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Lattice techniques in quasi-Banach 
spaces
Hardy spaces
Tsirelson space

1. Introduction and background

A relevant topic in Banach space theory from a structural point of view is to determine 
whether a given space has an unconditional basis and, in the case it does, to know whether 
this is the unique unconditional basis of the space. Recall that a quasi-Banach space (in 
particular a Banach space) X with a semi-normalized unconditional basis B is said to 
have a unique unconditional basis if every semi-normalized unconditional basis of X is 
equivalent to B, in which case B is equivalent to all its permutations, i.e., it is symmetric.

For a Banach space it is rather unusual to have a unique unconditional basis. Indeed, 
it is well-known that �2 has a unique unconditional basis [28], and a classical result of 
Lindenstrauss and Pełczyński [30] establishes that �1 and c0 also have a unique uncondi-
tional basis. Lindenstrauss and Zippin [32] completed the picture by showing that those 
three are the only Banach spaces with this property.

For Banach spaces without symmetric bases (or Banach spaces that we do not know 
whether they have a symmetric basis or not) it is more natural to consider the question of 
uniqueness of unconditional basis up to (equivalence and) permutation, UTAP for short. 
We say that X has a UTAP unconditional basis B if every semi-normalized unconditional 
basis of X is equivalent to a permutation of B. Of course, if X has a symmetric basis, the 
notions of uniqueness of unconditional basis and uniqueness of unconditional basis up 
to equivalence and permutation coincide. The first movers in this direction of research 
were Edelstein and Wojtaszczyk, who proved that finite direct sums of c0, �1 and �2 have 
a UTAP unconditional basis [18]. Bourgain et al. embarked on a comprehensive study 
aimed at classifying those Banach spaces with unique unconditional basis up to permuta-
tion that culminated in 1985 with their Memoir [13]. They showed that the spaces c0(�1), 
c0(�2), �1(c0), �1(�2) and their complemented subspaces with an unconditional basis all 
have a UTAP unconditional basis, while �2(�1) and �2(c0) do not. However, the hopes 
of attaining a satisfactory classification were shattered when they found a nonclassical 
Banach space, namely the 2-convexification T (2) of Tsirelson’s space T having a UTAP 
unconditional basis. Other significant advances in the theory were carried out by Casazza 
and Kalton [14,15], who proved that Tsirelson’s space T , certain Nakano spaces close 
either to �1 or c0, certain complemented subspaces of Orlicz sequence spaces �F , where 
F is a convex Orlicz function close either to the function t �→ t2 or to the identity map, 
and certain infinite �1-products and c0-products of spaces with a UTAP unconditional 
basis have a UTAP unconditional basis. The techniques they developed provided also a 
new approach to the uniqueness UTAP of unconditional basis in the spaces c0(�1) and 
�1(c0).
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Each of these examples of Banach spaces with a UTAP unconditional basis follows 
one of these mutually exclusive patterns:

(P.1) The space is close to c0;
(P.2) the space is close to �2;
(P.3) the space is close to �1;
(P.4) the space is a finite or infinite direct sum of spaces, each of which follows some 

of the previous patterns. Moreover, in the case of infinite direct sums, the way in 
which we sum should also follow one of those patterns.

From the comprehensive approach of Functional Analysis, Banach spaces are a partic-
ular case of quasi-Banach spaces, hence it seems only natural to transfer the problem of 
uniqueness of unconditional basis to this more general setting. As we will illustrate be-
low, the situation for quasi-Banach spaces which are not Banach spaces is quite different. 
Kalton showed that a wide class of non-locally convex Orlicz sequence spaces, including 
the �p spaces for 0 < p < 1, have a unique unconditional basis [22]. This topic was given 
continuity later on in a series of papers, amongst which we mention [34,29,43,6–9,2]. In 
particular, a wide class of non-locally convex Lorentz sequence spaces were proved to have 
a unique unconditional basis. As for the UTAP unconditional basis problem, important 
known results include the cases of finite direct sums of �p spaces for p ∈ (0, 1] ∪ {2, ∞}
(we replace �∞ with c0 is p = ∞), the mixed-norm spaces �p(�2), �p(�1), �1(�p), c0(�p), 
�p(c0) for 0 < p < 1, and the Hardy spaces Hp(Td) for 0 < p < 1 and d ∈ N. These 
examples exhibit a pattern which generalizes (P.3), namely:

(P.5) the Banach envelope of the space is close to �1.

Thus, for quasi-Banach spaces that follow (P.5), the uniqueness of unconditional basis 
seems to be the norm rather than the exception.

Pulling the thread of pattern (P.4) suggests the following question.

Question 1.1. Let X and Y be quasi-Banach spaces with a UTAP unconditional basis. 
Does X ⊕ Y have a UTAP unconditional basis?

Since the methods used in the cited results on uniqueness of unconditional basis 
depend on the space, finding a positive general answer to Question 1.1 seems unlikely 
and remote. The authors of [1] addressed this problem and proved that if X and Y are 
quasi-Banach spaces with a UTAP unconditional basis falling either into patterns (P.5)
or (P.1), then X ⊕ Y has a UTAP unconditional basis.

The expected way to take the subject further is to study what happens when we 
consider the direct sum of a quasi-Banach space having a UTAP unconditional basis 
which additionally falls either into patterns (P.5) or (P.1) (or a combination of both), 
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with a Banach space having a UTAP conditional basis which additionally follows pattern
(P.2). In particular, the following question arises:

Question 1.2. Does X ⊕ �2 or X ⊕ T (2) have a UTAP unconditional basis provided that 
the quasi-Banach space X does?

In this paper we address Question 1.2 in the case when X is non-locally convex, and 
provide a positive answer for a wide class of spaces that includes the Hardy spaces Hp(Td)
for 0 < p < 1 and d ∈ N. We will derive our results from a general splitting principle 
for unconditional bases that we will present in Section 4 followed by some applications. 
Before, in Sections 2 and 3, we will develop the necessary machinery that will sustain 
our discussion. Specifically, in Section 2 we set up a technique for splitting unconditional 
bases of a direct sum of a non-locally convex quasi-Banach space with a Banach space. 
In Section 3 we exploit a method from [35] for splitting complemented subspaces, which 
combined with the notion of subprojectivity yields a sufficient condition for an operator 
between quasi-Banach spaces to be strictly singular.

1.1. Terminology

We use standard terminology and notation in Banach space theory as can be found, 
e.g., in [5]. Most of our results, however, will be established in the general setting of quasi-
Banach spaces; the unfamiliar reader will find general information about quasi-Banach 
spaces in [27]. We next gather the notation that is more heavily used.

A quasi-norm on a vector space over the real or complex field F , is a map ‖ · ‖ : X →
[0, ∞) satisfying

(Q.a) ‖f‖ = 0 if and only if f = 0;
(Q.b) ‖αf‖ = |α|‖f‖ for α ∈ F and f ∈ X; and
(Q.c) there is a constant κ ≥ 1 so that for all f and g in X we have ‖f+g‖ ≤ κ(‖f‖ +‖g‖).

If it is possible to take κ = 1 we obtain a norm. More generally, given 0 < p ≤ 1, a 
p-norm is a map ‖ · ‖ : X → [0, ∞) satisfying (Q.a), (Q.b) and

(Q.d) for all f and g in X we have ‖f + g‖p ≤ ‖f‖p + ‖g‖p.

