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Abstract. We propose a novel experiment, the Canfranc Axion Detection Experiment
(CADEx), to probe dark matter axions with masses in the range 330–460µeV, within the
W-band (80–110GHz), an unexplored parameter space in the well-motivated dark matter
window of Quantum ChromoDynamics (QCD) axions. The experimental design consists of
a microwave resonant cavity haloscope in a high static magnetic field coupled to a highly
sensitive detecting system based on Kinetic Inductance Detectors via optimized quasi-optics
(horns and mirrors). The experiment is in preparation and will be installed in the dilution
refrigerator of the Canfranc Underground Laboratory. Sensitivity forecasts for axion detec-
tion with CADEx, together with the potential of the experiment to search for dark photons,
are presented.
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1 Introduction

Cosmological and astrophysical observations of large-scale structure and the Cosmic Mi-
crowave Background Radiation [1–3] indicate the existence of dark matter from its gravita-
tional influence on baryonic matter and radiation. However, it has so far not been otherwise
detected. Moreover, independent determinations of the dark matter and baryon cosmic den-
sities based on the measured power spectrum for radiation and matter, the distance-redshift
relation, direct mass measurements in galaxy clusters, and the light element abundances from
nucleosynthesis, consistently indicate that dark matter constitutes 84.3% of all matter in the
universe, with the remaining 15.7% being the known baryonic matter. In spite of this, the na-
ture of dark matter remains a mystery and a key question for particle physics and cosmology.

A particularly attractive dark matter candidate is the Quantum Chromodynamics
(QCD) axion: it arises from a theory that solves a fundamental problem in the Standard
Model (SM) of particle physics, the strong Charge Conjugation-Parity (CP) problem [4], and
at the same time predicts the existence of Cold Dark Matter, which satisfies all present ob-
servational constraints. Due to the repeated null results of many worldwide efforts to detect
weakly interacting massive particles (WIMPs) [5], which have been the favorite dark matter
candidate for the last three decades, the axion dark matter hypothesis has recently attracted
increased interest from the experimental community.

The CP problem is the absence of CP violation in the strong force. The expected CP
violation arises from the so-called θ-term [6] of the SM Lagrangian for strong interactions.

– 1 –



p
r
o
o
f
s
 
J
C
A
P
_
0
3
5
P
_
0
6
2
2

This term induces an electric dipole moment for the neutron, which has an experimental
upper limit of ∼ 10−26 e · cm [7], implying θ . 10−10. There is no reason for this θ-term to
be so small compared to unity.

One of the most elegant solution to the CP problem, the Peccei-Quinn (PQ) mech-
anism [8, 9], introduces a global U(1)PQ symmetry and promotes θ to a dynamic field
θ + a(x)/fa, a(x) is the axion field and fa is the axion scale. At energies below fa this PQ
symmetry is spontaneously broken, generating the pseudo-scalar Goldstone boson known as
the axion [10, 11]. The initial value of the background axion field after symmetry breaking
is expressed in terms of the misalignment angle θi = a/fa.

Axions can be produced by the vacuum realignment mechanism (by which the axion
field returns to the minimum of its potential) [12, 13] with their abundance determined by
θi. Axions acquire a mass because the U(1)PQ symmetry is explicitly broken by the chiral
anomaly. The mass of the axion is inversely proportional to the axion scale fa. Two of
the most popular benchmark axion models, the Kim [14], and Shifman, Vainsthein, and Za-
kharov [15] (KSVZ) model and the Dine, Fischler, Srednicki [16] and Zhitnitsky [17] (DFSZ)
model, postulate an fa significantly above the electroweak scale, consequently producing a
very light axion (with mass between µeV and eV).

After the Peccei-Quinn model had been proposed to solve the strong CP problem, the
axion was found to be an excellent Cold Dark Matter candidate because of its production
mechanism and properties [18–20]. The calculation of the axion relic density (Ωa) and mass
(ma) depends on the detailed dynamics of the axion field in the presence of complicated finite-
temperature QCD effects, resulting in an extensive range of possible masses. Moreover, Ωa

and ma depend on the cosmic epoch (post or pre-inflation) when the PQ symmetry is broken.
In the pre-inflationary scenario, the PQ symmetry is broken before the end of inflation.

In this case, the initial misalignment angle θi takes a uniform value throughout space, in-
herited from a single patch which inflated to become our observable Universe. The axion
abundance is then set by this random, unknown value of θi. In the post-inflationary scenario,
the PQ symmetry is broken after the end of inflation, and the initial misalignment angle θi
takes on a different value in different causally disconnected regions of the Universe [21]. In
this case, it is in principle possible to perform an average over these regions to determine the
axion density. Early estimates pointed towards an axion mass range of 4–8 µeV required to
account for the entire DM abundance Ωa = ΩDM [22, 23]. Subsequent work recognised the
importance of the production and decay of topological defects such as strings in populating
the Universe with DM axions. Simulations accurately resolving these effects remain chal-
lenging, but recent estimates point to an axion mass greater than 20 µeV, with viable masses
up to ∼ 500 µeV [24–31]. The axion mass range ma & 40 µeV remains largely unexplored by
axion experiments, motivating new experimental searches for heavier DM axions.

The inverse Primakoff effect [32, 33], which converts axions into photons in the presence
of a magnetic field, is one method of searching for the axion. The haloscope approach,
developed by Sikivie in 1983 [33], searches for axions in the local Galactic dark matter halo
using a resonant microwave cavity within high magnetic field. A haloscope transforms some
of the halo axions to photons in a spectral line with a central frequency dictated by the axion
mass (νa = mac

2/h) and a line width (10−6ma) determined by the kinetic energy of the
axion, proportional to the squared velocity dispersion of the Milky Way dark matter halo in
the solar vicinity. Because the mass of the hypothetical axion is unknown, experiments must
search a wide frequency range for this spectral line.

