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From Restricted Equivalence Functions on Ln to
Similarity measures between fuzzy multisets
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Abstract—Restricted equivalence functions are well-known
functions to compare two numbers in the interval between 0
and 1. Despite the numerous works studying the properties of
restricted equivalence functions and their multiple applications
as support for different similarity measures, an extension of these
functions to an n-dimensional space is absent from the literature.
In this paper, we present a novel contribution to the restricted
equivalence function theory, allowing to compare multivalued
elements. Specifically, we extend the notion of restricted equiv-
alence functions from L to Ln and present a new similarity
construction on Ln. Our proposal is tested in the context of
color image anisotropic diffusion as an example of one of its
many applications.

Index Terms—Restricted equivalence function, fuzzy multiset,
similarity measure, Color image, Anisotropic diffusion.

I. INTRODUCTION

Comparison operators have been a matter of study in last
years [1], [2]. In fact comparison is one of the most basic
operations on data, toghether with equality and sorting, which
has boosted long effort on modeling those operators. In a
general manner, the research effort has often been tailored
to accomodate behaviours as close as possible to human
behaviour.

A large part of literature on comparison operators is devoted
to metrics, as well as to tighly related classes of operators
(as pseudometrics [3], and quasimetrics [4]), in which the
metric axioms are either imposed or even tightened, as it is
the case of ultrametrics [5]. However, it is unclear whether hu-
mans actually behave according to the triangle inequality [2].
Many different counterexamples can be found in specific
contexts [6]. For this reason, researchers have attempted to
build paradigms of comparison which are neither based nor
inspired by metrics. A sensible taxonomy is that by Tversky,
discriminating spatial and geommetrical strategies for data
comparison [1], in which metrics being listed within the spatial
ones. Still, some approaches in literature fit none of both
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strategies, a relevant example being some of the comparison
operators in the Fuzzy Set Theory.

Within the Fuzzy Set Theory, comparison has been tackled
in different manners. While a significant part of this effort
has been devoted to the idea of fuzzy metrics [7], [8], some
researchers have opted out by designing operators based on
different inspirations and axioms. One of the most relevant
ones is the Restricted Equivalence Functions (REFs), pre-
sented in [9] for the comparison of membership degrees in
[0, 1] by adapting the original axioms proposed by Fodor
and Roubens [10]. Since its introduction, the concept of
REF has been further adapted to compare non-scalar data.
Relevant examples are the Interval-valued REFs (IV-REFs),
designed to compare interval-valued membership degrees [11],
or the Radial REFs (RREFs), tailored to scalar data in radial
setups [12]. A critical need in the adaptation of REFs to
scenarios other than its original one relate to the modelling
of the monotonicity in data, which is critically used in the
axiomatic definition of REFs. Unlike metric-inspired com-
parison operators, REFs do not rely on triangle inequality.
Instead, they model similarity on the basis on data ordering.
While monotonicity and ordering is trivially modelled in
[0, 1], it is not straightforward in other scenarios, as interval-
valued or radial data. Hence, dedicated studies are devoted
to the understanding and modelling of monotonicity in such
scenarios in order to design context-specific REFs.

This work presents an adaptation of REFs to multivariate
data, which we denote as Ln. Specifically, we present the
idea of Ln-REFs, and develop a set of axioms these operators
must fulfill, with special focus on data ordering. Also, we
present construction methods for Ln-REFs able to accom-
modate different interpretations in multivariate ordering. Our
proposals are aligned with the classical taxonomy of orderings,
as described in the seminal work by Barnett [13]. Note that
imposing some order for multivariate data is necessarily an
arbitrary, context-dependent task, since there is no natural
order for multivariate data [13]. As a proof-of-concept, Ln-
REFs are put to the test in color comparison for anisotropic
diffusion. As long as color information is normally represented
as multivariate data (irrespective of the specific color space),
Ln-REFs can be used for color comparison in image process-
ing tasks.

The remainder of this paper is organized as follows. Sec-
tion II recaps some basic mathematical notions that would be
used throughout the rest of the paper. Section III introduces
the extension of REFs on Ln. Section IV tackles the con-
struction of a similarity measures between fuzzy multisets,
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while Section VI presents an application of these operators to
content-aware smoothing in color images. Finally, Section VII
presents the conclusions of the paper.

II. PRELIMINARIES

This section collects the mathematical definitions applied
in upcoming sections.

In this paper we consider the lattice (L,≤) where L = [0, 1]
and ≤ is the natural order on real numbers. We refer to the
elements in Ln with capital letters, that is X = (x1, . . . , xn) ∈
Ln. There is a partial order ≤P induced by ≤, given as
follows: X ≤P Y iff xi ≤ yi for all i ∈ {1, . . . , n}. The
definition of i is the same throughout the text for short;
otherwise, it will be explicitly redefined for some exceptions
if required.

We denote 0 = (0, . . . , 0) ∈ Ln and 1 = (1, . . . , 1) ∈ Ln.

Definition II.1. [14]–[16] A function G : Ln → L is
called a n-ary aggregation function if it satisfies the following
properties:
(G1) G(0) = 0
(G2) G(1) = 1
(G3) G is increasing in each variable.

Some properties that are later used and that can be fulfilled
by the aggregation functions are the following:
(Giff1) G(x1, . . . , xn) = 0 iff x1 = . . . = xn = 0.
(Giff2) G(x1, . . . , xn) = 1 iff x1 = . . . = xn = 1.

An example of aggregation function is a n-ary Weighted
Arithmetic Mean (WAM) on L with normalized weights
w1, . . . , wn ∈ L. Given X = (x1, . . . , xn), a WAM is a
mapping ω : Ln → L defined by ω(X) = w1x1+ . . .+wnxn

where w1 + . . .+ wn = 1.

