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Abstract—An accurate monitoring of the State of Charge 
(SoC) is mandatory for an efficient management of a Lithium-ion 
battery. Batteries of stationary systems barely have long resting 
periods when the cumulative errors can be reset. These special 
requirements make a robust and accurate SoC estimation 
algorithm necessary. A real stationary system including an 
experimental microgrid with renewable energy generation, home 
consumption and a 5.3 kWh Li-ion storage system is analyzed in 
this paper. Three representative SoC monitoring algorithms are 
applied and compared in terms of accuracy and robustness to 
battery aging and current measurement offset. A closed-loop 
method consisting of an adaptive filter and a state observer 
achieves best results while having a reasonable computational 
complexity.  

Keywords—Lithium-ion battery; monitoring; State of Charge; 
microgrid 

I.  INTRODUCTION 

Efficient energy storage is a mayor challenge for the 
development of the electrical grid. Renewable energy is non-
predictable and there is no assurance of power availability in 
the medium term. Nowadays, a fast decrease in the price of 
Lithium-ion batteries is being accomplished, mainly due to the 
mass production of batteries for electric cars [1]. This inviting 
price, together with the excellent electrical characteristics and 
long lifetime of Li-ion batteries, makes them a suitable choice 
for grid energy storage. 

Battery state variables need to be accurately monitored in 
order to allow wise control decisions intended to optimize the 
performance of the storage system. If the monitoring of the 
battery is not rigorous, a bigger (and more expensive) battery is 
needed to meet the same operational requirements. Moreover, 
unexpected blackouts and battery lifespan shortening can be 
undesirable penalties of an improper monitoring algorithm. 
There are several variables to be monitored, such as battery 
impedance or capacity, State of Health, State of Function, etc. 
However, the most important one is the SoC, since it is a 
measure of the actual charge content of the storage system. A 
BMS is required for a safe operation of Li-ion batteries to 
control the voltage and temperature of each cell inside safe 
limits. An important function of the BMS is to provide an 
estimation of the battery SoC. 

There is a wide variety of SoC-estimation algorithms, each 
of them with advantages and disadvantages. The used 

algorithm should depend on the particular application, the 
desired accuracy and the budget available. The most used 
algorithms can be classified into 3 main groups: 

 Integrating methods: These methods predict the SoC of 
the battery based on an Ampere-hour counting. They 
are widely used because the required computational 
power is low, and their performance with Li-ion battery 
is better than with other types of batteries due to the 
lower magnitude of side reactions. Some authors take 
into account the coulombic efficiency [2], [3], or the 
capacity shift along the lifetime of the battery [4] to get 
a more accurate SoC value. The main disadvantage of 
the integrating models is the cumulative error in the 
current integration. A widely-used strategy to eliminate 
this cumulative error is to measure the open circuit 
voltage (OCV) of the battery and reset the SoC value. A 
long resting period is needed for the Lithium diffusion 
to stabilize and so to have a measurable OCV.  

 Model-based methods: The battery behaviour is 
modelled and the observable variables (battery voltage v 
and current i) are related with the SoC through 
mathematical expressions. These estimators are not 
affected by cumulative error; however, they have a high 
sensitivity to model inaccuracies. Most of the models 
used to estimate the SoC represent the impedance of the 
battery through an electric circuit and adopt a 
polynomial expression for the OCV–SoC relationship 
[5]. The problem is that accurate models taking into 
account all the phenomena occurring in the battery have 
high computational requirements and therefore are not 
suitable for on-line SoC prediction. Additionally, the 
model-based prediction strategies are sensitive to 
variation in model parameters, which occurs with the 
battery aging and temperature changes. 

 Closed-loop methods: The combination of Ampere-
hour integration and model-based estimation is a good 
trade-off between computational simplicity, estimation 
accuracy and cumulative error mitigation. These 
methods get a SoC prediction through an Ampere-hour 
integration strategy, and use the voltage and current 
measurements to reduce the error through a battery 
model. The most typical algorithms used to combine 
these two information sources are the Kalman filters 
with some variations [2], [6], [7], adaptive filters [8], 



[9] and Gauss–Hermite quadrature [10]. They have a 
good robustness against model parameters variation and 
measurement noise, but their computational 
requirements are sometimes too high. 