– 2 –
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Several experiments such as RADES [34], CAPP [35, 36], ADMX [37, 38], ADMX Side-
Car [39], HAYSTAC [40, 41], QUAX [42, 43], ORGAN [44], GrAHal [45] and others have
used this technique to search for axions at frequencies between 400 MHz and 12 GHz (1.65–
49.6 µeV). Above 12 GHz, the axion parameter space is heavily unexplored, despite the fact
that the post-inflationary scenario suggests that the dark matter axion may well be at higher
mass. The main reasons are the difficulty in scaling the haloscope technique to higher frequen-
cies (where the smaller resonant cavities imply a smaller detection volume), and the standard
quantum limit to the sensitivity of heterodyne detectors. Beyond this, a number of novel
detector concepts, considering broadband haloscopes and single-photon detection systems
with potential sensitivities unlimited by the standard quantum limit, have been proposed
to cover a wide range of axion masses. These include tunable plasma haloscopes (e.g. AL-
PHA [46]), dielectric haloscopes [47] (e.g. MADMAX [48]) and dish-antenna haloscopes [49]
(e.g. BREAD [50]). Recent reviews of experimental axion searches can be found in [51–53].

The haloscope setup for axion detection is also sensitive to other light, weakly coupled
particles, including the dark photon γ′. Dark photons (also known as hidden photons) are vec-
tor particles, kinetically mixed with the Standard Model photon [54]. This coupling to elec-
tromagnetism induces an electric field in haloscope experiments, providing sensitivity to dark
photon dark matter with a mass mγ′ which matches the resonant frequency of the haloscope
(as in the case of the axion) ,without any dependence on the presence of a static magnetic field
(unlike the axion). Crucially, such a search can typically be performed using the same data as
an axion search or even using calibration data in the absence of a magnetic field [55]. Depend-
ing on the polarization state of the dark photon, it may also give rise to a time-varying signal
due to the Earth’s rotation [56]. Through a careful choice of the observing schedule, it may
be possible to detect this time-variation and therefore detect the dark photon. These con-
siderations mean that a dark photon search can typically be performed with little additional
experimental exposure time. Dark photons with masses around mγ′ ∼ 400 µeV correspond to
a region of parameter space where bounds on the kinetic mixing are comparatively weak and
where sensitivity at the level of χ ∼ 10−9− 10−8 would probe new, unconstrained parameter
space [56]. In this range, the dark photon can be a viable Dark Matter candidate, produced
for example through a realignment mechanism analogous to that of the axion [57–59].

In this work, we propose a novel experiment, the Canfranc Axion Detection Experiment
(CADEx), to search for the Dark Matter axion in the mass range (330–460 µeV) within the W-
band (80–110 GHz). CADEx combines a microwave resonant cavity haloscope with a broad-
band incoherent detector system to be installed in the dilution refrigerator in the Canfranc
Underground Lab (LSC) [60] in Spain, with the potential for also searching for dark photons.

The paper is organised as follows: in section 2 we compare coherent and incoherent
detection techniques. The CADEx concept is described in section 3 and the proposed design
of the haloscope, optics and detector components are described in sections 4, 5 and 6, respec-
tively. Finally, sensitivity expectations for the axion-photon coupling and the dark photon
kinetic mixing are presented in section 7, and conclusions and future prospects are discussed
in section 8.

2 Detection techniques. Coherent versus incoherent

The axion signature is expected as a very narrow emission feature in the frequency domain,
and heterodyne receivers are the classical detection systems used in all axion detection exper-
iments at low frequencies (<50 GHz). Heterodyne receivers amplify and convert the input

– 3 –



p
r
o
o
f
s
 
J
C
A
P
_
0
3
5
P
_
0
6
2
2

signal from the haloscope to a lower frequency band, while preserving the information of
amplitude and phase. The advantage of this system is that the down-converted signal can be
easily processed and digitized to obtain its spectrum (via real-time Fast Fourier Transform)
with very high frequency resolution, spectroscopically resolving the radiation generated in
the haloscope. The sensitivity floor for the noise temperature of a heterodyne receiver is im-
posed by the standard quantum noise limit for a coherent detector (≈ 2.2 K at 90 GHz [61]).
Very low noise cryogenic W-band heterodyne receivers are routinely used in radio astronomy
reaching a state-of-the-art performance noise temperature of ≈ 25–30 K[62, 63] when cooled
to a physical temperature of 4 K. Practical semiconductor-based heterodyne detectors are
not expected to improve from present values (25–30 K) in the short-midterm. The funda-
mental nature of noise behavior of field-effect transistors (FETs) practically leaves no room
for future improvement in noise temperatures of cryogenic amplifiers beyond those already
achieved [64]. The effort in the development of cryogenic amplifiers in recent years has been
directed towards the expansion of the instantaneous bandwidth which is of importance for the
radio astronomy community. Unfortunately this does not help in improving the sensitivity for
axion searches with haloscopes since the limiting factor there is the tunability of the cavity.

On the other hand, incoherent detectors, such as those based on bolometers, transition
edge sensors (TES), kinetic inductance detectors (KID) or quantum capacitance detectors
are not affected by the standard quantum noise limit, as heterodyne receivers are [61]. Their
sensitivity is characterized by the Noise Equivalent Power (NEP), defined as the minimum
detectable power per square root bandwidth (W/

√
Hz) [65], which is limited by photon

noise and other factors related to technology. These detectors use superconductor material
properties and they can provide high sensitivities in the W-band and in higher frequencies.
TES bolometers use a superconductor as a resistive thermometer, whereas the KID detec-
tion mechanism exploits the changes of the superconducting kinetic inductance caused by
absorbed photons [66]. While TES bolometers operate at the superconducting transition
temperature, Tc, KIDs operate at temperatures well below Tc, with conduction electrons
in the form of Cooper pairs and identically zero DC resistance. The lowest optical NEP
demonstrated so far in a TES bolometer is 3× 10−19 W/

√
Hz [67, 68], and KID technology

has reached a NEP sensitivity of 3.8× 10−19 W/
√

Hz [69].
To make a direct comparison between the sensitivity of the two systems in terms of

the NEP, noise temperature and signal-to-noise ratios, we consider idealized coherent and
incoherent detectors. Typically, the sensitivity of coherent receivers is described in terms of
noise temperature [70], and the signal-to-noise ratio (SNR) is given by

SNRcoh = Ps
√
τ

kBTsys
√

∆ν
, (2.1)

where Ps is the signal power, kB is the Boltzmann constant, Tsys is the system noise equivalent
temperature (sum of the background temperature Tbkg and receiver noise temperature Trec),
with a resolution bandwidth ∆ν, and integration time τ . In this case, since the spectrum can
be resolved, the maximum SNR is obtained by adjusting the resolution of the instrument to
the bandwidth of the axion signal (∆ν = ∆νs). The SNR of an incoherent receiver is

SNRinc = Ps
√

2τ
NEP , (2.2)

where Ps is the signal power calculated as kBTs∆νs (Ts is the brightness temperature of the
signal and ∆νs is the signal bandwidth).