Definition II.2. An automorphism is a continuous, strictly
increasing function φ : L → L, such that φ(0) = 0 and
φ(1) = 1. Moreover, the identity on L is denoted by Id.

Definition II.3. [9] A function R : L× L → L is called a
Restricted Equivalence Function (REF), if it satisfies:
(R1) R(x, y) = 1 iff x = y.
(R2) R(x, y) = 0 iff {x, y} = {0, 1}.
(R3) R(x, y) = R(y, x) for all x, y ∈ L.
(R4) If x ≤ y ≤ z, then R(x, y) ≤ R(x, z) and R(x, z) ≤

R(y, z) for all x, y, z ∈ L.

In [17], a construction method for REFs in terms of
automorphisms is introduced.

Proposition II.4. [17] If φ1, φ2 are two automorphisms of
L, then the function R : L× L → L defined by

R(x, y) = φ−1
1 (1− |φ2(x)− φ2(y)|) ,

is a REF.

Definition II.5. A function f : (Ln)m → Ln is called
representable if there exist functions f1, . . . , fn : Lm → L
such that

f(X1, . . . , Xm) = (f1(x11, . . . , xm1), . . . , fn(x1n, . . . , xmn)) ,
(1)

for all X1, . . . , Xm ∈ Ln with Xi = (xi1, . . . , xin) for all
i ∈ {1, . . . ,m}.

Definition II.6. Let U be a non-empty universe, then a fuzzy
set on U is a function A : U → L. The set of all fuzzy sets on
U is denoted by F (U).

Definition II.7. Let U be a non-empty universe, then a fuzzy
multiset on U is a function A : U → Ln. The set of all fuzzy
multisets on U is denoted by LF (U). For each u ∈ U , we
denote A(u) = (A(u)1, . . . ,A(u)n).

We consider the partial order (inclusion) on LF (U) for all
A,B ∈ LF (U) given by A ⊆ B iff A(u) ≤P B(u) for all
u ∈ U .

Throughout this work, different f : (Ln)m → Ln (as
presented in Def. II.5) can be applied to a point Xi =
(xi1, . . . , xin) ∈ Ln, that is, f(X1, . . . , Xm). Furthermore,
in this work some f functions are constructed with different
WAMs for m = n; in these cases the function f takes the
form

f(X1, . . . , Xn) = (w1(X), . . . , wn(X)) ,

which can be rewritten as a lineal transformation of a point
X ∈ Ln to another point X ′ ∈ Ln by action of a matrix
multiplication as

(f(X1, . . . , Xn))
T =w1(X)

...
wn(X)

 =

w11x1 + · · ·+ w1nxn

...
...

...
wn1x1 + · · ·+ wnnxn

 =

w11 · · · w1n

...
...

wn1 · · · wnn


x1

...
xn

 = WXT = X ′T , (2)

where the i-th row of the matrix W is composed of the weights
of the i-th WAM ωi. This form of representation allows us
to treat many future operations as simple algebraic linear
operations.

III. RESTRICTED EQUIVALENCE FUNCTIONS ON Ln

This section introduces the extension of REFs on Ln

allowing to compare multivalued objects. Depending on how
opposite multivalued objects are defined, two different classes
of REFs are presented: type 1 (Section III-A) and type 2
(Section III-B). Then, we study the combination of both types
of REFs (Section III-C).

A. Restricted equivalence function on Ln of type 1

If we only consider the elements 0 and 1 as opposite,
leading to the minimum similarity value, a REF on Ln of
type 1, RL1

, is defined as follows.

Definition III.1. Let n be a positive integer. A function RL1 :
Ln×Ln → Ln is called a REF on Ln of type 1, if it satisfies
the following properties:
(RL11) RL1(X,Y ) = 1 iff X = Y .
(RL21) RL1

(X,Y ) = 0 iff {X,Y } = {0, 1}.
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(RL31) RL1
(X,Y ) = RL1

(Y,X) for all X,Y ∈ Ln.
(RL41) If X ≤P Y ≤P Z, then RL1

(X,Z) ≤P RL1
(X,Y )

and RL1
(X,Z) ≤P RL1

(Y,Z) for all X,Y, Z ∈ Ln.

Next we present a construction method for REF on Ln of
type 1 according to Def. III.1.

Theorem III.2. Let n be a positive integer and ωi :
Ln → L be n-ary WAMs with normalized weighting vectors
(wi1, . . . , win) such that the vectors are linearly independent
and there exists k ∈ {1, . . . , n} with wkj ̸= 0 for all
j ∈ {1, . . . , n}. Let R = (R1, . . . , Rn) be a sequence of REFs
on L. Then a function RL1 : Ln × Ln → Ln given by

RL1(X,Y ) = (R1(ω1(X), ω1(Y )), . . . , Rn(ωn(X), ωn(Y )))
(3)

is a REF on Ln of type 1 for all X,Y ∈ Ln.

Proof. (RL11) Sufficiency follows from Eq. (3). With respect
to necessity, let RL1

(X,Y ) = 1; then,

Ri (ωi(X), ωi(Y )) = 1, for all i ∈ {1, . . . , n} (4)

By (R1), Eq. (4) is satisfied iff ωi(X) = ωi(Y ), for all
i ∈ {1, . . . , n} which implies X = Y , by the linearity of
the weighting vectors.

(RL21) Again, we only prove necessity. Let RL1(X,Y ) =
0; then we have

Ri (ωi(X), ωi(Y )) = 0, for all i ∈ {1, . . . , n} (5)

By (R2), Eq. (5) is satisfied iff {ωi(X), ωi(Y )} = {0, 1}.
Since there exists k such that wkj ̸= 0 for all j ∈ {1, . . . , n},
and so it follows that ωk satisfies (Giff1) and (Giff2), it follows
that {X,Y } = {0, 1}.

