapping burned 
areas to control environmental law enforcement, and once the burned areas are 
mapped some of them determine the severity of the fires (Escuin et al., 2008) to 

establish forest damages and 𝐶𝑂2 emissions (Hoelzemann et al., 2004). The present 
study focuses on mapping burned areas through satellite images and compare the 
results with other sources to check if there is an increase of burned areas in certain 
regions in August 2019. 

In Sections 1.2 and 1.3 the region of interest and the method used to detect burned 
areas are presented. Section 2 consists of the physical base of the algorithm 
(Section 2.1), the data used (Section 2.2), and the explanation of the classification 
algorithm chosen to detect burned areas (from Section 2.3 to Section 2.11). The new 
approach developed in this work is presented in Section 3. Exploratory data analysis 
and results are detailed in Section 4. Some concluding remarks are summarized in 
Section 6. 

1.2 Region of interest 

The Amazon rainforest has an extension of 7 million 𝑘𝑚2, the largest in the Earth. It 
is crucial to the world’s oxygen and carbon cycles. It generates 6% of the planet’s 

oxygen and also absorbs a big amount of 𝐶𝑂2. But in recent years the wildfires in 
this kind of rainforest have increased to alarming rates that suggest some of the 

tropical rainforests will be emitters of 𝐶𝑂2 in the next decades if the fire activity 
continues increasing (Hubau et al., 2020). 

The Amazon is a tropical rainforest divided by the equator into two parts. As a 
common tropical rainforest, the climate is hot and humid, with a high amount of 
precipitation. Although it rains considerably throughout the year, two weather 
seasons can be defined, the rainy one and the dry one. In the first half of the year, 
the Amazon region located in the northern hemisphere is in the dry season and the 
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region located in the southern hemisphere is in the rainy season. The second part 
of the year is the opposite. 

As exposed above, INPE reported an increase in the number of active fires during 
August 2019 based on information gathered by the Moderate Resolution Image 
Sprectroradiameter (MODIS), an instrument on board NASA’s satellites. Historically, 
August and September have been the most affected months by wildfires in the 
Brazilian Amazon biome (see Fig. 2). 

 

 

Figure 2: Burned Area (BA) detected in Brazilian Amazon biome (on average). The 
data have been provided by INPE under request (AQ1km product). 

 

Regions in the rainy season are not affected by wildfires and also have lots of clouds 
that generate missing data. In consequence, we are looking for a region in the 
southern hemisphere, which is strongly affected by wildfires in August (the critical 
month in this Amazon crisis in 2019). In Fig. 3 we can see a two-dimensional density 
map of active fires detected in August 2019 in the Brazilian Amazon biome. 
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Figure 3: Brazilian Amazon biome active fires density map. Source: MODIS active 
fire product. 

 

This density map is based on MODIS active fire product generated by the algorithm 
developed by Giglio et al., (2016). The method used to generate the map of Fig. 3 is 
a point pattern analysis. Using the 𝚜𝚙𝚊𝚝𝚜𝚝𝚊𝚝𝚜 package (Baddeley et al., 2015) a 
function based on the distance from each pixel to the active fire points is computed 
to calculate the number of active fires detected per unit area. More details about this 
computation are given in the package’s reference manual (page 339). 

Some regions of the states of Rondonia, Amazonia, Para, and Mato Grosso in Brasil 
are highly affected by fire activity according to NASA’s active fire data in August 
2019. This study is focused in Rondonia (the squared region in Fig. 3), a medium-

size state that has the highest active fire density. The size of this state (237.576 𝑘𝑚2) 
is adequate to the scope of this study. Other big states would imply a high 
computational cost and in the cases of Amazonia and Para, which are near the 
Equator, the weather seasons are not clearly marked and there are usually many 
missing data due to the presence of clouds. 

1.3 Methods for mapping burned areas 

First studies about the burned area (BA) mapping collected information from ground 
estimations of fire management teams, but the different methodologies of data 
collection made it difficult to process this information. In 1972 the first Landsat 
satellite (ERTS-1) was launched, and two years later the first BA mapping algorithm 
was presented (Hitchcock and Hoffer, 1974). 

Since then, different methods have been developed taking data from various 
sources. A great review of historical approaches of BA mapping is presented in 
Chuvieco et al., (2019). In this paper, machine learning algorithms are slightly 
mentioned, but it is centered around physically-based algorithms due to their 
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versatility and adaptability. They can be classified by the spectral regions of the 
electromagnetic spectrum used (Solar domain, Middle infrared and thermal domain 
or microwave domain) or the method used to extract data (optical sensors, radar, 
lidar or synergetic approaches). They also can be classified as global or regional 
algorithms, depending on the size of the region it is being applied to (regional 
products are developed to be applied to specific areas and so that they consider the 
peculiarities of each region). 

1.4 Approach of this study 

In our case, we map BA somehow reproducing the NASA’s algorithm introduced by 
Giglio et al. (2018). It is a physically-based algorithm that uses the solar domain data 
acquired by optical sensors (satellite images from the MODIS sensors) and 
generates a global product identified as MCD64A1. We apply this algorithm to a 
specific region in the Brazilian Amazon (Rondonia) and we compare NASA’s results 
with ours’s which have a spatial coherence approach (this will be detailed in 
subsequent steps). 

INPE developed a regional algorithm for the South America region (Libonati et al., 
2015) but it is in a lower stage of maturity than the NASA’s algorithm and also it is 
more difficult to reproduce. Therefore, we select NASA’s algorithm rather than 
INPE’s to conduct our analysis. 
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2 The algorithm 

In this section, NASA’s algorithm for Burned Area mapping using satellite data is 
presented. The basic physical background is introduced to support the empirical 
knowledge applied in some sections. However, the mathematical background is the 
primary focus of the section. All thresholds established in the algorithm are also 
based on more than 20 years of research and evolve with each version of the 
algorithm. 

Section 2.1. explains the basic physical background about the electromagnetic 
spectrum and its role to differentiate between objects or phenomena such as fires 
from images. Then, in Section 2.2., we will cover the available sources and data 
products of satellite imagery. We end up explaining the algorithm scheme in Section 
2.3, where the subsequent sections are summarized. 

2.1 Physical basis 

Many aspects influence on BA mapping through satellite images: the type of fire, the 
vegetation chemical and physical characteristics, and the temporal difference 
between fire extinction and image acquisition are critical. 

We will use data from the MODIS sensor onboard the Terra and Aqua satellites. 
These sensors measure electromagnetic radiation (ER) reflected from the Earth. The 
ER is a form of energy that flows through the vacuum or material mediums as 
electrical and magnetical waves. It can be expressed in terms of energy, wavelength, 
or frequency. MODIS data are available in terms of wavelength and expressed in 
meters. 

The electromagnetic spectrum (ES) is the range of all types of ER. MODIS sensors 
measure ER from 400 nm to 14.400 nm divided into 36 bands, which correspond to 
a small part of the ES, as shown in Fig. 4. 

 

 

Figure 4: Diagram of the light’s electromagnetic spectrum (Baier, 2012). 
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The solar domain will be the ES range used for BA mapping. This range includes 
visible light (400-700 nm), near-infrared (800-2500 nm), and short-wave infrared 
(1400-2200 nm). 

Sun light traveling through the atmosphere, reflected by the Earth’s surface, and 
captured by satellites suffers from several sources of error. The measurements 
collected by sensors go through several corrections levels to compensate for these 
disturbances. The outcome from the last level is known as surface reflectance, 
i.e. the reflectance of light as it would be measured near the surface. Reflectance 
refers to the portion of light reflected by the surface of the Earth, with atmospheric 
correction (it corrects for the effects of atmospheric gases and aerosols). 
Reflectance is a unitless ratio of surface radiance to surface irradiance with a value 
that falls between 0 and 1. But the application of the atmospheric correction results 
in values between -0.1 and 1.6 (Vermote, 2015). 

The reflectance across the spectrum is known as spectral signatures, and every 
objects or surface states have their own. Fig. 5 represents four spectral signatures 
of different land states: unburned, surface fire (only the surface vegetation and other 
kinds of fuel present in the ground burn), crown fire (it is the most intense, it burns 
trees from the ground to the crown), and light charcoal (the situation after a crown 
fire occurred). The spectral signatures show different behaviors in each situation. A 
combination of certain ranges of the solar domain will be a useful tool to detect 
burned areas. Also, the type of fire affects the algorithm capacity of detecting areas 
where a surface fire occurred because the spectral signature of burned areas is 
similar to that of unburned areas. 

 

 

Figure 5: Solar domain behavior. Chuvieco et al., (2019) 
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2.2 Types of data and sources 

Spatial data are usually referred as information associated with coordinates based 
on a reference system (Bivand, 2013). The coordinate reference system (CRS) is 
how a map is projected on a plain. In particular, MODIS land products are produced 
in three different projections: Sinusoidal, Lambert Azimuthal Equal-Area, and 
Geographic. 

According to the technique used to store them, we can differentiate two types of 
data. The first type is raster data which is composed of grid cells identified by row 
and column. Satellite images are geographic areas divided into a grid of pixels. The 
size of the pixels is called the resolution of the image. 