– 4 –
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The cavity resonant frequency of the haloscope must be tuned to the axion mass, within
the haloscope bandwidth ∼ ν/Ql (where Ql is the cavity loaded quality factor, defined in sec-
tion 4), for the axion signal to be produced. The conversion of axions to photons is expected
to produce a narrow emission peak of fractional width ∼ 10−6, determined by the Galactic
halo velocity dispersion, in the cavity power spectrum [71]. The cavity generates a peak of
linearly polarized thermal noise of bandwidth ν/Ql, which would ideally be as narrow as the
expected signal width but is typically much broader. The noise background, Tbkg, arises from
the blackbody radiation of the surroundings and linearly adds up to the system noise temper-
ature. In our experiment, this contribution arises mainly from the haloscope physical temper-
ature, which can be reduced down to tens of mK, more than one order of magnitude below the
intrinsic NEP of the detection system. Therefore, the system noise temperature is dominated
by the much higher receiver temperature for a heterodyne receiver, and the background power
will also be subdominant for an incoherent detector compared to its typical NEP values.

Considering the case of detection at 90 GHz, the expected axion signal bandwidth is
90 kHz. In this case, a coherent receiver with a state-of-the-art Tsys = 25 K and an incoherent
detector with NEP = 1.46× 10−19 W/

√
Hz, (NEP= kBTsys

√
2∆ν) will provide the same

SNR. However, KID technology has the potential to exceed this sensitivity requirement,
reaching a NEP around 1× 10−20 W/

√
Hz [72]. We therefore consider KIDs as the baseline

detector technology for CADEx.

3 Conceptual design

CADEx is going to search for axions in the mass range 330–460 µeV within the W-band (80–
110 GHz) by combining the haloscope approach with an incoherent detection system based on
KID technology. Incoherent detectors are broad band receivers which do not provide the spec-
tral resolution to detect the narrow-frequency feature produced by the axion in the haloscope.
The incoherent detectors in CADEx will measure the linearly polarized axion signal generated
in the haloscope against the unpolarized background emission as a function of the resonant
frequency of the haloscope. In our design, the switching strategy between the two polarization
with a half-wave plate (see below) allows to mitigate the effect of the system gain and back-
ground fluctuation in the final sensitivity, by detecting the axion signal in one polarization
against the background in the other. The background will be dynamically subtracted from
the signal of the axion, mitigating the effect of the system/background gain fluctuation [73].

CADEx will be installed in the dilution refrigerator of the Canfranc Underground Lab
(LSC) to decrease the impact of cosmic rays on the final sensitivity using broadband incoher-
ent detectors. Broadband direct detectors are very sensitive to cosmic ray hits. Cosmic rays
affect their responsivity by creating glitches on the detected signal which produces net losses
of the available useful data, increasing the noise and decreasing the final sensitivity [74]. To
achieve the required sensitivity to detect the expected extremely low-level signal of the order
of 10-24 W, the effect of cosmic rays needs to be minimized in future broadband axion detec-
tion experiments. Techniques to mitigate the effect of cosmic rays on KIDs [75] by flagging
in the corrupted data can be used for experiments aiming at achieving final sensitivities only
few times better than the NEP of the detection system. However, the final sensitivity of the
CADEx experiment will be more than 3 orders of magnitude better than the best expected
NEPs of 1× 10−20 W/

√
Hz, making any mitigation technique for cosmic rays contamination

very unreliable. The LSC, with a cosmic ray flux of 10-4 times that at the surface [76], guaran-
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Figure 1. Schematic block diagram proposed for the CADEx’s accommodation in the dilution
refrigerator of the Canfranc Underground Laboratory. The different temperature stages in the cryostat
are indicated with different colors (red: ambient, yellow: 40 K, green: 4.2 K and light blue: 10–20 mK).
The 10 T magnet operating at 4 K is depicted by two green boxes with diagonal lines. The main
CADEx subsystems installed in the mK stage are also shown: the haloscope (light blue inside the
magnet, section 4), the optics (coloured horns and dash dotted rays, section 5) and the two KID
arrays to measure two orthogonal linear polarizations (dark blue, section 6). The calibration signal
injected externally through the different temperature stages is shown in red (section 5).

tees that CADEX will be able to achieve the required final sensitivities for detector’s NEPs of
1× 10−20 W/

√
Hzwith basically no degradation of the sensitivity induced by cosmic rays hits.

Figure 1 shows a block diagram of the experiment accommodated inside the LSC dilution
refrigerator, indicating the location of the main subsystems and their temperature. The
microwave resonant cavity haloscope described in section 4 will be located in the mK stage
to minimize the background radiation seen by the KID detectors, in a static magnetic field
of 8–10 T. The radiation from the haloscope will be combined through an optimized quasi-
optics system with horns and mirrors (see section 5) and focused on the detection system. As
described in section 6, the detection system will make use of radio astronomy techniques [73]
to measure the degree of linear polarization of the signal arising from the haloscope, tuned
to two adjacent resonant frequencies (see section 4.5). The calibration of the system will be
achieved by injecting a polarized signal of known intensity.

4 Haloscope design

Following Sikivie’s approach, the haloscope in the detection experiment will be a single cavity
or a set of multiple resonant cavities working at the frequency of interest. The detected power

– 6 –
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on-resonance from axion-photon conversion is then [77–79]:

Pd = β

(1 + β)2 g
2
aγ

ρa
ma

B2CV Q0

= 6.54× 10−28 W

×

 β
(1+β)2

0.25

( gaγ

1× 10−15 GeV−1

)2 ( ρa
0.4 GeV cm−3

)

×
(370 µeV

ma

)(
B

10 T

)2 ( V

0.2 L

)(
C

0.657

)(2× 104

Q0

)
,

(4.1)

where ρa is the dark matter density, and a number of key parameters which depend exclusively
on the haloscope design can be identified. These parameters are the cavity volume (V ), the
form factor (C) of the electromagnetic mode which couples with the axion-photon conversion,
the coupling factor for the signal extraction (β), and the unloaded quality factor (Q0). V ,
C and Q0 depend on the cavity geometry and the chosen electromagnetic mode, whereas
β depends additionally on the cavity coupling system. Therefore, the operational goals in
the design of the haloscope, in order to maximize the detected power and maximizing the
sensitivity to gaγ , is to optimize the coupling β while maximizing V , C and Q0.