(RL31) The proof is straightforward.
(RL41) From xi ≤ yi ≤ zi we have ωj(X) ≤ ωj(Y ) ≤

ωj(Z) for all j and, consequently, Rj(ωj(X), ωj(Z)) ≤
Rj(ωj(X), ωj(Y )), from which it follows that RL1

(X,Z) ≤
RL1

(X,Y ). The proof for RL1
(X,Z) ≤P RL1

(Y,Z) is
similar.

We introduce a construction method for REF on Ln of type
1 rewriting the REFs (R1, . . . , Rn) in Theorem III.2 in terms
of automorphisms.

Corollary III.3. Under the assumptions of Thm. III.2, let φij

for i ∈ {1, . . . , n} and j ∈ {1, 2}, be automorphisms of L.
Then a function RL1

: Ln × Ln → Ln given by

RL1(X,Y ) =
(
φ−1
11 (1− |φ12(ω1(X))− φ12(ω1(Y ))|),

. . . , φ−1
n1 (1− |φn2(ωn(X))− φn2(ωn(Y ))|)

)
, (6)

is a REF on Ln of type 1, for all X,Y ∈ Ln.

Note that it is possible to rewrite this expression in terms
of Eq. (2) if all ωi are WAMs such that

RL1(X,Y ) = R
(
(WXT )T , (WY T )T

)
, (7)

where the matrix W is composed of the weights of the ωi

WAMs and R is a sequence of REFs on L.

B. Restricted equivalence function on Ln of type 2

Instead considering the elements 0 and 1 as opposite, but
any complementary pair of crisp elements, leading to the
minimum similarity value, a REF on Ln of type 2 is defined
as follows.

Definition III.4. Let n be a positive integer. A function RL2
:

Ln×Ln → Ln is called a REF on Ln of type 2, if it satisfies
the following properties:
(RL12) RL2

(X,Y ) = 1 iff X = Y .
(RL22) RL2(X,Y ) = 0 iff {xi, yi} = {0, 1}.
(RL32) RL2(X,Y ) = RL2(Y,X) for all X =

(x1, . . . , xn), Y = (y1, . . . , yn) ∈ Ln.
(RL42) If min(xi, zi) ≤ yi ≤ max(xi, zi), then

RL2(X,Z) ≤P RL2(X,Y ) and RL2(X,Z) ≤P

RL2
(Y, Z) for all X = (xi, . . . , xn), Y =

(yi, . . . , yn), Z = (zi, . . . , zn) ∈ Ln.

Next we present a construction method for REF on Ln of
type 2 according to Def. III.4.

Theorem III.5. Let n be a positive integer and ωi :
Ln → L be n-ary WAMs with normalized weighting vectors
(wi1, . . . , win) such that the vectors are linearly independent
and there exists k ∈ {1, . . . , n} with wkj ̸= 0 for all
j ∈ {1, . . . , n}. Let R = (R1, . . . , Rn) be a sequence of REFs
on L. Then a function RL1

: Ln × Ln → Ln given by

RL2
(X,Y ) = (ω1 (R1(x1, y1), . . . , R1(xn, yn)) ,

. . . , ωn (Rn(x1, y1), . . . , Rn(xn, yn))) , (8)

is a REF on Ln of type 2, for all X,Y ∈ Ln.

Proof. (RL12) Sufficiency follows from Eq. (8). With respect
to necessity, let RL2(X,Y ) = 1; then,

ωi (Ri(x1, y1), . . . , Ri(xn, yn)) = 1, for all i ∈ {1, . . . , n}

Since there exists k such that wkj ̸= 0 for all j∈ {1, . . . , n},
it follows that ωk satisfies (Giff2), thus Rk(x1, y1) = . . . =
Rk(xn, yn) = 1 from which it follows that X = Y .

(RL22) Again, we only prove necessity. Let RL1
(X,Y ) =

0; then,

ωi (Ri(x1, y1), . . . , Ri(xn, yn)) = 0, for all i ∈ {1, . . . , n}.

Since there exits k ∈ {1, . . . , n} such that wkj ̸=0 for all
j ∈ {1, . . . , n}, it follows that ωk satisfies (Giff1), hence
Rk(x1, y1) = . . . = Rk(xn, yn) = 0 and consequently
{x1, y1} = . . . = {xn, yn} = {0, 1}.

(RL32) The proof is straightforward.
(RL42) Let min(xi, zi) ≤ yi ≤ max(xi, zi)

for all i. Then Ri(xj , zj) ≤ Ri(xj , yj) for
all i, j, hence ω (Ri(x1, z1), . . . , Ri(xn, zn)) ≤
ω (Ri(x1, y1), . . . , Ri(xn, yn)) and consequently
RL2(X,Z) ≤ RL2(X,Y ). The proof for RL2(X,Z) ≤P

RL2(Y,Z) is similar.

We introduce a construction method for REFs on Ln of
type 2 rewriting REFs (R1, . . . , Rn) in Thm. III.5 in terms of
automorphisms.
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Note that it is possible to rewrite this expression in terms
of Eq. (2) if all ωi are WAMs such that

RL2
(X,Y ) =

(
W (R(X,Y ))T

)T
, (9)

where the matrix W is composed of the weights of the ωi

WAMs and R is a sequence of REFs on L.

Corollary III.6. Under the assumptions of Thm. III.5, let φij

for i ∈ {1, . . . , n} and j ∈ {1, 2}, be automorphisms of L.
Then a function RL2

: Ln × Ln → Ln given by

RL2
(X,Y ) =

(
ω1(φ

−1
11 (1− |φ12(x1)− φ12(y1)|),

. . . , φ−1
11 (1− |φ12(xn)− φ12(yn)|)

)
,

. . . , ωn

(
φ−1
n1 (1− |φn2(x1)− φn2(y1)|),

. . . , φ−1
n1 (1− |φn2(xn)− φn2(yn)|))

)
, (10)

is a REF on Ln of type 2, for all X,Y ∈ Ln.

