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Background and objective: Fitting spatio-temporal models for areal data is crucial in many fields such as 

cancer epidemiology. However, when data sets are very large, many issues arise. The main objective of 

this paper is to propose a general procedure to analyze high-dimensional spatio-temporal areal data, with 

special emphasis on mortality/incidence relative risk estimation. 

Methods: We present a pragmatic and simple idea that permits hierarchical spatio-temporal models to 

be fitted when the number of small areas is very large. Model fitting is carried out using integrated 

nested Laplace approximations over a partition of the spatial domain. We also use parallel and distributed 

strategies to speed up computations in a setting where Bayesian model fitting is generally prohibitively 

time-consuming or even unfeasible. 

Results: Using simulated and real data, we show that our method outperforms classical global models. 

We implement the methods and algorithms that we develop in the open-source R package bigDM where 

specific vignettes have been included to facilitate the use of the methodology for non-expert users. 

Conclusions: Our scalable methodology proposal provides reliable risk estimates when fitting Bayesian 

hierarchical spatio-temporal models for high-dimensional data. 

© 2023 The Author(s). Published by Elsevier B.V. 

This is an open access article under the CC BY-NC-ND license 

( http://creativecommons.org/licenses/by-nc-nd/4.0/ ) 
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. Introduction 

In recent decades, access to geospatial data through Geographi- 

al Information Systems (GIS) and other related technologies has 

rown at a staggering rate. Modern geospatial data typically in- 

olve large datasets collected from a variety of sources (databases 

r servers) that may include information such as satellite im- 

gery, weather data, census data, social network data and public 

ealth data. Consequently, the development of new techniques and 

omputational algorithms to analyze massive spatial and spatio- 

emporal datasets is of crucial interest in many fields such as re- 

ote sensing, geoscience, ecology, crime research and epidemiol- 

gy among others. 

Hierarchical spatial models including random effects [1,2] are 

idely used in spatial statistics to provide reliable estimates of the 

nderlying geographical phenomenon and quantifying uncertainty 
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n predictions at unobserved locations. See, for example, Sun et al. 

3] and Banerjee [4] for a detailed review of methods and scal- 

ble models for high-dimensional spatial and spatio-temporal data. 

aussian processes (GPs) have been commonly used for the anal- 

sis of geostatistical (point-referenced) data in the spatial statis- 

ics literature. However, traditional estimation of GPs has become 

omputationally intractable when analysing modern big datasets, 

ainly due to computations involving matrix factorizations for 

ery large covariance matrices. During the last years, many ap- 

roaches have been proposed to ensure scalability of large geosta- 

istical datasets (see, e.g., Heaton et al. [5] and Liu et al. [6] for re-

ent reviews and comparisons). Some other recent methods to deal 

ith massive datasets are described below. Appel and Pebesma 

7] provide an extension to the multi-resolution approximation ap- 

roach [8] for spatio-temporal modelling of global datasets, where 

 recursive partitioning scheme is considered so that inference 

an be efficiently scaled in distributed computing environments. 

ammit-Mangion and Rougier [9] propose an approximate infer- 

nce scalable algorithm for multi-scale process modelling by us- 

ng the stochastic partial differential equation approach [10] . Both 
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ethods were applied to modelling and prediction of global sea- 

urface temperature. In the geostatistical literature, many recent 

orks are being proposed to estimate GPs based on the so-called 

ecchia approximation [11] . This approximation can be regarded as 

 special case of the Gaussian Markov random field approximations 

12] with a simplified neighbourhood structure that can be rep- 

esented by directed acyclic graph (DAG) models. This representa- 

ion leads to a sparse formulation of the precision matrix which 

nsures that evaluating the likelihood of the GPs will be compu- 

ationally scalable. Based on this approach, Finley et al. [13] pro- 

ose alternative formulations of Bayesian nearest neighbour Gaus- 

ian process models developed by Datta et al. [14] to substan- 

ially improve computational efficiency; Peruzzi et al. [15] develop 

 meshed Gaussian process with a novel partitioning and graph 

esign based on domain tessellations while [16] propose a novel 

parse general Vecchia approximation algorithm which ensures 

omputational feasibility for large spatial datasets; Jurek and Katz- 

uss [17] present a fast and simple algorithm to compute their hier- 

rchical Vecchia approximation, and provide extensions to nonlin- 

ar data assimilation with non-Gaussian data based on the Laplace 

pproximation. 

Although there is an extensive literature developing scalable 

ethods and computational algorithms for analysing massive geo- 

tatistical data, only a few papers discuss scalable disease mapping 

odels for high dimensional areal data. Disease mapping is the 

eld of spatial epidemiology that deals with aggregated count data 

rom non-overlapping areal units focussing on the estimation of 

he geographical distribution of a disease and its evolution in time 

18] . As outlined by Shen and Louis [19] , the three main inferen-

ial goals in disease mapping are: (i) to provide accurate estimates 

f mortality/incidence risks or rates in space and time, (ii) to un- 

eil the underlying spatial and spatio-temporal patterns, and (iii) 

o detect high-risk areas or hotspots. Since classical risk estima- 

ion measures, such as the standardized mortality/incidence ratio, 

re extremely variable when analysing rare diseases (with very few 

ases) or low-populated areas, several statistical models have been 

roposed during the last decades to obtain smooth disease risk es- 

imates borrowing information from spatial and/or temporal neigh- 

ours. Research into spatial and spatio-temporal disease mapping 

as been carried out within a hierarchical Bayesian framework, 

ith generalized linear mixed models (GLMMs) playing a major 

ole. Although GLMMs including spatial and temporal random ef- 

ects are a very popular and flexible approach to model areal count 

ata, these smoothing methods become computationally challeng- 

ng (or even unfeasible) when analysing very large spatio-temporal 

atasets. Guan and Haran [20] develop a method to reduce the 

imension of the spatial random effect by reparameterizing the 

odel based on random projections of the covariance matrix. In 

ddition, they show how to address confounding issues if explana- 

ory variables are included in the model by simultaneously apply- 

ng the restricted spatial regression approach [21] . This model is 

imilar to the one proposed by Hughes and Haran [22] , where the 

ecomposition is performed based on the Moran operator. Datta 

t al. [23] introduce a class of directed acyclic graphical autoregres- 

ion (DAGAR) models as an alternative to the commonly used con- 

itional autoregressive (CAR) models for spatial areal data. Instead 

f modelling the precision matrix of the spatial random effect, they 

ropose to model its (sparse) Cholesky factor using autoregressive 

ovariance models on a sequence of local trees created from the 

irected acyclic graph derived from the original undirected graph 

spatial neighbourhood structure) of the areal units. As stated by 

he authors, the Cholesky factor has the same level of sparsity as 

he undirected graph ensuring scalability for analysing very large 

real datasets. An extension to deal with multivariate spatial dis- 

ase mapping models has been developed by Gao et al. [24] . Very 

ecently, a scalable Bayesian spatial model has been proposed by 
2 
rozco-Acosta et al. [25] based on the “divide-and-conquer” ap- 

roach so that local spatial CAR models can be simultaneously fit- 

ed. This new methodology provides reliable risk estimates with a 

ubstantial reduction in computational time. 

The modelling approaches described above are limited to the 

nalysis of spatial count data. The main objective of this paper 

s to propose a scalable Bayesian modelling approach to smooth 

ortality or incidence risks in a high-dimensional spatio-temporal 

isease mapping context by extending the methodology described 

n Orozco-Acosta et al. [25] . Specifically, we adapt the modelling 

cheme so that commonly used spatio-temporal models can be fit- 

ed over different subdomains (partitions of the region of interest), 

hich allows non-stationary models to be defined, i.e., models that 

nduce different degree of smoothing over the areal units belong- 

ng to each subdomain. From a theoretical point of view, both spa- 

ial and/or temporal partitions of the data could be defined, how- 

ver, in the disease mapping context the high-dimensionality of 

he data is usually related to the estimation of relative risks at a 

ne-scale spatial resolution. The main challenges of the methodol- 

gy presented in this work is not only to extend the “divide-and- 

onquer” approach to deal with spatio-temporal models (which is 

ot trivial at all), but also to derive and implement specific algo- 

ithms to perform scalable model estimation in both parallel or 

istributed processing architectures. 

