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Abstract

Parafree groups introduced by Gilbert Baumslag in the 60s share many properties
with free groups in an attempt to resolve the conjecture that a group of cohomological
dimension one is free. Formally, a group is said to be parafree if its quotients by the
terms of its lower central series are the same as those of a free group and if it is residually
nilpotent.

Residually free and fully residually free groups are a natural class of groups that ap-
pear naturally in various contexts in group theory. Most recently, the theory of limit
groups and finitely generated residually free groups came into prominence in the works of
Kharlampovich-Miasnikov and Sela on the elementary theory of free groups.

In this work we will explore the structure of parafree residually free groups. In particular,
we prove that any parafree residually free group is a limit group and then we classify limit
groups which are parafree.
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Resumen

Los grupos Parafree introducidos por Gilbert Baumslag en los años 60 comparten
muchas propiedades con los grupos libres en un intento de resolver la conjetura de que
un grupo de dimensión cohomológica uno es libre. Formalmente, se dice que un grupo es
Parafree si los cocientes por los términos de su serie central inferior son los mismos que
los de un grupo libre y si es residualmente nilpotente.

Los grupos residualmente libres y totalmente residuales libres son una clase de grupos que
aparecen de forma natural en varios contextos de la teoría de grupos. Recientemente, la
teoría de los grupos límite y de los grupos residualmente libres finitamente generados ha
cobrado importancia gracias a los trabajos de Kharlampovich-Miasnikov y Sela sobre la
teoría elemental de los grupos libres.

En este trabajo exploraremos la estructura de los grupos parafree y residualmente libres.
En particular, demostramos que cualquier grupo residualmente libre parafree es un grupo
límite y, a continuación, clasificamos los grupos límite que son parafree.
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Introduction.

This work aims to study residually free parafree groups. Both of these families of groups
have residual properties and they share a lot of properties of free groups.

The first family we will study are residually free groups, especially an important subclass
of residually free groups called fully residually free groups. Of course, free groups are fully
residually free groups but also there are non-free groups that are fully residually groups, for
example, fundamental groups of Riemann surfaces, surface groups in short. An important
property of fully residually free groups is that they have the same first-order theory as a
free group.

What we call first-order theory is the set of true sentences in a group constructed using
logic operators. For example, the following sentence expresses that a group is abelian.

∀x∀y [x, y] = 1

The theory of fully residually free groups play an important role in the solution to the
conjectures that Alfred Tarski proposed about the first-order theory of free groups.

Tarski Conjecture. Any two non-abelian free groups satisfy the same first-order theory

Tarski Conjecture. If the non-abelian free group H is a free factor in the free group G
then the inclusion map i : H → G is an elementary embedding.

Tarski Conjecture. The elementary theory of the countable non-Abelian free groups is
decidable.

These questions then became well-known conjectures but remained open for 60 years.
They were proven in the period 1996-2006 independently by Olga Kharlampovich and
Alexei Myasnikov and by Zlil Sela. The proofs, by both sets of authors, were monumental
and involved the development of several new areas of infinite group theory.

Kharlampovich and Myasnikov use techniques of algebraic geometry to solve equations
over free groups and prove Tarski’s conjectures meanwhile Sela gives a geometric approach.
He defines limit groups as the quotient of a group and the stable kernel of a stable sequence
and these are precisely the finitely generated fully residually free groups.

In his work Sela describes limit groups as a graph of groups with a nice JSJ decompo-
sition. Using this, we construct limit groups inductively.
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The second family of groups we will study is parafree groups, groups that are residually
free and have the same isomorphism types of nilpotent quotients as some free group. The
possibility that free groups can be characterized by their lower central series was originally
raised by Hanna Neumann.

Hanna Neumann Conjecture. Suppose that G is a finitely generated residually nilpo-
tent group with the same lower central sequence as a free group. Then G is free

Gilbert Baumslag answered this question with a negative example, i.e., there exist
non–free parafree groups. An unsolved conjecture about parafree groups is the following.

Baumslag Conjecture. The second homology of an Eilenberg-Maclane space for a parafree
group vanishes.

In this thesis we do not address this question. We are concerned with the construction
of parafree limit groups. The main results of this thesis are the following.

Theorem. Parafree groups that are universally-existentially equivalent to a non-abelian
free group are free groups.

Theorem. Constructible parafree limit groups are parafree and limit groups.
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§1. Free groups and free products.

Let G be a group with generating non-empty set X and relations R then we can present
G as

G = ⟨X | R⟩

We allow R to be empty.

1.1 Free groups.

Definition 1.1. Let X be a set, then the group F is free on X if X is a set of generators
for F and there are no non-trivial relations. In particular, F has a presentation of the
form.

F = ⟨X | ⟩

We can define free groups in terms of category theory.

Definition 1.2. Let F be a group, X a non-empty set, and σ : X 7→ F an injective
function, then F is said to be a free group on X if to each function α : X → G, where
G is a group, there corresponds a unique homomorphism β : F → G such that α = βσ,
that is, the following diagram commute.

F

X G

βσ

α

It is easy to prove that σ is necessarily injective, so we can say that β is the unique
extension of α to F . With this definition, we can prove the following.

Proposition 1.3. Every group is an image of a free group.

Proof. Let G be a group with generating set X and let F be a free group on a set Y ,
then if we take f : Y → X a surjective map we can extend f to a homomorphism from
F to X and it will be an epimorphism as G is generated by X. ■

Also, free groups are characterized by his cardinally.

Proposition 1.4. Let F1, F2 be free groups on the sets X1, X2 respectively and |X1| = |X2|
then F1

∼= F2.

Proof. Let σ1 : X1 → F1 and σ2 : X2 → F2 be the given injections and let α : X1 →
X2 be a bijection, this is possible as X1 and X2 have the same cardinal, then
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F1 F2

X1 F2 X2 F1

β1 β2

ασ2

σ1 σ2

α−1σ1

Hence σ1β1β2 = ασ2β2 = αα−1σ1 = σ1, so then β1β2 = idF1 , and with the same argument
β2β1 = idF2 so β1 is an isomorphism and F1

∼= F2 ■

With this, we can define the rank of a free group.

Definition 1.5. Let F be a free group, the rank of F is the cardinality of X.

Now we give a few examples.

Example 1.6. The free group of rank 2 has the following presentation.

F =< a, b >

Example 1.7. The group (Z,+) is a free group on the set {1}, this group is not only free
as the elements of the group commute, this kind of free groups are known as free abelian
groups.

Definition 1.8. Let F be a group, X a non-empty set, and σ : F 7→ X an injective
function. Then F is said to be a free abelian group on X if to each function α : X → H,
where H is an abelian group, there corresponds a unique homomorphism β : F → H such
that α = σβ.

Free abelian groups are characterized by the cardinal of the generator set.

Proposition 1.9. All free groups of rank 2 or more can’t be abelian.

This gives us the following corollary.

Corollary 1.10. A free group is abelian if and only if it is cyclic.

Theorem 1.11. A free group of rank n contains 2n − 1 subgroups of index 2.

Proof. Let F be the free group on the set X = {x1, . . . , xn} and σF → X injective.
Take the map f : X → C2 = ⟨c⟩ defined as

f(x1) = c f(xi) = 1 i = 2, . . . , n

By the universal property of free groups there exists a unique homomorphism ϕ : F → C2

such that f = ϕσ then we have that f(xi) = ϕ(xi) for all i = 1 . . . , n. Taking kerϕ we
have that

F⧸kerϕ = {kerϕ, x1 kerϕ}
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Then kerϕ is a subgroup of index 2. As we can take f in a 2n − 1 different ways we have
that F contains 2n − 1 different subgroups of index 2. ■

1.2 Free products.

Definition 1.12. Let A = ⟨X1 | R⟩ and B = ⟨X2 | S⟩ two groups then the free product
of A and B is the group, denoted as A ∗B, with presentation.

A ∗B = ⟨X1, X2 | R, S⟩

This definition can be extended to a family of groups.

Definition 1.13. Let Gi be a family of groups with i ∈ I a set of subindexes, then the
free product of the family, denoted as ∗Gi is the group with the presentation.

∗Gi = ⟨gens{Gi}i∈I | rels{Gi}i∈I⟩

this is the group whose generators consist of the disjoint union of the generators of Gi for
every i ∈ I and whose relations are the disjoint union of the generators of Gi for every
i ∈ I.

Also, we can write these definitions with universal properties.

Definition 1.14. Let Gi a collection of groups with i ∈ I a set of subindex. A free
product consists in a group G and a collection of homomorphisms ϕi : Gi → G such that
for any homomorphism ψi between Gi and any group H there is a unique homomorphism
ψ : G→ H such that ψi = ψϕi. In other words, the following diagram commutes.

Gi G

H

ϕi

ψi
ϕ

Theorem 1.15 (Kurosh subgroup theorem). Every subgroup of a free product is itself a
free product. Explicitly if G = A ∗B and H is a subset of G then.

H = F (X) ∗
(
∗igiAig−1

i

)
∗
(
∗jhjBjh

−1
j

)
Where F (X) is a free group generated by X ⊂ G, Ai is a family of subgroups of A, Bj is
a family of subgroups of B, and gi and hj are elements of G.

Proof. One can see a proof of a version of this theorem in [Rob96]. ■



6 Trabajo de fin de máster

We give the following trivial property of free products of free groups:

Theorem 1.16. Free product of free groups is free.

Also, we see how we can write a free group as a free product.

Theorem 1.17. Let F be a free group and let ϕ be a surjective homomorphism from F

onto the free product ∗Ai. Then F = ∗Fi where ϕ(Fi) = Ai

Proof. Take the inverse map of ϕ, ϕ−1 and denote by ϕ−1(Ai) = Fi then

∗iFi = ∗iϕ−1(Ai) = ϕ−1(∗iAi) = F

■

1.2.1 Amalgamated product.

The main idea of amalgamation of groups is trying to "glue" two groups G1 and G2 with
two isomorphic subgroups H and K, respectively, in such a way that these two subgroups
become the same subgroup for the generated group.