C. Convex combination between REFs

From the definitions of REF on Ln of type 1 and 2
(Defs. III.1 and III.4), the question naturally arises of what
type of function would be obtained from the convex combi-
nation of both similarity measures.

As proved by the following theorem, any convex combina-
tion of the two different types of REFs is again a REF on Ln

of type 1. This statement provides a new construction method
for REFs on Ln of type 1.

Theorem III.7. Let RL1
: Ln × Ln → be a REF on Ln of

type 1 and RL2
: Ln × Ln → be a REF on Ln of type 2.

Then the convex combination αRL1
+ (1 − α)RL2

, for any
α ∈]0, 1], is a REF on Ln of type 1.

Proof. (RL11) and (RL31) are immediate since
(RL11)=(RL12) and (RL31)=(RL32).

(RL21) Sufficiency directly follows from the fact that
{X,Y } = {0, 1} implies {xi, yi} = {0, 1} for each i.
With respect to necessity, let αRL1 + (1 − α)RL2 = 0 for
some α ∈]0, 1[; then RL1

= 0 and RL2
= 0. Implications

of RL1
= 0 are more restrictive than the implications of

RL2
= 0. Therefore, from αRL1

+(1−α)RL2
= 0 it follows

{X,Y } = {0, 1}. The case of α = 1 is immediate.
(RL41) Let X ≤P Y ≤P Z, then min(xi, zi) ≤ yi ≤

max(xi, zi) for all i ∈ {1, . . . , n}.

IV. SIMILARITY MEASURE BETWEEN FUZZY MULTISETS

In this section we tackle the construction of a similarity
measure between fuzzy multisets. We first introduce aggrega-
tion functions on Ln (Section IV-A) to support the similarity
measure construction presented at the end (Section IV-B).

A. Aggregation functions on Ln

Aggregating multiples values is an indispensable tool in
each discipline based on data processing [18]. Aggregation
functions [19]–[21] are usually applied to obtain the most
representative and significant information from large amounts
of data, for example, in the field of statistics or data science.

Generally, aggregation functions are defined on L [22],
obtaining as a result one single value. In this work, we define
an aggregation function and a construction method for it on
Ln as follows.

Definition IV.1. Let m be a positive integer. A function GL :
(Ln)m → Ln is called an m-ary aggregation function on Ln

if it satisfies the following properties:
(GL1) GL(0, . . . , 0) = 0.
(GL2) GL(1, . . . , 1) = 1
(GL3) GL is increasing in each variable.

A construction method for aggregation functions on Ln is
given in the following theorem.

Theorem IV.2. Let m be a positive integer and let
ω1, . . . , ωn : Ln → L be n-ary WAMs. Let G = (G1, . . . , Gn)
be a sequence of m-ary aggregation functions on L. Then a
function GL : (Ln)m → Ln given by

GL(X1, . . . , Xm) =

(G1(ω1(X1), . . . , ω1(Xm)),

. . . , Gn(ωn(X1), . . . , ωn(Xm))) (11)

is an m-ary aggregation function on Ln for all X1, . . . , Xm ∈
Ln.

Proof. Properties (A1)-(A3) directly follow from Eq. (11)
and the fact that G1, . . . , Gn and ω1, . . . , ωn are aggregation
functions.

Proposition IV.3. Under the assumption of Theorem. IV.2, let
ωi(X) = 0 iff X = 0 and let there exists j ∈ {1, . . . , n} such
that ωj(X) = 1 iff X = 1. Then it holds:

(i) If Gi satisfies (Giff1) for all i, then it holds that
GL(X1, . . . , Xm) = 0 iff X1 = . . . = Xm = 0.

(ii) If Gi satisfies (Giff2) for all i, then it holds that
GL(X1, . . . , Xm) = 1 iff X1 = . . . = Xm = 1.

Proof. (i) Let GL(X1, . . . , Xm) = 0. Then, we have
Gi(ωi(X1), . . . , ωi(Xm)) = 0 thus, for all j, ωi(Xj) = 0
and consequently X1 = . . . = Xm = 0.

(ii) The proof is similar to that of item (i).

B. Similarity measure construction

In this paper we introduce a similarity measure between
fuzzy multisets. Similarity measures have been deeply studied
in the literature in a wide variety of applications [23]–[25].
Due to the diversity of elements to compare (e.g. images [26],
sets [27] or concepts [28]), different axioms or properties may
be required in the similarity measure construction.

In the case of punctual elements, Bustince et al. [17]
considered the following axioms (Definition IV.4) taking into
account the concept of similarity measure for fuzzy sets
given by Xuecheng [29] also usually required in multivalued
elements comparison (for example in image processing appli-
cations) [30]–[33].

Definition IV.4. A similarity measure between fuzzy sets is a
mapping S : F (U)× F (U) → L such that:
(S1) S(A,B) = S(B,A) for all A,B ∈ F (U).
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(S2) S(A,B) = 0 if and only if {A(u),B(u)} = {0, 1} for
all u ∈ U .

(S3) S(A,B) = 1 if and only if A(u) = B(u) for all u ∈ U .
(S4) For all A,B,C ∈ F (U) such that A ≤ B ≤ C it holds

S(A,C) ≤ S(A,B) and S(C,A) ≤ S(C,B).

There are several ways to construct Similarity measures as
introduced in Definition IV.4, such as the following, based on
REFs.

Proposition IV.5. Let R : L×L → L be a REF and G : Ln →
L an aggregation function satisfying (Giff1) and (Giff2). The
function S : F (U)× F (U) → L given by

S(A,B) = G(R(A(u1),B(u1)), . . . , R(A(un),B(un)))
(12)

is a similarity measure between fuzzy sets.