The remainder of this article is organized as follows. 

ection 2 poses the spatio-temporal CAR models considered in this 

ork. Section 3 introduces the new scalable Bayesian models and 

escribes a generic scheme of the main algorithms that have been 

mplemented in this work. Section 4 describes the implementa- 

ion of our proposed methodology in the R package bigDM . In 

ection 5 , we conduct a simulation study based on a template of 

lmost 80 0 0 municipalities of continental Spain and 25 time pe- 

iods to compare the new scalable methods with previous pro- 

osals. In addition, we provide a numerical simulation to evaluate 

he computational gain offered by our modelling approach when 

he number of small areas increases. In Section 6 we use the new 

odel proposal to analyze lung cancer mortality data in Spanish 

unicipalities. The paper ends with a discussion. 

. Background: Spatio-temporal models in disease mapping 

Let us assume that the region under study is divided into con- 

iguous small areas labelled as i = 1 , . . . , n and data are available

or consecutive time periods labelled as t = 1 , . . . , T . For a given

rea i and time period t , O it and E it denote the number of ob- 

erved and expected cases, respectively. To compute the number 

f expected cases both direct and indirect standardization meth- 

ds can be used, usually considering age and/or sex as standard- 

zation variables. When using the indirect method, the number of 

xpected cases for area i and time t is calculated as 

E it = 

J ∑ 

j=1 

N it 

O j 

N j 

for i = 1 , . . . , n ; t = 1 , . . . , T , 

here O j = 

n ∑ 

i =1 

T ∑ 

t=1 

O it j and N j = 

n ∑ 

i =1 

T ∑ 

t=1 

N it j are the number of ob- 

erved cases and the population at risk in the j th age-and-sex 

roup, respectively. Then, the standardized mortality/incidence ra- 

io (SMR or SIR) is defined as the number of observed cases di- 

ided by the number of expected cases. Although its interpreta- 

ion is very simple, SMRs are extremely variable when analysing 

are diseases or very low-populated areas, as it is the case with 

igh-dimensional data. This makes necessary the use of statistical 

odels to smooth risks borrowing information from neighbouring 

egions and time periods. 



E. Orozco-Acosta, A. Adin and M.D. Ugarte Computer Methods and Programs in Biomedicine 231 (2023) 107403 

c

o  

a

μ

w

r

d

d

p

p

t

w

s

r

d

c

d

R

s

ξ

w

i

a

a

w

a

p

t

w

e

i

S

fi  ∑
(  

fi

i

r

t

w

m

(

a

w

t

t

t

Table 1 

Specification for different types of space-time interactions. 

Interaction R δ

Spatial Temporal 

correlation correlation 

Type I I T � I n - - 

Type II R γ � I n - � 

Type III I T � R ξ � - 

Type IV R γ � R ξ � � 

Table 2 

Identifiability constraints for the different types of space-time interaction effects in 

CAR models [31] . 

Interaction R δ Constraints 

Type I I T � I n 

n ∑ 

i =1 

ξi = 0 , 

T ∑ 

t=1 

γt = 0 , and 

n ∑ 

i =1 

T ∑ 

t=1 

δit = 0 

Type II R γ � I n 

n ∑ 

i =1 

ξi = 0 , 

T ∑ 

t=1 

γt = 0 , and 

T ∑ 

t=1 

δit = 0 , for i = 1 , . . . , n 

Type III I T � R ξ

n ∑ 

i =1 

ξi = 0 , 

T ∑ 

t=1 

γt = 0 , and 

n ∑ 

i =1 

δit = 0 , for t = 1 , . . . , T 

Type IV R γ � R ξ

n ∑ 

i =1 

ξi = 0 , 

T ∑ 

t=1 

γt = 0 , and 

T ∑ 

t=1 

δit = 0 , for i = 1 , . . . , n, 

n ∑ 

i =1 

δit = 0 , for t = 1 , . . . , T. 

T
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Poisson mixed models are typically used for the analysis of 

ount data within a hierarchical Bayesian framework. Conditional 

n the relative risk r it , the number of observed cases in the i th area

nd time period t is assumed to be Poisson distributed with mean 

it = E it r it . That is, 

O it | r it ∼ P oisson (μit = E it r it ) , 
log μit = log E it + log r it , 

here log E it is an offset. Depending on the specification of the log- 

isks different models can be defined. 

The non-parametric models based on CAR priors for spatial ran- 

om effects, random walk priors for temporal random effects, and 

ifferent types of spatio-temporal interactions described in [26] are 

robably the most widely used models in space-time disease map- 

ing. Slight modifications of these models are considered here, so 

he log-risks are modelled as 

log r it = α + ξi + γt + δit , (1) 

here α is an intercept representing the overall log-risk, ξi is a 

patial random effect with CAR prior distribution, γt is a tempo- 

ally structured random effect that follows a random walk prior 

istribution, and δit is a spatio-temporal random effect. All the 

omponents of this model can be modelled as GMRFs and prior 

ensities can be written according to some structured matrices. 

A modification of the Dean et al. [27] model proposed by 

iebler et al. [28] , hereafter called BYM2 model, has been con- 

idered as the prior distribution for the spatial random effects 

= (ξ1 , . . . , ξn ) 
′ 
, so that 

ξ = 

1 √ 

τξ

(√ 

1 − λξ v + 

√ 

λξ u � 

)
, 

here τξ is a precision parameter, λξ ∈ [0 , 1] is a spatial smooth- 

ng parameter, v is the vector of unstructured random effects 

nd u � is the scaled intrinsic CAR model with generalized vari- 

nce equal to one. Note that the variance of ξ is expressed as a 

eighted average of the covariance matrices of the unstructured 

nd structured spatial components (unlike the CAR model pro- 

osed by Leroux et al. [29] which considers a weighted combina- 

ion of the precision matrices), i.e., 

ξ ∼ N(0 , Q 

� 
ξ ) , with Q 

� 
ξ = τ−1 

ξ
[(1 − λξ ) I n + λξ R 

−
� ] , 

here I n is the n × n identity matrix, and R 

−
� indicates the gen- 

ralised inverse of the scaled spatial structure matrix correspond- 

ng to the undirected graph of the regions under study (see, e.g., 

ørbye and Rue [30] ). Recall that the spatial structure matrix is de- 

ned as R ξ = D W 

− W , where D W 

= diag(w 1+ , . . . , w n + ) and w i + =
 

j w i j is the i th row sum of the binary adjacency matrix W = 

w i j ) , whose i j th element is equal to one if areas i and j are de-

ned as neighbours (usually if they share a common border), and 

t is zero otherwise. 

For the temporally structured random effect γ = (γ1 , . . . , γT ) 
′ 
, 

andom walks of first (RW1) or second order (RW2) prior distribu- 

ions can be assumed as follows 

γ ∼ N(0 , [ τγ R γ ] −) , 

here τγ is a precision parameter and R γ is the T × T structure 

atrix of a RW1/RW2 (see [12] , pp. 95 and 110). 

Finally, for the space-time interaction random effect δ = 

δ11 , . . . , δn 1 , . . . , δ1 T , . . . , δnT ) 
′ 

the following prior distribution is 

ssumed 

δ ∼ N(0 , [ τδR δ] −) , 

here τδ is a precision parameter and R δ is the nT × nT matrix ob- 

ained as the Kronecker product of the corresponding spatial and 

emporal structure matrices, where four different types of interac- 

ions were originally proposed by Knorr-Held [26] (see Table 1 ). 
3

In what follows, we will refer to Model 1 as the Global model . 

hese models are flexible enough to describe many real situa- 

ions, and their interpretation is simple and attractive. However, 

he models are typically not identifiable and appropriate sum-to- 

ero constraints must be imposed over the random effects [31] . See 

able 2 for a full description of the identifiability constraints that 

eed to be imposed on each type of space-time interaction. 

