
Simulation-
Optimization
in Logistics,
Transportation,
and SCM

Printed Edition of the Special Issue Published in Algorithms

www.mdpi.com/journal/algorithms

Angel A. Juan, Markus Rabe, David Goldsman and Javier Faulin
Edited by

 Sim
ulation-O

ptim
ization in Logistics, Transportation, and SCM

 • Angel A. Juan, M
arkus Rabe, David Goldsm

an and Javier Faulin

Simulation-Optimization in Logistics,
Transportation, and SCM

Simulation-Optimization in Logistics,
Transportation, and SCM

Editors

Angel A. Juan

Markus Rabe

David Goldsman

Javier Faulin

MDPI • Basel • Beijing • Wuhan • Barcelona • Belgrade • Manchester • Tokyo • Cluj • Tianjin

Editors

Angel A. Juan

Dept. of Applied Statistics and

Operations Research at the

Universitat Politècnica de

València

Spain

Markus Rabe

IT in Production and Logistics,

TU Dortmund University

Germany

David Goldsman

School of Industrial and Systems

Engineering, Georgia Institute of

Technology

USA

Javier Faulin

Institute of Smart Cities,

Department of Statistics,

Computer Science, and

Mathematics, Public University

of Navarre

Spain

Editorial Office

MDPI

St. Alban-Anlage 66

4052 Basel, Switzerland

This is a reprint of articles from the Special Issue published online in the open access journal

Algorithms (ISSN 1999-4893) (available at: https://www.mdpi.com/journal/algorithms/special

issues/Simulation Optimization).

For citation purposes, cite each article independently as indicated on the article page online and as

indicated below:

LastName, A.A.; LastName, B.B.; LastName, C.C. Article Title. Journal Name Year, Volume Number,

Page Range.

ISBN 978-3-0365-1260-0 (Hbk)

ISBN 978-3-0365-1261-7 (PDF)

Cover image courtesy of Angel A. Juan

© 2023 by the authors. Articles in this book are Open Access and distributed under the Creative

Commons Attribution (CC BY) license, which allows users to download, copy and build upon

published articles, as long as the author and publisher are properly credited, which ensures maximum

dissemination and a wider impact of our publications.

The book as a whole is distributed by MDPI under the terms and conditions of the Creative Commons

license CC BY-NC-ND.

Contents

About the Editors . vii

Preface to ”Simulation-Optimization in Logistics, Transportation, and SCM” ix

Xiaoting Mo, Xinglu Liu and Wai Kin (Victor) Chan

Modeling and Optimization in Resource Sharing Systems: Application to Bike-Sharing with
Unequal Demands
Reprinted from: Algorithms 2021, 14, 47, doi:10.3390/a14020047 1

Rafael D. Tordecilla, Pedro J. Copado-Méndez, Javier Panadero, Carlos L. Quintero-Araujo,

Jairo R. Montoya-Torres and Angel A. Juan

Combining Heuristics with Simulation and Fuzzy Logic to Solve a Flexible-Size Location
Routing Problem under Uncertainty
Reprinted from: Algorithms 2021, 14, 45, doi:10.3390/a14020045 21

Marvin Kastner, Nicole Nellen, Anne Schwientek and Carlos Jahn

Integrated Simulation-Based Optimization of Operational Decisions at Container Terminals
Reprinted from: Algorithms 2021, 14, 42, doi:10.3390/a14020042 45

Markus Rabe, Jesus Gonzalez-Feliu, Jorge Chicaiza-Vaca and Rafael D. Tordecilla

Simulation-Optimization Approach for Multi-Period Facility Location Problems with
Forecasted and Random Demands in a Last-Mile Logistics Application
Reprinted from: Algorithms 2021, 14, 41, doi:10.3390/a14020041 67

Adrian Serrano-Hernandez, Rocio de la Torre, Luis Cadarso and Javier Faulin

Urban e-Grocery Distribution Design in Pamplona (Spain) Applying an Agent-Based
Simulation Model with Horizontal Cooperation Scenarios
Reprinted from: Algorithms 2021, 14, 20, doi:10.3390/a14010020 85

Mathias Kühn, Michael Völker and Thorsten Schmidt

An Algorithm for Efficient Generation of Customized Priority Rules for Production Control in
Project Manufacturing with Stochastic Job Processing Times
Reprinted from: Algorithms 2020, 13, 337, doi:10.3390/a13120337 107

Raúl de Celis, Pablo Solano and Luis Cadarso

Applying Neural Networks in Aerial Vehicle Guidance to Simplify Navigation Systems
Reprinted from: Algorithms 2020, 13, 333, doi:10.3390/a13120333 127

Odkhishig Ganbold, Kaustav Kundu, Haobin Li and Wei Zhang

A Simulation-Based Optimization Method for Warehouse Worker Assignment
Reprinted from: Algorithms 2020, 13, 326, doi:10.3390/a13120326 147

Carl Axel Benjamin Medbøen, Magnus Bolstad Holm, Mohamed Kais Msakni, Kjetil

Fagerholt and Peter Schütz

Combining Optimization and Simulation for Designing a Robust Short-Sea Feeder Network
Reprinted from: Algorithms 2020, 13, 304, doi:10.3390/a13110304 163

Christin Schumacher and Peter Buchholz

Scheduling Algorithms for a Hybrid Flow Shop under Uncertainty
Reprinted from: Algorithms 2020, 13, 277, doi:10.3390/a13110277 185

v

Leandro do C. Martins, Christopher Bayliss, Pedro J. Copado-Méndez, Javier Panadero and

Angel A. Juan

A Simheuristic Algorithm for Solving the Stochastic Omnichannel Vehicle Routing Problem
with Pick-Up and Delivery
Reprinted from: Algorithms 2020, 13, 237, doi:10.3390/a13090237 211

Markus Rabe, Majsa Ammouriova, Dominik Schmitt and Felix Dross

Simheuristics Approaches for Efficient Decision-Making Support in Materials Trading
Networks
Reprinted from: Algorithms 2021, 14, 23, doi:10.3390/a14010023 233

vi

About the Editors

Angel A. Juan

Angel A. Juan is a Full Professor in the Dept. of Applied Statistics and Operations Research at the

Universitat Politècnica de València (Spain), as well as Invited Professor at University College Dublin

(Ireland) and Universidade Aberta (Portugal). Dr. Juan holds a Ph.D. in Industrial Engineering

and an M.Sc. in Mathematics. He completed a predoctoral internship at Harvard University and

postdoctoral internships at the Massachusetts Institute of Technology and the Georgia Institute of

Technology. His main research interests include applications of simheuristics and learnheuristics in

computational logistics and finance. He has published over 140 articles in JCR-indexed journals and

more than 300 papers indexed in Scopus. His website address is https://ajuanp.upv.es and his email

address is ajuanp@upv.es.

Markus Rabe

Markus Rabe is Full Professor of IT in Production and Logistics (ITPL) at the Technical

University Dortmund. Until 2010, he has been with Fraunhofer IPK in Berlin as head of the

corporate logistics and processes department, head of the central IT department, and a member

of the institute direction circle. His research focus is on information systems for supply chains,

production planning, and simulation. Markus Rabe is vice chair of the “Simulation in Production

and Logistics” group of the simulation society ASIM, member of the Editorial Board of the Journal of

Simulation, member of several conference program committees, has chaired the ASIM SPL conference

in 1998, 2000, 2004, 2008, and 2015, Local Chair of the WSC’2012 in Berlin and Proceedings Chair of

the WSC’18. More than 200 publications and editions report from his work. His e-mail address is

markus.rabe@tu-dortmund.de.

David Goldsman

David Goldsman is a Professor in the H. Milton Stewart School of Industrial and Systems

Engineering at the Georgia Institute of Technology. His research interests include simulation output

analysis, ranking and selection, and healthcare simulation. He was Program Chair of the Winter

Simulation Conference in 1995 and a member of the WSC Board of Directors between 2001–2009. His

e-mail address is sman@gatech.edu, and his webpage is www.isye.gatech.edu/∼sman.

Javier Faulin

Javier Faulin is a Full Professor of Statistics and Operations Research at the Public University of

Navarre (Spain). He holds a Ph.D. in Economics and Business and an M.S. in Applied Mathematics.

His research interests include transportation and logistics, vehicle routing problems, and simulation

modelling and analysis, along with the use of metaheuristics and simheuristics in real problems. His

work is also related to the evaluation of the environmental impact of freight transportation. His email

address is javier.faulin@unavarra.es.

vii

Preface to ”Simulation-Optimization in Logistics,

Transportation, and SCM”

This book provides a selected collection of recent works in the growing area of

simulation-optimization methods applied to transportation, logistics, and supply chain networks.

Many of the authors that contribute to the book are internationally recognized experts in the field,

as well as frequent speakers at the prestigious Winter Simulation Conference, where some of the

Guest Editors organize an annual track on logistics, transportation and supply chains. Inside this

track, it is usual to find several sessions on the concept of simheuristics, a special type of simulation

optimization that combines metaheuristics with simulation to deal with complex and large-scale

optimization problems under uncertainty conditions.

The chapters in the book cover a wide area of logistics and transportation applications, from

bike-sharing systems to container terminals, parcel locker systems, or e-commerce applications. A

short overview of each of these chapters is provided next:

In “Modeling and Optimization in Resource Sharing Systems: Application to Bike-Sharing with

Unequal Demands”, Xiaoting Mo et al. model a bike-sharing system as a Markovian queueing

network, which is then optimized to maximize the total profit.

The chapter “Combining Heuristics with Simulation and Fuzzy Logic to Solve a Flexible-Size

Location Routing Problem under Uncertainty”, by Rafael Tordecilla et al., proposes an extension of

the simheuristic concept that also makes use of fuzzy logic. This fuzzy simheuristic allows the authors

to consider an integrated facility location and vehicle routing problem in which customers might

show either stochastic or fuzzy demands.

In “Integrated Simulation-Based Optimization of Operational Decisions at Container Terminals”,

Marvin Kastner et al. take into account uncertainty sources in container terminals, and discuss how

simulation-based optimization can be employed to efficiently optimize these systems, including both

equipment configuration and operational policies.

The chapter “Simulation-Optimization Approach for Multi-Period Facility Location Problems

with Forecasted and Random Demands in a Last-Mile Logistics Application”, by Markus Rabe et

al., discusses the optimal allocation of automated parcel locker systems (facilities) in the city of

Dortmund, Germany. These authors propose a simulation optimization approach that utilizes system

dynamics simulation to analyze a multi-period capacitated facility location problem.