The second is vector data (points, lines, and polygons), which is used to represent 
entities as exactly as possible. We will use this kind of data to represent our region 
of interest (the state of Rondonia), and 𝚂𝚙𝚊𝚝𝚒𝚊𝚕𝙿𝚘𝚒𝚗𝚝𝚜 (vector data with points as 
their geometric feature) to represent active fires. Both data’ types allow more 
information than just geographical reference and this information is called attribute, 
which can be a single value for each pixel/point/line/polygon or a vector with different 
features. 

In this work, we will also use data generated by other algorithms. The data have 
been preprocesed, which means that their accuracy have been tested. MODIS 
distinguishes three validation levels (or maturity levels) depending on how 
extensively data have been tested against ground truth. Stage 3 represents robust 
data with well-known uncertainties, Stage 1 is data evaluated against few 
observations and Stage 2 is an intermediate state. Most datasets used in our 
analysis belong to Stage 3 with the exception of the burned area from INPE (Table 
1). 

In MODIS, images are systematically divided following the grid system represented 
in Fig. 6. Each of the grid cells is called a tile. The tiles covering the region of interest 
for the time period of interest (August, 2011-2019) were downloaded and 

uncompressed using 𝚁𝙶𝙸𝚂𝚃𝚘𝚘𝚕𝚜 (Perez-Goya et al., 2020). The following 

processing steps were carried out using the 𝚛𝚊𝚜𝚝𝚎𝚛 package and its functionalities 
(Hijmans, 2019). 
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Table 1:  All data products used in the study. In the product name it also is identified the source of the data (NASA or INPE) 

Product Reference Description 
Temporal 
resolution 

Data type CRS 
Spatial 

resolutio
n 

Stage of 
maturity 

Surface 
reflectance 
(MOD09GA/ 
MYD09GA) 

 (NASA) 

Vermote, E. 
F., & 

Vermeulen, 
A., 1999 

It estimates the value of the surface 
spectral reflectance as it would be 

measured at ground level, 
suppressing atmospheric gases and 

aerosol influence of the radiation 
data. 

Daily Raster 
Sinusoidal 
projection 

500 m / 
1000 m 

3 

Land cover 
(MCD12Q1)  

(NASA) 

Cover, M. L., 
& Change, L. 

C., 1999. 

It identifies 17 different categories of 
land cover following the International 

Geosphere-Biosphere Program 
(IGBP) scheme. 

Annually Raster 
Sinusoidal 
projection 

500 m 3 

Burned area 
(MCD64A1)  

  (NASA) 

Giglio et al., 
2018 

It is produced by the algorithm 
explained in this work. 

Monthly Raster 
Sinusoidal 
projection 

500 m 3 

Active fires 

(NASA) 
Giglio et al., 

2016 

It identifies points with high changes 
in surface temperature (thermal 

anomalies) and strong emissions of 
mid-infrared radiation produced by 

fires. 

Daily SpatialPoints 
Longlat 

projection 
(WGS84) 

- 

Near-real-
time 

standard 
quality 

Burned area 

(BA1km) 
(INPE) 

Libonati et 
al., 2015 

It detects burned area in South 
America region. 

Monthly 
SpatialPolygons 

/ Raster 

Longlat 
projection 
(WGS84) 

1000 m 2 
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Figure 6: MODIS Tile Grid 

 

Modis active fire product (MODIS Collection 6 NRT Hotspot / Active Fire Detections 
MCD14DL. Available on-line [https://earthdata.nasa.gov/firms]) is available under 
request in shapefile format. Also INPE burned area product (AQ1km) is available 
under request in shapefile format (INPE’s product was requested by email, it is not 
available on its website). Both are loaded using 𝚛𝚐𝚍𝚊𝚕 (Bivand et al., 2019) package 

and the data is processed using functions of 𝚛𝚊𝚜𝚝𝚎𝚛 and 𝚜𝚙 (Bivand, 2005) 
packages. 

2.3 Scheme and summary of the algorithm 

The scheme of the algorithm divided in 3 main parts is presented in Fig. 7: 

The first part (1) of the flowchart corresponds to the input data of the algorithm. The 
data have been downloaded in different compressed formats and extracted to the 
appropriate format as explained in Section 2.2. In Appendix 2, the structure of the 
database generated by the algorithm is presented. It is important to be careful when 
storing the data downloaded and generated by the algorithm. 

The second part (2) corresponds to the preprocessing of the data to get the physical 
and temporal information needed. Initially, the vegetation index is computed for the 
specified period (Section 2.4) using surface reflectance as input data. Then the 
algorithm looks for a trend change in the index time series that may indicate a fire 
occurred in a pixel (Section 2.5). It ends up saving temporal and physical information 
of the day whenever a trend change is detected (composite images generated in 
Sections 2.5 and 2.6). 

 

https://earthdata.nasa.gov/firms
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Figure 7: Algorithm flowchart 
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In the last part (3), the classification algorithm uses as input data the composite 
images generated in the previous step, the active fires mask of the month being 
processed, and the land cover of the region of interest to generate burned and 
unburned training masks (Section 2.7). 

A classification algorithm uses input features to categorize observations into a 
distinct number of classes. But, before the classification step, the algorithm needs to 
be trained with data whose final class is known (called training data). 

The difference between this algorithm and a common classification one is that we 
need to generate the training data every time we apply the algorithm. We will 
establish burned and unburned training pixels based on the active fires detected and 
some temporal and spatial behavior of different features. 

Usually, the training data are randomly selected to avoid overfitting of the 
classification algorithm. In our case, the algorithm is trained every time it is applied, 
and the adjustment of the classification algorithm to each training data is desired. 
But the original spatial application ignores the land cover particularities of the regions 
affected by wildfires. In this work, we present a new approach to deal with this issue, 
i.e., to take into account the land cover particularities (Section 3). 

Finally, the classification step is divided into two phases. The first one (Section 2.10) 
is based on the physical behavior of the data (see Sections 2.8 and 2.9). The last 
one is based on the spatial coherence to relabel pixels depending on their neighbor’s 
class (Section 2.11). The output of this step is the burned area of the region being 
studied (the final result). 

2.4 The Vegetation Index 

The burn-sensitive Vegetation Index (VI) is a combination of two spectral bands of 
the electromagnetic spectrum (Roy and Landmann, 2005). It is used to detect a 
change of trend in a time series when a fire occurred. The VI index is computed as 
shows Equation (1). 

𝑉𝐼𝑖 =
𝜌5𝑖 − 𝜌7𝑖

𝜌5𝑖 + 𝜌7𝑖
    (1) 

 

where 𝜌5and 𝜌7 correspond to the bands 5 and 7 (1240 and 2130 nm, respectively) 
of the MODIS reflectance product (MOD09GA/MYD09GA) and 𝑖 denotes the days 
in the time series with valid data for each pixel. Additionally the product offers a 
quality band (QA) that, among other things, provides information about cloud 
coverage. The computation of the VI and the interpretation of the QA band was 

carried out with 𝚁𝙶𝙸𝚂𝚃𝚘𝚘𝚕𝚜. 

The index takes values in the range [-1,1]. Unburned pixels usually take values 
between 0.4 and 0.9, depending on the characteristic of the land cover. Burned 
pixels usually take values between -0.2 and 0.2, depending on the features of the 
fire (surface fire, crown fire, the proportion of the pixel burned…). 
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Figure 8: Difference in VI time series in Rondonia in August 2019 

 

Fig. 8 shows the ideal behaviour of the time series of VI for a burned and unburned 
pixels (left and right, respectively). But, in other cases, the time series does not show 
this prominent change of trend on the burned pixels, and this deviation from ideal 
behavior can be fixed applying some spatial coherence computations. 

The VI index uses valid reflectance data. As explained in Section 2.1, MODIS 
reflectance product values are in the range [-0.1,1.6] because the application of the 
atmospheric correction algorithm produces values out of the initial range [0,1]. The 
burned area mapping algorithm understands reflectance as the proportion of light 
reflected by the Earth and pixels with values out of the range [0,1] are removed. 

Also, pixels covered by clouds are removed using the QA band of the surface 
reflectance product. This band is extracted and processed to obtain cloud 

information using the 𝚖𝚘𝚍𝙲𝚕𝚘𝚞𝚍𝙼𝚊𝚜𝚔 function of the 𝚁𝙶𝙸𝚂𝚃𝚘𝚘𝚕𝚜 package. All pixels 
that were covered by clouds are removed. It is a critical step of the algorithm because 
it generates almost 40% of lost values on the entire dataset. 

MODIS sensors are integrated on Terra and Aqua satellites and both generate an 

image of the Earth every one or two days. Two vegetation indexes (𝑉𝐼𝑇𝑒𝑟𝑟𝑎 and 
𝑉𝐼𝐴𝑞𝑢𝑎) are generated using data from both satellites and and they are combined to 

create one single image (VI) per day by getting the maximum value of each pixel. 
The nominal equatorial crossing time is different for each satellite and this allows us 
to avoid the presence of clouds in some pixels. Differences between the Terra and 
Aqua surface reflectance are assumed to be negligible after NASA’s atmospheric 
corrections and due to the narrow time lapse. 