.1. Model fitting via integrated nested Laplace approximations 

Bayesian inference has traditionally been used to fit spatial and 

patio-temporal disease mapping models. The fully Bayesian ap- 

roach provides posterior distributions of model parameters in- 

tead of a single point estimate. However, these distributions 

annot usually be derived analytically and simulation techniques 

ased on Markov chain Monte Carlo (MCMC) methods have been 

raditionally used for Bayesian inference [32] . Although these 

imulation-based techniques are widely used, mainly due to the 

evelopment of free software to run MCMC algorithms such as 

inBUGS [33] , JAGS [34] , STAN [35] or NIMBLE [36] , these meth-

ds tend to be computationally very demanding and large Monte 

arlo errors are usually present for complex spatio-temporal mod- 

ls [37] . An alternative method to improve the speed of these cal- 

ulations is to approximate the marginal posteriors of the model 

arameters using integrated nested Laplace approximations (INLA) 

38] . The INLA technique is especially attractive for latent GMRFs 

ith sparse precision matrices and is being increasingly used in 

pplied statistics in general [39] and in the field of spatial statistics 

n particular [40] . Recently, NIMBLE and R-INLA have been com- 

ared in a simulation study to fit spatio-temporal disease mapping 

odels [41] . The results obtained are identical in terms of relative 

isk estimates and nearly identical in terms of parameter estimates. 

owever, R-INLA is considerably faster than NIMBLE. 

. Methodology 

There is no doubt that the use of spatio-temporal CAR models 

llows accurate risk estimates to be obtained in reasonable compu- 

ational times when the number of areal-units is relatively small. 
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Fig. 1. Toy example of a spatial partition into D = 4 subdomains. Light-blue areas represent those corresponding to the Disjoint models, while spatial adjacent areas are added 

when considering the 1st/2nd-order neighbourhood models (blue and dark-blue areas, respectively). (For interpretation of the references to colour in this figure legend, the 

reader is referred to the web version of this article.) 
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owever, two main issues arise when analyzing very large spatio- 

emporal datasets: (i) computational time and resources, and (ii) 

odel assumptions. Most of the smoothing methods proposed in 

he literature (including CAR models) are built on the idea of spa- 

ial/temporal correlation and generally use a covariance or pre- 

ision matrix with dimension equal to the number of observa- 

ions (spatial locations × time points), leading to prohibitive com- 

utational times if (partial) matrix inversions are necessary dur- 

ng the estimation process. In addition, a CAR model’s spatial- 

ependence parameter is constant throughout the whole adjacency 

raph. However, the larger a spatial domain is, the less likely is 

hat the data are stationary across the whole map. 

With the objective of overcoming these problematic aspects, 

e propose a scalable and non-stationary Bayesian modelling ap- 

roach by extending the spatial models described in Orozco-Acosta 

t al. [25] based on the idea of “divide-and-conquer” so that lo- 

al spatio-temporal models can be simultaneously fitted. Our mod- 

lling approach consists of three main steps. First, the region of 

nterest is divided into D subdomains. Then, local spatio-temporal 

odels are fitted using a fully Bayesian approach based on INLA. 

inally, the results are merged to obtain posterior marginal es- 

imates of the relative risks for each areal-time unit. Instead of 

onsidering global random effects whose correlation structures are 

ased on the whole spatial/temporal neighbourhood graphs of the 

real-units, as is the case of the Global model described in Eq. (1) ,

e propose to divide the data into subdomains based on spatial 

artitions so that models with different local correlation struc- 

ures, that is, models inducing different amount of smoothing, are 

efined. Then, extending the methodology described in Orozco- 

cost a et al. [25] , Disjoint and k-order neighbourhood models are 

efined for estimating spatio-temporal disease risks. 

For the Disjoint model , a partition of the spatial domain D into 

 subdomains is defined, so that D = 

⋃ D 
d=1 D d where D j ∩ D k = ∅

or all j � = k . If we denote as A it the small area i in time period t , let

 d = { O it | A it ∈ D d } and E d = { E it | A it ∈ D d } represent the observed

nd expected number of disease cases in each subdomain, respec- 

ively. Then, D independent local spatio-temporal models similar to 

hose described in Section 2 are simultaneously fitted. Since each 

real-time unit A it belongs to a single subdomain, the final log-risk 

urface log r = ( log r 1 , . . . , log r D ) 
′ 

is just the union of the posterior

arginal estimates of each spatio-temporal sub-model. 

However, assuming independence between areal-time units be- 

onging to different subdomains could be very restrictive and may 

ead to border effects. To avoid this undesirable issue, we de- 

ne the k-order neighbourhood model by adding neighbouring areal 

nits (based on spatial adjacency) to each partition. A toy exam- 

le of a spatial partition into four subdomains is represented in 

igure 1 . Note that under this modelling proposal, some A it units 

ocated at the borders of the partitions will be included in differ- 

nt submodels. That is, 
∑ D n d > nT , where n d denotes the num- 
d=1 

t

4 
er of observations within the partition D d . In consequence, the 

nal log-risk surface is no longer the union of the posterior es- 

imates of the relative risks r it obtained from each submodel as 

ome areal-time units would have more than one estimated pos- 

erior distribution. Two different merging strategies can be con- 

idered to properly combine their posterior estimates. Originally, 

25] proposed to compute mixture distributions of the estimated 

osterior probability density functions with weights proportional 

o the conditional predictive ordinates (CPOs [42] ;). Here, we also 

nvestigate the strategy of using the posterior marginal risk esti- 

ates of A it corresponding to the original domain the i -th area be- 

onged to. A full comparison in terms of risk estimation accuracy 

nd high/low risk area detection using these two merging strate- 

ies is described in Section 5 . 

. Software: Model implementation in the R package bigDM 

We have implemented several scalable spatio-temporal disease 

apping models in the R package bigDM [43] (see https://github. 

om/spatialstatisticsupna/bigDM ). A generic scheme of the main al- 

orithms is described in Algorithms 1 , 2 and 3 . Since in the disease

apping context the high-dimensionality of the data is usually re- 

ated to a large number of small areas, we consider only purely 

patial partitions. These partitions could be based on administra- 

ive divisions of the area of interest (such as provinces, states or lo- 

al health areas), or random partitions based on a regular grid over 

he associated cartography. However, random partitions should be 

arefully done, since small domains with large number of areas 

ith no observed cases could lead to wrong model estimates. 

When fitting both the Disjoint and k-order neighbourhood 

odels, parallel or distributed computation strategies can be per- 

ormed to speed up computations by using the future package 

44] . If the plan = ’’sequential’’ argument is specified, the 

odels are fitted one at a time in the current R session (local ma- 

hine). In contrast, if the plan = ’’cluster’’ argument is de- 

ned, multiple models can be fitted in parallel on external R ses- 

ions (local machine) or distributed in remote computing nodes. 

hen using this option, the identifications of the local/remote 

orkers where the models are going to be processed must be con- 

gured through the workers argument. As is well known, the 

ommunication between the “master node” and the rest of workers 

ffects the com putational time, so the decision on how to config- 

re the processing architecture must be made carefully (depending 

n the characteristics of the computations to be performed). 

As described in the previous section, two different 

erging strategies could be considered to properly com- 

ine the posterior marginal estimates of the relative risks 

hen fitting the k-order neighbourhood models. If the 

erge.strategy = ’’mixture’’ argument is specified, mix- 

ure distributions of the posterior probability density functions are 

https://github.com/spatialstatisticsupna/bigDM
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Algorithm 1 Fit a scalable spatio-temporal model for high- 

dimensional areal count data. 

Inputs: 
• Cartography file with count data corresponding to areal 

units A it , for i = 1 , . . . , n , and t = 1 , . . . , T . 
• Observed cases O it and expected cases E it . 
• Prior distributions for the spatial ( ξ ), temporal ( γ ) and 

spatio-temporal ( δ) random effects. 
• W : binary adjacency matrix of the spatial areal units. 
• k : numeric value with the neighbourhood order. 
• plan : computation strategy used for model fitting (one 

of either "sequential" or "cluster" ). 
• workers : IDs of the local or remote workers (only re- 

quired if plan="cluster" ). 
• merge.strategy : merging strategy to compute poste- 

rior marginal estimates of relative risks. One of either 
"mixture" or "original" (default). 

Step 1: Pre-processing the data 

1: if W=NULL then 

2: compute W from the cartography file. 
3: Merge disjoint connected subgraphs. 
4: Define formula object for INLA model according to the 

prior distributions for ξ , γ and δ. 

Step 2: Fitting submodels with INLA 

1: Divide the spatial domain into D subdomains. 
2: for d ∈ { 1 , . . . , D } do 

3: if k > 0 then 

4: add k -order neighbouring areas. 
5: Compute the spatial adjacency matrix W d . 
6: Extract O d = { O it | A it ∈ D d } and E d = { E it | A it ∈ D d } . 
7: Define appropriate identifiability constraints. 
8: if plan="sequential" then 

9: fit INLA models sequentially in the current R ses- 
sion (local machine). 