Definition 1.18. Let G1 = ⟨X1 | R⟩ and G2 = ⟨X2 | S⟩ with H a subgroup of G1 and K
a subgroup of G2 with f : H → K and isomorphism, then the free product of G1 and
G2 amalgamated by H is the group denoted by A ∗H B with presentation.

A ∗H B = ⟨X1, X2 | R, S,H = f(H)⟩

In particular, if we take H = {1} we have the free product of A and B. As with the free
product, we can write this definition in terms of universal properties.

Definition 1.19. Let G1 and G2 be groups, and H another group such that fi : H → Gi

is a monomorphism for i = 1, 2. Then the free product of G1 and G2 with H
amalgamated is the group G = A ∗H B if exists a pair of homomorphisms ϕi : G1 → G

for i = 1, 2 with ϕ1f1 = ϕ2f2 such that for any pair of homomorphisms ψ1 : G1 → K,
ψ2 : G2 → K into a group K with ψ1f1 = ψ2f2 there exists a unique homomorphism
ψ : G→ K such that ψ1 = ψϕ1 and ψ2 = ψϕ2, i.e., the following diagram commutes.

G1

H G K

G2

ϕ1

ψ1

f2

f1

ψ

ϕ2

ψ2
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Example 1.20. Let G1 = ⟨x⟩ and G2 = ⟨y⟩ be groups and take the subgroups H = ⟨x2⟩
and K = ⟨y2⟩ with the isomorphism f : H → K then the free product of G1 and G2 with
H amalgamated is

G1 ∗H G2 = ⟨x, y | x2 = y3⟩

1.2.2 HNN extensions.

The HNN-extension is a kind of a free product with the idea that if G is a group with
isomorphic subgroups we extend G into a group such that every isomorphic subgroup is
conjugated.

Definition 1.21. Let G = ⟨X | R⟩ be a group with Hi proper subgroups and a collection
of isomorphisms ϕi : Hi → K then the HNN extension of G is the group, denoted by
G∗K, of the form.

G∗K = ⟨X, {ti}i∈I | R, {tiHit
−1
i = ϕi(Hi)}i∈I⟩

With I being a set of subindexes. We call G the base, {ti}i∈I is the free part and
{Hi, ϕi(Hi)}i∈I the associated subgroups of G∗K.

As before we write this definition in terms of category theory.

Definition 1.22. Let G be a group with H and K proper subgroups with an isomorphism
ϕ : H → K. Then the HNN extension of G consists of a group G∗K, a family {ti}i∈I
of elements of G and a homomorphism ψ : G→ G∗K with t(ψ(H))t−1 = ψϕ(H) such that
for any group A, any a ∈ A and any homomorphism f : G → A with af(G)a = fϕ(A)

there is a unique homomorphism ω : G∗K → A with ω(t) = a such that f = ωψ, i.e., the
following diagram commutes.

G G∗K

A

ψ

f
ω

Example 1.23. Take G = Z = ⟨a⟩ we want to make the HNN extension of G for this we
take α : ⟨a⟩ → ⟨a2⟩ this is clearly an isomorphism therefore the HNN extension of G is

G∗⟨a2⟩ = ⟨a, t | tat−1 = a2⟩

This group is known as the Baumslag-Solitar group and is denoted by BS(1, 2). The
Baumslag-Solitar groups, BS(m,n) are the groups

BS(m,n) = ⟨a, b | bamb−1 = an⟩



8 Trabajo de fin de máster

In fact, all this groups are HNN extensions with infinite cyclic associated subgroups.

Definition 1.24. Let G be an HNN extension of a group H with associated subgroups
A and B. G is called a separated HNN extension if for any h ∈ H

Ah ∩B = 1

1.3 Bass-Serre Theory.

Definition 1.25. A graph X is a pair of sets V and E termed the vertices and the edges
of X, equipped with three maps

o : E → V, t : E → V, : E → E

Satisfying the following:

1. For every e ∈ E, e ̸= e

2. o(e) = t(e)

We term t(e) the terminus of e, o(e) the origin of e and e the inverse of e.

Definition 1.26. A graph of groups is the pair (G,X) given by

1. An oriented connected graph X.

2. For each vertex v ∈ V (X), a vertex group Gv

3. For each edge e ∈ E(X), an edge group Ge, equipped with a monomorphism Ge →
Gt(e) and Ge = Ge

Definition 1.27. A graph that is connected and contains no cycles is called a tree.

Proposition 1.28. Let X be a graph, then there exists a subgraph that is a tree, moreover,
the set of subgraphs that are trees has a non-unique maximal element called maximal tree.

Proof. A direct consequence of Zorn’s lemma. ■

Proposition 1.29. The maximal tree of a connected graph X contains all the vertices of
X.

Proof. Suppose that Γ is the maximal tree of X, as X is connected if v ∈ V (X) is
not in Γ we can extend Γ by adjunction of the vertex v but this is a contradiction with
the maximality of Γ, therefore, v ∈ V (Γ). ■
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Definition 1.30. We say that a group G acts on a graph X if it comes equipped with
a homomorphism

ϕ : G→ Aut (X)

If we denote by g · h the action of G over the set of vertex and edges of X, we have that
G acts on X in the following way

1. Every vertex vh is sent to vg·h.

2. Every edge e between vh and vhs is sent to the edge g · e between vg·h and vg·hs.

Example 1.31. Let G be a group, X the set of generators of G. We define the Cayley
graph of G relative to X by

1. The set of vertexes is G.

2. The set of edges is the disjoint union of the sets G×X and S ×G.

3. o(g, s) = g, t(g, s) = gs, (g, s) = (s, g) and (s, g) = (g, s).

Notice that G acts on the graph by left multiplication. A few examples of a Cayley graph
are the following:

• G = ⟨a | an = 1⟩

1

an−1 a

(an−1,a) (1,a)

• G = ⟨a⟩

a−1 1 a a2
(a−1,a) (1,a) (a,a)

• G = ⟨a, b⟩
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b

ab

1 a a2

ab−1

b−1

(1,a)

(1,b)

(1,b−1)

(a,a)

(a,b)

(a,b−1)

• G = ⟨a, b | ab = ba⟩

a−1b b ab a2b

a−1 1 a a2

a−1b−1 b−1 ab−1 a2b−1

(a−1b,a) (b,a) (ab,a)

(a−1,a)

(a−1,b−1)

(a−1,b)

(1,a)

(1,b)

(1,b−1)

(a,a)

(a,b)

(a,b−1)

(a2,b)

(a2,b−1)

(a−1b−1,a) (b−1,a) (ab−1,a)

Definition 1.32. Let X a graph on which a group G acts. An inversion is a pair of an
element g ∈ G and an edge y of X such that gy = y . If there is no such pair we say that
G acts without inversion.

Definition 1.33. If G acts on a graph without inversion we can define the quotient
graph G⧸X in an obvious way; the vertex sex of G⧸X is the quotient of the vertexes of
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X under the action of G and the edge set of G⧸X is the quotient of the edges of X under
the action of G.

The point here is that since G acts without inversion on X the application acts as
involution on the orbits of the edges therefore we can partition the set of edges, E(X)

into E+ ∪ E−. As a consequence, the map

p : X → G⧸X

defined by p(e) = G · e = ⟨e⟩ and p(v) = G · v = ⟨v⟩ for each edge e and each vertex v is
a morphism of graphs. If T̃ is the maximal tree of the quotient G⧸X we say that T̃ lifts
to a tree T in X if p|T is an isomorphism between T and T̃ .

Proposition 1.34. Let G be a group acting without inversion on a graph X, if T̃ is the
maximal tree of G⧸X then there exists a tree T in X such that T̃ lifts to T .

Proof. Let T1 be a tree in X which is maximal subject to p mapping T1 injectively
into T̃ and suppose p(T1) ̸= T̃ , then there is a vertex ⟨v⟩ ∈ V (T̃ ) such that ⟨v⟩ ̸∈ V (p(T1)),
assume that ⟨w⟩ ∈ V (p(T1)) is the adjacent vertex of ⟨v⟩ and let ⟨e⟩ be the edge of T̃
between them.

As ⟨w⟩ ∈ V (p(T1)) then we have g · w ∈ T1 for some g ∈ G and consider g · e ∈ X then
g · e ̸∈ T1 because p(g · e) = ⟨e⟩. If we adjoin the edges g · e, g · e and the vertex t(g · e) to
T1 the resultant graph T2 is a tree with t(g · e) ̸∈ T1 as p(t(g · e)) = t(⟨e⟩) = ⟨v⟩ but then
p is injective on T2 contradicting with the maximality of T1, therefore p(T1) = T̃ . ■

Definition 1.35. Let Y be a connected graph, T the maximal tree of Y and (G, Y )

the graph of groups. The fundamental group π1(G, Y, T ) of (G, Y ) at T is the group
generated by the vertex groups and the edge elements gy subject to the relations

gya
yg−1
y = ay gygy = 1 if y ∈ E(Y ), a ∈ Gy

gy = 1 if y ∈ E(T )

We can write the presentation of the fundamental group in the following way, if y ∈ E(Y )

and y ̸∈ E(T ), p ∈ V (Y ) and a ∈ G then

π1(G, Y, T ) = ⟨Gp, gy | gyayg−1
y = ay, gygy = 1⟩

In [SS02] and [Bau93] it is proven that the fundamental group is independent on the
choice of T .
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Theorem 1.36. Let G be a group acting without inversion on a tree X then

π1(G, Y, T ) ∼= G

where Y = G⧸X.

One of the great consequences of the Bass-Serre theory is that we can characterize free
groups with the action on a tree.

Definition 1.37. A group G is said to act freely on a tree if it acts without inversion and
only the identity element fixes a vertex.

Theorem 1.38. G acts freely on a tree, then G is free.

We can prove the first result of Kurosh theorem.

Theorem 1.39 (Subgroups of a free group). Let F be a free group, the every subgroup
H of F is itself free.

Proof. As F is free it acts freely on a tree T , if H is a subgroup of F then acts freely
on a subtree of T , then itself is free. ■

Also using Bass-Serre theory we can give equivalent theorems to the subgroups of free
groups in the case of HNN extensions and amalgamated products.