Multiple research papers analyzing the performance of SoC 
estimators for electric vehicles (EVs) have been published [4], 
[6], [7]. SoC estimation is crucial for an EV, since estimation 
inaccuracy can result in unexpected fuel shortcoming. EVs 
have long resting periods where the battery is fully charged, 
which can be used to reset the SoC monitoring algorithm and 
remove the cumulative integration error. However, batteries 
used in stationary applications are usually maintained in 
medium SoC and may not have long resting periods or full 
charges. To the best of our knowledge there are no 
comprehensive studies aimed to analyze these particular 
requirements of stationary Li-ion batteries. This paper has the 
target of analyzing three SoC monitoring methods applied to a 
stationary battery installed in an experimental microgrid with 
renewable power generation and emulated home consumption. 

To accomplish that, three methods for SoC estimation are 
chosen and explained in Section II. In Section III, the 5.3 kWh 
battery used for the experiments and the domestic microgrid 
are described. Subsequently, 8 hours of real performance of the 
battery in the microgrid are presented in Section IV and the 
three methods are compared in three different scenarios: (i) 
using the most accurate current measurement and impedance 
data, (ii) with an offset of 0.5 A in the measured current to 
simulate the sensor inaccuracy and (iii) using a model capacity 
10% higher than the actual value and a model impedance 10% 
lower than the battery impedance to simulate a capacity loss 
and impedance raise indicative of battery aging. Finally, the 
main conclusions of this paper are summarized in Section V. 

II. SOC ESTIMATION METHODS 

A. Method based on Ampere-hour counting 

This is an elementary method for SoC monitoring, whose 
accuracy is determined by the current sensor accuracy, test 
duration and capacity knowledge. The expression for SoC is: 
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Where C is the capacity of the battery, SoC0 is the initial 
battery SoC, t stands for time and τ is the time integration 
variable. The assumption of unitary coulombic efficiency 
(ηc=1) is reasonable for Li-ion batteries in low-current and 
ambient temperature scenarios, since ηc>99.5% [11], [12]. This 
method requires the knowledge of the initial SoC. When this 
method is run over a long period of time, significant inaccuracy 
arises from accumulated current measurement errors. In this 
case, a full charge or full discharge is needed to reset the 
estimated SoC. 

B. Method based on an electrical model 

The battery voltage and current are monitored and the 
equivalent circuit shown in Fig. 1 is used to calculate the open-
circuit voltage (OCV). The battery impedance consists of a 
resistance Rohm which stands for ohmic losses and a parallel 

connection of Rdin and Cdin which represents other battery 
dynamic processes, being the diffusion of Lithium ions through 
the electrodes and membrane the most important one. This 
impedance is used to calculate the OCV from the measured 
voltage and current using (2): 
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Once the OCV is known, a relationship between OCV and 
SoC is used to calculate SoC. This relationship is constant 
during the entire lifetime of the battery and a commonly used 
expression is an empirical polynomial. This model requires low 
computational effort and provides an adequate accuracy, being 
thus suitable for on-line SoC estimation. 

C. Method based on an adaptive observer 

This method is a variation of an idea presented by M. A. 
Roscher and D. U. Sauer [8] for SoC monitoring. These 
authors presented a model for lithium iron phosphate (LFP) 
batteries, whilst the battery analyzed herein has a lithium-
niquel-manganese-cobalt oxide (NMC) cathode. The most 
notorious difference between both technologies is the 
hysteresis eye of the open-circuit voltage, which exists only in 
LFP batteries. The schematic of the estimation method is 
shown in Fig. 2.  

Firstly, the algorithm uses a two-step adaptive filter. This 
adaptive filter calculates an OCV’ based on the parameter 
vector (θ) from the previous iteration step. To do so, the actual 
cell voltage and current are measured. The first step of the 
adaptive filter predicts the voltage of the cell (v’) based on the 
measured current. Then, the predicted cell voltage (v’) is 
compared with the actual measured voltage (v) in the 
correction step in order to adapt the circuit parameters to be 

Fig. 1. Equivalent circuit used as battery model. 
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Fig. 2. Schematic diagram of the adaptive observer method.
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used in the next iteration. By adapting the parameter vector θ, 
the prediction error (difference between v’ and v) is recursively 
minimized. Since the OCV is one of the components of θ, the 
estimated OCV‘ is calculated. 

In the state observer, an SoC* is forecasted through (1) by 
current integration. From this forecasted SoC*, an OCV* is 
calculated using the OCV – SoC relationship. A comparison 
between OCV* and OCV’ leads to an SoC adaption using a 
scaling factor characteristic from this method called voltage 
feedback gain. Hence, this method provides an SoC taking into 
account the results from current integration and model 
parameters, therefore compensating possible offset errors in the 
current measurement. Moreover, as explained before, it is able 
to adapt the model parameters in the correction step to keep its 
good performance under different operating modes. 