10: else 

11: fit INLA models in parallel on external R ses- 
sions (local machine) or distributed in remote compute 
nodes. 

Step 3: Merging results 

1: if plan="cluster" then 

2: retrieve submodels to the central node. 
3: if k > 0 and merge.strategy="mixture" then 

4: compute mixture distributions for the posterior 
probability density functions of each log r it . � Algorithm 

2 

5: if k > 0 and merge.strategy="original" then 

6: select the posterior marginal estimate of the areal- 
unit corresponding to the original subdomain 

7: Compute approximate DIC and WAIC values. � 
Algorithm 3 

Output: 
• inla object with the fitted model. 
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Algorithm 2 Compute mixture distributions for each log r it . 

Inputs: inla submodel d ∈ { 1 , . . . , D } containing 

• f d (x ) : posterior probability density function esti- 
mates of the log-risk for areal-unit A it . 

• CP O 

d 
it 

= P r(O it = o it | o −it ) : conditional predictive or- 

dinate for areal-unit A it . 
• p : number of equally spaced points at which the 

density is evaluated (default to 75). 

Parallel computation of mixture distributions 
1: for i ∈ { 1 , . . . , n } and t ∈ { 1 , . . . , T } do 

2: Compute m (i ) : number of submodels in which 

the areal-unit A it has been estimated (note that 
m (i ) < D ) 

3: Compute normalized weights 

w j = 

CP O 

j 
it ∑ 

j 

CP O 

j 
it 

, for j = 1 , . . . , m (i ) . 

4: Compute f (x ) = 

m (i ) ∑ 

j=1 

w j f j (x ) evaluated at p 

points. 

Output: 
• Posterior marginal density estimates of log-risks. 
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omputed for each log r it (see Algorithm 2 ). On the other hand, if 

he merge.strategy = ’’original’’ argument is specified, 

he posterior marginal estimate of the areal-unit corresponding to 

he original subdomain is selected. 

In addition, approximations to model selection criteria such as 

he deviance information criterion (DIC) [45] and the Watanabe- 

kaike inf ormation criterion (WAIC) [46] , two widely used criteria 

o compare models in a fully Bayesian setting, are also derived by 

efault when fitting the scalable models using the bigDM package. 

etails about the computations of these approximations are given 

n Algorithm 3 (see [47] for further details). Specific vignettes ac- 
5

ompanying the package have been included to facilitate the use 

f the methodology for non-expert users. See https://emi-sstcdapp. 

navarra.es/bigDM/bigDM- 3- fitting- spatio- temporal- models.html . 

. Simulation study 

In this section, we present two simulation studies. The first 

ne compares the performance of our scalable model proposals 

ith the commonly used disease mapping models described in 

ection 2 (denoted as Global models) in terms of risk estimation 

ccuracy and high/low risk area detection. The second one evalu- 

tes the computing speed offered by our modelling approach when 

sing both parallel and/or distributed computation strategies as 

he number of small areas increases. 

.1. Risk estimation in high-dimensional areal data 

.1.1. Data generation 

The n = 7907 municipalities of continental Spain and T = 25 

ime periods are used as the simulation template. Under this tem- 

late, we generate a smooth risk surface by sampling from a three- 

imensional P-spline with 20 equally spaced knots for longitude 

nd latitude, and 6 equally spaced knots for time. The true risk 

urfaces for the simulation study are shown on top of Figure 2 . For

he scalable model proposals, we divide the data into D = 47 sub- 

omains using the provinces of Spain to define a spatial partition, 

s this is the setting for the real data analysis presented in the next 

ection. The simulated counts for each municipality and time point 

re generated from a Poisson distribution with mean E it r it , where 

he number of expected cases E it is fixed at value 10 and r it are the

rue generated risks. We generate a total of 50 simulated datasets. 

.1.2. Results 

We fitted four different spatio-temporal models to each simu- 

ated dataset: the Global model ( Section 2 ) and the Disjoint, 1st- 

rder neighbourhood and 2nd-order neighbourhood scalable model 

https://emi-sstcdapp.unavarra.es/bigDM/bigDM-3-fitting-spatio-temporal-models.html
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Algorithm 3 Computations of approximate DIC and WAIC values. 

Inputs: 
• Posterior marginal density estimates of the risks 

for each A it . 
• S: number of samples to draw (default to 10 0 0). 

Parallel computation: 
1: for i ∈ { 1 , . . . , n } and t ∈ { 1 , . . . , T } do 

2: Draw S samples from the posterior marginal 
distribution of r it . 

3: Compute θ s : posterior simulations of μit = 

E it r it . 
4: Compute the deviance information criterion 

DIC = 2 D (θ ) − D ( ̄θ ) , by approximating the mean 

deviance D (θ ) and the deviance of the mean D ( ̄θ ) 
as 

D (θ ) ≈ 1 

S 

S ∑ 

s =1 

−2 log (p(O | θ s )) , 

D ( ̄θ ) ≈ −2 log (p(O | ̄θ )) , with θ̄ = 

1 

S 

S ∑ 

s =1 

θ s , 

where p(O | θ ) is the likelihood function of a Pois- 
son distribution with mean θ . 

5: Approximate Watanabe-Akaike information 

criterion as 

WAIC = −2 

n ∑ 

i =1 

T ∑ 

t=1 

log 

( 

1 

S 

S ∑ 

s =1 

p(O it | θ s ) 

) 

+2 

n ∑ 

i =1 

T ∑ 

t=1 

Var [ log (p( O it | θ s )) ] 

Output: 
• Approximate DIC and WAIC values. 
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roposals ( Section 3 ). For all these models, we consider a BYM2 

rior for the spatial random effect, a RW1 prior for the tempo- 

al random effect and the four types of interactions originally pro- 

osed by [26] for the spatio-temporal random effect. 

Regarding model hyperparameters, improper uniform prior dis- 

ributions are given to all the standard deviations (inverse square 

oot of the precision parameters), and uniform prior distributions 

n the interval [0,1] are given to the spatial smoothing parameters 

f the BYM2 prior. Finally, a vague zero mean normal distribution 

ith a precision close to zero (0.001) is given to the model inter- 

ept. All the calculations are made on a single machine with a Intel 

eon E5-2620 v4 processor and 256GB RAM (CentOS Linux release 

.3.1611 operative system), using the Gaussian approximation strat- 

gy in R-INLA (stable version INLA_22.05.07) of R-4.1.3 and simul- 

aneously running 12 models in parallel using the bigDM package. 

We evaluate the model performance in terms of how well the 

elative risk are estimated by computing the mean absolute rela- 

ive bias (MARB) and mean relative root mean square error (MR- 

MSE) for each municipality defined as 

MARB i = 

1 
T 

T ∑ 

t=1 

1 
50 

∣∣∣∣ 50 ∑ 

l=1 

ˆ r l 
it 
−r it 
r it 

∣∣∣∣, 
MRRMSE i = 

1 
T 

T ∑ 

t=1 

√ 

1 
50 

50 ∑ 

l=1 

(
ˆ r l 
it 
−r it 
r it 

)2 

, 
6 
here r it is the true generated risk, and ˆ r l 
it 

is the posterior median 

stimate of the relative risk for areal unit i and time period t in 

he l-th simulation. We also compute the Interval Score (IS) for the 

5% credible interval of the risks, a proper scoring rule for quantile 

redictions (see e.g., [48] ) that combines both the length and the 

mpirical coverage of the credible interval which is defined as 

S 0 . 05 (r) = (u − l) + 

2 

0 . 05 

(l − r) I[ r < l] + 

2 

0 . 05 

(r − u ) I[ r > u ] , 

here [ l, u ] is the 95% credible interval for the risk and I[ ·] denotes

n indicator function that penalizes the length of the credible in- 

erval if the real risk ( r) is not contained within that interval. For 

ll these criteria, lower values imply better model properties. 