Definition 1.40. Let Γ be a tree which is a graph of groups with {Gi}i∈I vertex groups.
Suppose that each for pair of vertexes Gi and Gj that are joined there is an associated
isomorphism ϕij from a subgroup Uij of Gi onto a subgroup Uji of Gj, such that ϕij = ϕ−1

ji .
The associated group G to the tree Γ is called tree product of the factors and is denoted
by (∏

∗Ai : Uij = ϕij(Uij)
)

Theorem 1.41 (Subgroups of a free group with amalgamation). Suppose that

G = A ∗C B

is the amalgamated product of two groups, then if H is a subgroup of G it is itself an
HNN extension of a tree product in which the vertex groups are conjugates of subgroups of
either A or B and edge groups are conjugates of subgroups of C. The associated subgroups
are conjugates of subgroups of C.

Theorem 1.42. Let
G = A ∗C B
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where A and B are free and C is cyclic, then every finitely generated subgroup of G is
finitely presented.

Theorem 1.43 (Subgroups of an HNN extension). Let G∗ϕi be the HNN extension of a
group G with presentation.

G∗ϕi = ⟨X, {ti}i∈I | R, {tiHit
−1
i = ϕi(Hi)}i∈I⟩

If K is a subgroup of G∗ϕi then K is a treed HNN group whose base is a tree product S
with vertices of the form gXg−1 ∩K with g ∈ G, amalgamated subgroups in the base are
either trivial or tiHit

−1
i ∩K and the associated subgroups are contained in a vertex of S

and equals this vertex or has the form tiHit
−1
i ∩K.

The proof of this theorems can be found in [KS70] and in [KS71] respectively.

§2. Residually free and fully residually free
groups.

Let P be a property of a group inherited by subgroups. We say that a group G is
residually P if for all g ∈ G non-trivial there exists a group Hg having the property P
and an epimorphism ϕg : G → Hg such that ϕg(g) ̸= 1. Equivalently G is residually P
if given any non-trivial element g ∈ G, there exists a normal subgroup N of G such that
g ̸∈ N with G⧸N having the property P .

There are considerable residual properties studied, but now we want to focus on residual
freeness and later on residually nilpotency.

Definition 2.1. A group G is residually free if for each g ∈ G non-trivial exists a free
group Fg and an epimorphism hg : G → Fg such that hg(g) ̸= 1. Equivalently for each
g ∈ G there is a normal subgroup N such that G⧸N is free and g ̸∈ N .

Proposition 2.2. Every subgroup of a residually free group is residually free.

G. Baumslag showed the following property of subgroups of residually free groups

Theorem 2.3 ([Bau62]). Every 2 generated subgroup of a residually free group is free.

Now we need to extend residual freeness to a set of elements of G.

Definition 2.4. A group G is n-residually free, for a natural number n, provided to
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every ordered n-tuple (g1, . . . , gn) ∈ (G\{1})n there is a free group F and an epimorphism
h : G→ F such that h(gi) ̸= 1 for every i ∈ {1, . . . , n}. If G is n-residually free for every
n ∈ N G is fully residually free.

Example 2.5. Trivially every free group is residually free furthermore is fully residually
free. But not every residually free group is a free group as we will see later.

Example 2.6. It is easy to prove that every free abelian group is fully residually free as
every subgroup is normal.

Example 2.7. Let F be a non-abelian free group on a set X, we want to show that F ×F
is not free. Using the definition in terms of category theory we have that if σ : F 7→ X

is an injective function then for every α : X → G, where G is a group, there is a unique
homomorphism β : F → G such that α = βσ.

Suppose that F × F is free also then if σ× : X → F × F is injective then for every
α : X → G, where G is a group, there is a unique homomorphism β× : F × F → G such
that α = β×σ×.

We can take f : F 7→ F × F being an epimorphism then we have the following diagram,

F

X G

F × F

β

f

σ

α

σ×
β×

As we can see we have α = β×fσ but this is a contradiction with the unicity of β so F ×F
can’t be free on X.

Now we want to show that F × F is residually free, taking the f mentioned before we got
that F × F is residually free. Before we show that this group is not fully residually free
we have to introduce some new concepts.

2.0.1 Commutative transitive.

Definition 2.8. A group G is commutative transitive, CT to shorten, provided the
relation of commutativity is transitive on non-identity elements, i.e. for every x, y, z ∈
G\{1} if [x, y] = 1 and [y, z] = 1 then [x, z] = 1.

This property holds on every free group as the centralizer of every element is cyclic. The
following result gives equivalent formulations of the CT property.
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Lemma 2.9. Let G be a group. The following statements are pairwise equivalent.

1. G is commutative transitive.

2. The centralizer CG(x) of every non-trivial element x ∈ G is abelian.

3. Every pair of distinct maximal abelian subgroups in G has trivial intersection.

Proof. (1. =⇒ 2.) Take z, y ∈ CG(x) for a non-trivial element x ∈ G then
[z, x] = 1 and [x, y] = 1 therefore [z, y] = 1 so CG(x) is abelian.

(2. =⇒ 3.) Suppose that every centralizer is abelian and M1 ∩ M2 ̸= {1} for
two maximal abelian subgroups. Then there exists x ∈ M1 ∩M2 non-trivial, let
y ∈M1\(M1 ∩M2). If y commutes with every z ∈M2 then the subgroup generated
by M2 and y would be abelian, but this is a contradiction with the maximality of
M2 therefore we can suppose that y and z do not commute. Now we have that x
and z commute as both are in M2 but also x and y commute as both are in M1 and
in CG(x) and by hypothesis CG(x) is abelian then y and z must commute, which is
a contradiction so M1 ∩M2 ̸= {1}.

(3. =⇒ 1.) Suppose that [x, y] = 1 and [y, z] = 1 then x, y, z are in the same
maximal abelian subgroup by hypothesis therefore [x, z] = 1 so G is CT.

■

Lemma 2.10. Any fully residually free group is commutative transitive.

Proof. Take a, b, c ∈ G non-trivial elements in a fully residually free group such that
[a, b] = 1 = [b, c]. As G is fully residually free exists a homomorphism ϕ between G

and a free group F such that ϕ(a), ϕ(b), ϕ(c) are non-trivial. Since ϕ is a homomorphism
ϕ([a, b]) = 1 = ϕ([b, c]) and as F is free is commutative transitive then ϕ([a, c]) = 1 then
[a, c] = 1 so G is commutative transitive. ■

Example 2.11. Now we can show that F × F with F a free group is not fully residually
free as it is not commutative transitive.

With this result we have.

Proposition 2.12. The class of fully residually free groups is a proper subclass of the
residually free groups class, i.e. all fully residually free groups are contained in the class
of residually free groups while the inverse inclusion is not true.
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Example 2.13. The free product of residually free groups is not necessarily a residually
free group, For example take A as the direct product of a free group of rank 1 and a free
group of rank 2.

A = ⟨a1, a2, a3 | [a1, a2] = 1, [a1, a3] = 1⟩

and B = ⟨b1, b2 | ⟩ which is free therefore residually free. Let A ∗ B be the free product of
A and B and consider

w = [[[b, a1] , [b2, a1]] , [a2, a3]]

Clearly w ∈ A ∗B, if A ∗B were residually free there would be a free group F and a map
ϕw : A ∗ B → F such that ϕ(w) ̸= 1. Then ϕ(a1) ̸= 1 and [ϕ(a2), ϕ(a3)] ̸= 1 and by the
relations of the group A, [ϕ(a1), ϕ(a2)] = 1 = [ϕ(a2), ϕ(a3)] but then ϕ(a2) and ϕ(a3) are
contained in a cyclic subgroup of F containing ϕ(a1) because F is free. This forces ϕ(a2)
and ϕ(a3) to commute which is a contradiction with [ϕ(a2), ϕ(a3)] ̸= 1. Therefore A ∗ B
can’t be residually free.

In [Bau67a] B. Baumslag demonstrated a characterization of residually free non-fully
residually free

Theorem 2.14. Let G be a residually free group. Then G is non-fully residually free if
and only if it does contain an isomorphic subgroup to F2 × Z.

Proof. Suppose G is non-fully residually free then is non-commutative transitive so
there are elements g1, g2 ∈ G such that commute with x ∈ G but do not commute with
each other. Let H = ⟨g1, g2⟩ and K = ⟨c⟩. By the properties of residually free groups H
is free then centerless so H ∩K = 1 then H ×K is an isomorphic subgroup to F2 × Z.

Conversely if G contains an isomorphic subgroup to F2 × Z, then the two generators of
F2 make G non-CT therefore non-fully residually free. ■

We want to see under what conditions the free product of two groups is fully residually
free. To achieve this, we prove that a residually free group that is commutative transitive
must be fully residually free.

2.0.2 Conjugately separated abelian.

Definition 2.15. Let G be a group and H a subgroup of G. H is conjugately separated
in G provided gHg−1 ∩H = {1} for g ∈ G\H.

Definition 2.16. A group G is said to be conjugately separated abelian, CSA group,
if every maximal abelian subgroup is conjugately separated.
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Lemma 2.17. Let G be a fully residually free group then G is a CSA group.

Proof. Take u a non-trivial element of G and as G is fully residually free the maximal
abelian subgroups are the same as the centralizers so we take Cg(u) and we prove that is
conjugately separated. Take w = gzg−1 ̸= 1 in gCG(u)g

−1 ∩ CG(u) with g ̸∈ CG(u) then
[g, u] ̸= 1. As G is fully residually free there is a free group F and an epimorphism ϕ :

G→ F such that ϕ(w) ̸= 1 and ϕ([g, u]) ̸= 1 then ϕ(w) ∈ ϕ(g)CF (ϕ(u))ϕ(g)
−1∩CF (ϕ(u))

however as every free group is CTA then ϕ(g) ∈ CF (ϕ(u)) contradicting ϕ([g, u]) ̸= 1 this
shows that if gCG(u)g−1∩CG(u) ̸= 1 then g ∈ CG(u) hence all maximal abelian subgroups
are conjugately separated and G is a CSA group. ■

Lemma 2.18. Let G be a non-abelian CSA group, normal abelian subgroups are trivial.