Any p-norm is a quasi-norm. Conversely, by Aoki-Rolewicz theorem [10,37] any quasi-
norm is p-convex for some p ∈ (0, 1], i.e., there is a constant C ≥ 1 such that∥∥∥∥∥∥

n∑
j=1

fj

∥∥∥∥∥∥
p

≤ C

n∑
j=1

‖fj‖p, n ∈ N, fj ∈ X.

Thus, any quasi-Banach space can be endowed with an equivalent p-norm.
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A quasi-norm defines a metrizable vector topology on X whose base of neighborhoods 
of zero is given by sets of the form {x ∈ X : ‖x‖ < 1/n}, n ∈ N. If such topology is 
complete we say that (X, ‖ · ‖) is a quasi-Banach space. A p-Banach space, 0 < p ≤ 1, is 
a quasi-Banach space endowed with a p-norm.

The symbol X � Y means that the quasi-Banach spaces X and Y are isomorphic. A 
family (xn)n∈N in a quasi-Banach space X is said to be semi-normalized if

0 < infn∈N ‖xn‖ ≤ supn∈N ‖xn‖ < ∞.

The closed linear span of a subset V of X will be denoted by [V ]. A sequence X = (xn)∞n=1
in X is said to be a Schauder basic sequence if for every f ∈ [xn : n ∈ N] there is a 
unique family (an)∞n=1 in F such that the series 

∑∞
n=1 an xn converges to f . If, moreover, 

[xn : n ∈ N] = X, we say that X in X is a Schauder basis of X. If X is a basis of X the 
functionals (x∗

n)∞n=1 in X∗ defined by x∗
n(f) = an whenever f =

∑∞
n=1 an xn are called 

the biorthogonal functionals of X . The support of f ∈ X with respect to the basis X is 
the set

supp(f) = {n ∈ N : x∗
n(f) �= 0}.

A block basic sequence with respect to X is a sequence (yk)∞k=1 in X \ {0} such that

max(supp(yk)) < min(supp(yk+1)), k ∈ N.

It will be convenient to index unconditional bases with (finite or infinite) countable sets 
other than N. A countable family B = (xn)n∈N in X is an unconditional basic sequence
if for every f ∈ [xn : n ∈ N ] there is a unique family (an)n∈N in F such that the series ∑

n∈N an xn converges unconditionally to f . If we additionally have [xn : n ∈ N ] = X

then B is an unconditional basis of X.
A sequence space on a countable set N will be a quasi-Banach lattice on N for which 

the unit vector system (ej)j∈N defined by ej = (δi,j)i∈N , where δi,j = 1 if i = j and 
δi,j = 0 otherwise, is an unconditional basis. We will denote by E [L] the unit vector 
system of a sequence space L.

If B is an unconditional basis, under a suitable renorming of the space we have∥∥∥∥∥∑
n∈N

an xn

∥∥∥∥∥ ≤
∥∥∥∥∥∑
n∈N

bn xn

∥∥∥∥∥
provided that the vectors 

∑
n∈N an xn and 

∑
n∈N bn xn of X satisfy |an| ≤ |bn| for all n ∈

N . Hence an unconditional basis induces a lattice structure on X via the identification 
of the vectors with the coefficients of their expansions relative to the basis, so that X is 
lattice isomorphic to a sequence space. Because of that, we will say that an unconditional 
basis enjoys a certain property about lattices when its associated quasi-Banach lattice 
does. A quasi-Banach lattice L is said to be q-convex (resp., q-concave), where 0 < q ≤
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∞, if there is a constant C > 0 such that for any m ∈ N and (fj)mj=1 in L we have 
‖f‖ ≤ CN (resp. N ≤ C‖f‖), where

f =

⎛⎝ m∑
j=1

|fj |q
⎞⎠1/q

and N =

⎛⎝ m∑
j=1

‖fj‖q
⎞⎠1/q

.

The general procedure to define the element f ∈ L is described in [31, pp. 40-41]. 
However, when the lattice structure on L is induced by an unconditional basis (xn)n∈N , 
if fj =

∑
n∈N aj,nxn for 1 ≤ j ≤ m, the element f takes the more workable form

⎛⎝ m∑
j=1

|fj |q
⎞⎠1/q

=
∑
n∈N

⎛⎝ m∑
j=1

|aj,n|q
⎞⎠1/q

xn.

Related to lattice convexity and lattice concavity are the notions of upper and lower 
lattice estimates. We say that L satisfies an upper (resp. lower) q-estimate if the above 
convexity (resp. concavity) inequalities hold in the case when (fj)mj=1 is pairwise disjointly 
supported. Note that, in this case, |f | = | 

∑m
j=1 fj | and so ‖f‖ = ‖ 

∑m
j=1 fj‖.

If a quasi-Banach lattice is locally convex as a quasi-Banach space, then it is 1-convex 
as a quasi-Banach lattice. However, despite the fact that every quasi-Banach space is 
q-convex for some 0 < q ≤ 1, there exist quasi-Banach lattices that are not q-convex 
for any q. Kalton defined in [23] a quasi-Banach lattice L as being L-convex if there is 
ε > 0 so that whenever f and (fi)ki=1 in L satisfy 0 ≤ fi ≤ f for every i = 1, . . . , k, 
and (1 − ε)kf ≤

∑k
i=1 fi then ε‖f‖ ≤ max1≤i≤k ‖fi‖. He showed that a quasi-Banach 

lattice is L-convex if and only if it is q-convex for some q > 0. Most quasi-Banach lattices 
occurring naturally in analysis are L-convex. Thus, a quasi-Banach space is said to be 
natural if it is a subspace of an L-convex quasi-Banach lattice. Note that, in particular, 
any Banach space is a natural quasi-Banach space.

The property of L-convexity (or local convexity) allows to obtain a tight connection 
between upper (resp. lower) estimates and convexity (resp. concavity): if an L-convex 
lattice L satisfies an upper (resp. lower) q-estimate, then it is a r-convex lattice for 
0 < r < q (resp. r-concave lattice for q < r < ∞) (see [23, Theorem 1.2] and [31, 
Theorem 1.f.7]). Thus, the set of indices r for which L is r-convex (resp. concave) is an 
interval with lower endpoint 0 (resp. upper endpoint ∞).

Suppose that Bx = (xn)n∈N and By = (yn)n∈N are (countable) families of vectors 
(indexed by the same set N ) in quasi-Banach spaces X and Y , respectively. We say that 
Bx dominates By if there is a bounded linear map T : [Bx] → Y with T (xn) = yn for 
all n ∈ N . If Bx both dominates and it is dominated by By we say that Bx and By are 
equivalent. Note that an infinite unconditional basis B satisfies an upper (resp. lower) 
p-estimate if and only if any semi-normalized sequence disjointly supported sequence 
with respect to B is dominated (resp. dominates) the unit vector system E [�p] of �p.
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We say that Bx is permutatively equivalent to a family By = (ym)m∈M in Y if there 
is a bijection π : N → M such that Bx and (yπ(n))n∈N are equivalent.

Given families Λi = (λi,j)i∈Ji
for i ∈ I, we denote by i∈IΛi its disjoint union, i.e.,

i∈IΛi = (λi,j)(i,j)∈∪i∈I{i}×Ji
.