Following the experience in RADES for 8.4 GHz haloscopes [80], we adopt rectangular
geometries for the cavities and estimate the above parameters for this type of microwave
resonators.

4.1 Form factor

The solenoid magnet in the LSC facility generates a static magnetic field that is constant and
parallel to the magnet axis. Therefore, in order to maximize C, an electromagnetic mode
with the electric field parallel to this magnetic field must be chosen. In a rectangular cavity,
assuming the z-axis as the magnet axis, this is the TM110, with C = 64/π4 ≈ 0.66 [80].

4.2 Quality factor

The unloaded quality factor for a TM110 in a rectangular cavity, assuming only conductor
losses, is given by [81]

Q0TM110 = 1
2

√
πσ

frε

d
(
a2 + b2) 3

2

ab (a2 + b2) + 2d (a3 + b3) , (4.2)

where σ is the electrical conductivity of cavity walls, fr is the mode resonant frequency, ε is
the electrical permittivity inside the cavity, which will be normally the vacuum one, ε0, and
a, b and d are the width, height and length of the cavity, respectively. In order to improve this
quality factor, full-copper cavities will be employed in CADEx with an expected electrical
conductivity around 2× 109 S/m.

4.3 Volume

The relationship between resonant frequency and rectangular cavity dimensions for both
TEmnp and TMmnp modes is given by equation (4.3), where c is the speed of light in free
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space, and m, n and p are the number of the sinusoidal variations of the electric field along
the x, y and z axes, respectively [81]:

fr = c

2

√(
m

a

)2
+
(
n

b

)2
+
(
p

d

)2
. (4.3)

Taking this into account, detection setups for masses of the order of hundreds of µeV leads to
very tiny cavities. As an example, a target resonant frequency of 90 GHz for the TM110 mode
requires a side of 2.35 mm in a cubic cavity, giving a volume of 13 µL, far from the necessary
volume for obtaining acceptable sensitivities. Therefore, since there is plenty of room in
the LSC magnet bore, the challenge here is increasing the volume without decreasing the
operation frequency of the haloscope. A combination of two different approaches is explored
for CADEx.

4.3.1 Large cavities
For the mode TM110, equation (4.3) reduces to

fr = c

2

√
1
a2 + 1

b2 , (4.4)

which allows us to increase the cavity length (d) without modifying the resonant frequency.
Moreover, this resonant frequency is mainly determined by the cavity width (a) when its
height (b) is large enough. In that case, increasing the height hardly changes the resonant
frequency. Therefore, the volume can be increased with longer and taller cavities. The limit
in this enlargement comes from the clustering of modes near the operation mode, which can
hinder the detection of the mode through a vector network analyzer (VNA) and even reduce
the form factor when two modes are almost overlapped. This problem worsens when a range
of frequencies is explored, since the number of mode crossings increases. A trade-off between
mode separation and volume can be found by comparing the relative frequency separation
between the axion mode and its closest neighbor (with the same polarization) with increasing
size of the cavity (height and length), and the loaded quality factor of the axion mode. In
this proposal we state initially the height (b) of the cavity in 40a, which fits with the expected
inner dimensions for the magnet bore. Figure 2 shows for this case the relative frequency
separation between the axion mode and its closest neighbor (with the same polarization)
with increasing lengths, and the relative bandwidth of the resonance for the axion mode
(1/QL). A trade-off between mode separation and volume can be found for d = 60a, when
the overlapping of mode TM111 over TM110 begins to be important because this produces
a reduction of TM110 form factor and difficulties for measuring the quality factor with the
VNA. For these cavity dimensions, a separation of 12.5 MHz (0.014%), an unloaded quality
factor of 2.2× 104 and a volume of 11.1 mL are obtained.

4.3.2 Multiple cavities
A larger volume can be obtained by means of the coherent sum of the signal extracted from N
resonant cavities, each one resonating at the same frequency. When this occurs, the total de-
tected power is the sum of the powers from each individual cavity. This coherent sum requires
the N signals to be in phase at the combining device, in this case the quasi-optical system
that will be discussed in the section 5. This is achieved when each signal travels the same
electrical length from the cavity-line coupling point to the combining point. An example of
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Figure 2. Relative frequency separation (∆f) between modes TM110 and TM111 and relative band-
width (1/QL) of mode TM110 in a rectangular cavity when d increases and b = 40a.

Figure 3. Circumference-arranged multiple cavities (16). Each cavity (red rectangles) is a large
cavity (as described in section 4.3.1). The cross at each cavity points out the center of the horn
antenna. These antennas are all pointing to a receiver antenna which is located in the center of the
circumference, but displaced in the z axis. The scheme is not to scale.

such a configuration, with horn antennas pointing to a centered receiver antenna, is depicted
in figure 3 and in figure 10. This setup, assuming a volume of 11.1 mL for each individual
haloscope (obtained previously) and coherent sum, produces a total volume of 0.18 L.

– 9 –



p
r
o
o
f
s
 
J
C
A
P
_
0
3
5
P
_
0
6
2
2

4.4 Coupling system

The common coupling system for extracting the energy from a resonant haloscope is a probe
connected to a coaxial line. The probe is usually a monopole or a loop, depending on the
type of coupling, electric or magnetic, respectively. Nevertheless, this kind of coupling is
not useful at W band (75–110 GHz) due to the high attenuation levels of coaxial cables at
these high frequencies. Instead, a waveguide connected to a horn antenna is used to transmit
the extracted power to the receiver, as explained in the next section. In this case, the
coupling element between the cavity and the waveguide is an iris which provides electrical
or magnetic coupling [82], depending on the extraction position along the cavity. In this
proposal, rectangular irises are used. The coupling of the detection port can be designed
to optimize the sensitivity of the experiment at a single central cavity frequency, or the
sensitivity over a fixed frequency range to be scanned. For a fixed cavity volume, this
optimization is reached in these two cases for β = 11

Additionally, another port for monitoring the behavior of the cavity, the measurement
of the resonant frequency and the quality factor is necessary. Unlike the detection port, this
one must be highly decoupled to interfere as little as possible with the detection operation.