Proof. Let G be a non-abelian CSA group with N a normal abelian subgroup con-
tained in the maximal M abelian subgroup. Let g ̸∈M then

N = gNg−1 ⊂ gMg−1

Then necessarily N = {1}. ■

Lemma 2.19. The class of CSA groups is a proper subclass of CT groups.

Proof. First we show that CSA groups are CT. Suppose that G is a CSA group, then
if M1 and M2 are maximal abelian subgroups of G then by definition they are conjugately
separated. Assume that exists z ∈ M1 ∩ M2 and w ∈ M1\M2 then wzw−1 = z is a
non-trivial element of wM1w

−1∩M1 but as M1 is conjugately separated this is impossible
then M1 ⊂M2 and by maximality M1 =M2 and G is a CT group.

Now let’s see that exists a CT group that is not CSA. Let p, q two distinct primes such
that p|q − 1 and let G be a non-abelian group of order pq then the centralizer of every
element in G is of order p or q and hence G is CT. The q-Sylow subgroup of G is normal
and by the above lemma, G is necessarily non-CSA. ■

Proposition 2.20. Let G be a residually free group and commutative transitive group. If
g1, . . . , gm a set of non-trivial elements of G then if there exists g ∈ G such that g ̸∈ N

for every N normal subgroup of G then g1, . . . , gm ̸∈ N .

Proof. Assume that for m ≥ 1 given non-trivial set g1, . . . , gm in G there exists a
non-trivial element g ∈ G such that for all normal subgroups N of G if g ̸∈ G then gi ̸∈ N

for all i = 1, . . . ,m. As G is residually free this is true for m = 1. We show that given
g1, . . . , gm, gm+1 we can find a h ̸= 1 such that if h ̸∈ N for any normal subgroup N of G
then gi ̸∈ N for i = 1, . . . ,m,m+ 1. Let g be the assumed element for g1, . . . , gm end for
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each x ∈ G let

c(x) = [g, xgm+1x
−1]

If c(x) = 1 for all x by commutative transitivity the normal closure Ngm+1 is abelian and
hence here trivial but gm+1 is non-trivial then c(x) ̸= 1 for some x, we choose h = c(x)

then if h ̸∈ N for some normal subgroup N of G it follows that g1, . . . , gm, gm+1 ̸∈ N .
■

Lemma 2.21. Let G be a residually free group then G is fully residually free if and only
if G is CT.

Proof. We already proved the direct implication, let’s see the inverse. Suppose that
G is a residually free group which also is CT, let g1, . . . , gn a set of non-trivial elements
of G, we want to find a normal subgroup N such that G⧸N is free and gi ̸∈ N for every
i = 1, . . . , n. By the last proposition we have that if exists g ̸∈ N for every normal
subgroup then gi ̸∈ N for every i = 1, . . . , n but as G is residually finite there is such g

and G⧸N is free hence G is fully residually finite. ■

With can summarize these results with the following corollary.

Corollary 2.22. Let G be a residually free group, then the following are equivalent

1. G is fully residually free.

2. G is a commutative transitive group.

3. G is a conjugately separated abelian group.

2.0.3 Centralizer extensions.

Definition 2.23. Let G be an abelian group, then a non-trivial element g ∈ G is a
torsion element if gn = 1 for some n ∈ N. If there are no torsion elements in G then
G is a torsion-free abelian group.

Example 2.24. Trivially free abelian groups are torsion-free abelian groups.

Definition 2.25. Let G = ⟨X | R⟩ be a commutative transitive group and B = ⟨Y | S⟩
a torsion-free abelian group. Take u ∈ G a non-trivial element and let CG(u) be his
centralizer. Then

G(u,B) = ⟨X, Y | R, S, [B,CG(u)] = 1⟩
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is a centralizer extension of G by B. If B is infinite cyclic then G(a, t) is the HNN
extension

G(u, t) = ⟨G, t | R, zt = z ∀z ∈ CG(u)⟩

and is called the free rank one extension of the centralizer of u in G.

We want to prove that if the base G group is fully residually free then the free rank
one extension of the centralizer is also fully residually free. First, we need the following
lemma.

Lemma 2.26 ([Bau62] Big powers lemma). Let b, a1, a2, . . . , ak be elements of a free
group. If

a1b
n1a2b

n2 . . . akb
nk = 1

for infinitely many integral values of ni for every i = 1, 2, . . . , k then there exists an
1 ≤ i ≤ k such that

aib = bai

Theorem 2.27. Let G be a fully residually free group. Let a ∈ G a non-trivial element.
Then the free rank one extension of the centralizer of a in G is also fully residually free.

Proof. We can view the free rank one extension of the centralizer as the free product
with amalgamation

G(a, t) = G ∗CG(a) (CG(a)× ⟨t⟩)

Now let g1, g2, . . . , gk be finitely many non-trivial elements of G(a, t) we may write

gj = a0,jt
m1,ja1,jt

m2,j . . . aN(j)−1,jt
mN(j),jzj

where N(j) ≥ 0, ai,j ∈ G\CG(a), mi,j ∈ Z\{0} and zj ∈ CG(a). As ai,j ∈ G\CG(a)
we have [ai,j, a] ̸= 1. Since G is fully residually free there is a free group F and an
epimorphism ϕ : G→ F such that

[ϕ(ai,j), ϕ(a)] ̸= 1

Let CF (ϕ(a)) = ⟨f⟩ be the centralizer of ϕ(a) in F . Suppose ϕ(zj) = f ej . We may define
an extension of ϕ as ψ:G(a, t) → F by ψn|g = ϕ, ψn(t) = fn.

As we have ψn(gj) = 1 for infinitely many n ∈ N we can write

ϕ(a0,j)f
m1,jnϕ(a1,j)f

m2,jn . . . ϕ(aN(j)−1,j)f
mN(j),jnf ej

for infinitely many values of n.
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Applying the big powers lemma we have ϕ(ai, j)f = fϕ(ai,j) but this means [ϕ(ai,j), ϕ(a)] =
1 which contradicts our choice of ϕ. This shows that the set

Sj = {n ∈ N : ψn(gj) ̸= 1}

is a cofinite set for the natural numbers, then its complement S ′
j = N\Sj is finite. Notice

that if the finite intersection S1 ∩ S2 ∩ · · · ∩ Sk is empty then

(S1 ∩ S2 ∩ · · · ∩ Sk)′ = S ′
1 ∪ S ′

2 ∪ · · · ∪ S ′
k = N

which is impossible since it is a finite union of finite sets then we can take n ∈ S1 ∩ S2 ∩
· · · ∩ Sk and then ψn(gj) ̸= 1 for all j = 1, . . . k. Therefore G(a, t) is fully residually free.
■

Now we can extend this for centralizer extensions of G by an abelian fully residually free
group A.

Theorem 2.28. Let G be a fully residually free group and A an abelian free group. Then
the centralizer extension of G by A is also fully residually free.

2.1 Limit groups.

Definition 2.29. Let G be a finitely generated group and a free group F . A sequence
{fi}i∈I ∈ Hom (G,F ) is stable if, for all g ∈ G, the sequence {fi(g)}i∈I is eventually
always {1} or never {1}. Stable kernel of {fi}i∈I , denoted Ker

−→
fi is

Ker
−→

fi = {g ∈ G | fi(g) = 1 for almost all i}

A finitely generated group Γ is a limit group if there is a finitely generated group G and
a stable sequence {fi}i∈I in Hom (G,F ) so that

Γ ∼= G⧸Ker
−→

fi

Now we can show that for finitely generated groups being fully residually free is equivalent
to being a limit group.

Theorem 2.30. Let Γ be a finitely generated group, then Γ is a limit group if and only
if it is fully residually free.

Proof. =⇒ Let Γ be a limit group finitely generated, and let G and {fi}i∈I be a
group and a stable sequence in Hom (G,F ) such that

Γ ∼= G⧸Ker
−→

fi
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Now consider the sequence of quotients

G→ G1 → G2 → · · · → Γ

obtained by adjoining one relation at a time. As Γ is finitely generated the sequence
terminates. Let H = Gj such that Hom (H,F ) = Hom (Γ, F ).

⇐= Suppose that G is a finitely generated fully residually free group. Let

S1 ⊂ S2 ⊂ · · · ⊂ G

be a covering of G by an increasing sequence of finite sets of elements of G. Then
since G is fully residually free for each i there is a homomorphism fi : G→ F which
is injective on Si. Since the Si sequence covers G this is stable with trivial stable
kernel then

G ∼= G⧸Ker
−→

fi

Therefore G is a limit group.

■

Of course, limit groups have the same properties as fully residually free groups.

Proposition 2.31. Limit groups satisfy the following properties:

1. A limit group is commutative transitive and CSA.

2. Any finitely generated subgroup of a limit group is a limit group.

3. Two elements of a limit group generate a free abelian group or a non-abelian free
group of rank 2.

Definition 2.32. Let G be a group and A a commutative ring with unity. Then G is an
A-group if we can define an action, called an A-action, G×A→ G defined as (g, α) = gα

such that

• g1 = g, g0 = 1, 1α = 1.

• gα+β = gαgβ, gαβ = (gα)β.

• (gh)α = (gα)h.

• If [g, h] = 1 then (gh)α = gαhα.
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For all g, h ∈ G and α, β ∈ A

In this context we define the free exponential group F Z[x] from the polynomial ring Z[x].
Lyndon [LS15] proved that given finitely many non-trivial elements f1, . . . , fn in the group
F Z[x] there is a homomorphism ϕ : F Z[x] → F which is the identity on F and for which
ϕ(f1), . . . , ϕ(fn) are all non-trivial. In particular since F is a free group it follows that
F Z[x] is fully residually free.

In [KM98] Kharlampovich showed that every limit group is isomorphic to a subgroup of
F Z[x] from this we have the following theorems.

Theorem 2.33. A finitely generated group is a limit group if and only if it is a subgroup
of an iterated free rank one extensions of centralizers of a free group.

Theorem 2.34. Every finitely generated residually free group G is a subgroup of a direct
product of finitely many limit groups.