In the context of e-commerce and considering different supermarkets in Pamplona, Spain,

the chapter “Urban e-Grocery Distribution Design in Pamplona (Spain) Applying an Agent-Based

Simulation Model with Horizontal Cooperation Scenarios” analyzes the impact of horizontal

cooperation strategies on the cost reduction and on the improvement in service quality. With that

purpose, Adrian Serrano-Hernandez et al. carry out a survey and, with the gathered data, generate

an agent-based simulation model, in which multi-depot vehicle routing problems are solved using a

biased, randomized algorithm.

The chapter “An Algorithm for Efficient Generation of Customized Priority Rules for Production

Control in Project Manufacturing with Stochastic Job Processing Times” discusses a project planning

and control problem with random job processing times. Mathias Kühn et al. present a

simulation-based optimization approach that allows them to obtain combined priority rules for

determining the next job in short-term production control. According to some computational

experiments, their approach outperforms the standard priority rules that are currently employed by

many industries.

ix

In “Applying Neural Networks in Aerial Vehicle Guidance to Simplify Navigation Systems”,

Raúl de Celis et al. present an algorithm, based on neural networks, to estimate the gravity vector

that is used in guidance, navigation, and control of air vehicles. A nonlinear simulation, based on real

flight dynamics, is used to train the neural network, and a series of experiments allow the authors to

test the performance and robustness of their approach.

The chapter “A Simulation-Based Optimization Method for Warehouse Worker Assignment”,

by Odkhishig Ganbold et al., a simulation-based optimization algorithm is proposed to cope with an

assignment problem in a warehouse. Their approach combines a discrete event simulation framework

with a random neighborhood search method. Results show that the proposed approach can be useful

for warehouse managers when deciding on worker allocation under uncertainty scenarios.

In “Combining Optimization and Simulation for Designing a Robust Short-Sea Feeder

Network”, Carl Axel Benjamin Medbøen et al. analyze a sea feeder network design problem. In

particular, they focus on how to synchronize vessels in order to perform the transshipment of

cargo between them at appropriate sea locations. Using an optimization simulation framework,

they are able to obtain robust solutions for the network design problem: while the optimization

component generates efficient routes, the discrete event simulation component is able to determine

their efficiency under uncertain weather conditions.

The chapter “Scheduling Algorithms for a Hybrid Flow Shop under Uncertainty”, by Christin

Schumacher and Peter Buchholz, studies a a hybrid flow shop with two stages, machine

qualifications, skipping stages, and uncertainty in demands. For solving this rich optimization

problem, they propose a hybrid methodology combining forecasting techniques, metaheuristics,

and discrete event simulation. The authors validate their approach using a real production system,

showing how more robust schedules tend to increase the expected makespan as well.

In “A Simheuristic Algorithm for Solving the Stochastic Omnichannel Vehicle Routing Problem

with Pick-up and Delivery”, Leandro do C. Martins et al. analyze the omnichannel vehicle routing

problem with random travel times. This is a realistic but complex optimization problem that arises in

the context of e-marketing. In order to solve it efficiently, the authors develop a biased-randomized

algorithm, which is later extended into a simheuristic algorithm capable of providing reliable

solutions with reasonably low transportation costs.

Finally, the chapter “Simheuristics Approaches for Efficient Decision-Making Support in

Materials Trading Networks” studies the distribution process in business-to-business materials

trading. Markus Rabe et al. investigate how reinforcement learning can reduce the response time

of the system, as well as how domain-specific information can be employed in the development of a

simheuristic algorithm that allows one to efficiently cope with real-life scenarios.

All in all, we sincerely hope that these selected contributions are useful for our readers and

provide them with updated knowledge on simulation optimization applications in the fields of

logistics, transportation, and supply chain management. Both the scale and complexity of these

systems are growing at a fast speed, thus making it necessary to employ hybrid methodologies

that combine the extraordinary scalability properties of metaheuristics with the advantages that

simulation can provide when modeling uncertainty elements, which arise in most real-life

applications.

x

Finally, we would like to thank all the authors, reviewers, and editors, who have made this book

possible. In particular, we would like to thank Mr. Musea Wu, MDPI Assistance Editor, who has

supported us during the entire process.

Angel A. Juan, Markus Rabe, David Goldsman, Javier Faulin

Editors

xi

algorithms

Article

Modeling and Optimization in Resource Sharing Systems:
Application to Bike-Sharing with Unequal Demands

Xiaoting Mo, Xinglu Liu and Wai Kin (Victor) Chan *

��������	
�������

Citation: Mo, X.; Liu, X.; Chan, W.K.

Modeling and Optimization in

Resource Sharing Systems:

Application to Bike-Sharing with

Unequal Demands. Algorithms 2021,

14, 47. https://doi.org/10.3390/

a14020047

Academic Editor: Angel A. Juan

Received: 8 December 2020

Accepted: 27 January 2021

Published: 30 January 2021

Publisher’s Note: MDPI stays neu-

tral with regard to jurisdictional clai-

ms in published maps and institutio-

nal affiliations.

Copyright: © 2021 by the authors. Li-

censee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and con-

ditions of the Creative Commons At-

tribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Intelligent Transportation and Logistics Systems Laboratory, Tsinghua-Berkeley Shenzhen Institute,
Shenzhen 518055, China; mxt17@tsinghua.org.cn (X.M.); liuxl18@mails.tsinghua.edu.cn (X.L.)
* Correspondence: chanw@sz.tsinghua.edu.cn

Abstract: The imbalanced distribution of shared bikes in the dockless bike-sharing system (a typical
example of the resource-sharing system), which may lead to potential customer churn and lost profit,
gradually becomes a vital problem for bike-sharing firms and their users. To resolve the problem,
we first formulate the bike-sharing system as a Markovian queueing network with higher-demand
nodes and lower-demand nodes, which can provide steady-state probabilities of having a certain
number of bikes at one node. A model reduction method is then designed to reduce the complexity
of the proposed model. Subsequently, we adopt an operator-based relocation strategy to optimize
the reduced network. The objective of the optimization model is to maximize the total profit and act
as a decision-making tool for operators to determine the optimal relocation frequency. The results
reveal that it is possible for most of the shared bikes to gather at one low-demand node eventually
in the long run under the influence of the various arrival rates at different nodes. However, the
decrease of the number of bikes at the high-demand nodes is more sensitive to the unequal demands,
especially when the size of the network and the number of bikes in the system are large. It may cause
a significant loss for operators, to which they should pay attention. Meanwhile, different estimated
values of parameters related with revenue and cost affect the optimization results differently.

Keywords: dockless bike-sharing system; Markovian queueing network; relocation; unequal demand

1. Introduction

The existence of idle resources and people’s willingness to well use them to promote
the sharing economy has brought several lifestyle changes, including various traffic modes.
The sharing economy means people can share resources (e.g., services, skills, assets, etc.)
through a network of private individuals and businesses, which may often but not al-
ways be at lower costs. Shared mobility, a typical resource sharing pattern, has become
more popular and common, such as bike-sharing [1], ride-sharing [2], car-sharing [2] and
electric vehicle sharing [3]. Apparently, the shared transport emergence contributes to
protecting the environment, conserving energy, reducing traffic congestion and improving
transportation resource utilization and availability [4].

However, there remain some limitations of current shared transport systems. For
instance, users cannot find an available shared vehicle or bicycle nearby sometimes, or
they have to spend too much time seeking idle ones when they are in a hurry. Sometimes,
the idle cars or bikes are parked in low demand areas, causing potential profit loss for
operators [3]. An essential reason is tidal commuter flows [1]; more specifically, citizens
usually travel from residential areas (or home) to public transit locations (subway stations)
or popular areas (e.g., commercial zones) during peak hours, thereby resulting in rare
bikes in residential zones, whereas the overwhelming number of shared bikes near popular
zones [5]. An optional solution for improving this is to rebalance or reposition shared
resources, e.g., reposition shared-bikes by trucks in bike-sharing systems (see [6]) and
reposition shared cars in vehicle sharing systems (see [3]).

Algorithms 2021, 14, 47. https://doi.org/10.3390/a14020047 https://www.mdpi.com/journal/algorithms1

Algorithms 2021, 14, 47

This paper focuses on bike-sharing and aims at solving rebalance problems existing
in bike-sharing systems. Generally, there are two typical types of bike-sharing systems:
the traditional bike-sharing system with docking stations (e.g., Citi Bike, Divvy and Ford
GoBike in America, see [1]) and the dockless bike-sharing system (e.g., Mobike in China,
see [5]). The dockless bike-sharing system, the focus of this work and the latest type of
bike-sharing system, also termed the free-floating bike-sharing system, implies users are
allowed to park their bikes everywhere they want rather than fixed docking stations. As
the dockless bike-sharing system emerges, the traditional bike-sharing system tends to lose
competitiveness and gradually vanish in some countries, especially China.

Numerous previous studies concentrate on optimizing rebalance (or relocation) de-
cisions, which includes two main streams: vehicle-based (also terms operator-based)
approach and user-based approach [7]. For vehicle-based approach, the rebalance decision
involves pick-up decisions (from which station to pick up how many idle bikes), drop
off decisions (to which station to drop off bikes) and the routing decisions, and then the
rebalance strategy is executed by a fleet of trucks (see, e.g., [6,8–10]). Such a rebalance
approach requires accurate demand prediction and cannot handle dynamic settings in
real-time well. The user-based approach attempts to guide customers to rebalance the
shared-bikes by providing monetary incentives, e.g., recommend pick-up or drop-off areas
for users (see [5]), design incentive programs (see, e.g., the Bike Angels program in [1]).
Instead of determining the optimal practical level decisions (i.e., pick-up and delivery
decisions) and incentive policies (for user-based rebalance), this work focuses on analyzing
how the key factors affect system performance based on the Markovian queueing networks
formulation and optimizing the rebalance frequency.

The rest of this paper is organized as follows. The relevant literature on resource-
sharing system and rebalance in bike-sharing system is reviewed in Section 2. In Section 3,
we first present a complete problem description and then introduce the Markovian queue-
ing networks formulation in Section 3.1. Afterwards, the rebalance strategy optimization
model is presented in Section 3.2. Section 4 provides the analysis and discussion of the
steady-state probabilities derived from the theoretical models under the influence of un-
equal demands. Moreover, we address the profit analysis based on the optimization model
in this section. Finally, some valuable conclusions and suggestions about the dockless
bike-sharing system, especially from the operators’ perspective, are presented in Section 6.