In the following we calculate the VI of the region of interest explained in Section 3 at 
July 21, 2018. This date is selected, as every step mentioned in the process occurs 
on this day. Reflectance bands are examined looking for values out of the range [0,1] 
(Fig. 9). 
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Figure 9: Bands 5 and 7 of the surface reflectance. Band 5 have invalid data out of 
the range [0,1] 

 

Band 5 has values in the range [-0.0076,1.2305], and band 7 in the range [-
0.0038,0.7093]. The invalid reflectance values are removed obtaining the images of 
Fig. 10. 

 

Figure 10: Bands 5 and 7 of the surface reflectance only with valid data. 

 

Then, the VI index is computed using Equation (1) (Fig. 11 on the left). The QA band 
of the reflectance product is processed to obtain the cloud information, and pixels 
that are covered by clouds are removed (Fig. 11 on the right). 
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Figure 11: VI index (left graph) and VI index cloud-free (right graph). 

 

The same process is applied to data obtained by the Aqua satellite. Fig. 12 shows 
both indexes only with valid data. 

 

Figure 12: Terra and Aqua VI indexes. Each one is computed with data obtained 
by the correspondent satellite (Terra and Aqua) 

 

The Terra VI index has 54% of missing values that correspond to pixels with invalid 
reflectance values and pixels covered by clouds. Also, the Aqua VI index has 66% 
of missing values. As explained in this section, to deal with the amount of missing 
data the both Terra and Aqua VI indexes are combined getting the maximum value 
of each pixel to create a single image that has 44% of missing values (Fig. 13). 
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Figure 13: Composite VI index generated using Terra and Aqua data. 

 

This process is repeated for each day of the period specified. The resulting time 
series is going to be studied in the next section to detect trend changes. 

2.5 Trend changes detection 

The algorithm needs data from the month that is being processed and previous and 
later months (3 months altogether). Then, the VI index is computed for every day of 
each pixel of the time series and this generates a 3-dimensional array VI(x,y,z) , 

where 𝑥 and 𝑦 correspond to the coordinates of the pixel and 𝑧 corresponds to the 
day in the time series. 

For a time series of VI from a single pixel, we consider a moving window with two 
legs (pre-wind and post-wind) (see, Fig. 14). Each leg has a length of 8 days (w = 
8). The 8 days may not be consecutive as there might be some missing values 
between measurements. Data gaps lead to uncertainty which will be treated in 
following steps. 

For every pixel (x, y) and considering a time window starting at k, we calculate the 
following statistics for the pre-wind leg: 

 

𝑉𝐼𝑝𝑟𝑒(𝑥, 𝑦, 𝑘) = 𝑚𝑒𝑎𝑛(𝑉𝐼𝑖(𝑥, 𝑦), 𝑝)  𝑖 ∈ (𝑘, . . . , 𝑘 + 𝑤 − 1)    (2) 

𝜎𝑝𝑟𝑒(𝑥, 𝑦, 𝑘) = 𝑠𝑡𝑑𝑒𝑣(𝑉𝐼𝑖(𝑥, 𝑦), 𝑝)    (3) 

VI index composite image
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Equation (2) and (3) are calculated for a pixel at location (x,y) and temporal index i. 

𝑝 = 10 indicates observations within the 10-90 percentile interval. 

 

 

Figure 14: Scheme of a pixel pre-wind and post-wind. 

 

The same statistics are computed to the post-burn window in Equations (4) and (5): 

 

𝑉𝐼𝑝𝑜𝑠(𝑥, 𝑦, 𝑘) = 𝑚𝑒𝑎𝑛(𝑉𝐼𝑖(𝑥, 𝑦), 𝑝)  𝑖 ∈ (𝑘 + 𝑤, . . . , 𝑘 + 2𝑤 − 1)    (4) 

𝜎𝑝𝑜𝑠(𝑥, 𝑦, 𝑘) = 𝑠𝑡𝑑𝑒𝑣(𝑉𝐼𝑖(𝑥, 𝑦), 𝑝)    (5) 

 

Every pixel takes candidates for the pre-burn window no earlier than 30 days and 

selects the 𝑤 = 8 days with valid data that are closest to k. If 𝑤 ≤ 8, in any of the two 
windows, this pixel will be labeled as unclassified and ignored in the next steps 
(equivalent method for post-burned window). 

With these statistics, a measure of the difference between both windows in a pixel 
is computed in Equation (6), and it is called Separability: 

 

𝑆(𝑥, 𝑦, 𝑘) =
𝛥𝑉𝐼(𝑥, 𝑦, 𝑘)

[𝜎𝑝𝑟𝑒(𝑥, 𝑦, 𝑘) + 𝜎𝑝𝑜𝑠(𝑥, 𝑦, 𝑘)]/2
    (6) 
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where 𝛥𝑉𝐼(𝑥, 𝑦, 𝑘) = 𝑉𝐼𝑝𝑟𝑒(𝑥, 𝑦, 𝑘) − 𝑉𝐼𝑝𝑜𝑠(𝑥, 𝑦, 𝑘) is evaluated for every 𝑘 day. A 

time-series of Separability values can follow 3 different patterns. Whenever a fire 
takes place, the VI (Eq. 1) rapidly decreases (Fig. 14 on the left) and Eq. 6 results in 
a high value of separability (Fig. 15 on the left). Pixels where a fire does not occur, 

the VI index remains almost stable and we get separability values 𝑆 ≈ 0 (Fig. 15 on 
the right). When the VI (Eq. 1) rapidly increase, Eq. 6 results in large negative value 
of separability. It is not common to get negative values of separability but it could 
happen during a rapid recovery phase after a burn. 

 

Figure 15: Separability behavior of burned and unburned pixels in Rondonia 
(August 2019) 

 

Separability is a way to find a change of trend in a time series. There are a lot of 
more efficient methods (Militino, Moradi and Ugarte, 2020) to check trend changes. 
However, this method has proven effective, and the statistical metrics from Eq. 2-6 
are useful for gaining further insights in subsequent steps of the analysis. 

Also, the maximum of every time series is located and recorded (𝑆∗), together with 
its temporal index in the time series (𝑘∗). This value indicates the day when a pixel 
has burned (in case a fire occurred). Some composite images are saved to use them 
in subsequent phases. 

The maximum separability day of each pixel is: 

 

𝑡∗(𝑥, 𝑦) = (𝑡𝑘∗+𝑤−1 + 𝑡𝑘∗+𝑤)/2    (7) 

 

The result of Equation (7) represents the middle point between the last observation 

of the pre-burn window (𝑡𝑘∗+𝑤−1) and the first observation of the post-burn window 
(𝑡𝑘∗+𝑤) of the day of maximum separability for each pixel. The 𝑡∗(𝑥, 𝑦) value 
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corresponds to the day of the year, and the algorithm assigns that day as the one 
that the fire was detected. 

A time interval is computed to measure the distance between the last and the first 
points of both windows in Equation (8). In satellite images, there are a lot of missing 
values (clouds, invalid data…), and a measure of uncertainty is needed. 

 

𝛥𝑡∗(𝑥, 𝑦) = 𝑡𝑘∗+𝑤−1 − 𝑡𝑘∗+𝑤    (8) 

 

The 𝛥𝑡∗(𝑥, 𝑦) value is used in equation (11) to deal with the influence of lost values 
in the computation of the 𝑡∗(𝑥, 𝑦) and the details of this equation will be explained in 
Sections 2.7.1 and 2.7.2. 

The following composite images of the day of maximum separability (𝑘∗) are saved: 
separability value (𝑆∗(𝑥, 𝑦)), the variation of the mean between the two windows 
(𝛥𝑉𝐼∗(𝑥, 𝑦)), and the mean of the post-burn window (𝑉𝐼𝑝𝑜𝑠

∗ (𝑥, 𝑦)). All of them with 

Equations (7) and (8) will be used in some steps of the algorithm. The 𝑆∗(𝑥, 𝑦) can 
be better understood graphically. 

 

Figure 16: Image of the value of maximum separability in the region of interest 
explained in Section 3 in August 2019 

In Fig. 16, almost 71% of the pixels have a maximum separability value smaller than 
2. A small value of separability means there is no significant trend change in VI time 
series, and hence, these pixels will be labeled as unburned. The criterion used to 
discriminate pixels with 𝑆∗(𝑥, 𝑦) value is detailed in Sections 2.7.1 and 2.7.2. 
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2.6 Spatial coherence measure 

In this section, the concept of spatial coherence is introduced. The spatio-temporal 
evolution of the wildfires follows different patterns depending on multiple ecological 
and environmental factors, such as vegetation or precipitations. Also, the spatial 
growth of the wildfires is influenced by their neighbors. But depending on the 
projection of data and the location, we have to select a different number of neighbors. 

The sinusoidal projection has a different impact on the Earth. Fig. 17 shows how the 
projection affects to 5 different locations. 

 

 

Figure 17: The equi-distant spatial kernels. Giglio et al., (2018) 

 

Each region is distorted differently according to their location. The central Africa 
region situated at latitude and longitude (0,0) is not distorted. When latitude and 
longitude increases and/or decreases the distortion is remarkable (the cases of 
Australia and North America). The tile system used by NASA showed at Fig. 6 does 
not consider the particular distortions in each location caused by the projection of 
the coordinates. 