III. MICROGRID DESCRIPTION AND EXPERIMENTAL SETUP 

A commercial 5.3 kWh NMC Li-ion battery is used to test 
the performance of the illustrative methods described above. 
This battery is the storage system of an experimental microgrid 
with renewable energy generation located at the Public 
University of Navarre (UPNA) [13]. A schematic diagram of 
the microgrid is shown in Fig. 3. The microgrid performance is 
handled by the Power Management System, which monitors 
the state of the microgrid and manages the power conditioning 
stage using the most suitable control strategy [14]. The PV and 
wind power generators are wired to the power conditioning 
stage. The rated power of the wind turbine is 6 kW and that of 
the PV generator is 4 kWp. The power consumption is 
emulated through a programmable electronic load, based on 
actual electricity consumption data measured in a five-member 
family home located in the vicinity of the UPNA. The energy 
storage system consists of the series connection of 36 Li-ion 
pouch battery cells with a rated capacity of 40 Ah. Each cell 
has a black-carbon anode, an NMC cathode, a liquid electrolyte 
and a polymer membrane. Likewise, the microgrid also allows 
for the energy exchange with the electrical grid, depending on 
the management strategy adopted. 

The afternoon and evening of the 11th of April, 2013 have 
been chosen to test the SoC monitoring algorithms. Fig. 4 
shows generated and consumed power from 15:00 h to 23:00 h. 
It was a sunny day, as can be inferred from the PV generation, 
and the wind power has the usual gusty pattern. The control 
algorithm was programed to minimize the power exchange 
with the electrical grid, being the difference between generated 
and consumed power assumed by the Li-ion battery. 

In a previous work, the Ampere-hour counting method has 
been used to estimate the SoC of this particular battery [15]. 
Since the battery is at an early stage of its lifetime, it was 
concluded that the actual capacity is the nominal capacity. 
Therefore, the only parameter required for the Ampere-hour 
counting method is C = 40 Ah. 

The parameters of the equivalent battery circuit shown in 
Fig. 1 for the Li-ion battery used in this work were also 
calculated in a previous paper [16]. The resulting OCV(SoC) 
relationship is expressed in (3) and the parameters are shown in 
Table 1. 
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In regard to the method based on the adaptive observer, the 
initial parameter vector (θt=0) employed in the prediction step 
of the adaptive filter, uses the parameters shown in Table I. The 
correction of θ is accomplished through a correction gain 
diagonal matrix as explained in [8]. The current integration of 
the state observer is carried out as stated in (1) using 
C = 40 Ah, as previously explained. For the relationship 
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Fig. 3.  Schematic diagram of the domestic microgrid used to test the SoC 
estimation methods. 

Fig. 4.  Microgrid performance from 15:00 h. to 23:00 h of the 11th of 
April, 2013: Wind power generation (Pwind), photovoltaic power 
generation (Ppv) and inverted consummed power (Pcon). 
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TABLE I.  ELECTRICAL MODEL PARAMETERS 

Parameter Value Unit 

Rohm 70.2 mΩ 

Rdin 35.7 mΩ 

Cdin 714.6 F 



OCV(SoC) we used (3). Finally, a voltage feedback gain is 
used for the SoC adaption. 

IV. MODEL COMPARISON 

The power difference between renewable generation and 
home consumption (see Fig. 4) is mainly managed by the Li-
ion battery, since the microgrid control algorithm minimizes 
the power exchange with the electrical grid. There is a power 
flow from the microgrid to the electrical grid only when the 
battery cannot assume more charge (17:45 h and 18:00 h).As 
shown in Fig. 5, the battery is charged during the afternoon, 
when the sun is shining and the domestic power consumption is 
low. The generated power decreases during the evening, and 
around 18:30 h the battery has to provide energy for the 
consumption. From this moment on, the battery SoC is reduced 
until the end of the test. The current shown in Fig. 5 has a high 
variability caused by the wind power generation. 