Extending this work, we define a similarity measure as
follows.

Remark 1. We formulate two types of axioms according to
the different ways of understanding complementarity in the
settings of n-tuples. This is in line with the different axioms
(RL21) and (RL22) in the definitions of REFs on Ln of
type 1 and 2, as well as with respect to the antecedents in
axioms (RL41) and (RL42), being (RL41) more restrictive
in comparison with (RL42) as well as occurring in axiom
(RL21) comparing with (RL22). These considerations allow to
introduce two different types of similarity measures between
fuzzy multisets.

Definition IV.6. Let U be a non-empty set. A function SL1
:

LF (U)×LF (U) → Ln is called a similarity measure between
two fuzzy multisets of type 1, if it satisfies the following axioms
according to the definition of REF on Ln of type 1:
(SL11) SL1

(A,B) = 1 iff A = B.
(SL21) SL1(A,B) = 0 iff A and B are {A(u),B(u)} =

{0, 1}, for all u ∈ U .
(SL31) SL1

(A,B) = SL1
(B,A) for all A and B ∈ LF (U).

(SL41) If A ⊆ B ⊆ C ⊆ D for all A,B, C,D ∈ LF (U), then
SL1

(A,D) ≤P SL1
(B, C).

Definition IV.7. Let U be a non-empty set. A function SL2
:

LF (U)×LF (U) → Ln is called a similarity measure between
two fuzzy multisets of type 2, if it satisfies the following axioms
according to the definition of REF on Ln of type 2:
(SL12) SL2

(A,B) = 1 iff A = B.
(SL22) SL2(A,B) = 0 iff A(u) ∈ {0, 1}n and B(u) = 1 −

A(u) for all u ∈ U (A and B are complementary
crisp sets).

(SL32) SL2(A,B) = SL2(B,A) for all A and B ∈ LF (U).
(SL42) If min(A(u)i,D(u)i) ≤ B(u)i and

max(A(u)i,D(u)i) ≥ C(u)i, for all u ∈ U
and for all A,B, C,D ∈ LF (U), then
SL2(A,D) ≤P SL2(B, C) (where A(u)i denotes the
ith coordinates of a n-tuple A(u)).

Next, we introduce a construction method for similarity
measures between fuzzy multisets based on the aggregation
of REFs on Ln. We also prove that we obtain a similarity

measure of type 1 when aggregating REFs on Ln of type 1
and a similarity measure of type 2 when aggregating REFs on
Ln of type 2.

Theorem IV.8. Let m be a positive integer and U =
{u1, . . . , um}. Let RL1 : Ln × Ln → Ln be a REF on Ln of
type 1 and RL2

: Ln × Ln → Ln be a REF on Ln of type
2. Let GL : (Ln)m → Ln be an m-ary aggregation on Ln

such that, for all X1, . . . , Xm ∈ Ln, GL(X1, . . . , Xm) = 0
implies X1 = . . . = Xm = 0 and GL(X1, . . . , Xm) = 1
implies X1 = . . . = Xm = 1. Then it holds:

(i) SL1 : LF (U)× LF (U) → Ln given by

SL1
(A,B) = GL (RL1

(A(u1),B(u1)), . . . ,

RL1
(A(um),B(um))) , (13)

is a similarity measure between fuzzy multisets of type 1.
(ii) SL2 : LF (U)× LF (U) → Ln given by

SL2
(A,B) = GL (RL2

(A(u1),B(u1)), . . . ,

RL2
(A(um),B(um))) , (14)

is a similarity measure between fuzzy multisets of type 2.

Proof. (i) (SM11), (SM21), (SM31) and (SM41) follow from
Eq. (13), the assumptions on GL and (RL11), (RL21), (RL31)
and (RL41) respectively.

(ii) The proof is similar to that of item (i).

Considering the construction of REFs on Ln of type 1 and
2 (Thm. III.2 and Thm. III.5 respectively) and the aggregation
functions on Ln (Thm. IV.2), we obtain a construction method
for similarity measures of type 1 and type 2 on LF (U)
respectively.

Remark 2. By Eqs. 13 and 14 we obtain a wide class of
similarity measures of type 1 and 2 on LF (U). For both we
follow the next procedure:

• Choose n-ary WAMs ωi : L
n → L, such that the vectors

are linearly independent and there exists k ∈ {1, . . . , n}
with wkj ̸= 0 for all j ∈ {1, . . . , n}.

• Choose a sequence R = (R1, . . . , Rn) of REFs on L and
construct:

(i) REF on Ln of type 1 given by Eq. (3), if the goal is
to construct a similarity measure of type 1.

(ii) REF on Ln of type 2 given by Eq. (8), if the goal is
to construct a similarity measure of type 2.

• Choose a sequence G = (G1, . . . , Gn) of m-ary ag-
gregation functions on L such that Gi satisfies (Giff1)
and (Giff2) for all {1, . . . , n}. Construct the m-ary
aggregation function GL on Ln given by Eq. (11).
Some examples of aggregation functions Gi satisfying the
above assumptions are the arithmetic mean, a WAM with
nonzero weights or the Choquet integral [34] with respect
to a fuzzy measure µ on {1, . . . ,m}, satisfying µ(A) = 0
iff A = ∅ and µ(A) = 1 iff A = {1, . . . ,m}.

Two examples of the application of similarity measures
between fuzzy multisets in images are presented below.
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Fig. 1: Comparison between two images using similarity
measure between multisets. A and B represent 3x3 pixel
images, which have been amplified for visualization ease.