Let (Xi)i∈I be a finite collection of (possibly repeated) quasi-Banach spaces. The 
Cartesian product 

⊕
i∈I Xi equipped with the quasi-norm

‖(xi)i∈I‖ = supi∈I ‖xi‖, xi ∈ Xi

is a quasi-Banach space. For i ∈ F let Li : Xi → X be the canonical “inclusion” map. 
Suppose that Bi = (xi,n)j∈Ni

is an unconditional basis of Xi for each i ∈ F . Then the 
sequence

⊕
i∈I Bi : i∈FLi(Bi) = (Li(xi,j))(i,j)∈∪i∈F {i}×Ji

is an unconditional basis of 
⊕

i∈I Xi.
A subspace Y of a Banach space X is said to be complemented in X if there is a 

projection P : X → X with P (X) = Y , in which case we say that Ker(P ) is a complement
of Y in X. If Y c is a complement of Y in X, then X � Y ⊕Y c and Y c � Y/X. This yields 
a well-known and useful lemma.

Lemma 1.3. Let Y be a complemented subspace of a quasi-Banach space X. Suppose that 
U1 and U2 are complements of Y in X. Then U1 � U2.

An unconditional basic sequence By = (ym)m∈M in a quasi-Banach space X is said 
to be complemented if its closed linear span Y = [By] is a complemented subspace of X.

A subbasis of an unconditional basic sequence B = (xn)n∈N is a family (xn)n∈M for 
some subset M of N . Any subbasis of B is an unconditional basic sequence which is 
complemented in [xn : n ∈ N ]. If (Ni)i∈F is a finite partition of N , and we set Bi =
(xn)n∈Ni

for all i ∈ F , we say that B splits into (Bi)i∈F . In this case B is permutatively 
equivalent to 

⊕
i∈F Bi and so [B] �

⊕
i∈F [Bi].

The Banach envelope of a quasi-Banach space X consists of a Banach space X̂ together 
with a linear contraction JX : X → X̂ satisfying the following universal property: for 
every Banach space Y and every linear contraction T : X → Y there is a unique linear 
contraction T̂ : X̂ → Y such that T̂ ◦JX = T . The dual space X∗ separates the points of X
if and only if JX is one-to-one. Given a basis B in X we put B̂ := JX(B) for the so-called 
envelope basis of B. We say that a Banach space Y is isomorphic to the Banach envelope 
of X via the map J : X → Y if the associated map Ĵ : X̂ → Y is an isomorphism. For 
background on envelopes of spaces and bases we refer to [3, §10]. Here, we just record a 
couple of results that we will use later on.
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Theorem 1.4 (see [3, Corollary 10.7]). Given quasi-Banach spaces X and Y , the Banach 
envelope of X ⊕ Y is isomorphic to X̂⊕ Ŷ via the map (JX, JY ).

Theorem 1.5 (see [3, Proposition 10.9]). Let B be an unconditional basis of a quasi-
Banach space X. Then the envelope basis B̂ of B is an unconditional basis of X̂.

Other more specific notation will be introduced in context when needed.

2. Splitting unconditional bases of a direct sum of a quasi-Banach space and a Banach 
space

This section is geared towards proving Lemma 2.10 below. First we introduce the 
necessary notions as well as some auxiliary results we will use in its proof.

Definition 2.1. We say that a finite family (Xi)i∈I of quasi-Banach spaces is splitting for 
unconditional bases if every unconditional basis of 

⊕
i∈I Xi splits into basic sequences 

(Bi)i∈I with [Bi] � Xi for each i ∈ I.

Being able to split complemented subspaces will also be useful to us.

Definition 2.2. We say that a finite family (Xi)i∈I of quasi-Banach spaces is splitting for 
complemented subspaces if for every complemented subspace Y of X :=

⊕
i∈I Xi there 

are complemented subspaces Yi of Xi for each i ∈ I and an automorphism T of X such 
that T (Y ) =

⊕
i∈I Yi.

Since �1 is the prototype of the Banach envelope of a quasi-Banach space (for instance 
�1 is isometrically isomorphic to the Banach envelope of �p for all 0 < p < 1 and is also 
isomorphic to the Banach envelope of the Lorentz sequence space �p,q for 0 < p < 1
and 0 < q ≤ ∞) one could conjecture that those Banach spaces “far from” �1 cannot 
be Banach envelopes of any non-locally convex quasi-Banach space. Kalton addressed 
the task of substantiating this guess in [24] and showed, for example, that �2 is not 
isomorphic to the Banach envelope of any non-locally convex quasi-Banach space. He 
also found a non-locally convex quasi-Banach space whose Banach envelope is isomorphic 
to c0. However, since Kalton also proved that c0 is not the Banach envelope of any natural 
space, this example can be regarded as somewhat pathological. The following definition 
gives relevance to this feature of a Banach space, which will be exploited thereafter.

Definition 2.3. A Banach space X will be said to be a proper envelope (respectively, a 
proper envelope of a natural space with a basis) if there is a non-locally convex quasi-
Banach space with separating dual (resp., nonlocally convex natural quasi-Banach space 
with a basis) Y whose Banach envelope Ŷ is isomorphic to X.
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In other words, a Banach space X is not a proper envelope (resp. X is not a proper 
envelope of a natural space with a basis) if and only if X is isomorphic to the Banach 
envelope of a quasi-Banach space with separating dual (resp., natural quasi-Banach space 
with a basis) Y via a map J : Y → X only in the trivial case that J is an isomorphism, so 
that Y is locally convex. In this language, Kalton’s study of envelopes yields the following 
result.

Theorem 2.4. Let U be a Banach lattice that satisfies an upper r-estimate for some 
r > 1. Then U is not the proper envelope of a natural space with a basis. If, in addition, 
U satisfies a lower q-estimate for some q < ∞, then U is not a proper envelope space.

Proof. By [31, Propositions 1.d.4 and 1.f.3], the space U∗ has cotype q for some q < ∞. 
Then, [24, Theorem 3.4] yields the desired result. To prove the second part of the theorem, 
we use [31, Theorem 1.f.10] to see that U has type p for some p > 1 followed by [24, 
Theorem 1.1]. �

We will also use a couple of variations of the concept of totally incomparable spaces 
introduced by Rosenthal in [38], whose definitions for quasi-Banach spaces we gather 
next.

Definition 2.5. Two quasi-Banach spaces X and Y will be said to be totally incomparable
if there is no infinite-dimensional quasi-Banach space isomorphic to both a subspace of 
X and a subspace of Y . If there is no infinite-dimensional quasi-Banach space isomorphic 
to both a complemented subspace of X and a subspace of Y , we say that the pair (X, Y )
is semi-complementably incomparable. If there is no infinite-dimensional quasi-Banach 
space isomorphic to both a complemented subspace of X and a complemented subspace 
of Y , we say that X and Y are complementably incomparable.

Lemma 2.6. Let X be a quasi-Banach space and U be a Banach space. Suppose that the 
pair (X̂, U) is semi-complementably incomparable (resp. X̂ and U are complementably 
incomparable). Then the pair (X, U) is semi-complementably incomparable (resp. X and 
U are complementably incomparable).