The sinusoidal projection corresponds to the pseudocylindric projection showed in 
Fig 18, but the tile system interprets the map as if there is no distortion (similar to 
the cylindric projection which is the less distorted one). Therefore, it must be 
corrected in spatial coherence computations to consider only neighbors that 
represent close land. 

The 5 locations presented in Fig. 17 can be interpreted as follows. The 3X3 kernel 
represents pixels in the tile system in each location (not drawn to scale), that does 
not consider the sinusoidal projection. The distortion is represented by the yellow 
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ellipse that have variable orientation and eccentricity depending on the location. 
Finally, the red squares of each 3X3 kernel correspond to neighbors that contain 
land near the pixel. The blue pixels represent neighbors in the tile system that, out 
of sinusoidal projection, represent land far away from the central pixel of the kernel. 
The use of physical and temporal information associated with the blue pixels will 
adversely affect the accuracy of the results. 

 

 

Figure 18: Four categories of map projections. (Penn State University, 2012) 

 

We will use the kernel located on top of South America in several computations 
(Rondonia is under this kernel). In previous versions of the algorithm the kernel used 
for all regions was the “rook’s case” (kernel on top of central Africa), and it did not 
consider the sinusoidal projection effect. The methodology used to establish the 
kernel used in each region is not explained by NASA’s algorithm, which make it more 
difficult to standardize the process developed in this study to be applied in any region 
of the Earth. 

In this step, the algorithm looks for areas that have high spatial coherence. It is based 
on the premise that if a fire occurred, neighboring pixels have similar values of the 
day of maximum separability. We take a composite image of 𝑡∗(𝑥. 𝑦) (Equation (7)), 
which is the estimation of the day where a burn occurred in a pixel (if a burn really 
happened). 

We will choose for our region of interest a kernel with the central pixel, and its upper 
and lower neighbors. For each pixel, we compute the standard deviation of the 
selected kernel values. Then, an order ranked filter is applied to the image obtained, 
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which is a smoothing filter that assigns the 25th percentile of the kernel values to the 
central pixel. This technique is applied to reduce the uncertainty caused by lost 
values and it has been tested empirically by the NASA. We obtain an image that is 

denoted temporal texture, 𝜎𝑡
∗ (Fig. 19). 

 

Figure 19: Image of the temporal texture in the region of interest explained at 
section 3 in August 2019. 

 

The values of the temporal texture in August 2019 are in the range of [0,26] 
(measured in days). Low values indicate regions with high spatial coherence on the 
day a fire occurred. It is more likely to detect a fire in a region with a small temporal 
texture than in regions with high temporal texture. Figure 19 shows that most of the 
temporal texture values in this region after having applied the smoothing filter are 
compatible with fire occurrence. The 99 % of the pixels has temporal texture values 
lower than 8. The criterion to discriminate into burned-unburned labels using the 
temporal texture is detailed in the next section. 

2.7 Selection of the training pixels. 

In this step, the methodology to extract the data needed to train the classification 
algorithm is presented. The concept of training data was presented in Section 2.3. 
The burned and unburned training pixels are selected based on the following 
criterion: 

2.7.1 Unburned pixels. 

The algorithm looks for pixels that have big value of temporal coherence with their 
neighbors (Equation (10)), and the change of trend in the VI time series is small 
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(Equation (9)). All pixels that satisfy either of the following conditions are a priori very 
unlikely to experience a wildfire and therefore they are labeled as unburned pixels: 

𝑆∗(𝑥, 𝑦) < 2    (9) 

𝜎𝑡
∗(𝑥, 𝑦) > 8    (10) 

 

2.7.2 Burned training pixels 

Active fires are points where a thermal anomaly is detected (Giglio et al. 2016). The 
active fire algorithm uses surface temperature and surface reflectance data to detect 
anomalies that are associated with points (not pixels) where a fire occurred on a 
specific date. But an active fire is not always turning into a wildfire, it can burn only 
a small percentage of a pixel. When most of the pixel has not burned and the value 
of the VI does not change, the algorithm does not detect a trend change (small value 
of separability) and the pixel is labeled as unburned. 

But the MODIS active fire product is a great source to identify burned pixels. Initially, 
the algorithm generates a mask of pixels where one or more active fires were 
detected. Then, this mask is filtered with a morphological erosion (Clayden, 2019). 
Using the same kernel defined in the Section 2.6, only pixels with neighbors where 
an active fire was detected are selected as burned training pixels. If active fires are 
detected in three consecutive pixels, the probability of detecting the central pixel as 
burned with the burned area mapping algorithm is greater than in other cases. 

The following threshold tests are applied to the eroded burned training mask: 

 

|𝑡𝑓(𝑥, 𝑦) − 𝑡∗(𝑥, 𝑦)| ≤ 𝛥𝑡∗(𝑥, 𝑦) + 5 𝑑𝑎𝑦𝑠    (11) 

 

Equation (11) checks the difference between the day an active fire was detected 
(𝑡𝑓(𝑥, 𝑦)) and the estimated date where a pixel has burned (𝑡∗(𝑥, 𝑦)). The result is 

compared with the temporal uncertainty measure computed in Equation (8), and also 
five days of margin are added due to the amount of missing data. 

Also, the following thresholds are computed: 

 

𝑆∗(𝑥, 𝑦) ≥ 2    (12) 

𝜎𝑡
∗(𝑥, 𝑦) ≤ 8    (13) 

 

Equation (12) looks for the big change of trends in the VI time series and Equation 
(13) looks for areas with small values of temporal texture. 
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Pixels identified as burned in the morphological erosion that also satisfies Equation 
(11), (12), and (13) form the initial burned classification mask. We will denote these 
initial burned pixels as the first seeds of the algorithm. They are called seeds 
because they have a high probability of being burned and they are at a location 
where more active fires were detected in other neighbors. So these seeds are likely 
to be located at a big wildfire. The location of each seed forms an individual cluster 
(𝑗) that will grow constantly adding more seeds if their neighbors satisfy some 
thresholds. All pixels labeled as not burned will not be candidates in this step. 

For each cluster 𝑗, 𝛥𝑉𝐼∗{𝑗} and 𝑉𝐼𝑝𝑜𝑠
∗ {𝑗} represent the 𝛥𝑉𝐼∗ and 𝑉𝐼𝑝𝑜𝑠

∗  values of the 

pixels that belong to each cluster 𝑗. The cluster grows spatially if the neighboring 
pixels meet the following criteria: 

 

𝛥𝑉𝐼∗(x, y)   >  25th percentile of  𝛥𝑉𝐼∗{𝑗}           (14) 

𝑉𝐼𝑝𝑜𝑠
∗ (𝑥, 𝑦) < 75th percentile of  𝑉𝐼𝑝𝑜𝑠

∗ {𝑗}               (15) 

𝜎𝑡
∗(x, y)  ≤  3 days                    (16) 

𝑑𝑙(𝑥, 𝑦) ≤ 𝑅𝑔                 (17) 

 

where 𝑑𝑙(𝑥, 𝑦) is the distance of the candidate pixel at (x,y) to the initial seed, and 
𝑅𝑔 = 10 km is established empirically (big wildfires do not have normally a radius 

bigger than 10 km). All pixels that meet Equations (14), (15), and (16) are included 
as seeds in the corresponding cluster and 𝛥𝑉𝐼∗{𝑗} and 𝑉𝐼𝑝𝑜𝑠

∗ {𝑗} are updated with the 

values of the new seeds. Then, an iteration process starts adding more seeds to the 
clusters until no candidate is added or Equation (17) is not met. All the pixels that 
belong to a cluster at the end of this process form the initial burned training mask. 

2.7.3 Unburned training pixels 

In this section, the unburned training mask is computed again using information from 
the initial burned training mask, and all pixels that satisfy one of the following 
conditions are labeled as unburned: 

1) If the pixel was labeled as unburned in the initial classification (Section 2.7.1). 

2) In the second condition, we use the information from the burned training mask. 
All pixels that were not labeled in either of both masks and the distance 
(𝑑𝐵(𝑥, 𝑦)) to a burned pixel is bigger than 𝑅𝑑 = 5𝑘𝑚 (𝑑𝐵(𝑥, 𝑦) ≥ 𝑅𝑑) are labeled 
as unburned. 

As exposed at the beginning, those thresholds are based on empirical knowledge. 
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2.8 Conditional probability density functions 

From now on, every step until the final classification will be conditioned on the pixels 
land cover class. As exposed in the introduction, the vegetation chemical and 
physical characteristics have a big influence on the value of the reflectance and in 
consequence, in the value of the index and the other calculations derived from it. 
The land cover product allows dealing with these different features, identifying 
clusters of pixels with similar physical and chemical characteristics, which means 
similar changes in reflectance values after a burn. 

So far, the algorithm has generated two masks, one mask with burned pixels and 
another with unburned pixels. For each class, we derive the conditional probability 
density functions (PDF), 𝑃(𝛥𝑉𝐼∗|𝐵) and 𝑃(𝛥𝑉𝐼∗|𝑈), where B and U stand for burned 
and unburned pixels. 