Figure 4 shows the half (symmetric) part of a single cavity where the proposed critical
coupled and decoupled ports along the cavity are also depicted. In this case, an electrical
coupling is used to extract the energy from the cavity towards the detection port. A waveg-
uide bend at the detection port is necessary in order to align the horn connected to this port
with the bore axis direction.

Designing accurately an iris for critical coupling at cryogenic conditions is complicated,
considering that small contractions in the size of the iris can result in losing the designed
coupling. Moreover, the tuning procedure modifies both the resonant frequency of the halo-
scope and the electric and magnetic field pattern throughout the cavity, which leads losing
the critical coupling condition again. Therefore, it is necessary to introduce a moving mech-
anism which is able to slightly modify the coupling to return to the critical condition. In
this proposal, this is implemented by means of a metallic cylinder (screw) which can be in-
troduced or extracted from the waveguide, as shown in figure 5. Figure 6 shows the effect of
introducing or extracting this cylinder. From the obtained results, it can be observed that,
in this case, the critical coupling is obtained with a penetration depth of 0.1 mm.

4.5 Tuning system

Exploring a wide frequency range in our experiment demands modifying the resonant fre-
quency of each cavity. This can be achieved by modifying the cavity geometry while avoiding
a high impact on operational parameters, such as the form factor, quality factor or volume.
We propose to modify the cavity width, the geometry parameter that most influences the
resonant frequency, by sliding a metallic wall moving along the x axis. This sliding movement

1The factor κ = β/(1+β) sometimes appears in the literature and corresponds to the fraction of generated
power extracted from the cavity. The critical coupling regime then corresponds to κ = 1/2. and β = 2,
respectively (see reference [83]). For our cavity design, the volume of the cavity may be reduced if β is
increased, because of the possibility of mode mixing. For example, for the case of figure 2, increasing β
from 1 to 2 requires reducing d/a from 60 to 52 (for the same partial ovelaping of resonances between the
operation mode and the closest neighbor), implying a volume reduction by the same factor. Taking this into
account would yield an optimal value for β to maximize sensitivity over a fixed scanned frequency range that
is intermediate between 1 and 2. Moreover, other practical considerations for constructing the cavity with
the desired β value while avoiding reflected waves may need to be considered. In this proposal we use β = 1,
although a precise optimized value should be determined for a final design.
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Figure 4. Example of a single cavity with electrical coupling. Half of the structure shown. Upper
port corresponds to critically coupled port and lower port corresponds to undercoupled port.

Figure 5. Mechanism of variable coupling system by means of a metallic screw. lin is the screw’s
length in the waveguide, and λg is the wavelength in the waveguide.

is constrained by the coupling iris position and width, and yields a frequency range from 90
to 102 GHz or a 12.5% relative frequency range. This increase in the resonant frequency
produces a 5% reduction of the unloaded quality factor, whilst the volume decreases from
11.1 to 9.8 mL.

A common feature in other haloscope experiments during the tuning process is the
clustering or even the crossing of modes, which normally leads to strong reduction of key
parameters such as the form factor or the quality factor. Graphs of mode crossings and mode
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Figure 6. Coupling factor (β) and magnitude of the reflection coefficient (|S11|) in the detection
port with the coupling cylinder length.

clustering along the tuning range are presented in figures 7 and 8, respectively. Although
figure 7 shows up to 10 mode crossings, all these are of high-order TE modes. The electric
field for TE modes is normal to the static magnetic field from the solenoid and, therefore,
they are not coupled with the photons generated by the Primakoff effect (in other words, the
form factor is zero). Moreover, these modes are not coupled to the waveguide through the
iris and, therefore, their resonances (due to the noise) are not detected and do not overlap
with the TM110 resonances. Nevertheless, degenerate TE and TM modes can slightly couple
due to imperfections in manufacturing, and the mode crossings can still affect the haloscope
performance at those frequencies. On the other hand, as seen in figure 8, the mode clustering
due to the large size of the cavity can even worsen when the width of the cavity is reduced in
order to scan higher masses. But, as shown, the worsening of the clustering of modes TM110
and TM111 is relatively small.

The tuning mechanism by means of a sliding wall is a technological challenge. In order
to keep a high cavity quality factor, it is very important to get good electrical contact
between the sliding part and the inner walls of the cavity. Figure 9 shows the concept of
the sliding wall, where a double mechanism for providing a short-circuit in the contacts
between the sliding wall and the surrounding walls is depicted. First, a choke is included
behind the moving wall by means of a stub. The short-circuit provided by this stub is, by
nature, resonant and, therefore, it is not expected a good behavior for the whole scanning
range. Nevertheless, high-performance broadband sliding short-circuits [84] could be used.
The manufacturing of this device, taking into account the small width of the cavity is a
major challenge in this design. Second, a gasket part surrounding the wall provides metallic
contact between the sliding wall and the inner walls of the cavity. Although the combination
of both systems will provide a good short-circuit condition, it is expected to result in a small
reduction of the quality factor, in the order of 10%.

5 Optics design and calibration system

To optimize the sensitivity of the experiment, the extremely weak axion signal (as previously
mentioned, of the order of 1× 10−24 W generated at the haloscope cavities must be guided
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Figure 7. Mode crossing along the scanning range among TM110 and TE0,24,p modes with p ranging
from to 31 to 40 for a cavity with a = 1.66 mm, b = 40a, d = 60a.
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Figure 8. Relative closeness of neighbor modes to the TM110 along the scanning range for a cavity
with a = 1.66 mm, b = 40a, d = 60a.

in phase with minimal losses to the detection system. For W-band, quasi-optical guiding of
the signal by means of reflection at several mirrors is the most efficient method.
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Figure 9. Tuning mechanism with sliding wall.

The overall optical system design is schematically presented in figure 1 and a more
detailed view is shown figure 10. The optics is designed to collect, redirect and collimate the
signals from each individual cavity of the haloscope onto the KID detector array. The optics
and the haloscope are designed to guarantee the phase coherence among the cavities at the
detectors, using the haloscope configuration shown in figure 3, where all cavities are arranged
in a circumference to have the same optical path from the haloscope to the detectors, so indeed
all the signals will be added coherently at the detector region and special care must be taken
to reduce misalignment errors that can change the phase and drive a reduction in received
power. To reduce misalignment errors, these reflectors will not move during operation and/or
calibration and in fact the individual sixteen outer mirrors will be manufactured in a single
piece. In addition, the optics design minimizes phase aberration by reducing path length
differences in all mirrors, which are also large enough, (at least three beamwaist), to minimize
spillover losses. However, the final detailed design optimizing spillover losses, horn antennas,
path length, etc. will be finalized according to the final cryostat mK stage dimensions.