Proof. Let JX : X → X̂ be the envelope map. Suppose that Y is a complemented sub-
space of X isomorphic to a (complemented) subspace of U . By Theorem 1.4, JX(Y ) is 
complemented in X̂, and it is isomorphic to the Banach envelope of Y via the map JX|Y . 
Since Y is locally convex, JX|Y is an isomorphic embedding. Hence, Y is isomorphic to 
a complemented subspace of X̂ and so dim(Y ) < ∞. �

Given vector spaces U and V with U ⊆ V we define the codimension of U in V by

codimV (U) = dim(V/U).
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If W is an algebraic complement of U in V , then the canonical linear map from W into 
V/U is a linear bijection, thus codimV (U) = dim(W ). It follows from the Hahn-Banach 
theorem that every Banach space has a great deal of hyperplanes, i.e., closed subspaces 
of codimension one, and it is well-known that all hyperplanes of a given Banach space 
are isomorphic. In contrast, there are quasi-Banach spaces with no non-zero functionals 
and so they contain no hyperplanes; take for instance the space Lp([0, 1]) for 0 < p < 1. 
Aside from this ‘pathology’, hyperplanes of quasi-Banach spaces behave like those of 
Banach spaces. That is, if a quasi-Banach space has hyperplanes then all of them are 
isomorphic. To evince that this property does not depend on the Hahn-Banach theorem, 
we write down its proof.

Proposition 2.7. Let V be a closed finite-codimensional subspace of a quasi-Banach space 
X. Then,

(i) V is complemented in X. In fact, any algebraic complement W of V is a topological 
complement. Moreover,

(ii) if U is a closed subspace of X with codimX(U) = codimX(V ), then U � V .

Proof. The canonical linear bijection from W to X/V is a topological isomorphism. 
Hence, if T : X/V → W is its inverse, and Q : X → X/V is the canonical quotient map, 
T ◦Q is a projection onto W whose kernel is V . Combining the formulas

codimV (U ∩ V ) ≤ codimX(U),

codimX(U ∩ V ) = codimV (U ∩ V ) + codimX(V )

with the ones we get from switching the roles of U and V yields

n := codimU (U ∩ V ) = codimV (U ∩ V ) < ∞.

By (i), V � (U ∩ V ) ⊕ Fn � U . �
Lemma 2.8. Let X be a quasi-Banach space. There is d = d(X) ∈ N ∪ {0} such that:

(i) If U and V are finite-dimensional quasi-Banach spaces, then X ⊕U � X ⊕V if and 
only if dim(U) − dim(V ) = jd for some j ∈ Z.

(ii) If U and V are two finite-codimensional closed subspaces of X, then U � V if and 
only if codimX(U) − codimX(V ) = jd for some j ∈ Z.

Proof. Set X[n] = X ⊕ Fn for n ∈ N ∪ {0}. If the spaces (X[n])∞n=0 are mutually non-
isomorphic, then (i) holds with d = 0. Assume that it is not the case and pick a ∈ N∪{0}
minimal with the property that X[a] � X[n] for some n > a. If a > 0 we would have

X[a− 1] ⊕ F � X[a] � X[n− 1] ⊕ F .
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From Proposition 2.7 we would get X[a −1] � X[n −1], which contradicts the minimality 
of a. Hence, there is d ∈ N minimal with the property that X � X[d]. Given m ∈ N∪{0}
we have X[m] � X[m + d]. Using induction we obtain that X[m] � X[m + jd] for all 
j ∈ N.

Suppose that 0 ≤ m < n are such that X[m] � X[n]. Write m = id + m′ and 
n = m + jd + d′ with i, j ∈ N ∪ {0} and m′, d′ ∈ Z ∩ [0, d − 1]. Then,

X � X[(i + 1)d] � X[m] ⊕ Fd−m′ � X[(i + j)d + m′ + d′] ⊕ Fd−m′

� X[(i + j + 1)d + d′] � X[d′].

The minimality of d gives d′ = 0, so n −m = jd. This proves (i).
Let U , V be as in (ii). Use Proposition 2.7 to pick complements Uc and V c of U and 

V , respectively. By Proposition 2.7, U � V if and only if

X1 := U ⊕Uc ⊕ V c � X2 := V ⊕Uc ⊕ V c.

Since X1 � X ⊕ V c and X2 � X ⊕ Uc, applying (i) yields that U � V if and only if 
dim(V c) − dim(Uc) ∈ d Z. �
Remark 2.9. Most Banach spaces X are isomorphic to their hyperplanes, or, in the termi-
nology of Lemma 2.8, d(X) = 1. In fact, Banach [11] conjectured that any Banach space 
should have this property. This question was solved in the negative in [20] by Gowers, 
who exhibited examples of Banach spaces X with d(X) = 0. Subsequently, Gowers and 
Maurey constructed for every d a separable Banach space X with d(X) = d (see [21, 
Theorem 26 and following remarks]).

Now we are ready to state and prove the general condition for the pair (X, U) to be 
splitting for unconditional bases.

Lemma 2.10. Let X be a quasi-Banach space and U be a Banach space. Suppose that:

(i) (X, U) is splitting for complemented subspaces;
(ii) (X̂, U) is splitting for unconditional bases;
(iii) X̂ and U are complementably incomparable; and
(iv) either U is not a proper envelope, or X is natural and U is not the proper envelope 

of a natural space with a basis.

Then the pair (X, U) is splitting for unconditional bases.

Proof. Let JX : X → X̂ be the envelope map. Theorem 1.4 gives that X̂⊕U is isomorphic 
to the Banach envelope of X ⊕ U via the map J = (JX, IdU ). Let B = (bn)n∈N be an 
unconditional basis of X ⊕U . By Theorem 1.5, J(B) is an unconditional basis of X̂⊕U . 
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Therefore we can choose a partition (Ny, Nv) of N such that, if we put By = (bn)n∈Ny

and Bv = (bn)n∈Nv
, J(By) generates a space isomorphic to X̂, and J(Bv) generates a 

space isomorphic to U . Applying again Theorem 1.4 we obtain that [J(By)] is isomorphic 
to the Banach envelope of [By] via the map J |[By ], and that [J(Bv)] is isomorphic to the 
Banach envelope of [Bv] via the map J |[Bv].

In the case when X is natural, so is [Bv]. Hence, since J([Bv]) � U , condition (iv) 
gives that the map J |[Bv ] is an isomorphic embedding. In other words, Bv generates a 
space isomorphic to U .

Since [By] is complemented in X ⊕ U , there exist a complemented subspace X0 of 
X, a complemented subspace U0 of U , and an automorphism T of X ⊕ U such that 
T ([By]) = X0 ⊕U0. In particular,

[By] � X0 ⊕U0.

If Xc
0 is a complement of X0 in X and Uc

0 is a complement of U0 in U , then Xc
0 ⊕Uc

0
is a complement of X0 ⊕ U0 in X ⊕ U . Since [Bv] is a complement of [By] in X ⊕ U , 
T ([Bv]) is a complement of X0 ⊕ Y0 in X ⊕U . Applying Lemma 1.3 we obtain

Xc
0 ⊕Uc

0 � T ([Bv]) � [Bv] � U � U0 ⊕Uc
0 .