2.2 Splittings and JSJ decomposition.

Definition 2.35. We call a splitting the decomposition of a group G as a fundamental
group of a graph of groups. A splitting is a Z−splitting (abelian splitting) if every edge
group is infinite cyclic (abelian). Splittings of the type G = A∗C B or G = A∗C are called
elementary Z−splitting (abelian).

Definition 2.36. A group G is freely decomposable if it is isomorphic to a non-trivial
free product. Otherwise G is called freely indecomposable.

Proposition 2.37. Finitely generated free abelian groups are decomposable.

Theorem 2.38. Every freely indecomposable non-abelian limit group has an abelian split-
ting.

Proof. Let G be a limit group then in theorem 2.33 we have that G is a subgroup
formed from a free group by finitely many free rank one extensions of centralizers. Since
each of these is an HNN group with abelian associated subgroups we have that G has an
abelian splitting. ■

Moreover we have

Theorem 2.39 ([KM05]). Every freely indecomposable non-abelian limit group has an
Z−splitting.
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Example 2.40. The converse of this theorem is not true. We define the Generalised
Baumslag-Solitar Groups. GBS in short, as the fundamental groups of a finite graph
of groups in which all vertex and edge groups are infinite cyclic. Clearly, the Baumslag-
Solitar are contained inside this family. Later we will prove that these groups are not limit
groups.

Definition 2.41. Let G be a group with H and K subgroups, we say H can be conjugated
into K if is a conjugate of a subgroup of K.

Definition 2.42. A subgroup H of a group G is called elliptic in a given splitting of G
if H can be conjugated into a vertex group. Otherwise, H is hyperbolic.

By Bass-Serre theory, the stabilizer of any vertex in a tree is a conjugate of a vertex group
therefore the elliptic elements are just the stabilizers of a vertex.

Theorem 2.43. Let G be a limit group and M the non-cyclic maximal abelian subgroup
of G. Then

1. If G = A ∗C B is an abelian splitting then M is elliptic

2. If G = A∗C is an abelian splitting then either M is elliptic or either there is a
conjugate M g such that

G = A ∗C M g

Definition 2.44. Let G be a group with an abelian splitting, this splitting is called normal
if all maximal abelian non-cyclic subgroups of G are elliptic. By D(G) we denote the set
of all normal splittings of G.

Definition 2.45. Let G be a group with an abelian splitting of G, a vertex group Gv is
called quadratically hanging, in short QH, if the following conditions hold:

1. Admits one of the following presentations〈
p1, . . . , pm, a1, . . . ag, b1, . . . , bg

∣∣∣∣∣
g∏
j=1

[ai, bi]
m∏
k=1

pk = 1

〉

with g ≥ 0,m ≥ 1 〈
p1, . . . , pm, a1, . . . ag

∣∣∣∣∣
g∏
j=1

a2i

m∏
k=1

pk = 1

〉

with g ≥ 1,m ≥ 1
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2. For every edge e ∈ E(Λ) outgoing from v, the edge group Ge is conjugated to one of
the subgroups ⟨pi⟩, i = 1, . . . ,m

3. For each pi there is an edge ei ∈ E(Λ) outgoing from v such that Gei is a conjugate
of ⟨pi⟩

From this, we see that every surface subgroup is a QH subgroup.

Definition 2.46. A QH-subgroup Q is called a maximal QH-subgroup, MQH in short,
if for every elementary abelian splitting of G either Q is elliptic or the edge group C can
be conjugated into Q.

Definition 2.47. Let G be a group with a splitting. We distinguish three kinds of vertexes:

• QH vertexes if it is a QH subgroup.

• Abelian vertexes if it is a non-cyclic abelian subgroup.

• Otherwise rigid vertexes.

Proposition 2.48 (JSJ decomposition). Let G be a freely indecomposable limit group.
There exists a cyclic splitting D ∈ D(G) of G with the following properties

1. Every MQH-subgroup can be conjugated to a vertex in D; every QH-subgroup can be
conjugated into one of the MQH-subgroups; non-MQH-subgroups are of two types:
maximal abelian and non-abelian; every non-MQH vertex group in D is elliptic in
every splitting in D(G).

2. If an elementary cyclic splitting is hyperbolic in another elementary cyclic splitting,
then the edge group can be conjugated into some maximal QH-subgroup.

We call this splitting a cyclic JSJ decomposition of G.

The relevant fact for limit groups is the following result

Theorem 2.49. Let G be a limit group freely indecomposable then:

1. If G is indecomposable relative to a JSJ decomposition is either a surface group, a
free group, or a free abelian group.

2. If G is a non-abelian and non-surface group then admits a non-trivial cyclic JSJ
decomposition.
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2.3 Constructible Limit Groups.

In this section, we will see that limit groups can be built up inductively from simpler limit
groups. But first, we need the following definitions

Definition 2.50. Let A be an abelian non-cyclic vertex group and denote by P (A) the sub-
group of A generated by the incident edge groups then we define the peripheral subgroup
P (A) as

P (A) =
⋂

f∈Hom(A,Z)
P (A)⊂ker f

ker f

Definition 2.51. Let B be a rigid vertex group, the envelope of B, B̃, is the group
defined by first replacing each abelian vertex with the peripheral subgroup and then letting
B̃ be the subgroup of the resulting group generated by B and by the centralizers of the
incident edge-groups.

Definition 2.52. The class of constructible limit groups, CLG, is defined inductively
as follows

1. Level 0 of the class are finitely generated free groups.

2. A group G is of level n if and only if either

(a) G = G1 ∗G2 with G1 and G1 groups of level lower than n.

(b) There exists a homomorphism ρ : G→ G′ with G′ of level lower than n and G
has a generalized abelian decomposition such that

• ρ is injective on the peripheral subgroup of each abelian vertex.

• ρ is injective on each edge group Ge and at least one of the images of Ge

in a vertex group of the one-edged splitting induced by Ge is a maximal
abelian subgroup.

• The image of each QH-vertex group is a non-abelian subgroup of G′.

• For every rigid vertex group B, ρ is injective on the envelope of B

Before proving that constructible limit groups, CLG in short, are the same as limit groups
we need to introduce some new concepts.

Definition 2.53. Let G be a group with one abelian edge split, that is G splits either as
an amalgamated product or as an HNN extension. The Dehn twist obtained from the
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corresponding splitting of G is the automorphism defined as:

τc(a) = a if a ∈ A

τc(b) = c−1bc if b ∈ B

If G splits as an amalgamated product A ∗C B with c ∈ CB(C). And if G splits as a HNN
extension A∗C with c ∈ CA(C) then the Dehn twist is defined as:

τc(a) = a if a ∈ A

τc(t) = ct

Definition 2.54. Let D ∈ D(G) be a group splitting of a group G. The associated modular
group Mod (D) is the subgroup of Aut (G) generated by

1. Inner automorphisms.

2. Dehn twists of edges of D

3. Dehn twist corresponding to some essential Z−splitting of G along a cyclic subgroup
of a QH vertex.

4. Unimodular automorphisms of abelian vertices which are the identity on the periph-
eral subgroup.

The modular group of G, Mod (G), is the subgroup of Aut ((G)) generated by Mod (D)

for all splittings D ∈ D(G) of G.

Definition 2.55. A generalized Dehn twist on a one-edge splitting is a Dehn twist or
if A is an abelian vertex an automorphism of A which fixes all the edge subgroups of Gv.

Theorem 2.56. The modular group Mod (G) is generated by generalized Dehn Twists.

Proof. It only remains to show the case of abelian vertexes because the other cases
are Dehn Twists. Let A be an abelian vertex then we have

G = A ∗
P (A)

B

For some subgroup B of G. Any unimodular automorphism of A in this splitting is a
generalized Dehn twist. ■

Definition 2.57. Let G be a group with generating set S. A morphism h : G → F is
called short if

max
g∈S

|h(g)| ≤ max
g∈S

|ic ◦ h ◦ σ(g)|
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Where σ ∈ Mod (G) and ic is the conjugation by c ∈ F and | · | denotes the word length
in F .

Theorem 2.58. Let G be a freely indecomposable group. Let fi : G → F a convergent
sequence of short homomorphisms. Then

Ker
−→

fi ̸= 1

Theorem 2.59. The class of constructible limit groups coincides with the class of limit
groups.

Proof. Let G be a limit group and D his cyclic JSJ decomposition, we want to prove
that this decomposition satisfies the second part of the definition of CLG.

Let {fi} be a sequence of homomorphisms from G to a free group with fi injective on
elements of length at most i in the word metric relative to the generating set of G. Then
the stable kernel of the {fi} is trivial. Choose {f̂i} to be short maps equivalent to {fi}
so then the map

ρ : G→ G′ = G⧸Ker
−→

f̂i

is an proper epimorphism by theorem 2.58. By induction assume that G′ is a CLG.

Let Ge be an edge group of D therefore is maximal abelian in this decomposition and
elliptic, this means that all generalized Dehn twists are inner automorphisms. Take g be
a non-trivial element of Ge then f̂i(g) is conjugate to fi(g) which is non-trivial for all
sufficiently large i this means that ρ|Ge is injective.

As the peripheral group P (A) is elliptic in every one-edge splitting, by definition of the
JSJ decomposition, Mod (G) acts as inner automorphism as in the case of edge groups and
therefore the restriction of ρ to the peripheral group is injective. Similarly, the restriction
of ρ to the envelope of a rigid vertex is injective as the envelope is also elliptic in every
splitting.

Let Q be a QH-vertex and suppose that ρ(Q) is abelian, then f̂i is abelian for sufficiently
large i but every element of Mod (G) maps Q to a conjugate of itself so eventually, fi(Q)
is abelian contradicting the triviality of the stable kernel of fi. ■

2.4 Universally Free and Elementary Free groups.

We say that a set L is a first order language provided with an equality (=), a binary
operation symbol (·), unary operation symbol (−1) and a constant symbol (1).
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A formula ϕ in L is a logical expression containing a string of variables x = (x1, . . . , xn),
logical connectives ∧,∨ and ¬ and the quantifiers ∀ and ∃. Whenever a formula ϕ is true
in a group G we write G |= ϕ.