Example IV.9. We have the following matrices A and B:

A =

(0, 0, 0) (0, 0, 1) (0, 1, 0)
(0, 1, 1) (1, 0, 0) (1, 0, 1)
(1, 1, 0) (1, 1, 1) (0, 0, 0)

 (15)

B =

(1, 1, 1) (1, 1, 0) (1, 0, 1)
(1, 0, 0) (0, 1, 1) (0, 1, 0)
(0, 0, 1) (0, 0, 0) (0, 0, 0)

 (16)

These A,B matrices can be considered as multisets where
each of the elements are degrees of membership of fuzzy
multisets:

A = {(u1, (0, 0, 0), . . . , (u9, (0, 0, 0)}
B = {(u1, (1, 1, 1), . . . , (u9, (0, 0, 0)}

In this sense, these multisets are shown as images (Fig. 1).
Notice that 8 out of 9 values of both A and B represent
complementary colours, while the remaining element is equal.
That is, 8 out of 9 elements are crisp complementary fuzzy
multisets, while the remaining one is equal. In order to
compare the images, we apply the Restricted Equivalence
Functions on Ln pixel-wise, i.e., REFs on L3. Then, the values
obtained by comparing each pixel are fused with a function
GL : (L3)m → L3.
Taking into account the Remark 2, we first choose 3 3-ary
WAMs. The matrix W representing the linearly independent
vectors is the following.

W =

0.8 0.1 0.1
0.1 0.8 0.1
0.1 0.1 0.8

 (17)

We choose a sequence R = (R1, R2, R3) of REFs on L, where
Ri(x, y) = 1−|x−y|, for all i ∈ {1, 2, 3} and we construct a
REF on Ln of type 1 given by Eq. (3) to construct a similarity
measure of type 1 given by Eq. (13) and a REF on Ln of type
2 given by Eq. (8) to construct a similarity measure of type 2
given by Eq. (14).

Finally, we choose a sequence G = (G1, G2, G3)
of m-ary aggregation functions where Gi(x1, . . . , xm) =
1
m

∑m
k=1 xk for all i ∈ {1, 2, 3} in order to con-

struct an m-ary aggregation function GL on L3. Given
X1, . . . , Xm ∈ L3 where Xi = (xi1, xi2, xi3) for all
i ∈ {1, . . . ,m}, we use the expression GL(X1, . . . , Xm) =
(G1(x11, . . . , xm1), G2(x12, . . . , xm2), G3(x13, . . . , xm3)).

The images representing the values obtained in the appli-
cation of the restricted equivalence functions on L3 of type 1
and type 2, are shown in Fig. 1. In the following, the similarity
between these multisets is calculated by the application of GL

to the values obtained by using RL1
and RL2

, which is also
shown in Fig. 1.

SL1
(A,B) =

(
13

45
,
13

45
,
13

45

)
, SL2

(A,B) =
(
1

9
,
1

9
,
1

9

)
As previously introduced, by definition, RL1

(X,Y ) = 0 iff
{X,Y } = {0, 1} and RL2

(X,Y ) = 0 iff {xi, yi} = {0, 1}.
This difference in the axiomatisation of each of the definitions
can be clearly seen by comparing the two results of this
example. When we use a REF on Ln of type 1 in the
comparison of complementary colours, this function is only
0 (black) when we compare white (1) versus black (0). On
the other hand, when we use a REF on Ln of type 2, all
comparisons between complementary colours are worth 0
(black), such as the comparison between red (1, 0, 0) and cyan
(0, 1, 1). As can be seen, this has an impact on the value of
each type of similarity measure between multisets.

Example IV.10. In this case, we compare a noisy version of
that same image (Fig. 2). Applying the two types of REFs
on L3 we obtain the results shown in Fig. 2. The different
similarity measures between multisets are the following:

SL1
(A,B) = (0.5340, 0.7668, 0.5332)

SL2
(A,B) = (0.5008, 0.8334, 0.4997)

The image represented by the multiset B is noisy with a filter
with a magenta-dominated component ((1, 0, 1)). As we can
see, in both types of similarity measurement between both im-
ages the green channel ((0, 1, 0)), which is the complementary
colour to magenta, predominates.

V. ANISOTROPIC DIFFUSION BASED ON Ln-REFS

In this work, we intend to test whether the different
parameterizations of Ln-REFs actually lead to variable results
when incorporated into an already existing data-processing
procedure. That is, whether the flexibility in Ln-REFs can
be used to optimize the results in a data comparison-based
procedure. In order to do so, we have selected as case of
study the Perona-Malik Anisotropic diffusion (PMAD) model,
a well-known image processing algorithm for content-aware
smoothing. As most content-aware the smoothing strategies,
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Fig. 2: Comparison between two images using similarity mea-
sure between multisets. An image is compared with a noisy
version of itself. Both similarity measures return a ”green”
result as comparison, which indicates that the added noise has
a predominant magenta component (green and magenta are
complementary colours).

the PMAD model relies on semi-local data comparison to
estimate the need for smoothing around each pixel of the
image. Hence, its application to color images requires the
design or selection of comparison operators for multivalued
(color) data.

In section V-A, with first introduce the PMAD model, as
it was initially designed for monochromatic images. Then,
Section V-B present an evolution of the classical PMAD model
to color images using Ln-REFs.

A. Perona-Malik anisotropic diffusion

Image smoothing and regularization is a frequent task in
different computer vision processes. It originally intended to
produce a regularized version of the image to avoid problems
due to noise and signal contamination. However, it soon be-
came clear that such signal regularization had negative effects,
mainly the blurring of object boundaries and the disappearance
of small objects [35]. Hence, a large effort was devoted to
regularization schemes able to regularize the image within
objects, while avoiding the regularization at their boundaries.
Such efforts rendered in the so-called content-aware smoothing
techniques, examples being Bilateral Filtering [36] and Mean
Shift regularization [37].