U0 is a complemented subspace of U isomorphic to a complemented subspace of [By]. 
Since the Banach envelope of [By] is isomorphic to X̂, applying Lemma 2.6 yields that 
[By] and U are complementably incomparable. Thus, dim(U0) < ∞. In turn, Xc

0 is a 
complemented subspace of X isomorphic to a complemented subspace of U . Applying 
again Lemma 2.6 yields dim(Xc

0) < ∞.
Let d = d(U) ∈ N ∪ {0} be as in Lemma 2.8. We infer that there is j ∈ Z such that

dim(Xc
0) − dim(U0) = jd.

If d = 0 or d ≥ 1, and j = 0 we have

[By] � X0 ⊕U0 � X0 ⊕Xc
0 � X.

If d > 0 and j > 0 we pick F ⊆ Nv with |F| = jd, and we set

Bf = (bn)n∈F , Bx = (bn)n∈Ny∪F , and Bu = (bn)n∈Nv\F .

By Lemma 2.8 (ii), [Bu] � U . Moreover,

[Bx] � [By] ⊕ [Bf ] � X0 ⊕U0 ⊕ [Bf ] � X0 ⊕Xc
0 � X.

Finally, if d > 0 and j < 0 we pick F ⊆ Ny with |F| = −jd, and we set

Bf = (bn)n∈F , Bx = (bn)n∈Ny\F , and Bu = (bn)n∈Nv∪F .
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By Lemma 2.8 (i), [Bu] � [Bv] ⊕ [Bf ] � U ⊕ [Bf ] � U . Moreover,

[Bx] ⊕U0 � [Bx] ⊕ [Bf ] ⊕Xc
0 � [By] ⊕Xc

0 � X0 ⊕U0 ⊕Xc
0 � X⊕U0.

By Lemma 2.7, [Bx] � X. �
3. The role of subprojectivity

The following lemma gathers elementary connections between several concepts rele-
vant to this paper.

Lemma 3.1. Consider the following properties involving two quasi-Banach spaces X and 
Y :

(i) Every bounded linear operator from X into Y is compact.
(ii) X and Y are totally incomparable.
(iii) Every bounded linear operator from X into Y is strictly singular.
(iv) (X, Y ) is semi-complementably incomparable.
(v) X and Y are complementably incomparable.

We have (i) ⇒ (iii), (ii) ⇒ (iii), (iii) ⇒ (iv), and (iv) ⇒ (v).

Proof. Only (iii) ⇒ (iv) deserves to be sketched. Suppose (iv) does not hold. Then, there 
are a projection P : X → X onto an infinite-dimensional subspace U , and an isomorphic 
embedding T : U → Y . The operator T ◦ P : X → Y is an isomorphic embedding when 
restricted to U . �

We will next see that under a mild condition on Y , conditions (iii) and (iv) in 
Lemma 3.1 are in fact equivalent.

Definition 3.2. We say that a quasi-Banach space Y is subprojective if for every infinite 
dimensional subspace V of Y there is a further subspace U ⊆ V which is complemented 
in Y . If, in addition, U is isomorphic to one of the members of a given set U of infinite-
dimensional quasi-Banach spaces, we say that Y is U-subprojective (or complementably 
U-saturated).

Loosely speaking, the following lemma tells us that subprojectivity serves as the key 
that allows to pull-back complemented subspaces via non-strictly singular operators. 
Although the result is essentially known, for the sake of completeness we include a 
proof.

Lemma 3.3 (cf. [33, Corollary 2.4]). Let V be an infinite-dimensional subspace of a quasi-
Banach space X, let U be a family of infinite-dimensional quasi-Banach spaces, and let Y
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be a U-subprojective quasi-Banach space. Suppose that there is a bounded linear operator 
T : X → Y such that T |V is an isomorphic embedding. Then there is a subspace of V
which is complemented in X and isomorphic to some member of U .

Proof. Passing to a subspace we can assume that T (V ) is complemented in Y and 
isomorphic to U for some U ∈ U . Let S : T (Y ) → Y be the inverse operator of T |V , and 
let P : Y → T (V ) be such that P |T (V ) = IdT (V ). Since the map S ◦P ◦ T : X → V is the 
identity on V , V is complemented in X. �

A Banach space X admits a non-strictly singular operator into �2 if and only if �2 is 
isomorphic to a complemented subspace of X. The following lemma provides an extension 
of this result.

Proposition 3.4. Let X and Y be quasi-Banach spaces and U be a set of infinite-
dimensional quasi-Banach spaces. Suppose that no space in U is isomorphic to a comple-
mented subspace of X and that Y is U-subprojective. Then, every operator from X into 
Y is strictly singular.

Proof. Assume by contradiction that T : X → Y is an isomorphic embedding when 
restricted to an infinite-dimensional subspace V of X. By Lemma 3.3, there is an infinite-
dimensional subspace of V which is complemented in X and isomorphic to a space 
from U . �

Our next result is a straightforward consequence of Proposition 3.4.

Corollary 3.5. Let X and Y be quasi-Banach spaces. Suppose that (X, Y ) is semi-
complementably incomparable and that Y is subprojective. Then every operator from 
X into Y is strictly singular.

3.1. Subprojective Banach spaces

Although the definition of subprojectivity makes sense for quasi-Banach spaces, we 
know no example of a non-locally convex subprojective quasi-Banach space. The result 
of Stiles [40] that the space �p for 0 < p < 1 is not subprojective, suggests that no non-
locally convex quasi-Banach space can be subprojective. For this reason, in this paper we 
will keep within bounds of locally convex spaces as far as subprojectivity is concerned. 
The applications we will obtain will rely on the results on the subject from [33], where 
it is proved that subprojectivity is inherited by direct sums of Banach spaces. To be 
precise, we have the following.

Proposition 3.6 (cf. [33, Proposition 2.2]). Let I be a finite set. Suppose that for each 
i ∈ I, Ui is a set of infinite-dimensional Banach spaces and Xi is a Ui-subprojective 
Banach space. Then the space 

⊕
i∈I Xi is U-subprojective, where U =

⋃
i∈I Ui.
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We emphasize that the proof of Proposition 3.6 does not carry over to quasi-Banach 
spaces since it is by no means clear whether the sum of two strictly singular operators is 
strictly singular in general. We refer the reader also to the article [33] for a list of sub-
projective Banach spaces. This section is aimed at adding to this list the convexifications 
of Tsirelson’s space and their duals. To that end, we first introduce a few lemmas.

We say that a family (un)n∈N in a quasi-Banach space X and a family (vn)n∈N in a 
quasi-Banach space Y are congruent (in X and Y ) if there is an isomorphism T of X onto 
Y with T (un) = vn for all n ∈ N . Congruence is stronger than equivalence. We introduce 
it because congruence ensures that if a subspace U of [un : n ∈ N ] is complemented in 
X, then the corresponding subspace T (U) of [vn : n ∈ N ] is complemented in Y .

Lemma 3.7 (cf. [12, Section 4, C2]). Let I be a finite set. For each i ∈ I let Xi be a 
quasi-Banach space with a Schauder basis Bi. Suppose that X is an infinite-dimensional 
quasi-Banach space and that Ji : X → Xi is an isomorphic embedding for each i ∈ I. 
Then X has a basic sequence B equivalent to a block basic sequence B′

i with respect to Bi

for all i ∈ I. Moreover, if Xi is locally convex, Ji(B) and B′
i are congruent.