2. Literature Review

Initially, few articles focus on the feasibility and impacts of bike-sharing as a new
public transportation mode in urban areas [11–13]. Recently, more papers begin to discuss
the sustainable development of bike-sharing systems, especially the dockless bike-sharing
systems [10,14–19]. Because the study of dockless bike-sharing is still in progress, and
some mature studies on the station-based bike-sharing can guide the development of the
study on dockless bike-sharing, we review the literature on both station-based bike-sharing
and dockless bike-sharing. Some other typical transport sharing systems are mentioned
due to their contributions to resource sharing. These related studies can be classified into
three major categories: system design, system analysis and system optimization. Each
category involves a review of some major topics and relevant progress.

2.1. System Design

To build or expand a bike-sharing system, bike-sharing firms need to select an area
and investigate the potential demand for shared bikes. Based on the essential research,
these firms decide the scale of the network system, select bike pick-up locations and allocate
shared bikes to each node in the network to meet the potential demand. There are several
ways to estimate demand by connecting with various factors. One traditional way is to do
a population study and a sample survey to determine the locations of the pick-up/drop-off
nodes in the system [20]. Frade and Ribeiro proposed a methodology considering the
distance and slope of city paths between any two traffic zones [21]. In the age of big

2

Algorithms 2021, 14, 47

data, some researchers extract valuable information from a large amount of historical data
collected from existing bike-sharing systems. Xu et al. used deep learning approach with
trip data to estimate dynamic demand for a citywide dockless bike-sharing system [22].
Besides demand prediction, how to build a bike-sharing network and where to allocate
a number of bikes to serve users in the network are considered. Çelebi et al. considered
station locations and bike allocation using a set-covering model and a queueing model
for a station-based bike-sharing system, given a number of stations [23]. Cheng et al. [18]
found that the station-based bikes are used more frequently near subway stations and
commercial zones, whereas the dockless shared bikes are preferred in residential areas and
near major roads, which provides useful suggestions for system operators to enhance the
system efficiency by allocating and deploying these two types of shared bikes well.

2.2. System Analysis

In the operation phase of bike-sharing systems, many data can be collected and ana-
lyzed to find patterns (e.g., system patterns, bike usage and trip characteristics) and make
changes from operators’ perspective. Mátrai and Tóth [16] aimed to identify the differ-
ences among various bike-sharing systems. According to their results, four main types of
bike-sharing systems are involved after clustering: public systems, private systems, mixed
systems and other systems. Bordagaray et al. used binary probit models to investigate
travel behavior and impacts of different usage types (e.g., round trips, rental time reset and
bike substitution) [24]. Gurumurthy et al. matched different single-person trips by iden-
tifying similar time and routes from cellphone-based real-time data using MATLAB [25].
Yang et al. used dockless bike data to analyze bike mobility patterns based on unique
bike IDs, including spatial and temporal patterns [26]. Ji et al. compared regularity of
bike usage between station-based bike-sharing and dockless bike-sharing [27]. Besides
usage pattern analysis, Bakogiannis et al. paid attention to user perceptions and evaluated
the information to get ideas about how to improve user experience [28]. For operators,
gaining profits is important. Profits have a close relationship with costs and revenues. Yoon
et al. investigated the impacts of different pricing plans in several cities on membership
demand and ridership and presented a new pricing plan based on the estimated cost per
trip and price sensitivity of customers to improve revenue [29]. Estrada et al. focused on
how to determine operational cost based on defined performance, expected functionality
of a system and cost driver analysis [30]. Chen et al. aimed at maximizing the profits by
using the advantage of hassle costs, which are derived from the provided convenience of
travel for customers [31].

Moreover, some literature analyze the impact of COVID-19 on the performance and the
feasibility of the bike-sharing system [32–34]. According to the questionnaire survey and
analysis results of reference [34], commuters who were previously commuting with taxis
or ride-hailing/ride-sharing service now prefer shared bikes due to the safety concerns
(reduce interpersonal contact). Teixeira et al. explored the relationship between bike
sharing and subway systems by analyzing the trip data of New York City during the
COVID-19 pandemic. The results reveal that travel demand in the bike-sharing system is
more stable than subway system, and bike-sharing system enhances the robustness (the
capability to resist disruptive events) of urban transport systems. Besides, they found
a modal trend that some subway customers leave the systems and head to bike-sharing
system. Hua et al. [32] examined that travel demand of bike sharing in Nanjing, China
decreased significantly due to the pandemic control policies. These works implies that
the COVID-19 leads to huge uncertainty and change in travel demand for bike-sharing
systems, which bring new challenges on travel demand prediction and operation issues.

2.3. System Optimization

Several topics are involved in system optimization: fleet size management, rebalance
of shared resources, etc. Sayarshad et al. proposed a multi-periodic optimization formula-
tion to determine the minimum bike fleet size by maximizing the total profits [35]. Since

3

Algorithms 2021, 14, 47

that the main topic of system optimization related to this work is rebalance/relocation of
shared resources, we mainly review rebalance related literature in this section. Optimizing
resource-sharing systems by relocation, which means relocating shared resources (e.g., cars
and bikes) to solve the problem of imbalanced distribution of resources and try to make
supply meet demand, is mainly discussed. Taking shared bikes as an example, a main
principle is to move extra bikes from locations which have a surplus supply of bikes to
locations which have a shortage of bikes. Relocation strategies have two primary types:
operator-based relocation strategy (see [6,8–10,14,15]) and user-based relocation strategy
(see [1,5,7,36,37]). Some studies perform joint rebalance strategy by merging them together
(see, e.g., [19]). An operator-based relocation strategy means relocation is driven by op-
erators’ behavior (e.g., reposition by trucks) and a user-based relocation strategy means
relocation is directly driven by users (e.g., design appropriate incentives).

In the early stage, the user-based relocation strategy may be sufficient to handle
imbalance for the system. When user-based relocation is insufficient, operator-based
relocation is applied by using a fleet of trucks to relocate bikes through well-designed
routes. Liu et al. solved a static relocation problem and minimized the weighted sum of
three factors (inconvenience level of finding an available bike, lost demand and operational
time) [38]. Brinkmann et al. proposed a stochastic-dynamic lookahead policy to cope with
changing demand patterns [39]. Legros used a Markov decision process to determine the
priority of stations where bikes need to be relocated and minimizes the ratio of arrival
rate of unsatisfied users who cannot find any bikes to determine the number of relocated
bikes at appointed stations [40]. Brendel et al. adopted a user-based relocation strategy to
increase usage in an electric vehicle sharing system [41]. Reiss et al. combined operator-
based relocation with user-based relocation, which is called as a hybrid relocation strategy,
in a dockless bike-sharing system [42].

Several factors affect the performance of relocation strategy, e.g., region partitioning
policy, demand prediction, faulty bikes, etc. Many studies optimize the relocation strategy
based on region partitioning, but, usually, the region partitioning results seems to be
inefficient due to no well-predefined geographical zones. For example, for irregular areas,
inefficient zone partitioning decisions may lead to very large errors in relocation stage.
Jin et al. [19] investigated the effects of geographical zone scale on the imbalance estimation
of the dockless bike-sharing system and the relocation decisions. Besides, they developed a
region decomposition approach to handle large scale instances based on appropriate scales.
Cheng et al. [17] designed a recurrent neural networks-based real-time rental and return
demand prediction approach, which can offer estimated demand information as input
parameters for rebalance optimization model. Moreover, sometimes, faulty bikes will lead
to infeasibility of relocation strategy [15]. More specificity, all the shared bikes in the system
(including faulty ones) are assumed as available inventory if faulty bikes are not considered
in the problem; this assumption makes operators fail to estimate the actual real-time supply
information and is more likely to result in impractical rebalance decisions. Du et al. [15]
formulated the bike rebalancing problem with faulty bikes and operator-based rebalance
policy for dockless bike-sharing systems, where a fleet of heterogeneous trucks, multiple
depots and multiple visiting are considered. Usama et al. [14] explicitly considered the
shifting decisions of faulty bikes rather than relocating them to the nearest station, i.e.,
bring broken bikes to the depot for repair.

Most existing literature related to rebalancing optimization adopts integer program-
ming, reinforcement learning and heuristic approaches, which aim to make operational
level decisions (e.g., truck route and the number of bikes to pickup/drop off at each node).
A few studies use queueing theory to model bike-sharing problems and provide tactical
level decisions (e.g., rebalance frequency). Sayarshad et al. obtained the queueing delay
by using the queueing-based approximation and related the delay to a cost constraint of
a dynamic relocation optimization model [43]. Samet et al. presented a closed queuing
network model for a station-based bike-sharing system [44]. For station-based bike-sharing
systems, customers may wait at a station to pick up or return a bike, because the parking

4

Algorithms 2021, 14, 47

spaces are fixed and finite. For dockless bike-sharing systems, wait time is negligible. If
customers can find an available bike to ride, they will not wait behind others. If customers
cannot find one, they will leave quickly and feel dissatisfied.

3. Methodology

3.1. Markovian Queueing Networks
3.1.1. Assumptions and Notations

The dockless bike-sharing system is modeled by a closed Markovian queueing network
with N ∈ N∗ connected nodes and a total of K ∈ N∗ bikes. The bikes are distributed among
the nodes. N = {1, 2, · · · , N} and K = {1, 2, · · · , K} are the sets of N nodes and K bikes,
separately. Customers arrive at node i ∈ N to pick up bikes to ride and return bikes at
node j ∈ N. Let pij be the transition probability from node i ∈ N to node j ∈ N. All of the
nodes are fully connected because of the customers’ bike trips. The transition probabilities
can reflect the information of customers’ destinations as well as geographical environment.
If the route between two nodes is long and steep, there will be a low probability of riding
bikes between these two nodes. High demand leads to a large value of the arrival rate. The
main assumptions are made as follows:

1. Customers arrive at a node one by one for picking up bikes rather than arriving in
groups.

2. The inter-arrival times of customers are exponentially distributed (i.e., the number of
customer arrivals within a unit time interval is Poisson distributed) with an arrival
rate λi at node i, and the arrivals at each node are completely independent.

3. All of the probabilities are the same for each route from a start node to a destination
node (which can also be the start node itself), which means pij =

1
N for every pair of i

and j.
4. The time spent on picking up or dropping off bikes is negligible, which means

customers do not have to wait in lines at any node in the network, and the trip time is
not considered as an independent parameter in the theoretical models as our focus is
the steady states in the long run, but it is included in the simulation model.