The results of the simulation study are summarized in Table 3 , 

here average values of Bayesian model selection criteria, risk es- 

imation accuracy measures and computational time are displayed. 

or the 1st/2nd-order neighbourhood models, we compare the 

’mixture’’ and ’’original’’ merging strategies. We no- 

ice that it was computationally unfeasible to fit Type II and Type 

V interaction Global models, because of the huge dimension of 

he spatio-temporal structure matrix ( ≈ 4 × 10 10 elements) and the 

igh number of identifiability constraints over the spatio-temporal 

nteraction ( ≈ 80 0 0 constraints). In contrast, we were able to fit 

ur scalable model proposals reducing the RAM/CPU memory us- 

ge and computational time substantially. The computational time 

or the Disjoint and k-order neighbourhood models are divided 

nto running time and merging time . For the Global models only 

he running time is computed ( recall that these models are not 

calable). The running time refers to the elapsed time for all the 

ubmodels (which can be fitted in both parallel and/or distributed 

rocessing architectures) and the merging time corresponds to 

he computation of how the posterior distribution of the log-risks 

re combined (when necessary) and computation of approximate 

IC/WAIC values in the “master node”. As expected, the complex- 

ty and computational time of the models increase as higher val- 

es of neighbourhood order are considered. On the other hand, the 

erging time only increases as higher neighbourhood order mod- 

ls are considered, as the number of areal-units for which poste- 

ior estimates must be combined increases. As is shown in Table 3 , 

he ’’original’’ merging strategy is less computationally de- 

anding than using mixture distributions. 

Scalable models with a completely structured space-time in- 

eraction (Type IV interaction) perform better in this scenario in 

erms of model selection criteria and risk estimation accuracy 

easures, followed by Type III interaction models. The main reason 

ould be that in the true risk surface considered in this scenario, 

he spatial pattern variability is greater than the temporal one. 

pecifically, the percentages of variability of the overall risk ex- 

lained by each pattern is about 70% spatial, 5% temporal and 25% 

patio-temporal. If the ’’mixture’’ strategy is used to combine 

he posterior marginal estimates of the relative risks in the border 

reas (that is, areal-units that are estimated in more than one sub- 

odel), slightly better results are obtained with 1st-order neigh- 

ourhood models in comparison with those considering 2nd-order 

eighbours. However, if the ’’original’’ strategy is used to 

ombine the estimated risks from the different submodels, 2nd- 

rder neighbourhood models performs better for Type III and Type 

V interactions. As expected, the differences between models are 

ore clearly stated if we compute these measures only for those 

real-units located in the borders of the partition of the spatial do- 

ain (see Table A.1 ). At the bottom of Figure 2 we show the poste-

ior median estimates of relative risks for a randomly selected sim- 

lation obtained with 2nd-order neighbourhood and Type IV inter- 

ction model using the ’’original’’ merging strategy. As can 

e seen, the values obtained are quite similar to those of the actual 
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Fig. 2. Simulation study: true risk surfaces (top) and posterior median estimates of relative risks for a randomly selected simulation obtained with 2nd-order neighbourhood 

and Type IV interaction model using the ’’original’’ merging strategy (bottom) for some selected years. 
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isk surface. Average values of posterior median estimates of rela- 

ive risks over the 50 simulated datasets are shown in Figure A.5 . 

In summary, we remark that in terms of model selection cri- 

eria, risk estimation accuracy and computational time, our sim- 

lation study shows that the scalable 2nd-order neighbourhood 

odel clearly outperforms the classical Global models used in 

pace-time disease mapping. 

We are also interested in evaluating the models in terms of 

heir ability to detect true high and low risk areas by calculating 

rue positive/negative rates and false positive/negative rates. For 

ach areal-time unit A it , a high (low) risk area is an area where

he true risk r it is greater (less) than one. After fitting the model, 

e classify an area as having high risk if the posterior probability 

hat r it exceeds 1 is higher than a threshold value p 0 , namely the

xceedence probabilities P (r it > 1 | O ) > p 0 . Conversely, we classify

 low risk area if the posterior probabilities that r it is below 1 is

igher than p 0 , i.e., P (r it < 1 | O ) > p 0 . Notice that these probabili-

ies are computed from the posterior marginal distributions of the 
7 
stimated relative risks. True positive rates (TPR or sensitivity) are 

omputed as the proportion of high true risks ( r it > 1 ) that were

orrectly classified as a high risk area, while true negative rates 

TNR or specificity) are computed as the proportion of low true 

isks ( r it < 1 ) that were correctly classified as a low risk area. At

he same time, we are also interested in comparing the misclassi- 

cation errors of the models in terms of false positive rates (FPR), 

.e., the proportion of areas that are incorrectly classified as a high 

isk area, and false negative rates (FNR), i.e., the proportion of ar- 

as that are incorrectly classified as a low risk area. 

Average values of TPR, FPR, TNR and FNR for the reference 

hreshold values of p 0 = 0 . 8 , 0 . 9 and 0 . 95 are shown in Table 4 .

or the 1st/2nd-order neighbourhood models, both ’’mixture’’ 
nd ’’original’’ merging strategies are compared. We note 

hat our proposed scalable models outperform the Global mod- 

ls in terms of high and low risk area detection. In particular, the 

rst order neighborhood model ’’original’’ strategy (Type IV 

nteraction) performs the best in terms of TPR. The rest of the 
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Table 3 

Simulation study: average values of mean deviance D (θ ) , effective number of parameters ( p D ), deviance information criterion (DIC), Watanabe-Akaike information 

criterion (WAIC), mean absolute relative bias (MARB), mean relative root mean square error (MRRMSE), Interval Score (IS) and computational time in minutes 

(T.run: running time, T.merge: merging time). For the 1st/2nd-order neighbourhood models, both ’’mixture’’ and ’’original’’ merging strategies are 

compared. 

Model selection criteria Risk estimation accuracy Time 

Model Interaction D (θ ) p D DIC WAIC MARB MRRMSE IS T.run T.merge 

Global Type I 201406 15987 217393 217832 0.0684 0.0782 0.3959 14 

Type II - - - - - - - - - 

Type III 194247 10683 204930 204666 0.0165 0.0387 0.2816 301 

Type IV - - - - - - - - - 

Disjoint Type I 198972 7563 206536 206516 0.0322 0.0434 0.2582 3 6 

Type II 200225 5710 205934 205965 0.0281 0.0419 0.2231 34 6 

Type III 197112 7817 204929 204829 0.0203 0.0377 0.2404 7 6 

Type IV 199103 5059 204162 204151 0.0153 0.0331 0.1950 64 6 

merge.strategy = “mixture”

1st order Type I 197900 8104 206005 205948 0.0303 0.0416 0.2550 3 18 

neighbourhood Type II 199211 6320 205531 205534 0.0261 0.0404 0.2239 53 18 

Type III 196069 8366 204434 204297 0.0173 0.0352 0.2490 10 18 

Type IV 198603 5243 203846 203823 0.0133 0.0311 0.1974 70 18 

2nd order Type I 197325 8821 206146 206073 0.0312 0.0423 0.2614 4 32 

neighbourhood Type II 198631 7070 205701 205689 0.0266 0.0413 0.2341 124 32 

Type III 195532 8986 204518 204353 0.0173 0.0356 0.2593 16 32 

Type IV 198477 5397 203874 203848 0.0134 0.0312 0.2008 136 32 

merge.strategy = “original”

1st order Type I 198937 7435 206373 206356 0.0322 0.0427 0.2529 3 8 

neighbourhood Type II 199954 5836 205790 205813 0.0276 0.0414 0.2215 53 8 

Type III 196811 7712 204523 204424 0.0182 0.0357 0.2395 10 8 

Type IV 198976 4885 203861 203846 0.0137 0.0312 0.1911 70 8 

2nd order Type I 198881 7592 206472 206461 0.0332 0.0432 0.2524 4 9 

neighbourhood Type II 199640 6247 205887 205905 0.0278 0.0421 0.2259 124 9 

Type III 196473 7891 204364 204253 0.0173 0.0348 0.2419 16 9 

Type IV 198897 4870 203767 203751 0.0133 0.0305 0.1903 136 9 
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calable models including the disjoint model (Type IV interaction) 

ehave very similarly. In addition, if we compute these measures 

nly for the areal-units located in the borders of the partition of 

he spatial domain (see Table A.2 and Table A.3 ) models with the 

’original’’ merging strategy show again better results. In 

eneral, similar values of TPR and TNR are obtained for 1st and 

nd order neighbourhood models using both merging strategies. In 

erms of false positive and false negative rates, although slightly 

etter results are obtained when the ’’mixture’’ strategy is 

sed, very low values are obtained in all cases. 