The assumption made here is that if the data are divided by land cover class, similar 

values of 𝛥𝑉𝐼∗ for burned and unburned pixels will be obtained. Hence, these data 
are expected to have Gaussian distributions and a Gaussian kernel density estimator 
(KDE) is used to generate both distributions. 

A KDE is a non-parametric method used to estimate the probability density function 
(PDF) of a random variable. The kernel is a symmetric and non-negative function 
that integrates to 1. It generates one distribution for each point of the sample and 
then sums all of them generating the final distribution (Fig. 20). 

 

 

Figure 20: Gaussian kernel estimator example. 

 

The following Gaussian KDE is used to generate the corresponding distributions: 
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𝑃(𝑢) = 𝐶 ∑ 𝑒
𝑖

𝑥𝑝 (−
[𝑢 − 𝑢𝑖]2

2𝜎𝑘
2 )    (18) 

where 𝐶 in Equation (18) is the normalization factor that ensures the integral of P 

overall 𝑢 is 1. The parameter (𝜎𝑘
2) corresponds to the bandwidth which is the way to 

model the smoothness of the distribution. It controls the amount of data involved in 
each distribution of the kernel function. In this case the value of the bandwidth is 

𝜎𝑘 = 0.02 (empirically computed). 

Once we have generated burned and unburned distributions, we decide for each 
land cover if burned and unburned pixel distributions are separated enough to 

discriminate between them knowing the 𝛥𝑉𝐼∗. For each land cover, we compute the 

difference between the median (𝑄𝑙
(50)

) of the burned and unburned 𝛥𝑉𝐼∗ training 

samples (Eq. 19). 

𝛥𝑄𝑙
(50)

= 𝑄𝑙
(50)

(𝛥𝑉𝐼∗|𝐵) − 𝑄𝑙
(50)

(𝛥𝑉𝐼∗|𝑈)    (19) 

 

The pixels belonging to the class l are considered unburned if the difference in the 
median is below -0.05 or the difference in the median is below 0 and the size of the 
sample of the burned pixels for the class is small (<100). 

These thresholds have been established knowing that the value of 𝛥𝑄𝑙
(50)

 is 

expected to be greater than 0 for normal burns, but a −0.05 margin value is allowed 

when burned pixels of a specific class are more than 100, to offset the cropland fires. 
Cropland fires (intentioned most times) are not included in the actual analysis and 
so that all pixels belonging to this class are automatically labeled as unburned. 

2.9 Prior and posterior burned probability 

In this step, the Bayes’ rule is used to extract a probability mask based on the PDF 
distributions of burned and unburned pixels. The burned-unburmed labels are 
established in Section 2.7. The computation of the prior and posterior probability only 
consider pixels of land classes that passed the separability test. These classes have 

no overlap on the burned and unburned distributions of the 𝛥𝑉𝐼∗ (Section 2.8). 

First, a prior probability (𝑃𝐵(𝑥, 𝑦)) is computed considering the distance to the nearest 

pixels labeled as burned (𝑑𝐵(𝑥, 𝑦)). If the pixel was labeled as unburned, 𝑃𝐵(𝑥, 𝑦) =

0, otherwise the prior probability is computed using the formula 𝑒𝑥𝑝(
𝑥2

2
) as follows: 

 

𝑃𝐵(𝑥, 𝑦) = (𝑃𝑚𝑎𝑥 − 𝑃𝑚𝑖𝑛)𝑒𝑥𝑝 (−
𝑑𝐵(𝑥, 𝑦)2

2𝜎𝑝
2

) + 𝑃𝑚𝑖𝑛    (20) 
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with 𝑃𝑚𝑎𝑥 = 0.5, 𝑃𝑚𝑖𝑛 = 0.01, and 𝜎𝑝 = 2 km. Equation (20) is an arbitrary method 

used in Giglio et al. (2018) based on the idea that pixels were more likely burned if 
they are close to a burned pixel. The value 𝜎𝑝 = 2 km was established empirically, 

knowing that it is not common to have burned pixels more separated than 2 km each 
other after having identified the burned training mask where most of the pixels that 
belong to big wildfires have been labeled as seeds in each cluster. 

The probability of a pixel being burned decays when the distance to a burned pixel 
increases as shows Fig. 21: 

 

Figure 21: Prior probability function. 

 

The prior probability values are in the range 𝑃𝑚𝑖𝑛 ≤  𝑃𝐵  ≤  𝑃𝑚𝑎𝑥. The probability 𝑃𝐵 
when the distance 𝑑𝐵(𝑥, 𝑦) increases converge to 𝑃𝑚𝑖𝑛 = 0.01 value, and those 

which are near a burned pixel have 𝑃𝐵 ≈ 0.5. When we have the 𝑃𝐵 value, the 

probability that a pixel is not burned is 𝑃𝑈 = 1 − 𝑃𝐵. 

After obtaining the prior probability and given the observed value of change in VI, 
the posterior burned probability is computed using the Bayes’ rule in Equation (21): 

 

𝑃(𝐵|𝛥𝑉𝐼∗(𝑥, 𝑦)) =
𝑃𝑙(𝛥𝑉𝐼∗|𝐵)𝑃𝐵(𝑥, 𝑦)

𝑃𝑙(𝛥𝑉𝐼∗|𝐵)𝑃𝐵(𝑥, 𝑦) + 𝑃𝑙(𝛥𝑉𝐼∗|𝑈)𝑃𝑈(𝑥, 𝑦)
    (21) 
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This value represents the probability of an event having occurred, knowing the value 
of another event. In this case, the event (a specific pixel burned) has occurred, so 
we try to determine how strong is our belief about our initial prediction. 

 

 

Figure 22: Distributions of burned and unburned pixels of class 2 in Rondonia in 
August 2019. Example about how are taken the two values of both distributions to 

apply the Bayes’ Rule. 

 

Pixels close to a burned pixel have a high prior probability 𝑃𝐵 ≈ 0.5 and that gives 
the weight to the 𝛥𝑉𝐼∗ value when computing the posterior probability (𝑃𝐵 ≈ 𝑃𝑈 ≈
0.5). As shown in Fig. 22, if the burned and unburned prior probabilities are similar, 
the computation of the posterior probability is only about proportions (50-50) of the 

values of both PDFs depending on the 𝛥𝑉𝐼∗ of the pixel. 

Otherwise, in those which are far away from a burned pixel the prior probability 

function converges to 0.01 (𝑃𝑈 ≈ 0.99), and the value of 𝛥𝑉𝐼∗ will not have much 
influence on the posterior probability computation. At the end of this step, the 
algorithm generates a probability mask with the posterior probability 
(𝑃(𝐵|𝛥𝑉𝐼∗(𝑥, 𝑦))) of each pixel (see Fig. 23). 
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Figure 23: Posterior probability mask 

 

2.10 Initial classification 

This first classification is focused on physical characteristics. The burned training 
mask finds pixels where an active fire was detected and has neighbors in the same 
situation. Then, it looks for pixels near each other with a big change of trend in the 
VI time series in the same period. Finally, the pixels are divided by land cover class 
to deal with physical and chemical characteristics and a probability to be burned is 

assigned to each one depending on 𝛥𝑉𝐼∗ and the distance to the nearest burned 
pixel. 

Now, a new mask of burned - unburned pixels is generated based on this previous 
knowledge. Initially, all pixels classified as unburned in the training mask are labeled 
as unburned. Then, the following computations are conditioned to the land cover of 
the remaining pixels. 

All land cover classes that did not pass the separability test were identified as 
unburned in previous steps and are equally labeled because in this initial 
classification all thresholds will be conditioned to the land cover class, and in those 
classes, there was no evidence that the burned and unburned conditional PDF were 
different enough. 

The remaining pixels are labeled as burned if they satisfy the following thresholds: 
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1) If the posterior probability 𝑃(𝐵|𝛥𝑉𝐼∗) ≥ 0.5 

2) If the 𝑉𝐼𝑝𝑜𝑠
∗ (𝑥, 𝑦) ≤ 𝑄𝑙

(98)
(𝑉𝐼𝑝𝑜𝑠

∗ |𝐵) 

3) If 𝜎𝑙
∗(𝑥, 𝑦) ≤ 𝑄𝑙

(98)
(𝜎𝑙

∗|𝐵) 

 

After this, a new mask is generated with burned and unburned pixels forming the 
initial classification 

2.11 Final classification 

This final classification looks for spatial coherence in burned areas. Two-pixel 

categories have been defined: burned (𝑛𝐵) and unburned (𝑛𝑈). In this step, another 
category is defined as tentative burned pixel 𝑛𝐶𝐵. We take every burned pixel and its 
neighbors with the kernel introduced in Section 2.6 and look at their days of 

maximum separability (𝑡∗). The number of neighbors which days of maximum 
separability are in a window of 21 days centered in the 𝑡∗ of the central grid (|𝑡(𝑥, 𝑦) −
𝑡(𝑥′, 𝑦′)| ≤ 10) are counted and recorded (this condition relaxes the criterion of 
equation (13)). 