5. The number of bikes is evenly distributed at each node at the beginning of the
operation, and the total number of bikes in the system is fixed.

6. The capacity of each node is large enough to accommodate K bikes.
7. If a node has no bike during a period of time, customers will still arrive randomly

and leave immediately, and the service for these customers will be regarded as the
lost demand.

The notations are summarized in Table 1.

Table 1. Overview of notations.

Notation Units Definitions

N [nodes] Total number of nodes in a system

K [bikes] Total number of bikes in a system (K = εN)

ε [bikes] The initial number of bikes at each node in the system

λi [people/min] Arrival rate at node i ∈ N

λ [people/min] A certain value of the arrival rate

α(m) [people/min] Transition rate of returning one bike to node i by a customer riding from
one of the other nodes except node i (m = 0, 1, · · · , K − 1)

β(m+1) [people/min] Transition rate of renting one bike from node i to one of the other nodes
except node i (m = 0, 1, · · · , K − 1)

α [people/min] A certain value of the transition rate

β [people/min] A certain value of the transition rate

pl - Probability of having l bikes at node i with no relocation (l = 0, 1, · · · , K)

5

Algorithms 2021, 14, 47

Table 1. Cont.

αi(m1,m2) [people/min] Transition rate of renting one bike at the virtual node and returning it at
node i (m1, m2 = 0, 1, · · · , K − 1)

Notation Units Definitions

αj(m1,m2) [people/min] Transition rate of renting one bike at the virtual node and reurning it at
node j (m1, m2 = 0, 1, · · · , K − 1)

βi(m1,m2) [people/min] Transition rate of renting one bike at Node and returning it at the virtual
node i (m1, m2 = 0, 1, · · · , K − 1)

β j(m1,m2) [people/min] Transition rate of renting one bike at Node and returning it at the virtual
node j (m1, m2 = 0, 1, · · · , K − 1)

αiβ j(m1,m2) [people/min] Transition rate of renting one bike at Node and returning it at node i
(m1, m2 = 0, 1, · · · , K − 1)

αjβi(m1,m2) [people/min] Transition rate of renting one bike at Node and returning it at node j
(m1, m2 = 0, 1, · · · , K − 1)

pm1 - Probability of having m1 bikes at node i (m1 = 0, 1, · · · , K)

pm2 - Probability of having m2 bikes at node j (m2 = 0, 1, · · · , K)

pm1,m2 - Probability of having m1 bikes at node i and having m2 bikes at node j with
no relocation (m1, m2 = 0, 1, · · · , K)

p
′
l - Adjusted probability of having l bikes at node i with relocation

(l = 0, 1, · · · , K)

r [times] Relocation frequency during operation time

c - Coefficient of variation in probability of having zero bikes at node i under
the influence of relocation

μ - Index of measuring the influence of relocation on steady-state probabilities

B - Coefficient of variation in probability of having bikes at node i under the
influence of relocation

cin [RMB ·min/(bike·person)] Unit revenue per bike per person during operation time

cre [RMB /time] Unit cost of one-time relocation

cp [RMB·min/person] Penalty per person for unmet demands during operation time

Y(r) [RMB] Total profit with relocation

rmax [times] Optimal relocation frequency which corresponds to the maximum total
profit with relocation

Y(rmax) [RMB] Maximum total profit with relocation by adopting the optimal relocation
frequency

3.1.2. A Markovian Queueing Network with Higher Demands

Samet et al. studied the possibility of applying a model reduction method to a closed
queueing network [44]. The aim is to reduce the complexity of the network model. When
the network model is used to model a dockless bike-sharing system, both the excessive
nodes and their intricate relationship increase the burden of calculation rapidly and make
the problem more difficult to solve. Considering the potential barrier, a model reduction
method is adopted based on the basic idea proposed by Samet et al. [44]. The main idea of
this method is to aggregate multiple nodes into a virtual single node. The additive property
of independent Poisson random variables demonstrates its reliability from a demand-side
perspective. If taking a three-node network as an example, we reduce a three-node system
into a two-node system with a virtual node (i.e., a combination of two of the nodes). It
is shown by the results that the aggregation of two nodes reduces the state space of the
network significantly, from a three-tuple state space: (K, 0, 0), . . . , (0, K, 0), . . . , (0, 0, K) to a
two-tuple space: (K, 0), (K − 1, 1), . . . , (1, K − 1), (0, K). More generally, a simplified model

6

Algorithms 2021, 14, 47

with one single node (i.e., node i) and a combination of N − 1 nodes as a virtual node is
shown in Figure 1.

Figure 1. A reduced N-node network with the same probabilities and the same arrival rates at the
nodes which are aggregated into a virtual node.

In this subsection, we build network models based on the model reduction method and
differentiate a node with higher demands from the other nodes (i.e., λ ≤ λi). We assume
that it is possible to have zero bikes at the nodes which are inside a virtual node during the
state transition process of the dockless bike-sharing system (see Figure 2). The digits in
circles represent the changing number of bikes at the high-demand node. The number of
bikes at a virtual node is K minus the circled number. Therefore, each circled number can be
described as a state of the system. α(0), α(1), · · · , α(K−1) and β(1), β(2), · · · , β(K) are the state
transition rates. {α(m), m = 0, 1, · · · , K − 1} means the rate of returning one bike, which is
picked up at one of the nodes from the virtual node, at node i. {β(m+1), m = 0, 1, · · · , K − 1}
means renting one bike at node i and returning it at one of the other nodes except node
i. Although the complexity increases with the increasing number of nodes in the system,
general formulas are concluded.

Figure 2. The state transition diagram with a high-demand node.

A three-node system:

α(m) =
2
3

λ
K − m

K − m + 1
, m = 0, 1, · · · , K (1)

A four-node system:

α(m) =
3
4

λ
K − m

K − m + 2
, m = 0, 1, · · · , K (2)

A N-node system:

α(m) =
N − 1

N
λ

K − m
K − m + N − 2

, m = 0, 1, · · · , K (3)

7

Algorithms 2021, 14, 47

β(m+1) is given by

β(m+1) = λi
N − 1

N
, m = 0, 1, · · · , K − 1 (4)

The steady-state probabilities are given by

pl =
α(m)

β(m+1)
pl−1, (l, m) = {(1, 0), · · · , (K, K − 1)} (5)

Based on ∑K
l=0 pl = 1, the formula of p0 is yielded by

p0 =
1

1 + λ
λi

K
K+N−2 + λ2

λ2
i

K(K−1)
(K+N−2)(K+N−3) + · · ·+ λK

λK
i

K!
(K+N−2)···(N−1)

(6)

which leads to the formula of pl(l = 1, 2, · · · , K):

pl =

(
λ
λi

)l K(K−1)···(K−l+1)
(K+N−2)(K+N−3)···(K+N−l−1)

1 + λ
λi

K
K+N−2 + λ2

λ2
i

K(K−1)
(K+N−2)(K+N−3) + · · ·+ λK

λK
i

K!
(K+N−2)···(N−1)

(7)

The value of p0 tends to be 1 when λi is far larger than λ.

3.1.3. A Markovian Queueing Network with Higher Demands and Lower Demands

In reality, a bike-sharing system may include multiple nodes with complex and diverse
demands from customers. To make the models more related to a real-world network, the
Markovian queueing network model is extended in the paper to analyze the system under
the influence of unequal demands, which include the higher demands and the lower
demands. The reduced N-node network of the extension model is shown in Figure 3. Node
i refers to a node with higher demands, and node j refers to a node with lower demands
than the nodes (whose arrival rates are the same and represented by λ) inside a virtual
node (i.e., λj ≤ λ ≤ λi).

Figure 3. A reduced N-node network with the same probabilities and unequal demands.

With the existence of a virtual node and two single nodes, a three-tuple state space
{(K, 0, 0), · · · , (0, K, 0), · · · , (0, 0, K)}is used to represent the changing states of the whole
system. Thanks to the fixed total number of bikes, a two-tuple state space {(K, 0), (K −
1, 1), . . . , (1, K − 1), (0, K)} performs a similar function, which represents the number of

8

Algorithms 2021, 14, 47

bikes at nodes i and j, separately (see Figure 4a,b). Each transition of the states means
transferring one bike at a time. The six types of transition rates are defined as follows:

βi(m1+1,m2) = βi = λi
N − 2

N
, ∀m1, m2 (8)

β j(m1,m2+1) = β j = λj
N − 2

N
, ∀m1, m2 (9)

αjβi(m1+1,m2) =
λi
N

, ∀m1, m2 (10)

αiβ j(m1,m2+1) =
λj

N
, ∀m1, m2 (11)

αi(m1,m2) =
N − 2

N
λ(K − m1 − m2)

K − m1 − m2 + N − 3
(12)

αj(m1,m2) =
N − 2

N
λ(K − m1 − m2)

K − m1 − m2 + N − 3
(13)

(a)The state transition diagram with unequal demands;

(b)The schematic symbols.

Figure 4. The detailed state transition diagram.

9

Algorithms 2021, 14, 47

According to a main principle that the sum of the values of inflows equals to the sum
of the values of outflows in a steady-state system, multiple equations (which are centered
on each steady state and its directly-connected states) can be deducted. Equations are given
as follows (1 ≤ m1, m2 ≤ K − 1):(

αi(0,0) + αj(0,0)

)
p(0,0) = βi p1,0 + β j p0,1, (14)

(
β j +

λj

N

)
p0,K =

λi
N

p1,K−1 + αj(0,K−1)p0,K−1, (15)

(
βi +

λi
N

)
pK,0 =

λj

N
pK−1,1 + αi(K−1,0)pK−1,0, (16)

(
βi + β j + αi(m1,m2) + αj(m1,m2)

)
pm1,m2

= βi pm1+1,m2 + β j pm1,m2+1 + αi(m1−1,m2)pm1−1,m2 + αj(m1,m2−1)pm1,m2−1, ∀m1 + m2 ≤ K − 1
(17)

(
β j + αi(0,m2) + αj(0,m2)

)
p0,m2 = βi p1,m2 + β j p0,m2+1 + αj(0,m2−1)p0,m2−1 (18)

(
βi + αi(m1,0) + αj(m1,0)

)
pm1,0 = β j pm1,1 + βi pm1+1,0 + αi(m1−1,0)pm1−1,0 (19)

(
βi +

λi
N + β j +

λj
N

)
pm1,K−m1

= λi
N pm1+1,K−m1−1 +

λj
N pm1−1,K−m1+1 + αi(m1−1,K−m1)

pm1−1,K−m1 + αj(m1,K−m1−1)pm1,K−m1−1

(20)

In addition, there is a constraint toward the sum of the steady-state probabilities:

∑
m1, m2 ≥ 0

m1 + m2 ≤ K

pm1,m2 = 1 (21)

A unique solution of the steady-state probabilities can be obtained by solving the set of
equations. The probabilities of having m1 bikes at node i and the probabilities of having
m2 bikes at node j are given by the following formulas:

pm1 =
K−m1

∑
m2=0

pm1,m2 (22)

pm2 =
K−m2

∑
m1=0

pm1,m2 (23)

Since it is a problem of solving non-homogeneous linear equations, we can use matrix
inversion or other efficient algorithms to compute the solutions. In this paper, we use the
open source R statistics software to obtain the values of steady-state probabilities. The
limitation is that the burden of computation becomes huger with the increase of K.