In conclusion, our simulation study shows that, even when gen- 

rating the true risk surfaces using a model that differs from those 

sed to analyze the data, our scalable model proposals outperform 

he classical Global models in terms of risk estimation accuracy, 

etection of high and low risk areas and avoidance of false alarms. 

or practitioners, we recommend the use of k-order neighbourhood 

odels with an ’’original’’ merging strategy. 

.2. Numerical simulation 

In this section we want to evaluate the computational gain 

ffered by the scalable modelling approach against the Global 

odel as the number of small areas increases. Specifically, we 

imulate a regular grid map with number of areas equal to n = 

56 , 1024 and 4096 , while the number of time points have been 

xed to T = 25 to imitate the real data analysis. For each template, 

patially structured (CAR), temporally structured (RW1) and com- 

letely structured spatio-temporal (Type IV) random effects are 

enerated from the corresponding structure matrices to define a 

og-risk surface (see Eq. (1) ). Finally, we simulate counts for each 

real-unit from a Poisson distribution as described in the previ- 

us section. To fit the scalable models, a 4 × 4 regular grid is used
8 
o define the partition of the spatial domain, so that a total of 

 = 16 local spatio-temporal models are fitted. These models are 

istributed over 4 machines with 4 models running in parallel for 

ach machine using the bigDM package. 

In Fig. 3 , we show the total runtime of the different models 

hen varying the number of spatial areas. As we increase the di- 

ension of the spatial domain, the Global model quickly becomes 

omputationally prohibitive. For n = 256 areas the total running 

ime is about 80 minutes, while for n = 1024 areas the compu- 

ational time exceeds 120 hours. For larger area sizes considered 

ere, computation fails due to very high RAM memory usage. On 

he other hand, we can fit the Disjoint and k-order neighbourhood 

odels for n = 256 areas in total running times between 2–6 min- 

tes, for n = 1024 areas in times between 6–36 minutes, and for 

 = 4096 areas in running times between 5–16 hours. 

. Data analysis: Lung cancer mortality in Spain 

We illustrate and compare all the approaches described in this 

aper by modelling the spatio-temporal evolution of male lung 

ancer mortality data in the n = 7907 municipalities of continental 

pain (excluding Balearic and Canary Islands and the autonomous 

ities of Ceuta and Melilla) during the period 1991–2015. According 

o recent studies [49] , lung cancer was the leading cause of cancer 

eaths among the male population and the second cause among 

he female population in Europe in 2018, representing 24.8% and 

4.2% of all cancer deaths, respectively. It also was the leading 

ause of cancer related deaths in Spain for both sexes in 2017, rep- 

esenting 19.5% of cancer mortality [50] . One of the main causes 

s that Spain is a country with a traditionally high tobacco con- 

umption, with a smoking rate of over 32% of the population at 

he beginning of the century [51] . 
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Table 4 

Simulation study: average values of true/false positive rates and true/false negative rates for the reference threshold values of p 0 = 0 . 8 , 0 . 9 and 0 . 95 , based on posterior exceedence probabilities P(r it > 1 | O ) and P(r it < 

1 | O ) , respectively. For the 1st/2nd-order neighbourhood models, both ’’mixture’’ and ’’original’’ merging strategies are compared. 

True Positive Rate True Negative Rate False Positive Rate False Negative Rate 

Model Space-time interaction p 0 = 0 . 8 p 0 = 0 . 9 p 0 = 0 . 95 p 0 = 0 . 8 p 0 = 0 . 9 p 0 = 0 . 95 p 0 = 0 . 8 p 0 = 0 . 9 p 0 = 0 . 95 p 0 = 0 . 8 p 0 = 0 . 9 p 0 = 0 . 95 

Global Type I 0.5932 0.4349 0.3212 0.6902 0.5453 0.4249 0.0142 0.0024 0.0004 0.0282 0.0130 0.0069 

Type II - - - - - - - - - - - - 

Type III 0.7414 0.6211 0.5226 0.8122 0.6937 0.5892 0.0025 0.0003 0.0000 0.0044 0.0006 0.0001 

Type IV - - - - - - - - - - - - 

Disjoint Type I 0.7742 0.6706 0.5836 0.8368 0.7520 0.6660 0.0119 0.0043 0.0018 0.0181 0.0074 0.0032 

Type II 0.8021 0.7160 0.6411 0.8557 0.7864 0.7209 0.0111 0.0038 0.0014 0.0182 0.0078 0.0036 

Type III 0.7764 0.6721 0.5868 0.8403 0.7509 0.6705 0.0045 0.0009 0.0002 0.0080 0.0019 0.0005 

Type IV 0.8256 0.7449 0.6754 0.8747 0.8065 0.7408 0.0048 0.0011 0.0003 0.0079 0.0020 0.0006 

merge.strategy = ”mixture”

1st order Type I 0.7685 0.6601 0.5688 0.8345 0.7421 0.6531 0.0088 0.0026 0.0009 0.0148 0.0054 0.0021 

neighbourhood Type II 0.7941 0.7028 0.6235 0.8531 0.7751 0.7039 0.0082 0.0024 0.0007 0.0147 0.0055 0.0023 

Type III 0.7684 0.6602 0.5710 0.8397 0.7413 0.6529 0.0027 0.0004 0.0001 0.0051 0.0009 0.0002 

Type IV 0.8208 0.7382 0.6681 0.8762 0.8040 0.7349 0.0033 0.0006 0.0001 0.0056 0.0012 0.0003 

2nd order Type I 0.7605 0.6451 0.5480 0.8296 0.7272 0.6327 0.0074 0.0017 0.0004 0.0138 0.0046 0.0019 

neighbourhood Type II 0.7833 0.6860 0.6004 0.8480 0.7611 0.6816 0.0069 0.0018 0.0005 0.0142 0.0050 0.0020 

Type III 0.7614 0.6503 0.5573 0.8363 0.7305 0.6347 0.0024 0.0003 0.0001 0.0050 0.0008 0.0002 

Type IV 0.8172 0.7336 0.6633 0.8756 0.8012 0.7294 0.0031 0.0006 0.0001 0.0057 0.0012 0.0002 

merge.strategy = ”original”

1st order Type I 0.7736 0.6698 0.5832 0.8406 0.7557 0.6699 0.0111 0.0037 0.0014 0.0179 0.0071 0.0029 

neighbourhood Type II 0.7992 0.7113 0.6354 0.8573 0.7859 0.7186 0.0099 0.0032 0.0010 0.0174 0.0072 0.0032 

Type III 0.7749 0.6707 0.5863 0.8447 0.7532 0.6699 0.0034 0.0006 0.0001 0.0063 0.0013 0.0003 

Type IV 0.8260 0.7461 0.6782 0.8798 0.8117 0.7462 0.0037 0.0008 0.0002 0.0064 0.0014 0.0003 

2nd order Type I 0.7688 0.6623 0.5753 0.8405 0.7533 0.6662 0.0109 0.0033 0.0011 0.0181 0.0070 0.0029 

neighbourhood Type II 0.7910 0.6994 0.6210 0.8546 0.7793 0.7080 0.0092 0.0027 0.0008 0.0172 0.0070 0.0031 

Type III 0.7717 0.6671 0.5824 0.8449 0.7501 0.6636 0.0027 0.0004 0.0001 0.0054 0.0010 0.0002 

Type IV 0.8245 0.7445 0.6775 0.8812 0.8124 0.7462 0.0033 0.0006 0.0001 0.0059 0.0012 0.0003 

9
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Fig. 3. Numerical simulation: computational time (in log10 scale) vs number of small areas for the Global model and our scalable modelling proposals. 

Fig. 4. Maps of posterior median estimates of relative risks r it (top) and posterior exceedence probabilities P(r it > 1 | O ) (bottom) for the 1st-order neighbourhood model 

considering a BYM2 conditional autoregressive prior for space, RW1 prior for time and Type IV interaction for the spatio-temporal effect. 

10 
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Table 5 

Lung cancer observed deaths, expected deaths and standardized mortality ratios (SMR) for the provincial capital municipalities during the period 

1991–2015. 