Then, a cumulative density function of burned neighbors of burned pixels is 
computed, which means the number of burned neighbors that a burned pixel has. It 
is mathematically written as follows: 

𝐹(𝑛𝐵|𝐵) = 𝑃(𝑁𝑏 ≤ 𝑛𝐵|𝐵) = ∑ 𝑃

𝑛𝐵

𝑁=0

(𝑁𝑏 = 𝑁|𝐵)    (22) 

In the final classification burned pixels will be relabeled as unburned if they have 

more unburned than burned neighbors (𝑛𝐵 < 𝑛𝑈) and if the cumulative probability is 
𝐹(𝑛𝐵|𝐵) < 0.1. 

On the other hand, unburned pixels are relabeled as burned if the number of burned 

neighbors is greater than the number of unburned neigboods (𝑛𝐵 < 𝑛𝑈) and 𝑛𝐶𝐵 ≥
1. 

This will be the final result of the whole algorithm, which is a mask of burned-
unburned pixels of the region of interest. In this study, the region of interest is 
Rondonia, and the burned area mapped in August 2019 is represented in Fig. 24. 

Finally, we calculate the burned area for the month, multiplying the area of each pixel 
by the number of pixels. The area of each pixel of the images of this study is 
colloquially referred as “500 m”, but the real pixel size is 463.3127 m (Giglio et al, 
2015). Thus, the area of each pixel is 0.2147 km2. 



 

33 
 

 

Figure 24: Burned area in Rondonia in August 2019. The resolution of the image 
misrepresents the real burned area. 
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3 Spatial coherence approach. 

As many steps are conditioned to the land cover due to the influence of the chemical 
and physical characteristics on detecting BA, this new approach is oriented to 
compute the burned area of specific regions. Small areas are usually covered by 
more than one tile. That is the case of Rondonia, the Brazilian state that belongs to 
the Amazon biome. 

 

 

Figure 25: Tiles needed to generate a rectangular shape that contains Rondonia. 
The top right corresponds to h:11 v:09 tile, the top left to h:12 v:09 tile, the bottom 

left to h:11 v:10 tile and the bottom right to h:12 v:10 tile. 

 

Rondonia is covered by 3 tiles, but we work with rectangular images and the four 
tiles of the Fig. 25 are needed to create a rectangular shape that contains this region. 

The aim of this work is not to explain the physical and chemical basis of the land 
cover conditioning, and then, we do not intend to detail all land cover classes. In 
Table 2 (Appendix 3) a short explanation of each class is presented. It has been 
extracted from the user guide of the land cover product (MCD12Q1) (Friedl et al. 
2015). 

We are just looking for the proportion of each class in each region or tile. At this 
point, we only need to know that same land cover means similar reflectance values. 
Fig. 26 shows the proportion of pixels in each land cover class for each tile shown in 
the Fig. 25 (considering the same tile order). 
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Figure 26: Land cover of the four tiles that cover Rondonia. Class cover ID 
numbers are those in the MCD12Q1 product and are specified in Appendix 3. 

 

Many of the classification steps work with conditional probability densities. Those 
are estimated by KDE as introduced in Section 2.8, which are influenced by the 
amount of data available to generate each class probability density. The proportion 
of pixels of each class varies in the four tiles. This is why some classes with a small 
proportion of pixels will generate poor distributions and will be labeled as unburned 
by the separability test. 

But if we apply the BA mapping algorithm to the rectangular shape that contains 
Rondonia we are underestimating the burned area because the algorithm is 
supposed to be applied to a tile size image (2400x2400 pixels) and Rondonia’s 
rectangular shape has only 58% of data and that generates poor distributions as we 
have less training data. For getting more accurate results we will expand this region 
from the centroid of Rondonia in the four directions until we have a tile size image 
(2400x2400 pixels). The advantage of this method is the similarity in the proportion 
of pixels of each class in Rondonia and in the new region called “Rondonia tile size 
extended”. 

Fig. 27 demonstrates that Rondonia and Rondonia extended have a similar 
proportion of pixels of each class and the new image will generate good burned-
unburned distributions of the most important classes. In this particular case, the 
Rondonia state is in the border of the Brazilian Amazon Biome (next to Cerrado’s 
biome), which also gives more bias to the results as there is an important difference 
in the characteristics of the vegetation in the four tiles, as Fig. 26 shows. This 
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particularity will be discussed in the conclusions once the results have been 
exposed. 

 

 

Figure 27: Land cover of Rondonia shape and Rondonia extended to tile size 
shape 
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4 Results 

4.1 Temporal scope of the study 

In Section 1.2 August and September were identified as the most affected fire 
months historically. Also, in August 2019 INPE and NASA reported an important 
increase in active fires (see Fig. 31), so this month is selected as the one to be 
studied. 

But the performance of an algorithm cannot be tested only in a single month, so we 
are going to study every August in the period 2011-2019. 

4.2 Exploratory data analysis. 

4.2.1 Vegetation index. 

For every year, we have the vegetation index for each day from July 1st to 
September 31st generated using both Aqua and Terra reflectance data. Initially we 
have 184 images that correspond to the 𝑉𝐼𝐴𝑞𝑢𝑎 (92 images) and 𝑉𝐼𝑇𝑒𝑟𝑟𝑎 (92 images). 

Then, we combine both as explained in Section 2.4 to obtain the 92 final VI images. 
These data correspond to the region “Rondonia tile size extended” (Section 3) and 
can be represented as a three-dimensional array (images ordered by day) Fig. 28: 

 

 

Figure 28: Satellite image time series scheme 

Here, 𝑥 and 𝑦 correspond to the location of the pixels and 𝑧 corresponds to the day 
in the time series. In the actual case, the resolution of an image is 2400 x 2400, 
which means that every image has 5760000 pixels. Thus, every year we are going 
to study trend changes in 5760000 time series. The 3-month time window condition 
means that each time series has 92 days. But the biggest drawback is the missing 
values due to the presence of clouds in the satellite images and this is the reason 
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why we use 3 months data to compute the BA for only one month, as explained 
below. 

In all data analysis preprocess, lost values are one of the main issues. In this case, 
the presence of clouds causes almost 40% of lost values in the dataset. As explained 
above, we are looking for trend change in the VI index in a time series of 92 days for 
each pixel. If there is no fire in a pixel, the value of the VI index will remain almost 
constant. If there is a fire, the VI value will decrease and later increase during a 
recovery phase. The speed of recovery depends on the land cover, the strength of 
the fire and other characteristics. 

We are not going to replace lost values, but instead, we will use only real valid data 
and we will model the gap of this valid data at the date the fire is detected. To validate 
the use of Equations (7) and (8) in different steps, we define two random variables. 
The first one is the discrete random variable 𝑋: Number of valid data in a time series 
of 92 days(July-September) in “Rondonia extended to tile size” region. It uses data 
from the period 2011-2019. The probability mass function of X can be seen in Fig. 
29. 

 

 

Figure 29: Probability mass function of the random variable X.  

 

This random variable has the following features: 

• It is discrete and it only can take values in the interval [0,92]. 
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• It counts the number of times an event (presence of valid data) occurs in a 
period (time-series of 92 days). 

• It has no upper bound, (example: if on the day 80 the number of valid pixels is 
50, in the day 81 it can be 51). 

• The expected value is E[X] = 55.27. 

With the PMF and these features, we can assume that X follows a Poisson 
distribution with parameter 𝜆 = 𝐸[𝑋] = 55.27, which is the expected number of valid 
data in this region and period. 

But, the distribution in time of this valid data is also important. Therefore, we define 

the second random variable 𝑌: * the maximum number of consecutive missing data 
in a time series of 92 days(July-September) in “Rondonia extended to tile size” 
region*. Probability mass function of Y is shown in Fig. 30. 

 

 

Figure 30: Probability mass function of the random variable Y.  

 

The expected value of this random variable is 𝜆 = 𝐸[𝑥] = 2.47 days. . This means 
that if there is a gap in the time series between two pixels with valid values it is 
expected to be equal or smaller than 2.47 days. 

With these two random variables, we can validate Equations (7) and (8), and their 
use throughout the algorithm. The expected number of valid pixels in the time series 
is 55.27, and the expected maximum separation between them is 2.47, which means 
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the valid data are evenly distributed throughout the time series, and so that the 
uncertainty of a 2-3 pixels gap can be easily modeled. 

4.2.2 Active fires 

Active fire data allow us to set up the first seeds of the initial burned classification 
mask. At this point, a logical relationship can be established: the more active fire 
points are detected, the more burned area is mapped. It is an indicator of the 
increase or the decrease of the burned area that will take more time to be estimated 
as the algorithm needs a 3-month time window. 

 

 

Figure 31: Active fires detected in the region of interest in August. 

 

The increase in active fires detected in August 2019 (Fig. 31) is remarkable 
compared to previous years, which a priori will involve more burned area mapped. 

In Section 1.2 Rondonia was selected as the region of interest because it was the 
state with the highest active fire density of the Amazon biome. This decision along 
with the spatial coherence approach will test the performance of the algorithm in 
regions with a high active fire density that are divided (by 3 in this case) in the MODIS 
tile system. 
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4.2.3 Land cover 

The main idea about land cover data has been exposed in Section 3. Every year the 
land cover algorithm generates a new mask based on the changes in reflectance 
associated with different physical and chemical characteristics. 