3.2. Rebalance Strategy Optimization Model

According to the probabilistic results of the Markovian network model with one
high-demand node, shared bikes are likely to leave the high-demand node and gather
at the relatively low-demand nodes in the system in the long run. The basic relocation

10

Algorithms 2021, 14, 47

strategy we tend to adopt is to relocate the extra bikes from the relatively low-demand
nodes (which have been aggregated into a virtual node in the network model with one high-
demand node) to the high-demand node (which is represented as node i in the network
model with one high-demand node) to reach the initial number of bikes at each node. The
relocation strategy can be implemented as many times as needed during normal operation
of the bike-sharing system, and the relocation frequency can reflect the number of times of
relocation.

In this paper, we assume that a more effective relocation strategy is able to reduce
the value of p0 more rapidly, which can be described as p

′
0 ∝ cr−μ p0(c > 0, μ > 0). p

′
0

represents the steady-state probability of having zero bikes at node i under the influence of
relocation. The formulas and descriptions are based on the Markovian queueing network
model with higher demands. When operators implement the relocation strategy more
frequently, p

′
0 decreases from a basic value of p0. To determine the relationship between the

probabilities without relocation and the probabilities with relocation, we have p′0 = cr−μ p0.
When p

′
0 equals p0, cr−μ = 1, where the value of r represents no relocation is implemented

in the system. r > c
1
μ means the operators start to relocate bikes. Considering that

the sum of all the probabilities equals 1, the other probabilities are assumed to increase
proportionately to satisfy the constraint, which are given by

p′l = Bpl , ∀l = 1, · · · , K (24)

For ∑K
l=0 p′l = 1, we have

B =
1 − cr−μ p0

1 − p0
(25)

p′l =
{

cr−μ p0, l = 0
1−cr−μ p0

1−p0
pl , l = 1, · · · , K

(26)

Our aim is to maximize the total profit obtained by the operators of the dockless bike-
sharing system after implementing the relocation strategy. The operating revenue comes
from the customers who rent the shared bikes and return them successfully without any
trouble. In reality, the customers often have to pay for the time they spend using the
bikes. We assume that the operating revenue is in proportion to the customer demand,
the number of available bikes at each node and the unit price charged by the operators. If
there is a high demand for shared bikes or there is a large number of available bikes in
the area, it is likely to squeeze more revenue from the customers. Based on the adjusted
probabilities of having a number of bikes at node i, the operating revenue is given by[

K

∑
l=0

p′l lλi +
K

∑
l=0

p′l(K − l)λ

]
cin =

[
Kλ +

K

∑
l=0

p′l l(λi − λ)

]
cin (27)

The operating cost can be divided into the cost of relocations (which is assumed to be in
proportion to the relocation frequency and the unit cost of implementing the relocation
strategy) and the penalty derived from the unmet demands (which is assumed to be in
proportion to the arrival rate, the possibility of having zero bikes at each node and the unit
cost of penalties). Due to the given constraint for r, if no relocation is implemented in the
system, the cost of relocations will not occur. According to the initial assumption that the
nodes inside a virtual node are the same, it is assumed that, when the total number of bikes
at these nodes (i.e., the nodes which are aggregated into one virtual node) is less than the
number of the nodes inside the virtual node, there may be no bike available at some of
these nodes. If the arrival rate at the node where there is no bike available for customers to

11

Algorithms 2021, 14, 47

use is large or the possibility of having zero bikes at the node is high, the cost of penalty
from unmet demands will increase. The sum of the operating cost is given by(

r − c
1
μ

)
cre +

(
p′0λi +

N−1

∑
l=1

p′K−N+1+l lλ

)
cp (28)

The total profit after implementing the relocation strategy can be calculated by the following
formula:

maxY(rmax) =

[
Kλ +

K

∑
l=0

p′l(rmax)l(λi − λ)

]
cin

−
(

rmax − c
1
μ

)
cre −

[
p′0(rmax)λi +

N−1

∑
l=1

p′K−N+1+l(rmax)lλ

]
cp (29)

Y(r) means the total profit with the corresponding relocation frequency r. rmax repre-
sents the optimal relocation frequency which corresponds to the maximum profit Y(rmax)
that the operators can obtain after relocating the bikes in the system. It is found that the
relationship between Y(r) and r takes the shape of a concave curve. Before the relocation
frequency reaches the turning point, Y(r) increases with the increase of r. After the turning
point, Y(r) decreases with the increase of r. The turning point turns out to be the best
choice for the relocation frequency and the total profit. Therefore, we take a derivative of
the total profit with respect to the relocation frequency in order to get the formula of rmax.
The first-order partial derivative of Equation (29) with respect to r is given by

∂Y(r)
∂r

=
K

∑
l=1

(λi − λ)cin
cμp0lpl
1 − p0

r−μ−1 + λicpcμp0r−μ−1 −
N−1

∑
l=1

λcp
cμp0lpK−N+1+l

1 − p0
r−μ−1 − cre (30)

When the first-order partial derivative equals 0, rmax can be calculated by the following
formula

rmax =

⎡⎣∑K
l=1 (λi − λ)cin

cμp0lpl
1−p0

+ λicpcμp0 − ∑N−1
l=1 λcp

cμp0lpK−N+1+l
1−p0

cre

⎤⎦ 1
μ+1

(31)

4. Results

4.1. Probabilistic Results

The relationship between the steady-state probabilities and the arrival rates at different
nodes in the network model with unequal demands is investigated in multiple cases by
numerical experiments. The setting of the arrival rates and the corresponding figures of
the cases are shown in Table 2.

Table 2. Setting of the arrival rates in the network model with unequal demands.

Case ID λ λi λj Figure

Case 1 1 1 0.8 Figure 5a
Case 2 1 1 0.6 Figure 5b
Case 3 1 1 0.4 Figure 5c
Case 4 1 1.2 0.8 Figure 5d
Case 5 1 1.2 0.6 Figure 5e
Case 6 1 1.2 0.4 Figure 5f
Case 7 1 1.2 0.2 Figure 5g
Case 8 1 1.2 0.1 Figure 5h
Case 9 1 1.2 0.05 Figure 5i

It can be concluded from the change of the arrival rates at different nodes that the
long-term bike distribution in the dockless bike-sharing system is more sensitive to the
higher demands than the lower demands. Due to the difference, the number of bikes at the

12

Algorithms 2021, 14, 47

nodes with higher demands decreases more quickly and more likely than the increase of
the number of bikes at the nodes with lower demands. For the nodes with middle demands,
the number of bikes may decrease more mildly compared with the decreased number of
bikes at the nodes with higher demands. It is suggested that the operators should pay
more attention to the high-demand nodes, which may suffer the biggest loss in the system.
Unless one low-demand node has the smallest arrival rate which is terribly different from
the arrival rates at the other nodes, there is a relatively small possibility that all of the bikes
in the system are transferred to one low-demand node in a limited period of time, which
can be regarded as the biggest imbalance of bikes in the system.

(a)Case 1 (b)Case 2

(c)Case 3 (d)Case 4

(e)Case 5 (f)Case 6

(g)Case 7 (h)Case 8

(i)Case 9

Figure 5. Probabilities with respect to the number of bikes at nodes i and j.

13

Algorithms 2021, 14, 47

4.2. Profitability Results
4.2.1. The Effect of Relocation-Related Parameters

c and μ are two positive parameters which can be regarded as a measure of the
effectiveness of an adopted relocation strategy. If the relocation strategy is more effective,
c is supposed to decrease and μ is supposed to increase, which can contribute a low
probability of having zero bikes at the high-demand node under the influence of relocations.
In the numerical experiments, c and μ are changed separately to analyze their influence on
the performance of the optimization model, as shown in Figure 6.

(a) (b)

Figure 6. Effect of relocation-related parameters. (a) The maximum profit after implementing the relocation strategy with
respect to the optimal relocation frequency under the influence of c; (b) The maximum profit after implementing the
relocation strategy with respect to the optimal relocation frequency under the influence of m.

The value of Y(rmax) decreases with the increase of rmax in Figure 6a,b. When c
decreases or μ increases, the maximum profit tends to increase and the optimal relocation
frequency tends to decrease. It is indicated that the relocation strategy works well. An
effective relocation strategy can reduce the relocation frequency and save the expense of
frequent relocations, which can increase the total profit indirectly. However, the concavity
and convexity of the curves shown in these two figures is different between c and μ. In
Figure 6a, Y(rmax) is more sensitive when the value of c is small, and rmax is more sensitive
when the value of c is large. In Figure 6b, Y(rmax) is more sensitive when the value of
μ is small, and rmax is more sensitive when the value of μ is large. Since it is preferable
for operators to gain more profits, a combination of a small c and a large μ can properly
decrease the sensitivity of Y(rmax) and rmax to the effectiveness of relocation strategies,
which allows the operators to make more flexible decisions about what kind of relocation
strategies they want to adopt.

4.2.2. The Effect of Revenue-Related and Cost-Related Parameters

cin, cre and cp are parameters related to the operating revenue and the operating cost.
As shown in Figure 7a,b, Y(rmax) increases with the increase of rmax under the influence of
cin and cre. Y(rmax) increases with the decrease of rmax under the influence of cp (Figure 7c).
It can be explained by the different meanings of these parameters. The relocation strategy
can reset the number of bikes at each node to an initial state, which make the bike-sharing
system able to supply the customers with enough bikes after each relocation. Due to the
definition of cin, the high price means operators can generate more revenue by satisfying
the customer demand, which can be promised by frequent relocations. Therefore, with the
increase of cin, both the optimal relocation frequency and the maximum profit increase.
According to the change of rmax and Y(rmax), as shown in Figure 7a, rmax is insensitive to
the increase of cin and Y(rmax) is sensitive to the increase of cin. In reality, operators can
make more profits by raising the unit price. However, they have to consider the unit price
given by their competitors, who have the ability to pull regular customers from them.