Municipality Obs. Exp. SMR Municipality Obs. Exp. SMR Municipality Obs. Exp. SMR 

Ávila 381 467.2 0.815 Salamanca 1568 1621.7 0.967 Alicante 2899 2634.2 1.101 

Segovia 443 533.4 0.831 Palencia 760 785.0 0.968 Barcelona 18161 16434.4 1.105 

Burgos 1335 1572.0 0.849 Girona 644 663.5 0.971 Almería 1491 1324.4 1.126 

Vitoria 1795 2053.5 0.874 Lugo 886 903.0 0.981 A Coruña 2693 2385.2 1.129 

Logroño 1098 1231.8 0.891 San Sebastián 1750 1781.0 0.983 Zaragoza 6875 6083.2 1.130 

Guadalajara 576 644.9 0.893 Madrid 28750 29048.5 0.990 Santander 2049 1786.6 1.147 

Cuenca 405 452.6 0.895 Valladolid 3034 3060.3 0.991 Sevilla 6605 5667.2 1.165 

Jaén 784 876.3 0.895 Tarragona 1063 1066.8 0.996 Valencia 8261 7046.9 1.172 

Soria 322 357.2 0.901 Pamplona 1837 1804.1 1.018 Ciudad Real 610 513.7 1.187 

Albacete 1103 1208.5 0.913 Murcia 3048 2982.6 1.022 Oviedo 2450 2026.9 1.209 

Ourense 1020 1104.3 0.924 Pontevedra 669 646.7 1.034 Málaga 5122 4213.2 1.216 

Zamora 618 668.4 0.925 Toledo 613 579.6 1.058 Cáceres 839 653.6 1.284 

Granada 1940 2094.7 0.926 Lérida 1164 1094.9 1.063 Huelva 1447 1089.6 1.328 

Teruel 298 318.0 0.937 Cordoba 2767 2591.8 1.068 Badajoz 1445 1055.5 1.369 

Huesca 449 472.7 0.950 Castellón 1427 1320.7 1.080 Cádiz 1637 1164.4 1.406 

León 1406 1455.5 0.966 Bilbao 4053 3702.6 1.095 

Table 6 

Model selection criteria and computational time (in minutes) for models fitted using the simplified Laplace approximation strategy of INLA 

and the ’’original’’ merging strategy. 

Model Interaction D (θ ) p D DIC WAIC T.run T.merge T.total 

Global Type I 144680 2984 147664 147696 663 - 663 

Type II - - - - - - - 

Type III 144467 2968 147435 147458 3846 - 3846 

Type IV - - - - - - - 

Disjoint Type I 143154 3999 147154 147161 10 6 16 

Type II 143175 3801 146976 147045 218 6 224 

Type III 143101 4015 147116 147161 22 6 27 

Type IV 143131 3753 146884 146965 259 6 264 

1st order Type I 143269 3824 147094 147112 14 8 22 

neighbourhood Type II 143255 3671 146926 146997 548 8 557 

Type III 143497 3562 147058 147123 34 8 42 

Type IV 143370 3458 146828 146910 636 8 644 

2nd order Type I 143500 3603 147103 147138 19 10 28 

neighbourhood Type II 143366 3566 146932 147009 1740 10 1750 

Type III 143731 3331 147062 147130 59 10 68 

Type IV 143523 3307 146830 146912 1879 10 1889 

D (θ ) : mean deviance, p D : effective number of parameters DIC: deviance information criterion, WAIC: Watanabe-Akaike information crite- 

rion T.run: running time, T.merge: merging time, T.total: running + merging time 
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A total of 378,720 lung cancer deaths (corresponding to Inter- 

ational Classification of Diseases-10 codes C33-C34) were regis- 

ered for the male population in the municipalities of continen- 

al Spain during the period 1991–2015 (that account for around 

6% of all malignant tumours for the target population during our 

tudy period), where the number of observed deaths per areal- 

ime unit varies from 0 to 1247 (with a mean value of 1.9). The 

umber of expected cases was computed using the indirect (in- 

ernal) standardization method with 5-year age groups as stan- 

ardization variable. The number of expected deaths per areal-time 

nit varies from 0 to 1332 (with a mean value of 1.9). A brief sum-

ary of the number of observed deaths, expected deaths and stan- 

ardized mortality ratios for the provincial capital municipalities 

uring the whole period is displayed in Table 5 . 

For the Disjoint and 1st/2nd-order neighbourhood models pre- 

ented in this section, we distributed the models over 7 machines 

ith Intel Xeon E5-2620 v4 processors and 256GB RAM on each 

achine (CentOS Linux release 7.3.1611 operative system), using 

he simplified Laplace approximation strategy in R-INLA (stable 

ersion INLA 22.05.07) of R-4.1.3 and simultaneously running 5 

odels in parallel on each machine using the bigDM package. 

gain, it was not possible to fit Type II and Type IV interaction 

lobal models using a single machine with the described charac- 

eristics. Results in terms of model selection criteria and computa- 

ional time are shown in Table 6 . For the scalable models only the

c

11 
esults regarding the ’’original’’ merging strategy are shown, 

ince the simulation study shows that this procedure outperforms 

he ’’mixture’’ strategy in terms of risk estimation accuracy 

nd high/low risk area detection. 

It can be seen that both DIC and WAIC model selection crite- 

ia support Type IV and Type II interaction effects, which precisely 

re those that cannot be fitted with the Global model. Besides 

he computational gain, the scalable model proposals are better 

upported by fit measures. In particular, 1st-order neighbourhood 

odels show slightly better performance. Maps with the posterior 

edian estimates of relative risks and posterior exceedence prob- 

bilities P (r it > 1 | O ) obtained with the 1st-order neighbourhood 

odel considering a Type IV interaction for the spatio-temporal 

andom effect are plotted in Fig. 4 . The estimated risk surfaces are 

onsistent with those described by [52] , where the geographical 

attern of lung cancer mortality data in Spain at municipality level 

as analyzed using spatial models. 

. Conclusions 

The use of spatial and spatio-temporal hierarchical models for 

egional data are crucial in areas such as cancer epidemiology, 

ince they allow one to obtain reliable incidence or mortality risk 

stimates of cancer in small areas, avoiding the huge variability of 

lassical risk estimation measures such as the standardized mor- 



E. Orozco-Acosta, A. Adin and M.D. Ugarte Computer Methods and Programs in Biomedicine 231 (2023) 107403 

t

v

h

c

t

t

b

p

v

c

d

a

t

c

“

s

m

f

t  

a

m

o

o

i

p

t

c

a

d

t

t

t

t

d

o

o

n

t

t

i

e

r

m

S

t

o

t

a

c

m

u

p

r

l

i

t

p

m

a

p

b

l

b

s

a

p

a

I

i

t

m

i

s

d

d

D

s

i

A

1

p

P

H

p

e

c

b

A

ality ratios or the crude rates. Research in this area has been 

ery fruitful in recent decades and numerous statistical models 

ave been proposed to study the geographic distribution of can- 

er and its evolution in time, as well as the underlying spatio- 

emporal patterns. However, the scalability of these models, i.e., 

heir use when the number of areas increases significantly, has not 

een studied in depth yet. For that reason, the pragmatic, sim- 

le, and useful methodology proposed in this paper aims to pro- 

ide alternative modelling approaches to disease mapping models 

ommonly used when analysing high-dimensional spatio-temporal 

ata. 

Despite the enormous expansion of modern computing power 

nd the development of new software and estimation techniques 

o make fully Bayesian inference, dealing with massive data is still 

omputationally challenging. Our proposal is based on the idea of 

divide-and-conquer” so that local spatio-temporal models can be 

imultaneously fitted. Adapting this idea to the context of disease 

apping is appropriate when the number of small areas is large 

or three main reasons: (1) it is a natural and simple strategy, (2) 

he larger the spatial domain is, the less likely it is that the data

re stationary across the whole map, and (3) it provides a scalable 

odelling scheme that substantially reduces the RAM/CPU mem- 

ry usage and computational time. 