The proposed design (see figure 10) is based on a double reflector configuration that
fits into the available cryostat volume. Each haloscope WR-10 standard waveguide output
is fitted with a horn antenna that radiates over an outer smaller elliptical mirror whose foci
are located in the horn antenna phase centre and in the line that connects the middle of the
haloscope array and the detector. The optical system is composed of sixteen identical horns
and mirrors that share the second focus position. All the radiation is collected with a bigger
symmetrical elliptical reflector whose foci are located in the line that connects the middle of
the haloscope array and the detector area, the nearest focus is located in the same position
as the one shared by the sixteen outer smaller elliptical mirrors around. The shape of the
bigger reflector is designed to focus the cavity beams in the detector focal plane with identical
path length for every haloscope cavity. Before reaching the KID detectors, see figure 1, the
signal is modulated with a rotating half wave plate (black vertical line) and split in the two
polarizations by a wire grid polarizer (tilted dotted line), allowing the full characterization
of the signal’s linear polarization.

The design considers a calibration system based on the application of a Synthetic Axion
Generator, similar to the one used in the ADMX experiment [85]. In our case, a millimeter-
wave signal mimicking the one generated by the axion in a resonant cavity will be synthesized
by a pulse signal generator and a high frequency analog signal generator. The signal will be
injected into the resonant cavities by their weakly coupled ports. Such calibration will be
achieved individually for each resonant cavity via the use of an electro-mechanical WR-10
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Figure 10. Quasi Optical system design. In this figure ray optics simulation is shown where sixteen
horn antenna apertures are allocated in a circumference to match the haloscope multiple resonant
cavities configuration seen in figure 3. Each individual horn radiation is redirected towards a main
central elliptical mirror that focuses all the radiation symmetrically in the detector area.

standard waveguide switch with one input and sixteen outputs, see figure 1. Calibration
signal response will be received via a horn antenna allocated in the opposite direction of one
of the KID detectors areas. The beam with calibration power will be redirected to such horn
antenna through a 90 degrees rotation of the wire grid polarizer, see figure 1. The calibration
system will also be used to test the functionality of the experiment.

6 Detection system: kinetic inductance detectors

The CADEx detection system will be based on state-of-the-art superconducting Kinetic In-
ductance Detectors (KIDs), which are high quality factor superconducting resonators indi-
rectly coupled to a single transmission line. The working principle is based on the variation
of superconducting properties caused by incoming radiation. Absorbed photons change the
quasiparticle density which modifies the kinetic inductance of the resonator, lowering the reso-
nant frequency and diminishing the quality factor of the resonator. As usual for pair-breaking
detectors, the cut-off frequency that can be absorbed is limited by twice the superconducting
gap, 2∆ ≈ 3.52 kBTc, where kB is the Boltzmann constant and Tc the superconducting critical
temperature [86]. Therefore, the detection in W-band intended in the CADEx experiment
requires employing a Titanium (Ti)/Aluminium (Al) bi-layer approach, which has demon-
strated good sensitivity down to 80 GHz [87]. Optimal performance of KIDs is achieved when
detectors are cooled down well below their critical temperature (Top < Tc/6), so a cryogenic
system with base temperature ∼ 100 mK is planned. Moreover, these superconductor de-
tectors are individually adjusted for each KID by means of its resonant frequency, making
them inherently multiplexable in the frequency domain, allowing thousands of pixels to be
read-out over a single transmission line [88, 89].

KID arrays will be implemented to guarantee that the final expected sensitivity from
CADEX will be achieved. The largest signal to noise ratio will be obtained by focusing all the
energy from the haloscope on a single KID detector. However, the beam from the haloscope
is gaussian and even for the best match coupling of the haloscope beam to a square KID
pixel the system will waste some signal from the haloscope. Having pixels surrounding the
central detector will have the benefit of detecting all the energy arising from the haloscope.
Additional pixels outside the haloscope beam area will be used to measure the non-polarized
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background emission with high precision by averaging as many pixels as possible. Then, the
final sensitivity of the detected signal after dynamically subtracting the background will be
not affected by the noise of the background, keeping the signal noise close to the NEP and
not to

√
2×NEP. A number of pixels in the array will be blind dark pixels allowing to correct

for the systematic noise introduced by the read out electronics.
KIDs have been developed in the context of astronomical experiments, demonstrating

state-of-the-art sensitivity ranging from the millimeter to the ultraviolet range [73, 90]. Also,
future far-infrared (FIR) missions such as the Origins Space Telescope have selected KIDs
as their base technology [72]. KIDs have also been proposed for dark matter experiments as
indirect detectors via the absorption of athermal phonons [91, 92] or, more recently, as direct
photon detectors through a broad-band haloscope [50].

The baseline of the detection system for CADEx aims at lumped-element KIDs
(LEKIDs), where the superconducting inductor acts as the effective optical absorber of
the incident radiation. To maximize the optical efficiency, the inductor geometry should
be matched to the free-space impedance optimizing the meander geometry, substrate and
superconducting material thicknesses and back-short distance [93].

The resonant frequency shift of the LEKIDs is read out by a single transmission line
coupled to the detectors. This coupling coefficient can be tuned using low-frequency sim-
ulations by changing the separation to the line. The LEKIDs response is maximized when
critical coupling is achieved under the desired optical load, or when the external quality fac-
tor (Qc) equals the internal quality factor (Qi). Since Qi is set by fixed parameters such as
the optical background or operating base temperature, Qc will be optimized by tuning the
geometrical parameters [93].

The CADEx experiment will search for the axion using the expected signal polarization
generated in the haloscope. To measure the polarization, the detection system will follow
the configuration of the polarimeters used in radio astronomy operating at frequencies above
90 GHz like NIKA2 at the IRAM 30 m telescope [73, 94]. Basically, the radiation from the
haloscope will be first modulated by a half-wave polarization modulator followed by a grid po-
larizer which separates the two orthogonal linear polarizations to be simultaneously detected
by two different LEKIDs arrays perpendicularly oriented and sharing the same read-out line.
The LEKIDs will be based on a fractal Hilbert geometry with no preferential polarization
direction in absorption [94], avoiding the critical alignment between the linear polarization
direction of the incident electromagnetic field from the haloscope and the detector at low
temperatures. Figure 11 shows a preliminary single LEKID design with a Hilbert geometry
and its simulated absorption for two orthogonal polarizations at W-band, as well as a visual-
ization of an array assembled on a holder for its characterization. The proposed design allows
for characterization of the polarization from the axion-photon conversion and simultaneous
subtraction of the unpolarized background, for all the observing time.