14

Algorithms 2021, 14, 47

Although acquiring a large revenue from customers can cover the expense on re-
locations to some extent, the increase of the optimal relocation frequency is slight. For
operators, pricing decisions have a significant influence on the total profit but have a slight
effect on the decision-making about relocating bikes. As shown in Figure 7b, with the
increase of cre, both rmax and Y(rmax) decrease. It is because that the high cost of relocating
bikes is supposed to decrease the relocation frequency to save cost for operators. With
the decrease of relocation frequency, the total profit decreases due to the huge expense
on relocations and the decreased revenue caused by the occasional shortage of bikes at
some nodes. The slope of the curve in Figure 7b indicates that rmax is more sensitive to the
change of cre than Y(rmax), especially when cre has a small value.

It is suggested that operators should consider how to reduce the expense on relocating
bikes in the system, which can be very beneficial to solve the imbalance problem of bike
distribution. In Figure 7c, rmax increases and Y(rmax) decreases with the increase of cp.
The large value of cp means a large penalty of losing customers, which happens when
customers arrive at the node where there is no bike available. The increase of relocation
frequency can minimize the losses by relocating bikes to the nodes with high demands.
With the increase of the penalty and the increased cost derived from frequent relocations,
the total profit decreases. In the real world, the unit cost of penalty from unmet demands is
difficult to measure. In the numerical experiments, the value of cp is set far larger than the
values of cin and cre. It is because unmet demands may have a significant impact on the
loyalty of the regular customers. If the customers often cannot find any bikes to ride, they
are likely to feel dissatisfied with the dockless bike-sharing system and turn to alternatives,
which may bring about great losses (e.g., an obvious decrease in the potential revenue) for
the bike-sharing company. Therefore, setting a large value of cp in the optimization model
for a relocation problem can emphasize the need for a suitable relocation frequency.

4.2.3. The Effect of Arrival Rates

The arrival rate is the most important parameter which is concerned with the customer
demand for bike service in the paper. The influence of the arrival rates at different nodes
on the relocation problem is also investigated by a numerical experiment. In Figure 7d,
rmax increases and Y(rmax) decreases with the decrease of λ

λi
. It is because that the decrease

of λ
λi

means the customer demand at different nodes becomes more unequal, which leads
to an increased possibility of the imbalanced distribution of bikes in the system. Frequent
relocations are needed to deal with this problem. Due to the high cost of frequent reloca-
tions, the total profit decreases. From the results, it is observed that, compared with the
maximum profit, the optimal relocation frequency is more sensitive to the difference of the
arrival rates at different nodes in the network, especially when λ

λi
is small. When λ

λi
gets

close to 1, the optimal relocation frequency decreases rapidly and becomes very close to
0. Therefore, we suggest that the operators should pay attention to the difference of the
customer demand among the nodes, especially when the demand is always changing as
the time goes by. Not only does the unequal demand have a significant influence on the
bike distribution in the long term, but also it requires multiple times of relocating bikes in
the bike-sharing system. If the unit cost of relocations is high, the operators may have to
spend a huge amount of money on relocating bikes under the influence of a small value
of λ

λi
.

15

Algorithms 2021, 14, 47

(a) (b)

(c) (d)

Figure 7. Effect of revenue- and cost-related parameters and arrival rates. (a) The maximum profit after implementing the
relocation strategy with respect to the optimal relocation frequency under the influence of cin; (b) The maximum profit
after implementing the relocation strategy with respect to the optimal relocation frequency under the influence of cre; (c)
The maximum profit after implementing the relocation strategy with respect to the optimal relocation frequency under the
influence of cp. (d) The maximum profit after implementing the relocation strategy with respect to the optimal relocation
frequency under the influence of λ

λi
.

5. Discussion

By analyzing the results of Markovian queueing network, we can obtain the several
interesting findings. Compared with the high-demand node, the number of bikes at the
lower-demand node changes at a much slower rate. As a whole, we guess that the number
of bikes at the higher-demand node is likely to be smaller than the number of bikes at each
of the middle-demand nodes (if there are a relatively large number of middle-demand
nodes) and is much smaller than the number of bikes at the lower-demand node. The bike
distribution at the lower-demand node is not sensitive to the increase of the arrival rate at
the higher-demand node, which means bikes at the higher-demand node are likely to be
scattered at both the lower-demand node and some middle-demand nodes. It is suggested
that the operators should pay more attention to the nodes with higher demands, where the
number of bikes decreases rapidly, rather than the nodes with lower demands, where the
number of bikes increases relatively slowly, although these all belong to two extremes of
the nodes with different customer demand. When the total number of bikes in the system
is fixed, the expected number of bikes at the low-demand node in the long run tends to
decrease and its possible range becomes broader with the increase of the number of nodes
and the decrease of the initial number of bikes at each node. It suggests that a large number
of nodes in the network can reduce the influence of the unequal demands moderately and
make the long-term bike distribution more balanced than a small number of nodes in the
network. Meanwhile, a larger initial number of bikes at each node can lead to a more
imbalanced distribution of shared bikes in the system without human intervention.

16

Algorithms 2021, 14, 47

The rebalance problem is solved by an operator-based rebalance strategy based on
the proper utilization of probabilistic results provided by the theoretical models. The main
objective is to maximize the total profit and get the optimal relocation frequency. It is found
that the relationship between the total profit and the relocation frequency takes the shape of
a concave curve, which makes it quick to find the global optimal point by taking derivative
of the expression.

There are various key parameters related to the optimization problem (i.e., the indexes
which can measure the effectiveness of each relocation c and μ, the unit price cin, the unit
cost of relocation cre, the unit cost of unmet demands cp and the different ratios of arrival
rates). It is common sense from a business perspective that operators prefer the solution
which can bring more profits and requires a low frequency of relocating bikes.

The numerical experiments show that small values of c and cp and large values of μ
can fit the preference. A small value of c and a large value of μ can reduce the probability of
having zero bikes at the high-demand node, which means an effective relocation strategy
can result in a low frequency of relocation and increase the total profit mainly by saving the
total cost. When the value of c is small, the maximum profit is more sensitive to the change
of the optimal relocation frequency, while, when the value of μ is large, the maximum
profit is less sensitive to the change of the optimal relocation frequency. Therefore, a small
c and a large μ are complementary to each other, which can provide one of the criteria for
operators to select useful relocation strategies.

When the ratio of arrival rates is changed in the optimization model, it is indicated that
a large difference between the arrival rates is going to decrease the total profit and make the
optimal relocation frequency increase rapidly, which totally deviates from the operators’
purpose. The unequal demands not only have an adverse effect on bike distribution but
also influence the relocation frequency and the profit operators can obtain. What the
operators can do is to balance the customer demand among the nodes as much as possible,
and their efforts spent on balancing can be directly reflected in the benefits. Differing from
the influence of cp, a large value of cin and a small value of cre can increase both the optimal
relocation frequency and the maximum total profit, which means the operators can get
a maximum profit and also have to carry out more frequent relocations. The change of
cin has a greater influence on the total profit and the change of cre has a greater influence
on the optimal relocation frequency. With the decrease of cre, the maximum total profit
becomes less sensitive to the change of the optimal relocation frequency, which means the
benefit of relocating bikes gradually reduces.

Therefore, operators can consider increasing the unit price within a customer’s accept-
able range in order to make more profits. If the unit cost of each relocation can be reduced
significantly, a high frequency of relocation can bring more profits and satisfy more de-
mands. The unit cost of unmet demand is the most uncertain parameter for operators, so it
is suggested that the operators should predict the value of cp carefully by investigation and
analysis and minimize the disappointment from customers who cannot find any available
bikes to ride if possible.

6. Conclusions

In short, although our work takes a dockless bike-sharing system as an example, the
developed methods and models can be extended to apply in some other resource-sharing
systems when necessary. The theoretical models are general, flexible and extensible. In this
work, we first formulate the bike-sharing system as a Markovian queueing network with
higher-demand nodes and lower-demand nodes. Thereafter, we employ an operator-based
rebalance strategy and optimize the rebalance frequency at the minimum cost. The results
reveal that it is possible for most of the shared bikes to gather at one low-demand node
eventually in the long run under the influence of the various arrival rates at different nodes.
However, the decrease in the number of bikes at the high-demand nodes is more sensitive
to the unequal demands, especially when the size of the network and the number of bikes
in the system are large. It may cause a significant loss for operators, to which they should

17

Algorithms 2021, 14, 47

pay attention. Meanwhile, different estimated values of parameters related to revenue and
cost affect the optimization results differently. By analysis of some factors with practical
meanings, this paper can bring real-world insights.

There are also some limitations to the study, which can be regarded as directions for
further research. The influence of different arrival rates on the distribution of bikes in the
dockless bike-sharing system is the focus of our research. In the optimization model for
solving the relocation problems, the relocation costs can be estimated based on how many
bikes are relocated, but the distance of relocating bikes from one node to another is not
considered, which is also a limitation of our proposed methods. The optimization models
for solving relocation problems can be extended to apply to a more general Markovian
network model with multiple high-demand nodes and low-demand nodes in the future
study. Additionally, the impact of COVID-19 can also be involved in the future research,
for instance, high/median/low risk areas can be regarded as various types of nodes in the
Markovian network. These heterogeneous types of nodes are associated with various levels
of demand decrease and uncertainty, which brings new challenges on system optimization
in bike-sharing systems.

Author Contributions: Conceptualization, X.M. and W.K.C.; methodology, X.M.; software, X.L.; for-
mal analysis, X.M.; investigation, X.M.; writing—original draft preparation, X.M. and X.L.; writing—
review and editing, X.M. and X.L.; visualization, X.M. and X.L.; supervision, W.K.C.; and funding
acquisition, W.K.C. All authors have read and agreed to the published version of the manuscript.

Funding: This paper was partially funded by Shenzhen Municipal Development and Reform Com-
mission, Shenzhen Environmental Science and New Energy Technology Engineering Laboratory,
Grant Number: SDRC [2016]172.