Our simulation study indicates that the proposed methodol- 

gy provides reliable risk estimates with a substantial reduction 

n computational time. Futhermore, we observe that our model 

roposals perform better in detecting high/low risk areas, by ob- 

aining higher true positive and true negative rates than when 

onsidering the usual spatio-temporal CAR models, avoiding false 

larms. Regarding the merging strategy of the areas belonging to 

ifferent subdomains, we compare the use of mixture distributions 

o combine the posterior marginal density functions against using 

he posterior marginal estimate of the areal-unit corresponding to 

he original subdomain. Our simulation study shows that the lat- 

er strategy (denoted as the ’’original’’ merging strategy) re- 

uces computational time while providing better results in terms 

f risk estimation accuracy and true positive/negative rates. On the 

ther hand, in some cases it may not be sufficient to use first-order 

eighbours to avoid the boundary effect caused by the division of 

he whole study region into smaller subdomains. We have addi- 

ionally analyzed the advantages of our scalable model proposal 

n terms of computational complexity as the number of small ar- 

as increases. Our numerical simulation study shows a substantial 

eduction in computational time in comparison with the Global 

odels. Finally, lung cancer mortality data in the municipalities of 

pain during the period 1991–2015 have been analyzed to illus- 

rate the new model proposals, using the administrative division 

f continental Spain into 47 provinces to define the partition of 

he spatial domain. Doing so, we are able to fit a CAR model that 

ccounts for both spatial and temporal dependence by including 

ompletely structured space-time interaction random effects (com- 
Table A1 

Simulation study: average values of mean absolute relative bias (MARB

Score (IS) for the 1st/2nd-order neighbourhood models computed only

merge.strategy = “mixture”

Model Interaction MARB MRRMSE 

1st order Type I 0.0304 0.0430 

neighbourhood Type II 0.0264 0.0410 

Type III 0.0178 0.0369 

Type IV 0.0141 0.0322 

2nd order Type I 0.0323 0.0438 

neighbourhood Type II 0.0276 0.0422 

Type III 0.0181 0.0369 

Type IV 0.0141 0.0320 

12 
only denoted as Type IV interaction), which was computationally 

nfeasible to fit when considering non-scalable models. 

The methods and algorithms proposed in this work are im- 

lemented in the open-source R package bigDM ( https://cran. 

-project.org/web/packages/bigDM/index.html ). This package al- 

ows the user to adapt the modelling scheme to their own process- 

ng architecture by performing parallel and/or distributed compu- 

ation strategies to speed up computations by using the future 
ackage. Model fitting and inference is carried out using INLA 

ethodology through R-INLA , as is now a well-known Bayesian 

pproximation technique, computationally efficient and easy for 

ractitioners to handle. Very recently, promising research in a hy- 

rid approximate method that uses the Laplace method with a 

ow-rank Variational Bayes correction to the posterior mean has 

een released [53,54] . This new approximation technique has been 

hown to provide accurate results with computational efficiency 

nd scalability superior to the classic integrated nested Laplace ap- 

roximations. Recent versions of the bigDM package ( > = 0.5.1) 

re compatible with this new avenue for Bayesian inference with 

NLA by including the inla.mode = ‘‘compact’’ argument in 

ts main functions. For further details, see the reference manual of 

he package. 

Finally, we are currently working on extending our Bayesian 

odelling proposal to ecological regression models that take 

nto account the spatial and/or spatio-temporal confounding is- 

ues between fixed and random effects [55] , as well as to high- 

imensional multivariate disease mapping models in which several 

iseases are jointly analyzed [56] . 
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ppendix A 
), mean relative root mean square error (MRRMSE) and Interval 

 for the border areas . 

merge.strategy = “original”

IS MARB MRRMSE IS 

0.2733 0.0375 0.0471 0.2656 

0.2394 0.0318 0.0446 0.2305 

0.2759 0.0211 0.0389 0.2405 

0.2140 0.0154 0.0326 0.1906 

0.2734 0.0359 0.0454 0.2576 

0.2432 0.0298 0.0435 0.2287 

0.2715 0.0181 0.0356 0.2409 

0.2083 0.0138 0.0308 0.1900 

https://cran.r-project.org/web/packages/bigDM/index.html
https://doi.org/10.13039/501100007680
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Table A2 

Simulation study: average values of true and false positive rates for the reference threshold values of p 0 = 0 . 8 , 0 . 9 and 0 . 95 , based on 

posterior exceedence probabilities P(r it > 1 | O ) . Results for the 1st/2nd-order neighbourhood models computed only for the border 

areas . 

True Positive Rate 

merge.strategy = “mixture” merge.strategy = “original”

p 0 = 0 . 8 p 0 = 0 . 9 p 0 = 0 . 95 p 0 = 0 . 8 p 0 = 0 . 9 p 0 = 0 . 95 

1st order Type I 0.7598 0.6490 0.5494 0.7789 0.6848 0.6024 

neighbourhood Type II 0.7864 0.6939 0.6104 0.8051 0.7255 0.6549 

Type III 0.7609 0.6513 0.5545 0.7849 0.6901 0.6106 

Type IV 0.8122 0.7302 0.6599 0.8313 0.7591 0.6972 

2nd order Type I 0.7601 0.6459 0.5442 0.7745 0.6757 0.5916 

neighbourhood Type II 0.7840 0.6889 0.6023 0.7973 0.7121 0.6379 

Type III 0.7657 0.6583 0.5636 0.7836 0.6875 0.6071 

Type IV 0.8185 0.7384 0.6703 0.8312 0.7572 0.6950 

False Positive Rate 

merge.strategy = “mixture” merge.strategy = “original”

p 0 = 0 . 8 p 0 = 0 . 9 p 0 = 0 . 95 p 0 = 0 . 8 p 0 = 0 . 9 p 0 = 0 . 95 

1st order Type I 0.0054 0.0011 0.0002 0.0142 0.0052 0.0021 

neighbourhood Type II 0.0053 0.0012 0.0003 0.0119 0.0043 0.0015 

Type III 0.0021 0.0003 0.0000 0.0045 0.0009 0.0002 

Type IV 0.0027 0.0004 0.0001 0.0044 0.0009 0.0002 

2nd order Type I 0.0062 0.0013 0.0003 0.0125 0.0042 0.0016 

neighbourhood Type II 0.0060 0.0015 0.0004 0.0100 0.0031 0.0010 

Type III 0.0024 0.0004 0.0001 0.0029 0.0005 0.0001 

Type IV 0.0029 0.0005 0.0001 0.0031 0.0006 0.0001 

Table A3 

Simulation study: average values of true and false negative rates for the reference threshold values of p 0 = 0 . 8 , 0 . 9 and 0 . 95 , based on 

posterior exceedence probabilities P(r it < 1 | O ) . Results for the 1st/2nd-order neighbourhood models computed only for the border 

areas . 

True Negative Rate 

merge.strategy = “mixture” merge.strategy = “original”

p 0 = 0 . 8 p 0 = 0 . 9 p 0 = 0 . 95 p 0 = 0 . 8 p 0 = 0 . 9 p 0 = 0 . 95 

1st order Type I 0.8063 0.6923 0.5954 0.8291 0.7431 0.6580 

neighbourhood Type II 0.8337 0.7359 0.6523 0.8499 0.7768 0.7084 

Type III 0.8182 0.6983 0.5943 0.8367 0.7427 0.6576 

Type IV 0.8618 0.7774 0.6984 0.8753 0.8060 0.7405 

2nd order Type I 0.8139 0.7008 0.6030 0.8331 0.7470 0.6622 

neighbourhood Type II 0.8388 0.7424 0.6571 0.8507 0.7751 0.7043 

Type III 0.8293 0.7148 0.6109 0.8445 0.7494 0.6622 

Type IV 0.8725 0.7938 0.7178 0.8824 0.8137 0.7476 

False Negative Rate 

merge.strategy = “mixture” merge.strategy = “original”

p 0 = 0 . 8 p 0 = 0 . 9 p 0 = 0 . 95 p 0 = 0 . 8 p 0 = 0 . 9 p 0 = 0 . 95 

1st order Type I 0.0111 0.0029 0.0007 0.0225 0.0091 0.0036 

neighbourhood Type II 0.0108 0.0029 0.0007 0.0209 0.0091 0.0042 

Type III 0.0040 0.0005 0.0001 0.0084 0.0019 0.0004 

Type IV 0.0043 0.0007 0.0001 0.0073 0.0016 0.0004 

2nd order Type I 0.0124 0.0030 0.0007 0.0199 0.0071 0.0025 

neighbourhood Type II 0.0123 0.0032 0.0009 0.0176 0.0066 0.0027 

Type III 0.0047 0.0007 0.0001 0.0055 0.0010 0.0002 

Type IV 0.0052 0.0009 0.0002 0.0055 0.0011 0.0002 
13
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Fig. A1. Simulation study: true risk surfaces (top) and average values of posterior median estimates of relative risks for 2nd-order neighbourhood and Type IV interaction 

model using the ’’original’’ merging strategy (bottom) for some selected years. 
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