Proof. There is a sequence (fn)∞n=1 in X with supn ‖fn‖ < ∞ and infn �=m ‖fn−fm‖ > 0
(see [2, Lemma 2.8]). Passing to a subsequence, Cantor’s classical diagonal argument 
gives that (Ji(fn))∞n=1 converges coordinate-wise with respect Bi for all i ∈ I. Set yn =
f2n−1 − f2n for n ∈ N. Since B := (yn)∞n=1 is semi-normalized and Ji(B) is coordinate-
wise null with respect Bi for all i ∈ I, combining the gliding hump technique with the 
principle of small perturbations, passing to a further subsequence we obtain that Ji(B)
is equivalent (congruent if Xi is locally convex) to a block basic sequence with respect 
to Bi for all i ∈ I. �

As a by-product, we obtain conditions under which a quasi-Banach space always 
contains a basic sequence. Recall that the basic sequence problem for quasi-Banach 
spaces was solved in the negative by Kalton in [25].

Corollary 3.8. Let X be an infinite-dimensional quasi-Banach space. If X embeds in a 
quasi-Banach space with a Schauder basis, then X contains a basic sequence.

Lemma 3.9. Let X be a Banach space with an unconditional basis B = (xj)j∈N . Let 
Y be the subspace of X∗ spanned by the biorthogonal functionals B∗ = (x∗

j )j∈N of B. 
Suppose that there are a partition (Nn)∞n=1 of N into finite sets and a constant C such 
that ‖

∑∞
n=1 fn‖ ≤ C ‖

∑∞
n=1 gn‖ whenever (fn)∞n=1 and (gn)∞n=1 in X satisfy ‖fn‖ ≤ ‖gn‖

and supp(fn) ∪ supp(gn) ⊆ Nn for all n ∈ N.

(i) If Bu = (un)∞n=1 and Bv = (vn)∞n=1 are semi-normalized sequences in X with 
supp(un) ∪ supp(vn) ⊆ Nn for all n ∈ N, then Bu and Bv are equivalent. Moreover, 
[Bu] and [Bv] are complemented in X.
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(ii) If B∗
y = (y∗

n)∞n=1 and B∗
w = (w∗

n)∞n=1 are semi-normalized sequences in Y with 
supp(y∗

n) ∪ supp(w∗
n) ⊆ N for all n ∈ N, then B∗

y and B∗
w are equivalent. Moreover, 

[B∗
y ] and [B∗

w] are complemented in Y .

Proof. Consider the following conditions on a pair (Bz, B∗
z) formed by a sequence Bz =

(zn)∞n=1 in X and a sequence B∗
z = (z∗

n)∞n=1 in X∗:

(♣) z∗
n(zn) = 1, supp(zn) ∪ supp(z∗

n) ⊆ Nn for all n ∈ N, and k[Bz, B∗
z ] :=

supn max{‖zn‖, ‖z∗
n‖} < ∞.

Under the assumptions in (i) (resp. in (ii)) there are sequences B∗
u and B∗

v in X∗ (resp. 
By and Bw in X) such that the pairs (Bu, B∗

u) and (Bv, B∗
v) (resp. (By, B∗

y) and (Bw, B∗
w)) 

fulfill (♣). So, it suffices to prove that if (Bu, B∗
u) and (Bv, B∗

v) satisfy (♣), then Bu and 
Bv are equivalent, B∗

u and B∗
v are equivalent, [Bu] and [Bu] are complemented in X, and 

[B∗
u] and [B∗

v ] are complemented in X∗.
Set B∗

u = (u∗
n)∞n=1, B∗

v = (v∗
n)∞n=1, and k = k[Bu, B∗

u]. If we denote by SA : X → X the 
coordinate projection on a set A ⊆ N we have

|u∗
n(f)| ‖un‖ ≤ k2‖SNn

(f)‖, f ∈ X, n ∈ N.

Hence, the linear map P : X → X given by

P (f) =
∞∑

n=1
u∗
n(f)vn, f ∈ X

is well-defined and satisfies ‖P‖ ≤ k2C. We also have P (un) = vn for all n ∈ N. The 
dual map P ∗ : X∗ → X∗ is given by

P ∗(f∗)(f) =
∞∑

n=1
f∗(vn)u∗

n(f), f ∈ X, f∗ ∈ X∗.

Hence, P ∗(v∗
n) = u∗

n for all n ∈ N.
The operators defined when replacing Bv with Bu and B∗

u with B∗
v yield the equivalence 

between Bu and Bv, as well as the equivalence between B∗
u and B∗

v . The operator defined 
when replacing only Bv with Bu yields projections from X onto [Bu] and from X∗ onto 
[B∗

u]. Finally, the operator defined when replacing only B∗
u with B∗

v yields projections 
from X onto [Bv] and from X∗ onto [B∗

v ]. �
Theorem 3.10. Let X be a Banach space with an unconditional basis B = (xj)∞j=1. Let 
Y be the subspace of X∗ spanned by the biorthogonal functionals B∗ = (x∗

j )j∈N of B. 
Suppose that there are a constant C and an increasing sequence (jn)∞n=1 in N with the 
following property: ‖

∑∞
n=1 fn‖ ≤ C ‖

∑∞
n=1 gn‖ whenever (fn)∞n=1 and (gn)∞n=1 in X and 
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(kn)∞n=1 in N satisfy ‖fn‖ ≤ ‖gn‖, supp(fn) ∪ supp(gn) ⊆ [kn, kn+1 − 1], and jn ≤ kn
for all n ∈ N. Then, X is U-subprojective and Y is U∗-subprojective, where

U = {[xkn
: n ∈ N] : ∀n ∈ N, jn ≤ kn < kn+1},

U∗ = {[x∗
kn

: n ∈ N] : ∀n ∈ N, jn ≤ kn < kn+1}.

Proof. Pick a subspace U of X (resp. of Y ). By Lemma 3.7, passing to a subspace 
we can suppose that U is spanned by a basic sequence, say (uk)∞k=1, congruent to a 
block basic sequence (vk)∞k=1. There is an increasing sequence (kn)∞n=1 in N such that 
jn ≤ min(supp(vkn

)) for all n ∈ N. By Lemma 3.9, (vkn
)∞n=1 spans a complemented 

subspace of X (resp. of Y ) isomorphic to V := [xkn
: n ∈ N] (resp. V := [x∗

kn
: n ∈ N]). 

By congruence (equivalence is not enough!), (ukn
)∞n=1 spans a complemented subspace 

of X (resp. of Y ) isomorphic to V . �
It is known that Tsirelson’s space T is subprojective [19, Proposition 2.4]. This fact can 

be derived from the properties of the lattice structure on T , and this is what we will use 
to show the subprojectivity of their convexifications and their duals. Given 0 < r < ∞, 
T (r) denotes the quasi-Banach lattice consisting of all f ∈ FN such that |f |r ∈ T . Given 
1 < s ≤ ∞, we denote by T (s)

∗ the dual of the r-convexified Tsirelson’s space T (r), where 
r = s/(s − 1). With this terminology, T (∞)

∗ is the original Tsirelson’s space T ∗. Since T
is 1-convex and p-concave for any p > 1, T (r) is r convex and p concave for any p > r. 
Consequently, T (s)

∗ is s-concave and p-convex for any p < s.