A variable in a formula is called bounded if it is restricted by a quantifier, otherwise is
called free. A sentence in L is a formula in which all variables are bounded. We write
by Th(G) the set of all sentences true in a group G.

Definition 2.60. We can differentiate three types of sentences in a first order theory:

• A universal sentence in L is one of the form ∀x (ϕ(x)).

• An existential sentence is one of the form ∃x (ϕ(x)).

• An existential-universal sentence is one of the form ∃x∀x (ϕ(x)).

If G is a group, we write Th∀(G),Th∃(G),Th∀∃(G) for the set of all universal sentences,
existential sentences, universal-existential sentences, respectively, in the group G.

Definition 2.61. Let G and H be groups

• G and H are elementary equivalent, provided Th(G) = Th(H).

• G and H are universally equivalent, provided Th∀(G) = Th∀(H). In short we write
∀-equivalent.

• G and H are existentially equivalent, provided Th∃(G) = Th∃(H).In short we write
∃-equivalent.

• G and H are universally-existentially equivalent, provided Th∀∃(G) = Th∀∃(H).In
short we write ∀∃-equivalent.

Definition 2.62. If G and H are groups and f : H → G is a monomorphism then f is
an elementary embedding whenever ϕ(h) is true in H if and only if ϕ(f(x)) is true in
G with h = (h1, . . . , hn) ∈ Hn. If H is a subgroup of G and i : H → G is an elementary
embedding then H is an elementary subgroup.

Definition 2.63. Let G be a group

• G is universally free provided G is ∀-equivalent to a non-abelian free group.

• G is elementary free provided G is elementary equivalent to a non-abelian free
group.
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Separately, Kharlampovich and Myasnikov [KM06] and Sela [Sel06] have discovered that
the Tarski conjectures are true.

Theorem 2.64. Let Fn,Fk two free groups with 2 ≤ k ≤ n then the standard embedding
i : Fk → Fn is an elementary embedding.

Theorem 2.65. Let Fn,Fk two free groups with 2 ≤ k ≤ n then Fn and Fk are elementary
equivalents, moreover Th(F2) = Th(Fn) for every n ≥ 2.

Theorem 2.66. The elementary theory of the countable non-Abelian free groups is de-
cidable.

Now we state that universally free groups are precisely limit groups.

Theorem 2.67. A finitely generated group G is universally free if and only if G is a
non-abelian limit group.

Proof. As the free group of rank 2 is contained in every non-abelian limit group,
Th∀(Fn) = Th∀(F2) ⊆ Th∀(G).

To see the direct implication we have that being commutative transitive is given by the
universal sentence

∀x, y, z ((y ̸= 1) ∧ (xy = yx) ∧ (yz = zy)) → (xz = zx)

As every free group is CT if G has the same universal theory as a non-abelian free group,
G is CT now we have to show that G is residually free.

Let
G = ⟨x1, . . . , xn | R1 = · · · = Rs = 1⟩

Where Ri = Ri(x1, . . . , xn) and suppose that w is a non-trivial element of G given by
w = W (x1, . . . , xn). Consider now the existential sentence

∃x1, . . . , xn

((
m∧
i=1

Ri(x1, . . . , xn) = 1

)
∧ (W (x1, . . . , xn) = 1

)
Clearly this sentence is true in G so this sentence must be true in all non-abelian free
groups. Therefore in any non-abelian free group F there exists elements a1, . . . , an such
that Ri(a1, . . . , an) = 1 and W (a1, . . . , an) ̸= 1. Take the map from G to F given by
xi → a1 for i = 1, . . . , n defines a homomorphism where the image of w is non-trivial then
G is residually free and CT hence limit group. ■

Within the proof of the Tarski conjectures Sela [Sel06] discovered the following relevant
fact of groups elementary free groups
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Theorem 2.68. A finitely generated group that is elementary free, must be a limit group
that contains no non-cyclic free abelian subgroups

Note that this theorem does not imply, that all limit group that contains no non-cyclic
free abelian subgroups are elementary free.

We also have the following fact that implies that elementary free is the same as being
∀∃-equivalent to a non-abelian free group

Theorem 2.69. Every formula in the language of a free group is equivalent to a boolean
combination of ∀∃-formulas.

In [KM98] we obtain a characterization about groups ∀∃-equivalent to a non-abelian free
group,

Theorem 2.70. Let G be finitely generated group ∀∃-equivalent to a non-abelian free
group F . Then G is fully residually free and can be obtained from infinite cyclic groups
by finitely many operations of the following type:

• Free products.

• Amalgamated products with infinite cyclic amalgamated subgroups at least one of
which is maximal abelian.

• Separated HNN-extensions with infinite cyclic associated subgroups at least one of
which is maximal abelian.

2.5 Cyclic and Conjugacy Pinched one relator group.

In this section we want to construct new groups from free groups, suppose that F, F ′ are
two free groups, not necessarily isomorphic, take u ∈ F and v ∈ F ′ such that α : ⟨u⟩ → ⟨v⟩
is an isomorphism then we call cyclically pinched one-relator group the class of
amalgamated products

F ∗u=v F ′

This is a group with presentation

⟨a1, . . . an, b1, . . . , bm | u = v⟩

Where F = ⟨a1, . . . , ag⟩ and F ′ = ⟨b1, . . . , bg⟩. Similarly if F is a free group with u, v ∈ F

such that α : ⟨u⟩ → ⟨v⟩ is a monomorphism then we call conjugacy pinched one-
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relator group the class of HNN extensions

F∗α

This is a group with presentation

⟨a1, . . . an, t | tut−1 = v⟩

Where F = ⟨a1, . . . an | ⟩. Recall that an element in a free group is primitive if it is in
some basis of the free group.

Theorem 2.71 ([Hou10]). Let G be a cyclic pinched one-relator group having a presen-
tation

G = ⟨x1, . . . , xn, y1, . . . , yn | u = v⟩

Where {x1, . . . , xn} is the generating set of a free group F with u a non-trivial element of
F and {y1, . . . , ym} is the generating set of a free group F ′ with v a non-trivial element
of F ′. Then G is free if and only if either u is primitive in F ′ or v is primitive in F .

Theorem 2.72 ([Hou10]). Let G be a conjugacy pinched one-relator group having a pre-
sentation

G = ⟨x1, . . . , xn, t | ut = v⟩

Where {x1, . . . , xn} is the generating set of a free group F with u and v non-trivial elements
of F . Then G is free if and only if one of the following cases holds:

1. F has a basis {u, y1, . . . , yn−1} such that v is conjugates to v′ ∈ ⟨y1, . . . , yn−1⟩.

2. F has a basis {v, z1, . . . , zn−1} such that u is conjugates to u′ ∈ ⟨z1, . . . , zn−1⟩.

Definition 2.73. We say that a group G is n-free if any set of n or fewer elements of
G generates a free group.

Theorem 2.74. Let G be a cyclically pinched one-relator non-free group. Then

1. G is 2-free.

2. G is 3-free.

3. For all subgroups H of rank 4, one of the following occurs:

(a) H is free of rank 4.

(b) H has a one-relator presentation.
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Theorem 2.75. Let G be a conjugacy pinched one-relator non-free group. If H is a two
generator subgroup of G, then one of the following holds:

1. H is free of rank 2.

2. H is abelian.

3. H has a presentation ⟨a, b | ba = b−1⟩

Theorem 2.76. Every 2-free residually free group is fully residually free and 3-free.

Proof. First, we demonstrate that every 2-free residually free is commutative tran-
sitive, hence fully residually free. Let G be a 2-free residually free group, and take M
as the centralizer of a non-trivial element x ∈ G. Suppose a, b ∈ M , since G is 2-free
a, x generate a free group but a, u commute this must be both powers of a single element
g, x = gγ and a = gα. Similarly since x and b commute, we have an element h ∈ G

such that x = hδ and b = hβ. Now consider the subgroup generated by h, g this is free
because G is 2-free but we have gγ = hδ then it is cyclic. With this we have that any
subgroup of M generated by two elements is cyclic, a straightforward induction shows
that finitely generated subgroups of M are cyclic then M is locally cyclic and abelian.
Applying theorem 2.9 we have that G is commutative transitive.

The second part is proven in [FGM+98] and presents the following classification of fully
residually free groups. Here by rank, we mean the minimum number of generators of the
group. ■

Theorem 2.77. Let G be a fully residually free group. Then:

1. If Rank (G) = 1 then G is infinite cyclic.

2. If Rank (G) = 2 then G is free of rank 2 or free abelian of rank 2.

3. If Rank (G) = 3 then either G is free of rank 3, free abelian of rank 3 or a free rank
one extension of centralizes of free group rank 2.

Theorem 2.78. Suppose that F is a free group with ϕ an isomorphism and let u ∈ F be
neither primitive nor a proper power in F . Then the cyclically pinched one-relator group

F ∗
u=ϕ(u)

ϕ(F )

is fully residually free. A group of this form is called a Baumslag double.
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Proof. We will prove that if G is a Baumslag Double then is a CLG of level 2. Taking
the retraction ρ : G→ F we have that ρ is a homomorphism to a CLG of level 0.

As both vertexes are rigid we have that ρ has to be injective on the envelope of every
vertex, but this is true since the envelope of every vertex is the vertex itself and both
vertexes are isomorphic. So we have that ρ is injective in the envelope. ■

Theorem 2.79. Suppose that F is a free group with ϕ an automorphism. Let F1 = F ∗F2,
where F2 is a free group. Let u ∈ F . Then the cyclically pinched one-relator group

F ∗
u=ϕ(u)

F1

is fully residually free. A group of this form is called a Disguised Baumslag double.

Proof. In this case, if G is a disguised Baumslag Double then is a CLG of level 3.
Taking the retraction ρ : G→ F1 we have that ρ is a homomorphism to a CLG of level 1
as it is the free product of two free groups.

Again as both vertexes are rigid we have that ρ has to be injective on the envelope of
every vertex. The envelope of every vertex is the vertex itself so in the case of F1, ρ is
trivially injective for the envelope of F1.