The PMAD model is a content-aware smoothing technique
that, inspired by heat diffusion processes, is able to produce
non-isotropic smoothing on an image [38]. This technique has
been deeply studied in the literature [39], as well as evolved to
more intricate models. Evolved models normally tackle either
the construction of scale-spaces in the diffusion process [40],
[41] or the use of more elaborate information in the diffusion

process (see, e.g., the seminal work by Weickert [35]). In this
work, we stick to the original definition in [38].

Let I : Ω 7→ R+ be an image. In the PMAD model,
each pixel is understood to be a body with as an amount of
heat equal to its grayscale tone. In order to simulate the heat
diffusion across the image, by Fick’s equation, certain flux ϕ
in a given image I is modelled as

ϕ = −D∇I , (18)

where D is a symmetric, positive definite matrix and ∇I is
the local conductivity of I . At time t, assuming that image I
does not present heat loss, we have

δtI = −divϕ , (19)

where div is the divergence operator. From the above equa-
tions, we can state that

δtI = div(D∇I) . (20)

Perona and Malik defined an smoothing process over dis-
crete time t in an image, based on the idea that

δtI = div(g(|∇I|2)∇I) , (21)

where g is a decreasing function that modulates the amount of
heat transfer, which depends of the gradient magnitude. Perona
and Malik developed a scalar approximation of Eq. (21), in
order to avoid vectorial expressions and to adapt it to discrete
scenarios as images. Vectorial expressions can indeed be found
in, for example, [35]. According to Perona and Malik, the
image I evolves in time as

I
[t+1]
i,j = I

[t]
i,j+λ(zN ·ΨNI

[t]
i,j+zW ·ΨW I

[t]
i,j+zE ·ΨEI

[t]
i,j+zS ·ΨSI

[t]
i,j) ,

(22)
where λ ∈]0, 0.25] and Ψγ in each one of the four directions
is given by

ΨNIi,j = Ii−1,j − Ii,j

ΨW Ii,j = Ii,j−1 − Ii,j

ΨEIi,j = Ii,j+1 − Ii,j

ΨSIi,j = Ii+1,j − Ii,j .

(23)

The coefficient zγ is a conductivity coefficient that represents
the amount of diffusion between each pixel and its environ-
ment, given by

zγ = g (|ΨγIi,|) , (24)

where g, as stated before, is a decreasing conductivity function
and γ represents each one of the four different directions. The
authors in [38] propose as two different conductivity functions,

g1(x) = e−(
x
K )

2

, (25)

and

g2(x) =
1

1 +
( x

K

)2 , (26)

where K is a threshold that limits the diffusion when
|ΨγIi,j | > K.
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B. Extending the PMAD model to color images

In this work, we present a generalization of the Perona and
Malik anisotropic diffusion method [38] for color images. A
previous generalization was presented in [42] for grayscale
images using Restricted Dissimilarity Functions (RDF) [43],
following a similar strategy to the one in this work.

Any content-aware smoothing technique requires some un-
derstanding of the local and semilocal information at each
pixel or region of an image. It is precisely such understanding
what determines how smoothing is locally performed. In the
case of the PMAD model, this comes down to pixel-to-pixel
comparison. Specifically, in the quantitative comparison of
each pixel with its four-point neighbours. In [42], the scalar
differences in Eq. (23) were replaced by RDFs. However, color
representation requires a multivalued representation of the in-
formation at each pixel. Regardless of the color representation
chosen for the image (RGB, CieLAB, HSV,...), it will render
in a multivalued representation of color. Hence, in order to
apply the PMAD model in color images, it is required to find
a dissimilarity measure for multivalued elements. In this case,
and benefiting from the fact that REFs take values in [0, 1], we
will create dissimilarity measures from Ln-REFs by inverting
its results.

An evolution of the PMAD model able to cope with
multichannel (color) images can be achieved by replacing
Eq. (23) by:

ΨNIi,j = sign(Ii−1,j − Ii,j) · (1−RL1
(Ii−1,j , Ii,j))

ΨW Ii,j = sign(Ii,j−1 − Ii,j) · (1−RL1
(Ii,j−1, Ii,j))

ΨEIi,j = sign(Ii,j+1 − Ii,j) · (1−RL1
(Ii,j+1, Ii,j))

ΨSIi,j = sign(Ii+1,j − Ii,j) · (1−RL1
(Ii+1,j , Ii,j))

. (27)

Remarkably, the main difference between Eqs. (23)
and (27) is the fact that the former is devoted to monochannels,
and hence applies to scalar values, while the latter is prepared
for multichannel or color images.

VI. EXPERIMENTAL SETUP

While designing comparison operators is similar to design-
ing many other operators within the Fuzzy Set Theory, its
quantitative validation poses a series of challenges absent in
other types of operators. Specifically, it is hard to model, at a
fine quantitative level, the expected behaviour of comparison
operators. Ideally, we could compare the values yielded by
a comparison operators to the quantitative comparisons per-
formed by one or more humans. However, this is a practical
impossibility, since humans are severely inconsistent in provid-
ing such quantitative values. While humans are relatively good
at ranking or selecting, they can hardly provide consistent,
meaningful quantitative evaluations of data similarity. In such
a situation, it is necessary to find innovative ways to put
comparison operators to the test.

In order to prove the suitability of the Ln-REFs as color
image comparison measures, and to visually represent the
differences between each of their parameterizations, we have
applied our color-ready evolution of the PMAD model to
two sample images. Moreover, for comparison purposes, we

apply to the images two well-known content-aware smoothing
techniques, MeanShift [44] and Bilateral [45] filtering.