Theorem 3.11. Let 1 ≤ r < ∞ and 1 < s ≤ ∞. Let (tn)∞n=1 denote the unit vector system 
of T (r), and (t∗n)∞n=1 denote the unit vector system of T (s)

∗ . Then T (r) is U-subprojective 
and T (s)

∗ is U∗-subprojective, where,

U = {[tkn
: n ∈ N] : ∀n ∈ N, jn ≤ kn < kn+1},

U∗ = {[t∗kn
: n ∈ N] : ∀n ∈ N, jn ≤ kn < kn+1},

and (jn)∞n=1 is an arbitrary increasing sequence in N.

Proof. It is known that the unit vector system of T satisfies for any (jn)∞n=1 the as-
sumptions in Theorem 3.10 (see [16, Corollary II.5]). Since r-convexifications inherit this 
property, the unit vector system of T (r) also does. �

We can also apply Theorem 3.10 to Nakano spaces. Given a sequence (pn)∞n=1 in [1, ∞)
we denote by �(pn) the Banach space built from the modular

(an)∞n=1 �→
∞∑

|an|pn ,

n=1
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and we denote by h(pn) the separable part of �(pn). We have �(pn) = h(pn) if and only 
if supn pn < ∞. If there is 0 < R < 1 such that

∞∑
n=1

Rppn/|pn−p| < ∞,

then �(pn) = �p up to an equivalent norm. Since the �p spaces are particular cases of 
Nakano spaces, the following generalizes [36, Lemma 2], which establishes that �p is 
�p-subprojective.

Theorem 3.12 (cf. [39, Theorem 5.1]). Let (pn)∞n=1 be a sequence in [1, ∞). Suppose that 
there exists limn pn = p ∈ [1, ∞]. Then h(pn) is �p-subprojective (we replace �∞ with c0
if p = ∞).

Proof. Set for each n ∈ N

Rn = max
k≥n

ppk
|p− pk|

.

Pick an increasing sequence (nj)∞j=1 in N with 
∑∞

j=1 2−Rnj < ∞. Any semi-normalized 
block basic sequence (xj)∞j=1 with nj ≤ min(supp(xj)) for all j ∈ N is equivalent to 
the canonical �p-basis (see e.g. [4, Theorems 2.2 and 3.1]). Then the result follows from 
Theorem 3.10. �
4. The main theorem

Our main result is Theorem 4.1 below, which establishes some easy-to-check conditions 
that suffice to guarantee that a pair (X, U) is splitting for unconditional bases, where X
is a quasi-Banach space and U is a Banach space. Note that all the information we use 
about X is obtained exclusively through its Banach envelope!

Theorem 4.1. Let X be a quasi-Banach space and let U be a subprojective Banach space. 
Suppose that X̂ and U have unconditional bases which split into unconditional bases 
(Bj)j∈A and (Bj)j∈B respectively, where (A, B) is a partition of {1, . . . , n} for some 
n ∈ N. Suppose that for 1 ≤ j ≤ n the basis Bj satisfies an upper rj-estimate and a 
lower qj-estimate, where qj and rj are both in [1, ∞], and that

(i) qj < rj+1 for all 1 ≤ j ≤ n − 1;
(ii) rj > 1 for all j ∈ B; and
(iii) either X is natural and has a basis, or qj < ∞ for all j ∈ B.

Then (X, U) is splitting for unconditional bases. In particular, if X and U have a UTAP 
unconditional basis then X ⊕U has a UTAP unconditional basis.
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To tackle the proof Theorem 4.1 we need to see a few results. The first one is a classical 
theorem on strictly singular operators.

Theorem 4.2 (see [35, Theorem 4]). Let X and Y be quasi-Banach spaces. Suppose that 
every operator from X into Y is strictly singular. Then (X, Y ) is splitting for comple-
mented subspaces.

Now we show a result that is of interest by itself in the theory because it allows to 
obtain new examples of Banach spaces with a unique unconditional basis. For the ease 
of the reader, we record a couple of theorems which we allude to in the proof.

Theorem 4.3 (see [17, Theorem 1]). Let X and Y be Banach spaces with unconditional
bases Bx and By, respectively. Suppose that Bx satisfies an upper r-estimate and By

satisfies a lower q-estimate, r > q. Then any bounded linear operator from X to Y is 
compact.

Theorem 4.4 (see [41, Theorem 2.1]). Let X and Y be Banach spaces such that every 
bounded linear operator from X into Y is compact. Then (X, Y ) is splitting for uncondi-
tional bases.

Theorem 4.5. Let (Xj)nj=1 be a finite family of Banach spaces, each of which has an 
unconditional basis Bj. Suppose there are sequences (qj)n−1

j=1 and (rj)nj=2, both in [1, ∞], 
such that:

• Bj satisfies a lower qj-estimate for all 1 ≤ j ≤ n − 1;
• Bj satisfies an upper rj-estimate for all 2 ≤ j ≤ n; and
• qj < rj+1 for all 1 ≤ j ≤ n − 1.

Then (Xj)nj=1 is splitting for unconditional bases.

Proof. Given 1 ≤ s ≤ n − 1, the unconditional basis 
⊕s

j=1 Bj of 
⊕s

j=1 Xj satisfies a 
lower qs-estimate. Thus the result follows by induction combining Theorem 4.3 with 
Theorem 4.4. �

The last important ingredient we need to prove the main theorem is Proposition 4.7, 
which spells out a recipe for building mutually incomparable infinite direct sums of 
quasi-Banach spaces.

Lemma 4.6. Let X and Y be quasi-Banach spaces with unconditional bases Bx and By, 
respectively. Suppose that there is 0 < q ≤ ∞ such that Bx satisfies a lower q-estimate 
and By satisfies an upper q-estimate. Then every sequence B in X ⊕Y disjointly supported 
with respect to Bx ⊕ By has a subsequence which is equivalent either to a sequence in X
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disjointly supported with respect to Bx, or to a sequence in Y disjointly supported with 
respect to By.

Proof. Put B = (un, vn)∞n=1. Passing to a subsequence we can assume that either 
infn ‖un‖ > 0 or ‖un‖ ≤ εn for all n ∈ N, where (εn)∞n=1 is a given sequence of positive 
scalars. In the former case, Bu = (un)∞n=1 dominates E [�q] so that Bu also dominates 
Bv. Hence, B is equivalent to Bu. In the latter case, the principle of small perturbations 
yields that B is equivalent to Bv for a suitable choice of (εn)∞n=1. �
Proposition 4.7. For n ∈ N let (Xj)nj=1 be a family of quasi-Banach spaces, each of which 
has an unconditional basis Bj. Suppose there are sequences (qj)n−1

j=1 and (rj)nj=2, both in 
(0, ∞], such that:

• qj < rj+1 for all 1 ≤ j ≤ n − 1;
• Bj satisfies a lower qj-estimate for all 1 ≤ j ≤ n − 1; and
• Bj satisfies an upper rj-estimate for all 2 ≤ j ≤ n.

If (A, B) is a partition of {1, . . . , n} then the spaces Xa :=
⊕

j∈A Xj and Xb :=
⊕

j∈B Xj

are totally incomparable.