A key parameter for this experiment is the ultimate sensitivity of the detection system,
the NEP, defining the weakest signal detectable by the detector. Special attention is paid to
the maximum allowable magnetic field in the KIDs focal plane, which can degrade their sen-
sitivity, lowering their quality factor and increasing system noise and NEP. Thus, a dedicated
magnetic shield and vortex traps will be developed for minimizing the effects of the magnetic
field on the final sensitivity, keeping the magnetic field below 10 µT [95]. The sensitivity of
KIDs at low radiation power is limited by the generation and recombination of quasi-particles
in thermal equilibrium, which depend on superconducting properties. Visser et al. have al-
ready reached this limit, NEP = 3.8× 10−19 W/

√
Hz, in a low background configuration [69].

– 16 –



p
r
o
o
f
s
 
J
C
A
P
_
0
3
5
P
_
0
6
2
2

Figure 11. Left: single LEKID using a Hilbert geometry (3 mm x 3 mm cell) and absorption efficiency
simulated at the W-band; Right: seven KIDs array mounted on an aluminum holder.

Nevertheless, several strategies such as volume reduction and optimization of the two-level
system (TLS) noise predict the potential for further improvement in sensitivity down to
1× 10−20 W/

√
Hz, reaching the ultimate sensitivity for the proposed experiment [72].

7 Projected axion sensitivity

In order to estimate the sensitivity of CADEx to axion-photon conversion and other signals,
we compare the detected signal power Pd with the expected noise in the measured power
in the detector σP . For the design parameters of the CADEx experiment summarized in
table 1, the SNR is given by equation (2.2). The signal power for axion-photon conversion is
given in equation (4.1). The reach of a haloscope experiment in terms of the axion-photon
coupling gaγ at a desired SNR is therefore given by [96, 97]:

gaγ [GeV−1] =
(

3.88× 102

B[T]

)√
(1 + β)2

β

√√√√SNRma[eV] NEP[W/
√

Hz]
V [L]Q0 t[s]

1
2 C
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(7.1)

The projected 5σ sensitivity of CADEx is shown in figure 12. The vertical black dashed
line corresponds to a three months search centered on an axion mass of ma ∼ 370 µeV. This
search would achieve a sensitivity down to gaγ ≈ 4× 10−13 GeV−1.

Exploring a wider range of axion masses requires a large number of searches with the
haloscope tuned to different resonant frequencies νc. The cavity bandwidth is ∆νc = νc/Q` ≈
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Parameter Symbol Value
Axion DM Density ρa 0.45 GeV cm−3

Total cavity volume V 0.2 L
Magnetic field B 8–10 T

Unloaded quality factor Q0 2× 104

Coupling factor β 1
Form factor C 0.66
Axion mass ma 330–460 µeV

Noise equivalent power NEP 1× 10−19 (3× 10−20) W/
√

Hz

Table 1. Design parameters for the CADEx experiment.
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Figure 12. Projected CADEx sensitivity to the axion-photon coupling gaγ . The vertical black dashed
line corresponds to the 5σ sensitivity (SNR = 5) of 3 months exposure with noise equivalent power
NEP = 1× 10−19 W/

√
Hz. The region bounded by a solid black line corresponds to the sensitivity

with roughly 3000 1-day exposures, Q0 = 2× 105 and 3× 10−20 W/
√

Hz, achievable on a timescale of
O(8) years. For comparison, we show a number of existing constraints from the CAST helioscope [98],
various axion haloscopes (filled red and purple regions) [34, 36–38, 40, 41, 43–45, 99–104], and neu-
tron stars [105], along with projected constraints from other proposed haloscopes (transparent red
regions) [44, 46, 48]. Figure adapted from [106].

9 MHz. A frequency range of 30 GHz (corresponding to axion masses 330–460 µeV) could be
covered with ∼ 3000 exposures. Assuming that a NEP of 3× 10−20 W/

√
Hz can be achieved

with future technology and one could in principle gain an order of magnitude on the Q0 using
superconducting cavities [107], sensitivity down to gaγ ≈ 2× 10−13 GeV−1 can be achieved
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in a single exposure of ∼ 1 day. The mass range 330–460 µeV could therefore be probed
on a total measuring time of ∼ 8 years (which can be split among several instruments with
haloscopes build for different frequency ranges), shown by the region bounded by a thick
black solid line in figure 12.

For comparison, we also show in figure 12 a number of existing constraints from axion
haloscopes, from neutron stars observations and from the CAST helioscope. These provide
constraints on the axion parameter space for gaγ & 7× 10−11 GeV−1 and for ma . 50 µeV.
CADEx would probe unexplored parameter space at higher masses, well-motivated by cosmo-
logical production mechanisms, reaching into the region of axion-photon couplings suggested
by QCD axion theory [108–110], shown by the yellow band in figure 12. CADEx would be
complementary to other proposals using established search techniques with resonant cavi-
ties, such as ADMX [111] and ORGAN [44], which should have sensitivities up to masses
of 200 µeV, as well as alternative broadband detector concepts such as ALPHA, MADMAX
and BREAD.2

An important advantage of our KIDs detection system is that modulating the haloscope
signal as a function of polarization allows for distinguishing the axion signal from background
unpolarized systematics. A true axion signal is detected as an excess of power in one of the
frequency channels scanned by the haloscope over the neighboring ones, which appears only
in the polarization expected for the axion. The proportionality of the signal to B2 can also
be tested.

7.1 Dark photon sensitivity

Constraints on dark photons can be derived similarly to constraints on axions and axion-like
particles. The signal power due to the resonant conversion of dark photons can be obtained
from equation (4.1), using the correspondence [55, 58]:

gaγ →
χmγ′

√
cos2 θpol

B
, (7.2)

where we assume that the dark photons account for all of the local DM. Here, χ is the kinetic
mixing parameter and θpol is the angle between the polarization vector of the dark photon
field and the electric field polarization to which the detector is sensitive. Using the detection
system described in section 6, we propose to measure the two orthogonal linear polarizations
of the radiation from the cavity. However, the cavity is oriented such that the electric field
direction of the TM110 mode lies parallel to the external B-field (see section 4). Therefore
only the component of the dark photon polarization parallel to this direction can contribute
to the resonant conversion signal. In this case, then, θpol is the angle between the dark
photon polarization and the external B-field.