Now as F1 = F ∗ F2 if we restrict the map ρ to F it is necessarily injective. ■

2.6 Surface groups.

Let G be the fundamental group of a compact surface of genus g. Then G has a one-relator
presentation 〈

a1, . . . ag, b1, . . . , bg

∣∣∣∣∣
g∏
j=1

[ai, bi] = 1

〉
in the orientable case and 〈

a1, . . . ag

∣∣∣∣∣
g∏
j=1

a2i = 1

〉
in the non-orientable case. The groups with such presentation are surface groups.

Theorem 2.80. The surface group of an orientable surface of genus g ≥ 2 is a cyclically
pinched one-relator group and a conjugacy pinched one-relator group.

Proof. Suppose that G is the surface group of an orientable surface of genus g ≥ 2

with the previous presentation, taking u = [a1, b1][a2, b2] . . . [ag1 , bg−1] and v = [ag, bg] then

G = ⟨a1, . . . , ag, b1, . . . , bg | u = v−1⟩
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Hence G is a conjugacy pinched one-relator group.
Now taking u = ag, v = [a1, b1][a2, b2] . . . [ag1 , bg−1]ag, t = bg we have that

G = ⟨a1, . . . , ag, b1, . . . , bg1 , t | tut−1 = v⟩

Hence G is also a conjugacy pinched one-relator group. ■

Theorem 2.81. The surface group of a non-orientable surface group of genus g ≥ 2 is a
cyclically pinched group one-relator group.

Proof. Suppose that G is the surface group of a non-orientable surface of genus g ≥ 2

with the previous presentation, taking u = a21 . . . a
2
g−1 and v = a2g then

G = ⟨a1, . . . , ag | u = v−1⟩

Hence G is a conjugacy pinched one-relator group. ■

A consequence of this is the following.

Corollary 2.82. Every orientable surface group is fully residually free and every non-
orientable non-exceptional surface group is fully residually free.

Proof. Let G be the surface group of an orientable surface with the standard presen-
tation then

G = F ∗
u=v

F ′

Where F = ⟨a1, . . . , ag⟩ and F ′ = ⟨b1, . . . , bn⟩. As F and F ′ have the same rank they are
isomorphic and G is a Baumslag double hence G is residually free.

If G is a non-orientable surface group we have that we cant split G into two free groups
of the same rank except if g is even and more than 3. In [Bau67a] is proven that the
restriction of k being even can be removed. The case of g being three or less is the case
of exceptional surface groups, that is G being the projective plane (is not torsion-free),
the Klein bottle (is not commutative transitive) or G = ⟨a, b, c | a2b2c2⟩ = 1 since three
elements in a free group satisfying a2b2c2 = 1 must commute. ■

Definition 2.83. A group G has property IF if every subgroup of infinite index in G is
free.

Theorem 2.84. Let G be a fully residually free group with property IF then G is either
a cyclically pinched one-relator group or a conjugacy pinched one-relator group.

Proof. We differentiate two cases, G is indecomposable relative to a JSJ decomposi-
tion or G admits a non-trivial cyclic JSJ decomposition.
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In the first case, G is a surface group, a free group, or a free abelian group. The theorem
covers the two first cases, suppose that G is free abelian. By property, IF G cannot have
a rank great than two, then G is infinite cyclic or has the following presentation

G = ⟨x, y | [x, y] = 1⟩

and G can be considered a conjugacy pinched one relator group.

Now suppose, that G is non-abelian or non-surface then G admits a non-trivial cyclic JSJ
decomposition Γ. As before, we can assume that Γ is a one-edge splitting.

Suppose G = A ∗C B with A,B non-trivial. By property, IF both factors have to be free,
then G is a cyclically pinched one relator group. Now suppose, that B is trivial, then G

is an HNN extension of A bu a cyclic associated subgroup, and again by property IF, A
has to be free and hence G is a conjugacy pinched one relator group. ■

Corollary 2.85. Let G be a non-free fully residually free group with property IF then G

is a surface group.

§3. Parafree groups.

As usual we denote the conjugate of the element x by the element y, where x and y are
elements in a group G, by xy and the commutator of x and y by [x, y]. The lower central
series

G = γ1(G) ≥ γ2(G) ≥ · · · ≥ γn(G) ≥ . . .

is defined inductively by
γn+1 = [γn, G]

A group G is termed nilpotent if there some integer i such that γi(G) = 1. We define the
abelianization of a group as the quotient

Gab = G⧸γ2(G) =
G⧸[G,G]

The group [G,G] is called the derived subgroup.

Definition 3.1. A group G is called residually nilpotent if for all g ∈ G non-trivial
element there exists a nilpotent group Hg and an epimorphism ϕg : G → Hg such that
ϕ(g) ̸= 1. Equivalently, G is residually nilpotent if given any non-trivial element g ∈ G

there exists a normal subgroup N if G such that g ̸∈ N with G⧸N nilpotent.
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We also have a strong residual property called residually torsion-free nilpotent.

Definition 3.2. A group G is called residually torsion-free nilpotent if for all g ∈ G

non-trivial element there exists a torsion free nilpotent group Hg and an epimorphism
ϕg : G → Hg such that ϕ(g) ̸= 1. Equivalently, G is residually nilpotent if given any
non-trivial element g ∈ G there exists a normal subgroup N if G such that g ̸∈ N with
G⧸N torsion-free nilpotent.

We can give another equivalent definition of residually nilpotent groups

Definition 3.3. A group G is residually nilpotent if⋂
i∈N

γi(G) = {1}

In the case of residually free nilpotent groups, we have to define the isolator subgroup.

Definition 3.4. For a subgroup of a group G, the isolator of H denoted as H is the
subgroup generated by all g ∈ G for which there is a positive integer n such that gn ∈ H

H = {g ∈ G / ∃n ∈ N : gn ∈ G}

Definition 3.5. With the anterior definition it makes sense to define

γn(G)⧸γn(G) = tor
(
G⧸γn(G)

)
Then a group G is residually torsion-free nilpotent if

∞⋂
n=0

γn(G) = 1

Theorem 3.6. Limit groups are residually torsion-free nilpotent.

Proof. A direct consequence of free groups being residually torsion-free nilpotent.
■

Definition 3.7. A group G is called parafree if it is residually nilpotent and there exists
a free group F such that

G⧸γn(G)
∼= F⧸γn(F )

for every n.

Theorem 3.8 ([JZM21]). Parafree groups are residually torsion-free nilpotent.
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Lemma 3.9. Free groups are parafree.

Now we present a family of groups discovered by G. Baumslag that give a negative solution
to the Hanna Neumann conjecture.

Example 3.10. Given the non-zero integers i, j, we define the family of groups given by
the presentation

Hi,j = ⟨a, b, c | a = [ci, a][cj, b]⟩

We want to see that this family of groups consists on groups that are parafree non-free
groups.

Proof. First of all we see that Hi,j is not free. We can give Hi,j the following presen-
tation

Hi,j = ⟨a, c, b | aci = a[b, cj]a⟩

Then Hi,j is a conjugacy pinched one relator group and using theorem 2.72 we have that
Hi,j is not free.

We are left with the proof of Hi,j is parafree. Take K be the free group generated by a, b, c,
then we have that Hi,j⧸γn(Hi,j)

is the result of adding to K⧸γn(K) the given relation. As
K⧸γn(K) is a free nilpotent group freely generated by a, b, c modulo γn(K). Then it

follows that K⧸γn(K) is generated by

a−1[ci, a][cj, b], b, c

modulo γn(K). This means that killing the first generator maps us to the free rank 2

nilpotent group of class k.
G⧸γn(F ) is the freest nilpotent group of class k which satisfies a−1[ci, a][cj, b] = 1 therefore

G⧸γn(G)
∼= K⧸γn(K)

Now the hardest part is to prove that G is residually nilpotent. Recall that G is an
HNN-extension of a free group generated by a, b, N , with associated subgroup the infinite
cyclic group generated by c. In [KSW66] is given a procedure for obtaining generators
and defining relations using the Reidemeister-Schreier procedure, in our case we have

N = ⟨. . . , a−1, a0, a1, . . . , b−1, b0, b1, . . . | an = a−1
n+1anb

−1
n+1bn . . . ⟩

Where the subscript n ranges over all integers. From the defining relations of N we have
that the elements bn, n = . . . ,−1, 0, 1, . . . freely generate the free nilpotent group N
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modulo γkN for every k ≤ 1. If x ∈ G and x ̸∈ N then as G⧸N is cyclic there is nothing
to prove so we may restrict our attention to those elements x ∈ G and x ∈ N . Since N
is free x ̸∈ γlN for some l. Without loss of generality we may assume that

xγlN ∈ ⟨boγlN, . . . , b2r−1γlN⟩

for a suitably large choice of the integer r. Now let M = ⟨c2r, γlN⟩ then MN⧸M is a free
nilpotent group freely generated by b0M, . . . , b2r−1M and G⧸MN is generated torsion-free
nilpotent group is residually a finite 2-group. Si G⧸M is itself a residually a finite 2-group.
Hence there is a normal subgroup L of H such that x ∈ L and G⧸L is nilpotent. Therefore
G is residually nilpotent. ■

Some interesting facts about parafree groups are the following.

Theorem 3.11 ([Mor21]). Non-free surface groups are not parafree.

Theorem 3.12 ([Bau69]). Free products and free factors of parafree groups are parafree.

Theorem 3.13 ([Bau69]). The center of a parafree group is either trivial or the whole
group. Therefore the only abelian parafree group is the infinite cyclic.

We can characterize the subgroups of a parafree group with the following theorem

Theorem 3.14 ([Bau69]). Let G be a parafree group then the abelian subgroups of G are
cyclic whereas the non-abelian two-generator subgroups are free of rank two.

Also, we can formulate a general criterion for the amalgamated product and HNN exten-
sion of parafree groups

Theorem 3.15 ([JZM21]). Let A and B be finitely generated groups, 1 ̸= a ∈ A and
1 ̸= b ∈ B. Consider the amalgamated free product G = A ∗a=bB. Then G is parafree if
and only the following conditions hold.