The three methods explained in Section II with the 
parameters fitted to the real battery performance as shown in 
Section III are compared herein. Firstly, an ideal scenario with 
accurate knowledge of model parameters and current 
measurement is presented. However, a good monitoring 
method does not require a very precise (and expensive) current 
sensor and keeps its accuracy during the whole lifetime of the 
battery. Therefore, after the ideal scenario, the performances of 
the methods are compared in two scenarios: (i) an inaccurate 
current sensor and (ii) an aged battery. An inaccurate sensor is 
simulated in this paper by an offset in the measured current, 
which is the most harmful effect of a sensor inaccuracy for 
SoC monitoring. In the 8 hour microgrid experiment shown in 
Fig. 4, a measured current i’=i+ioffset, with ioffset=0.5 A will be 
considered. This offset represents around 10% of current 
measurement. The influence of this large offset in a short test is 
similar to that of a lower offset in a longer experiment. The 
battery aging is considered to induce a capacity fade and a 
resistive rise. Since the effect of aging is an actual battery 
resistance higher than the model parameters Rohm and Rdin and a 
battery capacitance lower than the parameter C, an aged battery 
is simulated by changing the algorithm input parameters to 
C’=1.1·C, Rohm’=0.9·Rohm and Rdin’=0.9·Rdin. Since an accurate 
current sensor is used during the test and the battery capacity 

has been measured beforehand, the real SoC is assumed to be 
the value estimated by the Ampere-hour counting method using 
C=40 Ah. The RMSE and maximum error of the methods 
during the experiment are calculated and compared. 

Fig. 6 shows a comparison between the performances of 
three SoC-estimation methods during the above-described 
experiment. The current measurement and equivalent circuit 
variables are accurate values. The RMSE and maximum error 
of each method are calculated and summarized in Table II. The 
electrical model accuracy is lower than the adaptive observer, 
since the battery model cannot take into account all the 
physical phenomena occurring in the battery. 

The robustness of the three methods to current 
measurement offset is studied at this point and the results are 
shown in Fig. 7. The cumulative error of the Ampere-hour 
counting method is clearly seen in the red, solid line. This 
method is not suitable for the common scenario with an offset 
in the current measurement. As shown in Table II, the 
maximum error of the ampere-hour counting method in this 
scenario is the largest of the performed tests. The results of the 
electrical model method are similar to the scenario where the 

Fig.5. Battery current and voltage during the experiment. 
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Fig. 6.  State of charge estimation using accurate current measurement and 
circuit parameters through different estimation methods. 
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Fig. 7.  SoC estimation errors of the three methods under current 
measurement offset. 
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current has not measurement offset, which proves that the 
electrical model method is robust to measurement offset. 
However, this method is not highly accurate, as shown in 
Fig. 7. The adaptive observer method keeps its high accuracy 
in this current offset scenario, as can be seen in Fig. 7 and 
Table II, with an SoC prediction RMSE=0.005% during the 
eight-hour experiment and a maximum error of 1.2%. 

The performance of the methods for an aged battery is 
simulated as explained before, with different values of capacity 
and impedance. The results are shown in Fig. 8 and 
summarized in Table II. The Ampere-hour counting method 
does not have a cumulative effect, but the capacity fade triggers 
an error as high as 6.7% when the battery is charged. The 
accuracy of the electrical model is slightly lower than in the 
previous scenarios. This method keeps its robustness, but its 
accuracy is low for the three scenarios, nonetheless. The 
adaptive observer method keeps high accuracy and robustness 
under these conditions, with an error slightly higher than in the 
previous scenarios, as shown in Table II. In Fig. 8, the adaptive 
observer method is shown to behave in a similar manner to the 
Ampere-hour counting method at the beginning of the test. As 
the error increases, the adaptive observer algorithm corrects its 

internal parameters and amends this miscalculation, achieving 
the most accurate results in the three scenarios. 

V. CONCLUSION 

A closed-loop SoC estimation method is needed for 
stationary applications, where the battery normally operates 
with an intermediate SoC and rarely has long resting period 
when the cumulative errors can be reset. The comparative 
experimental study presented herein reproduces an actual 
battery operating condition in a domestic microgrid with 
renewable energy generation and home consumption. From this 
comparative study, it can be concluded that the Ampere-hour 
counting method has a cumulative integrate error which makes 
it unacceptable for stationary applications. An electrical-model-
based method can be appropriate for electronic devices where 
the current managed by the battery is low, but in a stationary 
application the high current values reduce the accuracy of the 
algorithm, especially for an aged battery with shifted circuit 
parameters. The closed-loop method analyzed herein achieves 
the lowest estimation error in the three situations. Therefore, 
the most suitable estimation algorithm for this application is a 
closed-loop algorithm which has the high accuracy distinctive 
of the Ampere-hour counting method, uses an electrical model 
to run an online correction of the cumulative error and is able 
to recalculate the model parameters, adjusting them to the 
actual battery parameters. 
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