Depending on the cosmological production and evolution of the dark photon field
(e.g. [112–115]), the dark photon may be polarized along a fixed direction on long timescales
compared to the integration time of the experiment at a given frequency channel. In this
case, the dark photon polarization remains fixed but θpol varies with time as the orienta-
tion of the detector changes with the Earth’s rotation. This gives rise to a periodic signal
P (t) ∝ cos2 θpol(t) with a period of 1 day and an O(1) oscillation amplitude [56]. In this
scenario, the detection of a time-varying polarized signal could be used to discriminate from

2We plot projections for BREAD assuming 1000 days of exposure and baseline assumptions on NEP from
reference [50].
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Figure 13. Projected CADEx sensitivity to the dark photon kinetic mixing χ. The region labelled
“CADEx” is the sensitivity achievable using the same searches as presented in figure 12 (with no
additional data taking). The solid blue regions show where dark photons are excluded from being
all of the Dark Matter on cosmological grounds [56, 58]. The orange region shows the envelope of
constraints from stellar cooling (see [56] for a compilation). We show current and projected constraints
from other axion haloscopes in red, with dedicated dark photon searches shown in green [116–120].
Figure adapted from [56] and [106].

backgrounds and claim a discovery of the dark photon, as long as the dark photon polarization
remains constant on timescales longer than ∼ 1 days (the duration of each mass scan).

The value of θpol averaged over long timescales depends on the detector orientation and
the dark photon polarization direction. We therefore fix 〈cos2 θpol〉 = 1/3, the average over
randomly oriented dark photon polarization angles [56]. This factor of 1/3 can be intuitively
understood from the fact that at any given time, the detector will be sensitive to only one of
the three possible polarization directions of the dark photon (the one parallel to the electric
field direction of the TM110 mode of the cavities). Under these assumptions, it is possible
to map the projected sensitivities in the axion parameter space (ma, gaγ) to the dark photon
reach in (mγ′ , χ), using equation (7.2).

In figure 13, we show the 5σ sensitivity to the dark photon kinetic mixing which can be
achieved by CADEx in this constant, fully polarized dark photon scenario, using the same
data taken for the axion search described above and presented in figure 12. CADEx should
be sensitive to values of χ ∼ 10−14 for dark photon masses in the range 330–460 µeV. Existing
constraints in this region are at the level of χ ∼ 10−9, where cosmological constraints [56, 58]
and stellar cooling constraints [56] intersect. CADEx will therefore significantly enhance
sensitivity in this region of dark photon parameter space.

We have so far considered the fixed, full polarization scenario for the dark photon.
However, the evolution of the dark photon through structure formation may wash out any
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initial large-scale polarization which may be present. In an unpolarized scenario, the result-
ing photon signal would also be unpolarized, with no time-variation to distinguish it from
backgrounds. Moreover, the dark photon signal does not rely on the presence of the magnetic
field, meaning that it is not easy to obtain a ‘background-only’ data set for comparison. In
principle, it may still be possible to set limits on χ, by searching for a change in the inten-
sity measured by the KID detector at a frequency channel compared to neighboring ones.
However, this would require a good control of systematics in the absolute power calibration
of the KIDs detectors and in any background radiation in the experiment over a range of
frequencies. In the unpolarized scenario, then, figure 13 would represent the most optimistic
possibility for setting limits on χ. However, we emphasize that the ability to set a limit in
this scenario depends on whether absolute background systematics can be corrected, which is
unclear at this stage. In any case, a more detailed understanding of the expected polarization
of the dark photon in the Milky Way will be essential to characterize this signal in the future.

8 Conclusions

The QCD axion arises naturally as an extension of the Standard Model to solve the strong CP
problem. Simultaneously, axions may be produced with the correct abundance in the early
Universe to provide the current cold dark matter content. Haloscopes are being widely used
to search for the QCD axion in the mass range 1.65–49.6 µeV. However, searches for the axion
above this mass range, well motivated by theory, have not yet been performed primarily due to
a number of technological challenges in haloscopes and in the detection system. Overcoming
these challenges will allow sensitive searches for axions in the dark matter halo with masses
in the range 100–1000 µeV, as well as other light new particles such as the dark photon.

This paper presents CADEx, a novel experiment to search for the Dark Matter QCD ax-
ion and dark photon in the unexplored mass range 330–460 µeV operating within the W-band
at the Canfranc Underground Laboratory (Spain). CADEx will push the microwave resonant
cavity haloscope technology to high frequencies, increasing its collecting power by means of
the coherent sum of multiple large cavities. The detection system uses the polarization prop-
erties of the axion signal arising from the haloscope, and is based on broadband Kinetic Induc-
tor Detectors (KIDs) with sensitivities that have a strong improvement potential in the near
future. When equipped with a 0.2 L haloscope in a high and static magnetic field of 8–10 T
and a detection system with KIDs sensitivities of 3× 10−20 W/

√
Hz, CADEx will provide a

sensitivity three orders of magnitude better than the current best limit from CAST [34], reach-
ing the well-motivated region for QCD axion dark matter predicted from models [108–110].

The same setup will also provide sensitivity down to a dark photon kinetic mixing of
χ ∼ 10−14 over the same range of masses, for the case where the dark photon is fully polarized.
This would provide around 5 orders of magnitude improvement over current constraints, in a
region of parameter space where the dark photon may account for all of the dark matter [58]
while constraints from stellar cooling are weak [56]. Although it is not clear at present if these
constraints can still be obtained when the dark photon is unpolarized, we note that the dark
photon search can be performed with data obtained when the magnetic field is turned off for
the purpose of testing the background systematics that may also affect the axion search.

CADEx will provide a multidisciplinary platform to develop novel concepts of halo-
scopes, including tunable-cavity haloscopes, and push the W-band superconducting detec-
tors to their ultimate sensitivities, which are crucial to confirm or rule out the QCD axion
predicted by the models with a mass in the range 330–460 µeV.
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