1. A and B are parafree.

2. The element ab−1 is not a proper power in the abelianization of A ∗B.

3. At least one of a or b is not a proper power in A or B, respectively.

Theorem 3.16 ([JZM21]). Let A be a finitely generated groups, 1 ̸= a ∈ A and α : ⟨a⟩ →
A a monomorphism. Consider the HNN extension G = A∗α. Then G is parafree if and
only the following conditions hold.
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1. A is parafree.

2. The element aα(a)−1 is not a proper power in the abelianization of A.

3. At least one of a or α(a) is not a proper power in A.

4. The image of the element a is non-trivial in some finite nilpotent quotient of G.

We will need some facts about the abelianization but first, we define it in terms of universal
properties

Definition 3.17. Let G be a group, then the abelianization of G, Gab is an abelian
group such that there exists a surjective homomorphism f : G → Gab such that for every
homomorphism ϕ : G→ A, where A is an abelian group, there is a unique homomorphism
ψ : Gab → A such that ϕ = ϕ ◦ f . That is, the following diagram commute

G Gab

A

ϕ

ψ
f

A useful fact about the abelianization of free groups is the following.

Theorem 3.18. Let F be a free group on the set X, then F ab is the abelian free group of
X

Proof. Let H be an abelian group and f : X → H, by universal property of free
groups there exists a unique group homomorphism ϕ : F → H such that (ϕσ) = f , where
σ : X → F .

Also by the universal property of abelian free groups there exists a unique group ho-
momorphism ψ : F ab → H such that (ψπ) = f , where π : F → F ab is the quotient
map.

X

F H

F ab

f
σ

ϕ

π
ψ

We have that ψ(πσ) = f therefore F ab is an abelian free group on the set X ■
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§4. On parafree residually free groups

First of all, we have that a parafree residually free group is a limit group.

Proposition 4.1. Let G be a parafree group which is also residually free, then G is a
limit group.

Proof. As G is residually free, G is a subgroup of a direct product of limit groups,
then by theorem 2.34 we can think of G as a subgroup of L1 × · · · × Ln where every Li
is a limit group. Denote by pi : L1 → G the projection of L1 into G by hypothesis these
projections are surjective, then if exists one i such that pi is also injective we have that
G is isomorphic to Li, therefore, G is a limit group.

Denote by f the embedding of G into L1 × · · · ×Ln, and take the composition f ◦ pi and
suppose that all pi are non-injective this means that the kernel of the composition is not
empty and therefore there exists two subindexes j, k such that the intersections Lj ∩f(G)
and Lk ∩ f(G) are non-empty. We take K the subgroup generated by two elements gj, gk
such that gj ∈ Lj ∩ f(G) and gk ∈ Lk ∩ f(G) this group is a free abelian group of rank 2
as gj, gk are in the kernel of the composition but this is a contradiction with the fact of
all abelian subgroups of parafree groups are cyclic. ■

In [Sok21] is proven the following fact about GBS groups.

Theorem 4.2. Let G be a non-cyclic GBS group. The following statements are equivalent.

• G is residually torsion-free nilpotent.

• G is residually free.

• G is isomorphic to the direct product of a free group and an infinite cyclic group.

Theorem 4.3. Let G be a non-cyclic GBS group then G is non-fully residually free.

Proof. We have that a generalised Baumslag-Solitar group which is residually free is
isomorphic to the direct product of a free group and an infinite cyclic group therefore it
contains a subgroup isomorphic to F2 × Z. ■

With this result, we have the following.

Theorem 4.4. Non-cyclic GBS groups are not parafree.

Proof. We have that a generalised Baumslag-Solitar is residually torsion-free nilpo-
tent if it is residually free. Suppose that G is a parafree generalised Baumslag-Solitar
then G is also fully residually free but this is a contradiction with 4.3. ■



Óscar Fernández Ayala 41

To prove that there are no non-free parafree limit groups of rank less than three we have
the following theorem

Theorem 4.5. Free rank one extension of centralizes of free groups are non-parafree.

Proof. Take G as a free rank one extension of centralizes of a free group of rank n,
this is G has the following presentation.

G = ⟨x1, x2, . . . , xn, t | tvt−1 = v⟩

With v a non-trivial element of the free group, which is not a proper power. If we take
the subgroup generated by v, t we have that this is a free abelian group of rank two, but
if G were parafree this will be a contradiction with all abelian subgroups being cyclic,
therefore G is non-parafree. ■

In virtue of theorem 2.77 we have that

Corollary 4.6. All parafree limit groups of rank less or equal to three are free.

The following example is a parafree residually free group which is of rank 4.

Example 4.7. We will take the following Baumslag Double group therefore limit and we
demonstrate that is parafree.

G = F ∗
a1w=ϕ(a1w)

ϕ(F )

Where F is a free group generated by a1, . . . , an, w an element in the derived group of F
and ϕ an isomorphism. We use 3.15 to see that G is parafree, clearly, the first condition
trivially holds.

A well known result [Sch59] is that commutators are not proper powers of a free group,
therefore a1w can not be a proper power in F . Using this result is trivial that a1wϕ(a1w)
is not a proper power in the abelianization of F ∗ ϕ(F ) which is the abelian free group
generated by a1, . . . , an, ϕ(a1), . . . , ϕ(an),

Finally to see that G is not necessarily free using theorem 2.72 we have that if a1w is not
a primitive element of F then G is not free.

As we have seen before the elementary free groups are limit groups containing no non-
cyclic free abelian groups. One property of parafree groups is that all abelian groups are
cyclic therefore parafree limit groups contain no non-cyclic free abelian groups but we
have that non all parafree limit groups are elementary free. First, we have the following.

Theorem 4.8. Baumslag doubles are non elementary free.
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Proof. We know that Baumslag doubles are non-free and in [Sel06] Sela proved an
elementary free group contains a QH vertex in the JSJ decomposition but in this case
both vertexes are rigid. ■

Proposition 4.9. Let G be a non-abelian parafree limit group, then G is not necessarily
elementary free.

Proof. We will use the fact that doubles are non elementary free, the group

G = F2 ∗
w=ϕ(w)

ϕ(F2)

Where F2 is the rank 2 free group,ϕ is an isomorphism and w is an element in the derived
group of F is a parafree group and a limit group but non-elementary free. ■

4.1 Constructing parafree limit groups.

Now we aim to find a way to construct these groups, to this purpose we use the JSJ
decomposition of limit groups. As we know non-free surface groups are non-parafree and
the only abelian parafree group is the infinite cyclic therefore parafree limit groups admit
a non-trivial cyclic JSJ decomposition. We use the following theorem that describes how
is the graph of groups of a parafree group.

Corollary 4.10 ([JZM21]). Let (G,X) be a graph of groups and π1(G, Y, T ) be its fun-
damental group. Assume that all vertex subgroups are finitely generated and all edge
subgroups are cyclic, then π1(G, Y, T ) is parafree if and only if the following conditions
hold:

1. All the vertex subgroups are parafree.

2. The abelianization of π1(G, Y, T ) is torsion-free.

3. All centralizers of non-trivial elements π1(G, Y, T ) are cyclic

4. For each non-trivial edge subgroup there is a finite nilpotent quotient of π1(G, Y, T )
where the image of this edge subgroup is non-trivial

Proposition 4.11. Let G be a non-abelian parafree group, if G is elementary free then
G is a free group.

Proof. As before we use the fact that a non-free group elementary equivalent to a free
group contains a QH-vertex in his JSJ decomposition but by the last theorem all vertexes
have to be parafree and QH-vertexes are surface groups hence non-parafree. ■
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Now we take G as a limit group and reduce the JSJ decomposition to the two simple
cases: amalgamated product and HNN extensions. Then we see that all the vertexes
must be rigid, in fact, parafree, if we want to construct non-free limit parafree groups as
they can’t be QH vertexes and for the abelian vertexes we have the following cases

If G = G1 ∗C G2 is the non-trivial JSJ decomposition of G we have two cases:

1. G1 and G2 are abelian-vertexes, therefore, both are cyclic but G will be a GBS
group therefore non-parafree.

2. G1 (or G2) is abelian-vertex therefore is cyclic then it is a rigid vertex.

In the case of G = G1∗C , G1 has to be rigid as if it is abelian then it is cyclic and G will
be a GBS therefore non-parafree

With this, we define the constructive class of parafree limit groups.

Definition 4.12. The class of constructible parafree limit groups is defined induc-
tively as follows

1. Level 0 of the class are finitely generated free groups.

2. A group G is of level n if and only if either

(a) G = G1 ∗G2 with G1 and G1 groups of level lower than n.

(b) The abelianization of G is torsion-free and there exists a homomorphism ρ :

G→ G′ with G′ of level lower than n and G has a generalized cyclic decompo-
sition such that

• ρ is injective on each edge group Ge and at least one of the images of Ge

in a vertex group of the one-edged splitting induced by Ge is a maximal
abelian subgroup.

• Every vertex B is parafree and, ρ is injective on B.

With this definition, we have that example 4.7 and group constructed in the proof of
proposition 4.9 are constructible parafree limit groups of level 2.

Theorem 4.13. Constructible parafree limit groups are parafree and limit groups.

Proof. Case 1. and 2.(a) are trivial therefore we will demonstrate 2.(b). We use
induction over the level of the group and corollary 4.10 to see that the generalized cyclic
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decomposition holds all the conditions. Trivially every group described above is a limit
group.

Let G be a level zero constructive parafree limit group, it is free hence parafree and
limit group. Suppose now that G is a level n constructive parafree limit group, take his
generalized cyclic decomposition and ρ a homomorphism between G and a constructive
parafree limit group of level less than n G′ that holds the conditions described. Now we
compare this decomposition to the one in 4.10.

By definition, all vertexes are parafree therefore condition one holds. Now we study the
abelianization of G, the condition of G being a limit group is not enough as there are
limit groups with abelianization non-torsion free [WG16]. So we need the condition of
the abelianization of G being torsion-free.

To study the centralizers we have that they are abelian as G is a limit group and as every
abelian subgroup can be conjugated into a vertex group we have that every centralizer is
an abelian subgroup of a vertex group which are parafree therefore it is cyclic.

In the last case, we study the finite nilpotent quotients, as limit groups are residually
torsion-free nilpotent we have that the last condition holds.

■
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