Proof. Assume by contradiction that there is an infinite-dimensional quasi-Banach space 
Y isomorphic to a subspace of both Xa and Xb. By Lemma 3.7, passing to a subspace 
we can suppose that Y has a normalized Schauder basis B equivalent both to a sequence 
finitely disjointly supported with respect to 

⊕
j∈A Bj and to a sequence finitely disjointly 

supported with respect to 
⊕

j∈B Bj . By Lemma 4.6, passing to a subbasis we obtain i ∈ A

and k ∈ B such that B is equivalent both to a sequence finitely disjointly supported with 
respect to Bi and to a sequence finitely disjointly supported with respect to Bk. Switching 
the roles of A and B if necessary, we assume that i < k. We infer that E [�rk ] dominates 
E [�qi ] so that rk ≤ qi. Since qi < ri+1 ≤ rk we reach an absurdity. �

We are now ready to patch together all the different pieces that play a part in the 
proof of our main theorem.

Completion of the Proof of Theorem 4.1. By Theorem 2.4, either U is not a proper en-
velope, or X is natural and U is not the proper envelope of a natural space with a 
basis. By Theorem 4.5, the pair (X̂, U) is splitting for unconditional bases. By Proposi-
tion 4.7, X̂ and U are incomparable. By Lemma 2.6, X and U are semi-complementably 
incomparable. By Corollary 3.5, every operator from X to U is strictly singular. By 
Theorem 4.2, (X, U) is splitting for complemented subspaces. Applying Lemma 2.10 the 
proof is over. �
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4.1. Applications

Although we stated Theorem 4.1 in all generality that our techniques permitted, here 
we will only apply it in the following cases:

• A = {1}, B = {2}, and there are 1 ≤ q1 < r2 ≤ q2 < ∞ such that B1 is q1-concave, 
and B2 is r2-convex and q2-concave;

• A = {1, 3}, B = {2}, and there are 1 ≤ q1 < r2 ≤ q2 < r3 such that B1 is q1-concave, 
B2 is r2-convex and q2-concave, and B3 is r3-convex.

Notwithstanding, Theorem 4.1 is crucial in order to obtain new examples of spaces 
with a unique unconditional basis up to a permutation. We refer the reader to [1, Corol-
lary 6.2] for a comprehensive inventory of spaces X to which Theorem 4.1 is relevant. In 
fact, if X is a direct sum built as explained in [1, Corollary 6.2], then X is an L-convex 
lattice; moreover X̂ is either a q-concave lattice for any q > 1 or r-convex lattice for 
any r < ∞, or a direct sum of both. In light of Proposition 3.6, Theorem 3.11, and 
[39, Theorem 5.1], Theorem 4.1 applies to a direct sum U built with r-convexifications 
of the Tsirelson space for r > 1, duals of these convexified spaces, and Nakano spaces 
associated to a sequence (pj)∞j=1 with infj pj > 1 and supj pj < ∞.

Because of their importance in Analysis, we single out some examples involving Hardy 
spaces. For the convenience of the reader we will next state a few known facts about the 
spaces Hp(Td) that we will need in order to apply Theorem 4.1. The first unconditional 
bases in Hp(T ) for 0 < p < 1 were constructed in [42]. Those bases allow a manageable 
expression for the norm in terms of the coefficients relative to the basis. Namely, if 
(xn)∞n=0 is such a normalized basis then

∥∥∥∥∥
∞∑

n=0
an xn

∥∥∥∥∥
Hp(T)

≈

⎛⎝ 1∫
0

( ∞∑
n=0

|an|2h2
n

)p/2
⎞⎠1/p

, (an)∞n=1 ∈ c00, (4.1)

where (hn)∞n=0 is the classical Haar system on [0, 1] normalized with respect to the norm 
in Lp([0, 1]). Using (4.1) one can easily see that (xn)∞n=0 has a block basic sequence 
equivalent to the unit vector basis of �2.

Those bases allow tensor constructions of unconditional bases in Hp(Td) for d ∈ N

which satisfy an analogous equivalence to (4.1). Using those tensored bases, Kalton et 
al. [26] showed that the spaces Hp(Td) and Hp(Tm) with 0 < p < 1 and d, m ∈ N, are 
isomorphic if and only if d = m. Then it was proved in [43] that all the spaces Hp(Td)
for 0 < p < 1 and d ∈ N have a UTAP unconditional basis. Also from the d-dimensional 
version of (4.1) we conclude that the (unique) unconditional basis of Hp(Td) has a block 
basic sequence equivalent to the unit vector basis in �2. One can also show that the 
Banach envelope of Hp(Td) is isomorphic to �1.

Theorem 4.8. Let X be the finite direct sum of some of the spaces from the following list:
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• The Hardy space Hp(Td) for 0 < p < 1 and d ∈ N;
• The Nakano space �(pn), where (pn)∞n=1 is a non-increasing sequence in [1, ∞) with 

limn pn = 1 and supn(pn − p2n) log(1 + n) < ∞;
• The Nakano space h(qn), where (qn)∞n=1 is a non-decreasing sequence in [1, ∞) with 

limn qn = ∞ and supn(1/qn − 1/q2n) log(1 + n) < ∞;
• Tsirelson’s space T ;
• the original Tsirelson’s space T ∗.

Let Y be one of the spaces �2, T (2), or T (2)
∗ . Then the space X ⊕Y has a UTAP uncon-

ditional basis.

As the alert reader might have noticed, all known Banach spaces with a UTAP un-
conditional basis that follow pattern (P.1) are r-convex lattices for r < ∞, all known 
Banach spaces with a UTAP unconditional basis that follow pattern (P.3) are q-concave 
lattices for q > 1, and all known Banach spaces with a UTAP unconditional basis that 
follow pattern (P.2) are both q-convex and r-concave lattices for q < 2 < r. Thus The-
orem 4.8 yields in particular new additions to the list of Banach spaces with a UTAP 
unconditional basis.

The main questions that Theorem 4.5 leave open in the spirit of the Memoir by 
Bourgain et al. [13] are whether �1(c0) ⊕ �2, c0(�1) ⊕ �2, c0(�2) ⊕ �1(�2) and �2⊕T (2) have 
a UTAP unconditional basis.

Remark 4.9. We would like to point out that trying to generalize, first [41, Theorem 2.1]
and then Theorem 4.5 to quasi-Banach spaces, is a priori a feasible program to tackle 
Question 1.2 in the case when X is non-locally convex. However, we quickly run into 
quasi-Banach spaces, such as Hp(T ) for 0 < p < 1, with a UTAP unconditional basis 
which, despite following pattern (P.5), contain a block basic sequence equivalent to the 
unit vector system of �2. Thus, in particular they do not satisfy a lower q-estimate for any 
q < 2 and so we would not be able to apply the wished-for generalization of Theorem 4.5
to them. This is the reason why in this paper we drew a route to approach Question 1.2
based on the (necessarily incomplete) information that we get from the envelopes.

Remark 4.10. Although here we are mainly concerned with and motivated by pattern
(P.2), it is worth it noting that our methods are more general. As an example let us look 
at the space Hp(Td) ⊕ c0. It was proved in [1] that it has UTAP unconditional basis. 
However, the result now also easily follows from Theorem 4.1.
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