Data Availability Statement: Not Applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Freund, D.; Henderson, S.G.; O’Mahony, E.; Shmoys, D.B. Analytics and bikes: Riding tandem with motivate to improve mobility.
INFORMS J. Appl. Anal. 2019, 49, 310–323. [CrossRef]

2. Mourad, A.; Puchinger, J.; Chu, C. A survey of models and algorithms for optimizing shared mobility. Transp. Res. Part B Methodol.
2019, 123, 323–346. [CrossRef]

3. He, L.; Hu, Z.; Zhang, M. Robust repositioning for vehicle sharing. Manuf. Serv. Oper. Manag. 2020, 22, 241–256. [CrossRef]
4. Furuhata, M.; Dessouky, M.; Ordóñez, F.; Brunet, M.E.; Wang, X.; Koenig, S. Ridesharing: The state-of-the-art and future directions.

Transp. Res. Part B Methodol. 2013, 57, 28–46. [CrossRef]
5. Pan, L.; Cai, Q.; Fang, Z.; Tang, P.; Huang, L. A deep reinforcement learning framework for rebalancing dockless bike sharing

systems. Proc. AAAI Conf. Artif. Intell. 2019, 33, 1393–1400. [CrossRef]
6. Schuijbroek, J.; Hampshire, R.C.; Van Hoeve, W.J. Inventory rebalancing and vehicle routing in bike sharing systems. Eur. J. Oper.

Res. 2017, 257, 992–1004. [CrossRef]
7. Pal, A.; Zhang, Y. Free-floating bike-sharing: Solving real-life large-scale static rebalancing problems. Transp. Res. Part C Emerg.

Technol. 2020, 80, 92–116. [CrossRef]
8. O’Mahony, E.; Shmoys, D.B. Data analysis and optimization for (citi) bike sharing. Proc. Aaai Conf. Artif. Intell. 2015, 29, 687–694.
9. Liu, J.; Sun, L.; Chen, W.; Xiong, H. Rebalancing bike sharing systems: A multi-source data smart optimization. In Proceedings of

the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, San Francisco, CA, USA, 13–17
August 2016; pp. 1005–1014.

10. Li, Y.; Zheng, Y.; Yang, Q. Dynamic bike reposition: A spatio-temporal reinforcement learning approach. In Proceedings of
the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, London, UK, 19–23 August 2018;
pp. 1724–1733.

11. Parkes, S.D.; Marsden, G.; Shaheen, S.A.; Cohen, A.P. Understanding the Diffusion of Public Bikesharing Systems: Evidence from
Europe and North America. J. Transp. Geogr. 2013, 31, 94–103. [CrossRef]

12. Wang, M.; Zhou, X. bike-sharing systems and congestion: Evidence from US cities. J. Transp. Geogr. 2017, 65, 147–154. [CrossRef]
13. Ma, Y.; Lan, J.; Thornton, T.; Mangalagiu, D.; Zhu, D. Challenges of collaborative governance in the sharing economy: The case of

free-floating bike-sharing in Shanghai. J. Clean. Prod. 2018, 197, 356–365. [CrossRef]
14. Usama, M.; Zahoor, O.; Shen, Y.; Bao, Q. Dockless bike-sharing system: Solving the problem of faulty bikes with simultaneous

rebalancing operation. J. Transp. Land Use 2020, 13, 491–515. [CrossRef]

18

Algorithms 2021, 14, 47

15. Du, M.; Cheng, L.; Li, X.; Tang, F. Static rebalancing optimization with considering the collection of malfunctioning bikes in
free-floating bike sharing system. Transp. Res. Part E: Logist. Transp. Rev. 2020, 141, 102012. [CrossRef]

16. Mátrai, T.; Tóth, J. Cluster Analysis of Public Bike Sharing Systems for Categorization? IET Intell. Transp. Syst. 2020, 12, 5501.
[CrossRef]

17. Chen, P.C.; Hsieh, H.Y.; Su, K.W.; Sigalingging, X.K.; Chen, Y.R.; Leu, J.S. Predicting station level demand in a bike-sharing system
using recurrent neural networks? IET Intell. Transp. Syst. 2020, 14, 554–561. [CrossRef]

18. Cheng, L.; Yang, J.; Chen, X.; Cao, M.; Zhou, H.; Sun, Y. How could the station-based bike sharing system and the free-floating
bike sharing system be coordinated? J. Transp. Geogr. 2020, 89, 102896. [CrossRef]

19. Jin, X.; Tong, D. Station-Free Bike Rebalancing Analysis: Scale, Modeling, and Computational Challenges. Isprs Int. J. Geo Inf.
2020, 9, 691. [CrossRef]

20. Galatoulas, N.F.; Genikomsakis, K.N.; Ioakimidis, C.S. Analysis of potential demand and costs for the business development of
an electric vehicle sharing service. Sustain. Cities Soc. 2018, 42, 148–161.

21. Frade, I.; Ribeiro, A. Bicycle Sharing Systems Demand. Procedia Soc. Behav. Sci. 2014, 111, 518–527. [CrossRef]
22. Xu, C.; Ji, J.; Liu, P. The station-free sharing bike demand forecasting with a deep learning approach and large-scale datasets.

Transp. Res. Part C Emerg. Technol. 2018, 95, 47–60. [CrossRef]
23. Çelebi, D.; Yörüsün, A.; Işık, H. Bicycle sharing system design with capacity allocations. Transp. Res. Part B Methodol. 2018, 114,

86–98. [CrossRef]
24. Bordagaray, M.; Dell’Olio, L.; Fonzone, A.; Ibeas, Á; Capturing the conditions that introduce systematic variation in bike-sharing

travel behavior using data mining techniques. Transp. Res. Part C Emerg. Technol. 2016, 71, 231–248. [CrossRef]
25. Gurumurthy, K.M.; Kockelman, K.M. Analyzing the dynamic ride-sharing potential for shared autonomous vehicle fleets using

cellphone data from Orlando, Florida. Comput. Environ. Urban Syst. 2018, 71, 177–185. [CrossRef]
26. Yang, Y.; Heppenstall, A.; Turner, A.; Comber, A. A spatiotemporal and graph-based analysis of dockless bike-sharing patterns to

understand urban flows over the last mile. Comput. Environ. Urban Syst. 2019, 77, 101361. [CrossRef]
27. Ji, Y.; Ma, X.; He, M.; Jin, Y.; Yuan, Y. Comparison of usage regularity and its determinants between docked and dockless

bike-sharing systems: A case study in Nanjing, China. J. Clean. Prod. 2020, 255, 120110. [CrossRef]
28. Bakogiannis, E.; Siti, M.; Tsigdinos, S.; Vassi, A.; Nikitas, A. Monitoring the first dockless bike-sharing system in Greece:

Understanding user perceptions, usage patterns and adoption barriers. Res. Transp. Bus. Manag. 2019, 33, 100432. [CrossRef]
29. Yoon, G.; Chow, J.Y. Unlimited-ride bike-share pass pricing revenue management for casual riders using only public data. Int. J.

Transp. Sci. Technol. 2020, 9, 159–169. [CrossRef]
30. Estrada, A.; Romero, D.; Pinto, R.; Pezzotta, G.; Lagorio, A.; Rondini, A. A Cost-Engineering Method for Product-Service Systems

Based on Stochastic Process Modelling: Bergamo’s bike-sharing PSS. Procedia CIRP 2017, 64, 417–422. [CrossRef]
31. Chen, Y.; Zha, Y.; Wang, D.; Li, H.; Bi, G. Optimal pricing strategy of a bike-sharing firm in the presence of customers with

convenience perceptions. J. Clean. Prod. 2020, 253, 119905. [CrossRef]
32. Hua, M.; Chen, X.; Cheng, L.; Chen, J. Should bike sharing continue operating during the COVID-19 pandemic? Empirical

findings from Nanjing, China. arXiv 2020, arXiv:2012.02946.
33. Teixeira, J.F.; Lopes, M. The link between bike sharing and subway use during the COVID-19 pandemic: The case-study of New

York’s Citi Bike. Transp. Res. Interdiscip. Perspect. 2020, 6, 100166.
34. Nikiforiadis, A.; Ayfantopoulou, G.; Stamelou, A. Assessing the Impact of COVID-19 on Bike-Sharing Usage: The Case of

Thessaloniki, Greece. Sustainability 2020, 12, 8215. [CrossRef]
35. Sayarshad, H.; Tavassoli, S.; Zhao, F. A multi-periodic optimization formulation for bike planning and bike utilization. Transp.

Res. Part C Emerg. Technol. 2012, 36, 4944–4951. [CrossRef]
36. Singla, A.; Santoni, M.; Bartók, G.; Mukerji, P.; Meenen, M.; Krause, A. Incentivizing users for balancing bike sharing systems.

Proc. Aaai Conf. Artif. Intell. 2015, 29, 723–729.
37. Fricker, C.; Gast, N. Incentives and redistribution in homogeneous bike-sharing systems with stations of finite capacity. Euro J.

Transp. Logist. 2016, 5, 261–291. [CrossRef]
38. Liu, Y.; Szeto, W.Y.; Ho, S.C. A static free-floating bike repositioning problem with multiple heterogeneous vehicles, multiple

depots, and multiple visits. Transp. Res. Part C Emerg. Technol. 2018, 92, 208–242. [CrossRef]
39. Brinkmann, J.; Ulmer, M.W.; Mattfeld, D.C. Dynamic Lookahead Policies for Stochastic-Dynamic Inventory Routing in bike-

sharing Systems. Comput. Oper. Res. 2019, 106, 260–279. [CrossRef]
40. Legros, B. Dynamic repositioning strategy in a bike-sharing system; how to prioritize and how to rebalance a bike station. Eur. J.

Oper. Res. 2019, 272, 740–753. [CrossRef]
41. Brendel, A.B.; Lichtenberg, S.; Brauer, B.; Nastjuk, I.; Kolbe, L.M. Improving electric vehicle utilization in carsharing: A framework

and simulation of an e-carsharing vehicle utilization management system. Eur. J. Oper. Res. 2018, 64, 230–245. [CrossRef]
42. Reiss, S.; Bogenberger, K. A Relocation Strategy for Munich’s bike-sharing System: Combining an operator-based and a user-based

Scheme. Transp. Res. Procedia 2017, 22, 104–114. [CrossRef]

19

Algorithms 2021, 14, 47

43. Sayarshad, H.R.; Chow, J.Y. Non-myopic relocation of idle mobility-on-demand vehicles as a dynamic location-allocation-
queueing problem. Transp. Res. Part E Logist. Transp. Rev. 2017, 106, 60–77. [CrossRef]

44. Samet, B.; Couffin, F.; Zolghadri, M.; Barkallah, M.; Haddar, M. Model reduction for studying a bike-sharing System as a closed
queuing network. Procedia Manuf. 2018, 25, 39–46. [CrossRef]

20

algorithms

Article

Combining Heuristics with Simulation and Fuzzy Logic to
Solve a Flexible-Size Location Routing Problem
under Uncertainty

Rafael D. Tordecilla 1,2,*, Pedro J. Copado-Méndez 1,3, Javier Panadero 1,3, Carlos L. Quintero-Araujo 4,

Jairo R. Montoya-Torres 2 and Angel A. Juan 1,3

��������	
�������

Citation: Tordecilla, R.D.;

Copado-Méndez, P.J.; Panadero, J.;

Quintero-Araujo, C.L.;

Montoya-Torres, J.R.; Juan, A.A.