The time-period of this study goes from 2011 to 2019. The amount of pixels relabeled 
to other classes in this period is not relevant in this kind of analysis because the 
percentage is very small, and it does not adversely affect the accuracy of the results. 

4.3 Comparation with NASA’s and INPE’s burned area 
products 

In this section, the results obtained by applying the algorithm are exposed. A 
comparison of these results with those obtained by NASA and INPE is also 
presented. 

 

 

Figura 32: Burned Area detected by 3 algorithms 

 

As Fig. 32 shows, INPE’s algorithm detected 3.06 times more burned area (on 
average) than the MODIS one in Rondonia between 2011 and 2019. It uses other 
physical features (the red light and near-infrared light of the solar domain) and other 
classification methods based on tables developed by the authors (Libonati et al., 
2015). Also, it is in stage 2 of maturity in contrast to MODIS which is at a higher level. 
For these reasons, we will focus on comparing only both MODIS approaches. 

The idea of spatial coherence was presented to improve the burned-unburned 
distributions of the principal land covers, and in consequence, to generate more 
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accurate results of the burned area mapped. Also, as Fig. 3 shows, Rondonia is one 
of the most affected regions by active fires in August 2019 in the Amazon biome. We 
are going to test the performance of the MODIS algorithm when we have a region 
that is divided into 3 different tiles in the original approach (Fig. 25) and it is highly 
affected by the fires (Fig. 3). 

 

 

Figure 33: Burned Area compared with MODIS data (and active fires detected). 
The right axis is referred to the number of the active fires detected and the black 

line is the active fires detected in August of each year by MODIS. 

 

In Fig. 33 we can appreciate the assumption made above that the more active fires 
are detected, the more burned area is mapped. Both approaches draw a similar 
shape (also similar to the active fire line), but with some particularities. 

The first particularity can be seen in years with a small impact on active fires. This 
idea was presented in Giglio et al. (2018), where they remark that active fires in 
tropical and subtropical latitudes are under-represented due to the overpass 
frequency of the Terra and Aqua sensors. The solution proposed in this paper to 
deal with this problem is to extend the region being studied to obtain more active 
fires detected and have more training data. They add to the region of interest (a tile) 
more pixels that belong to other tile neighbors to obtain more training data. 

In this study the extension of the region of interest to obtain more training data in 
years with less fire activity is not applied. Therefore, in years with less fire activity 
(2011 and 2013), the burned area is underestimated compared to the MODIS burned 
area product (MCD64A1). 

Giglio et al. (2018) paper does not detail what is the procedure used to deal with this 
issue. Also, the extension of the region of interest means more data to be processed, 
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which derives on an increase of the computational cost. As can be seen in Appendix 
1, the computational cost without adding that modification is too big and we cannot 
assume a new increase of the data to be processed with the available resources. 

Nevertheless, these results also show that the BA detected using this new approach 
is 1.43 times bigger than the MODIS tile method when the region of interest is highly 
affected by active fires and also the BA mapping of this region is involved in different 
tiles. Fig. 31 indicates NASA’s algorithm underestimates the burned area in years 
with a medium-high incidence of active fires (2012, 2014, 2015, 2017, 2018, and 
2019) using the tile system. 

This increase shows the misuse of the tile system, a rigid spatial application of the 
algorithm. Active fires are the most important input data. They are used to generate 
the burned training mask in Section 2.7.2. The more burned training pixels are 
detected in section 2.7.2, the more separated burned and unburned distributions are 
generated in section 2.8. But active fires occur at different locations each year. 
Before the spatial application, the algorithm should study which regions have high 
active fires density (Fig. 3) and look at those that are divided into more than two tiles 
(Fig. 25). These regions are at a disadvantage and they should not be considered in 
the regular computation (tile system). They should be computed as exposed in this 
study. This correction factor should be used as a complement to the tile system that 
shows poor behavior in regions that are at a disadvantage because of their location 
and their fire activity is not considered. 
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5 Conclusions 

In this study, the NASA’s algorithm developed by Giglio et al. (2018) has been 
reproduced in R code as faithfully as possible. Initially Rondonia has been selected 
as the region of interest based on the active fires density in August 2019. The active 
fire density and the land cover coherence (Section 3) of the region being studied are 
key in the approach followed in our study. 

The first step of the algorithm is the computation of the Vegetation index (VI) (Section 
2.4). VI is used to identify a reflectance change in time that can be associated with 
a fire. Then the burned and unburned training data are selected based on active fires 
(Giglio et al. 2016) and the information extracted from the VI index (Sections 2.4, 
2.5, 2.6 and 2.7). 

The training data are used to generate burned and unburned distributions (Section 
2.8). But the reflectance values are different depending on the land cover of the 
Earth’s surface. Therefore, burned and unburned distributions are generated 
separately for each land cover. The separability test verifies if the distributions are 
adequate to discriminate burned and unburned pixels. Then, the burned and 
unburned distributions are used to generate the so called posterior probability mask 
(Section 2.9). The value of each pixel of the posterior probability mask represents 
the probability of having burned based on all the previous physical and temporal 
knowledge. 

Finally, the algorithm has two classification phases. The first one is based on the 
posterior probability mask (physical and temporal knowledge) (Section 2.10). The 
last one is based on the spatial coherence (Section 2.11). Pixels are relabeled (or 
not) to the opposite class (burned-unburned) depending on the label of their 
neighbors. 

The most important change introduced in this study is related to the spatial 
application of the algorithm, which is focused in a region with a high active fires 
density that is divided into three parts in the MODIS tile system (Rondonia). 

The results obtained with this new approach indicate that the burned area detected 
in this region is underestimated in years with high active fires density. In our study, 
the burned area is 1.43 times (on average) the area mapped by the MODIS product. 
This underestimation highlights the limitations of the tile system, because it is an 
algorithm based on active fires and it does not consider the density of the active fire 
for its spatial application. Also, MODIS product MCD64A1 is not a reliable source of 
information for region/states similar to Rondonia that are clearly at a disadvantage 
due to their location. It is on the border of the biome and divided in three parts by the 
tile system in the original spatial application of the algorithm. 

In Section 4.3 we propose the application of a correction factor to fix this 
underestimation. The correction factor is based on the modification of the spatial 
application of the algorithm in regions with high fire activity density (Fig. 3) and 
divided into more than 2 parts in the tile system (Fig. 25). As Giglio et al. (2018) is a 
probabilistic algorithm, the regions computed using this new approach should be 
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removed in the original approach and replaced by the results obtained with the new 
approach presented in this study. 

But some non-detailed steps in the original literature lead to assumptions like the 
kernel selected at Section 2.6. The methodology used to generate this kernel in each 
region is not explained and we assume the use of the kernel located above South 
America. Also, in tropical and subtropical regions, active fires are under-represented, 
and therefore, the burned area is underestimated. This issue is not rectified, but it is 
taken into account when explaining the final results. Finally, it is a physics-based 
algorithm that relies on empirical knowledge. The results and conclusions obtained 
in this work rely on them. 

Despite the lack of information explained in the previous paragraph and the 
limitations of the code to be used to calculate burned areas in other regions, R is a 
great source to solve problems such as the computation of burned areas. There are 
many available spatial data packages to download and process satellite data (for 
example (𝚁𝙶𝙸𝚂𝚃𝚘𝚘𝚕𝚜) and to analyze and model all kinds of spatial data (𝚛𝚊𝚜𝚝𝚎𝚛, 

𝚜𝚙, 𝚜𝚙𝚊𝚝𝚜𝚝𝚊𝚝𝚜…). This makes R an adequate open-source tool to be used for 
spatial data analysis. 

This Master’s project deals with topics related to statistical modeling not covered in 
the master’s subjects (like the analysis of a huge spatial data set of terabytes 
magnitude and 40 % of missing values), laying aside machine learning algorithms 
and combining probabilistic, statistical and physical knowledge to determine an 
event that has already occurred.  
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6 Appendix 0: Quick review of scripts/functions 
developed in R code 

This appendix introduces the functions and scripts personally developed for the 
analysis. The definitions are intended to help following the R code related to this 
thesis. 

ImagesDownload: It uses functions from the 𝚁𝙶𝙸𝚂𝚝𝚘𝚘𝚕𝚜 package to download, 
extract, and mosaic the images of the MODIS products (see section 2.2 for more 
details about the products). 

Main: It contains the core of the algorithm that uses auxiliary functions to obtain the 
BA. 

The auxiliary functions: 

activeFires and getMonth: The first one loads the shapefile of the active fires into 

a 𝚂𝚙𝚊𝚝𝚒𝚊𝚕𝙿𝚘𝚒𝚗𝚝𝚜𝙳𝚊𝚝𝚊𝙵𝚛𝚊𝚖𝚎, and the second one selects only the fires that 
occurred in the month been studied. 

cover_VI: It creates a composite image of the index 𝑉𝐼 using 𝑉𝐼𝐴𝑞𝑢𝑎 and 𝑉𝐼𝑇𝑒𝑟𝑟𝑎, 

and saves it to a file. 