Images have been extracted from two datasets. Firstly, the
Plant Phenotyping Dataset [46], [47] which consists of a
collection of real natural annotated images of plants with its
segmented mask of leaves, its centers, and bounding boxes.
In this work, we only use the leaf mask, which indicates its
location (that we consider the object of the image). Secondly,
we use the ClevrTxt dataset [48] that consists of a series
of synthetic scenes-generated pictures with a large variety of
objects, backgrounds, and textures, along with its associated
segmented ground-truth image. The images selected for our
experiments can be seen in Figure 3

Plant04-frame01 ClevrTex vbg 019810

Fig. 3: Color images from the Plant Phenotyping and ClevrTxt
dataset.

The color-ready PMAD model has been configured with
the following parameters:
(i) REFs: RL1 .

(ii) Automorphisms: φi1 and φj2.
(iv) Conductivity functions: g2.
(v) Constants: λ and K.

Note also that the PMAD model is an iterative process with
a trivial convergence state. Hence, it needs to be stopped at a
certain number of iterations. Results will be displayed, for each
combination of parameters, at different numbers of iterations,
so as to illustrate the evolution of images w.r.t. such number
of iterations.

Moreover, in addition to a visual evolution of the process,
we propose to use a homogeneity measure [49] which has
been proved helpful in image processing tasks like image
segmentation. We use this homogeneity measure to get how
similar are the colors in the neighborhood of a pixel, obtaining
a homogeneity image that reflects where the regions are
homogeneous and where there are relevant changes. Using
the ground-truths provided by the datasets, we extract the
homogeneity of both the objects and background present in the
images (Figures 6, 7). The different homogeneity images of
object and background values are obtained at certain iteration
times to analyse its evolution.

In Figures 4-5 we present the anisotropic diffusion results
for the example images of the Plant Phenotyping and ClevrTxt
datasets in Fig. 3 applying as dissimilarity measure RDL1

along with its homogeneity images, and in Figures 6-7 we
show the evolution of background and object homogeneity
through the different iteration times. The experiments have
been obtained with the conductivity function g2(x). We set
φi1 = {x1/2, x} and φj2 = {x1/2, x, x2}, leading to four
different combination of automorphisms. The λ value is set
throughout the experiments to 0.25 and K is set to 0.005 so
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Fig. 4: Smoothing and Homogeneity over image plant04-frame01 with different configurations of our proposal along with the
MeanShift and Bilateral filtering

that the diffusion speed remains slow. Results are replicated
for 5, 20, 200, 500, 1000 and 2000 iterations, corresponding
with each column in the figures.

We can see similar regularization results all along the
different images. In Figure 4 we can see that most of the colour
variations and textures are removed in the initial iterations,
except for the last case (when both φi1 and φj2 are

√
x) where

the regularization is blurry. In general the plant leafs are clearly
separated and the edges preserved. Even between the bucket
and the brown background. In the case of Figure 5, we see
that in the initial steps there is a high variation in the tonal

values of the background and our proposal manage to remove
it preserving the object edges. Again, in the last combination
of automorphisms the blurring effect remains. We clearly see
the regularization process of both background and object in
the odd rows where a brighter colour indicates the maximum
homogeneity.

In terms of homogeneity we see in Figure 6 how both
object and background begins at a similar homogeneity value
and evolve through iteration on the same path until they
stabilizes near the maximum value. In the particular case of
the last combination of parameters (d) we can see that the

Fig. 4: Smoothing and Homogeneity over image plant04-frame01 with different configurations of our proposal along with the
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Fig. 5: Smoothing and Homogeneity over image ClevrTex vbg 019810 with different configurations of our proposal along with
the MeanShift and Bilateral filtering

homogeneity values are not as high as the other approaches
and the distance between object and background is not as
easy to perceive. In Figure 7 the object homogeneity remain
stable from the beginning of the iterative process and does
not move, except for the last case where it becomes worse.
In the case of the background we can observe that in the first
iteration steps almost all the variations are removed and then
the regions remain stable. Comparing the results we can state
that in order to obtain a sharp-edge regularization φi1 = x1/2

must be avoided. Comparing our approach to those obtained
with MeanShift and Bilateral filtering we see that the results

are similar to those not using the φi1 = x1/2 automorphism.
On the one hand, in terms of object smoothing these methods
are equivalent to our proposal, which has a slightly better
homogeneity value. On the other hand, background smoothing
is worse than our method as it can be seen in the images of
Fig. 4 and 5, specially when using the Bilateral filtering.

VII. CONCLUSIONS

In this work we present a novel contribution to the restricted
equivalence functions theory, an extension of the Restricted
Equivalence Functions (REFs) on Ln. Specifically, we present
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Fig. 6: Homogeneity from object and background of image plant04-frame01
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Fig. 7: Homogeneity from object and background of image ClevrTex vbg 019810

a construction method based on automorphisms and simple
algebraic linear operations. We also introduced an extended
similarity measure between fuzzy multisets for multivalued
elements.

We tested our proposal on an image processing application,
anisotropic diffusion [38], a region-based smoothing tech-
nique. This technique applies a regularization based on the
magnitude of the dissimilarity between neighboring pixels; in
order to test the suitability of the REFs on Ln to measure
the similarity between two multivalued pixels, we adapted the

expression in [38] to color images and replaced the difference
between uni-valued pixels by Restricted Dissimilarity Func-
tions (RDFs), a derived expression from the REFs.

As a conclusion, we can state that extended REFs on Ln are
a suitable comparison measure between multi-valued elements.
We can also affirm that different parameterizations of these
functions lead to distinct anisotropic diffusion results in the
specific proposed application, verifying the sensitivity of these
functions to the parameters settings and their suitability to
different scenarios.
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In future work we want to explore more applications of the
REFs on Ln, specifically on color image processing. Due to
the shortage of measures of color image comparison taking
into account the three channels at the same time, and not
applying single channel measures, our proposed algorithm is
a novel proposal with multiple applications. Also, we want
to explore the creation of a specific color space for the
comparison of two given images, exploiting the maximum
information contained in both of them, obtained applying
REFs.
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