FinalClassification (c): It generates the final BA map of the region of interest (the 
result of the algorithm). 

FinalTrainingMask: It grows the clusters of the seeds that form the initial burned 
training mask. 

getMaxDay (c): It returns the value of the specified position in a time series. 

incertidumbre (c): It returns two images with the values of the equations (7) and 
(8). 

maxSeparabilityDay (c): It detects the maximum in the separability index time 
series. 

meanSdQuantile (c): It computes the mean and the standard deviation of a vector 
after having removed values smaller than the 10th percentile and bigger than the 
90th percentile. 

preVIcals: It generates two images of each day of the month been studied, one with 
the mean of VI index of the pre-burn window of each pixel and other with the standard 
deviation (equations (2) and (3)). 

posVIcals: It generates two images of each day of the month been studied, one with 
the mean of VI index of the post-burn window of each pixel and other with the 
standard deviation (equations (4) and (5)). 
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probMask_generate: It generates the probability mask used for the initial 
classification applying the Bayes’ rule and the PDFs of burned and unburned masks 
generated by the KDEs. 

reflectanceCleaner: It removes invalid data from the reflectance bands 5 and 7. 

separability: This function identifies a change of trend in a time series of the VI index 
(equation (6)). 

TempConsistent: It gets the number of neighbors that are temporally consistent 
with the criteria explained at the final classification. 

varVI: This function computes the VI index and saves it to a file. 

The functions followed by (c) have been developed as an argument of the calc 
function of the raster package. 
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7 Appendix 1: Computational cost 

The analysis was conducted with an Intel(R) Core(TM) i7-6500U CPU @2.5GHz and 
8GB of RAM memory. The computational cost of the BA mapping process divided 
by section and the most expensive functions applied in each one is exposed in this 
appendix: 

 

 

Figure 35: Cumulative computational cost 

 

1) MODIS images download: 

The computational cost of this part is not included because it depends on the internet 
connection speed. The size of the files in the HDF compressed format of all products 
used in this work is 415 GB. 

2) Satellite images (extraction and mosaic): 

The extraction of bands 5, 7, and QA of the images and tiles downloaded and mosaic 
the images getting only the region of interest. It represents 6.34 % of the total cost 
of the algorithm. 

3) VI index: 

This section is related to the computation of the indexes 𝑉𝐼𝑇𝑒𝑟𝑟𝑎 and 𝑉𝐼𝐴𝑞𝑢𝑎 and the 

combination of both to generate the final composites of 𝑉𝐼. It represents 17.36 % of 
the total cost of the algorithm. 

The function 𝚙𝚛𝚘𝚓𝚎𝚌𝚝𝚁𝚊𝚜𝚝𝚎𝚛 of the raster package used to change the resolution 
of the cloud mask from 1000 m to 500 m (the resolution of the VI index) is the most 
expensive one. It is applied 2 times, one to each cloud mask of the VI indexes 
(𝑉𝐼𝑇𝑒𝑟𝑟𝑎 and 𝑉𝐼𝐴𝑞𝑢𝑎). However, using the function 𝚋𝚎𝚐𝚒𝚗𝙲𝚕𝚞𝚜𝚝𝚎𝚛 the computations 



 

49 
 

are sent to 3 different cores (in this particular case with the available resources) and 
the computational cost of this section decreases 46 % (getting the percentage 
presented before (17.36 %)). 

4) Separability: 

It is the one with the highest computational cost of the entire algorithm (calculation 
of equations (2), (3), (4), (5), and (6)). The compute of the 10th and 90th percentiles 
of 345.600.000 windows of length 8 are the reason why this section represents 65.43 
% of the total cost of the algorithm. 

5) Composite images derived from the day of maximum separability: 

It computes the equations (7), (8), the temporal texture 𝜎𝑡
∗ and the composite images 

𝑆∗(𝑥, 𝑦), 𝛥𝑉𝐼∗(𝑥, 𝑦), and 𝑉𝐼𝑝𝑜𝑠
∗ (𝑥, 𝑦) of the day of maximum separability for each pixel. 

It represents 5.79 % of the total cost of the algorithm. 

The most expensive computation is the temporal texture, 𝜎𝑡
∗, using the 𝚏𝚘𝚌𝚊𝚕 

function of the 𝚛𝚊𝚜𝚝𝚎𝚛 package that represents 33.33 % of this section. 

6) Burned-Unburned training masks and classification: 

The resting computes of the algorithm uses only single images (not time series as 
the previous sections), and that means less computational cost. This section 
represents 5.10 % of the total cost of the algorithm, but it is the only one that shows 
variations over the years, depending on the number of active fires detected the 
month being processed. 

In this final section, the number of training pixels (active fires) influence the running 

time of the algorithm, and particularly in two functions: the 𝚍𝚒𝚜𝚝𝚊𝚗𝚌𝚎 function of the 
𝚛𝚊𝚜𝚝𝚎𝚛 package that calculates the distance of the NA pixels to the nearest one 
that has valid data and the own developed function called 𝙵𝚒𝚗𝚊𝚕𝚃𝚛𝚊𝚒𝚗𝚒𝚗𝚐𝙼𝚊𝚜𝚔  
which grows the cluster of each seed in the initial burned training mask. 
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8 Appendix 2: Structure of the database generated 

For each year the algorithm generates a folder with the name of the year that has 
the following structure: 

 

 

Figure 36: Database structure 

 

0) The file format of MODIS’ products explanation: 

MODIS products are available on NASA’s website and can be downloaded in the 

HDF compressed format. Using 𝚁𝙶𝙸𝚂𝚝𝚘𝚘𝚕𝚜, the tiles covering the region of interest 
are downloaded for the established period. Then, the satellite images are extracted 
to .tif format and finally, the mosaic of the region of interest is generated and form 
the database of this product that will be used by the algorithm. 

In Fig. 36, all subfolders named HDF contain the compressed satellite images of a 
certain MODIS product, TIF subfolders own the .tif images of the tiles extracted from 
the corresponding .hdf files and MOS subfolders own the mosaicked images of the 
region of interest in .tif format. 

SUBFOLDERS STRUCTURE 

1) TERRA and AQUA: 



 

51 
 

Both folders have the same structure with different data obtained from Terra or Aqua 
satellites. 

• HDF, TIF, and MOS: the surface reflectance MODIS product is downloaded, 
and bands 5, 7, and QA (the quality band with cloud presence information) are 
extracted and processed until obtaining the .tif image of the region of interest of 
the specified time series. 

• CLDMASK: QA band information is processed and saved to delete pixels 
covered by clouds. 

• VI: the VI index is computed and saved cloud-free for each satellite data. 

2) Burned Area Product: 

The burned area MODIS product is downloaded and processed as explained in the 
initial section of this appendix. 

3) Land Cover Product: 

The land cover MODIS product is downloaded and processed as explained in the 
initial section of this appendix. 

4) Active fires: 

This subfolder contains the shapefile of the active fires near-real-time MODIS 
product of the specified time series. 

5) Index: 

The VI subfolder contains the composites created from the TERRA and AQUA VI 
indexes. 

The following computations are saved because of their computational cost in this 
subfolders: 

• premean: results of the equation (2). 

• presd: results of the equation (3). 

• posmean: results of the equation (4). 

• possd: results of the equation (5). 

• separability: results of the equation (6). 

6) Results: 

The results obtained at the end of the algorithm explained in this work are saved in 
this subfolder in .tif format. 
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9 Appendix 3: Land cover classes description 

In this appendix, the land cover classes’ explanation extracted from the MCD12Q1 
product user guide is presented (Table 2). 

 

Table 2: Land cover classes extracted from MCD12Q1 product user guide 

Value Description 

1 Dominated by evergreen conifer trees (canopy >2m). Tree cover >60%. 

2 
Dominated by evergreen broadleaf and palmate trees (canopy >2m). Tree cover 
>60%. 

3 Dominated by deciduous needleleaf (larch) trees (canopy >2m). Tree cover >60%. 

4 Dominated by deciduous broadleaf trees (canopy >2m). Tree cover >60%. 

5 
Dominated by neither deciduous nor evergreen (40-60% of each) tree type (canopy 
>2m). Tree cover >60%. 

6 Dominated by woody perennials (1-2m height) >60% cover 

7 Dominated by woody perennials (1-2m height) 10-60% cover. 

8 Tree cover 30-60% (canopy >2m). 

9 Tree cover 10-30% (canopy >2m). 

10 Dominated by herbaceous annuals. 

11 Permanently inundated lands with 30-60% water cover and >10% vegetated cover. 

12 At least 60% of area is cultivated cropland. 

13 
At least 30% impervious surface area including building materials, asphalt, and 
vehicles. 

14 
Mosaics of small-scale cultivation 40-60% with natural tree, shrub, or herbaceous 
vegetation. 

15 At least 60% of area is covered by snow and ice for at least 10 months of the year. 

16 
At least 60% of area is non-vegetated barren (sand, rock, soil) areas with less than 
10% vegetation. 

17 At least 60% of area is covered by permanent water bodies. 

255 Has not received a map label because of missing inputs. 
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