Combining Heuristics with

Simulation and Fuzzy Logic to Solve

a Flexible-Size Location Routing

Problem under Uncertainty.

Algorithms 2021, 14, 45.

https://doi.org/10.3390/a14020045

Academic Editor: Javier Del Ser

Lorente

Received: 15 December 2020

Accepted: 26 January 2021

Published: 30 January 2021

Publisher’s Note: MDPI stays neu-

tral with regard to jurisdictional clai-

ms in published maps and institutio-

nal affiliations.

Copyright: © 2021 by the authors. Li-

censee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and con-

ditions of the Creative Commons At-

tribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 IN3–Computer Science Department, Universitat Oberta de Catalunya, 08018 Barcelona, Spain;
pcopadom@uoc.edu (P.J.C.-M.); jpanaderom@uoc.edu (J.P.); ajuanp@uoc.edu (A.A.J.)

2 School of Engineering, Universidad de La Sabana, Chia 250001, Colombia; jairo.montoya@unisabana.edu.co
3 Department of Data Analytics & Business Intelligence, Euncet Business School, 08221 Terrassa, Spain
4 International School of Economics and Administrative Sciences, Universidad de La Sabana,

Chia 250001, Colombia; carlosqa@unisabana.edu.co
* Correspondence: rtordecilla@uoc.edu or rafael.tordecilla@unisabana.edu.co

Abstract: The location routing problem integrates both a facility location and a vehicle routing
problem. Each of these problems are NP-hard in nature, which justifies the use of heuristic-based
algorithms when dealing with large-scale instances that need to be solved in reasonable computing
times. This paper discusses a realistic variant of the problem that considers facilities of different sizes
and two types of uncertainty conditions. In particular, we assume that some customers’ demands are
stochastic, while others follow a fuzzy pattern. An iterated local search metaheuristic is integrated
with simulation and fuzzy logic to solve the aforementioned problem, and a series of computational
experiments are run to illustrate the potential of the proposed algorithm.

Keywords: location routing problem; uncertainty; heuristics; simulation; fuzzy logic

1. Introduction

When designing and managing supply chains, one of the most relevant problems is
the simultaneous location of distribution facilities and the routing of vehicles to deliver
products to a set of geographically dispersed customers. The former is considered a
strategic decision, while the latter is operational. This problem is known in the scientific
literature as the location routing problem (LRP). The LRP addresses these two types of
decisions in an integrated manner. From the formal view of the operational research
community, the LRP is known to be NP-hard, since it can be reduced to either the facility
location problem (FLP), the vehicle routing problem (VRP) or the multidepot VRP, which
are all known to be NP-hard. This computational complexity means that optimal solutions
are really difficult to obtain in a reasonable computational time. Thus, heuristic approaches
are required to solve medium- and large-sized instances. Due to its complexity, some of the
first studies tackled the problem by splitting it into the corresponding subproblems [1,2].
Nevertheless, this approach might lead to suboptimal solutions.

Due to the increase in computational power and the development of fast heuristic
approaches, the LRP has been studied in an integrated way, which clearly has improved the
obtained results [3]. One of the most studied versions of the LRP is the capacitated LRP, in
which both depot and vehicle capacity constraints must be satisfied (the acronym LRP will
henceforth refer to this version). However, all previous works consider the depot capacity
as a fixed value for each location. This could not be a suitable approach when dealing with
realistic problems, since it is usual that decision-makers can select the size of a facility from
a discrete set of known available sizes, or even freely. For real-world problems, this set is
usually associated with investment activities, such as building facilities [4], purchasing

Algorithms 2021, 14, 45. https://doi.org/10.3390/a14020045 https://www.mdpi.com/journal/algorithms21

Algorithms 2021, 14, 45

equipment [5] or qualifying workforce [6]. From an academic point of view, despite the
increasing number of published works on the LRP, the consideration of flexible sizes for
facilities has been rarely addressed in the literature. Nevertheless, real-life examples from
both LRP [4,7,8] and non-LRP [5,6] contexts show the relevance of considering a variety of
facility sizes to select from.

Traditional LRP approaches consider that parameters are deterministic or crisp, i.e.,
they assume that inputs are known in advance. This assumption is far from reality in
many applications, such as waste collection, humanitarian logistics and urban freight
distribution, where uncertainty is a key factor to consider. Despite this, the literature on
the LRP addressing uncertain parameters is still scarce. In order to overcome this problem,
articles employing stochastic approaches can be found in the literature. Customers’ demand
is one of the most addressed stochastic parameters [9–13]. Other parameters might also
be considered as stochastic, such as transportation costs and travel speeds [14] or logistic
costs and travel distance [15]. In general, many articles addressing stochasticity in routing
problems hybridize simulation models with heuristic or metaheuristic algorithms to tackle
efficiently both uncertainty and NP-hardness. In many real-life situations, however, it
might not be possible to accurately model all uncertainty sources as stochastic variables
following a probability distribution. This might be the case, for instance, when the volume
of observations is low or the available data does not have enough quality [16]. Hence,
uncertainty in the LRP has also been tackled through the use of fuzzy sets. Parameters
such as customers’ demands [17–20], travel times [21,22] or time windows [23] have been
modeled as fuzzy in several studies. Notice that, whenever possible, modeling uncertainty
as stochastic variables might allow a deeper statistical analysis of the results.

To the best of our knowledge, there are no works in the literature simultaneously
addressing stochastic and fuzzy approaches to model demand uncertainty in a flexible-
size LRP. This is a realistic scenario, since many companies might have historical data
on trustworthy customers and not enough data on new or unreliable ones. Hence, the
main contributions of this paper are two-fold: on the one hand, a new variant of the
location routing problem is studied, where facility sizing decisions and hybrid fuzzy-
stochastic demands are simultaneously considered. On the other hand, this paper proposes
a competitive solution approach based on the hybridization of a metaheuristic algorithm
with both simulation and fuzzy logic, i.e., a so-called fuzzy simheuristic, to solve the
aforementioned problem. Indeed, simheuristics have been traditionally proposed to deal
with stochastic issues in hard combinatorial optimization problems [24]. However, their
hybridization with fuzzy logic has been rarely studied.

The remainder of this paper is organized as follows: Section 2 describes previous
works on the topic. Section 3 presents a description of our addressed problem. Section 4
explains the fuzzy simheuristic approach used to solve the problem. Section 5 describes
a series of computational experiments. Section 6 analyzes our obtained results. Finally,
Section 7 draws some conclusions and future research perspectives.

2. Literature Review

This section presents a summary of the published manuscripts on the main topics
addressed by this work. Thus, Section 2.1 outlines works related to the location routing
problem in both its deterministic version and the variant including uncertain parameters.
Additionally, Section 2.2 summarizes the main contributions on the field of simheuristics
and fuzzy logic as methodologies to handle uncertain parameters in routing problems.

2.1. The Location Routing Problem

Perhaps the first work related to the location routing problem is the one
by Maranzana [25], who analyze the influence of transportation costs on location deci-
sions. Moreover, Salhi and Rand [1] quantify for the first time the benefits of considering
routing decisions when locating facilities. They also state that solving each subproblem
(location and routing) independently does not provide optimal solutions. Multiple variants

22

Algorithms 2021, 14, 45

of the LRP have been proposed over time. These variants depend on the characteristics of
depots (capacitated or not), vehicles (capacitated or not, homogeneous or heterogeneous
fleet), costs (symmetric or asymmetric) or the consideration of uncertain parameters. All
capacitated variants addressed by these authors assume that depot sizes are fixed and
cannot be changed.

Considering the limited computational power available at that time, the initial works
on the LRP firstly solved the underlying location problem and used the obtained solu-
tion as a starting point to handle the corresponding routing problem. However, as the
computational power has notably increased in recent years, the newest approaches deal
with the LRP in an integrated manner [26,27]. Among the recently published works on
the deterministic LRP, Escobar et al. [28] propose a granular tabu search within a VNS
framework to speed up computational times without decreasing the solutions quality. A
biased-randomization-based metaheuristic of two phases is developed by Quintero-Araujo
et al. [27] to solve the capacitated version of the problem. Ferdi and Layeb [29] propose
a GRASP with a novel technique used to create clusters around the open depots. Tradi-
tional applications of the LRP include horizontal cooperation [30], electric vehicle routing
problems [31–33], city logistics [34], humanitarian logistics [35] or supply chain network
design [36]. Moreover, most recent applications are related to environmental issues [37],
cold supply chains [38] or waste management [39].

When dealing with uncertainty, most works have focused on the use of stochastic
modeling. One of the utilized approaches has been the hybridization of simulation tech-
niques with metaheuristics. For instance, Quintero-Araujo et al. [9] propose a simheuristic
to solve an LRP with stochastic demands, by hybridizing Monte Carlo simulation with an
iterated local search metaheuristic. A similar approach is employed by Tordecilla et al. [13],
who address an LRP where the sizes of facilities to locate are also a variable to consider.
Rabbani et al. [10] also propose a simheuristic approach that combines a nondominated
sorting genetic algorithm-II (NSGA-II) and Monte Carlo simulation. They tackle a mul-
tiobjective multiperiod LRP in the context of the hazardous waste management industry.
Both generated waste and number of people at risk are stochastic. Inventory decisions are
also taken into account. Sun et al. [11] address a real-world case from an express delivery
company in Shanghai. These authors tackle an LRP in which demand is stochastic and can
be split for self-pickup. Then a simulation-based optimization model is proposed and two
heuristics results are compared.

Other parameters are also considered to be uncertain. For instance, Herazo-Padilla
et al. [14] hybridize an ant colony optimization metaheuristic with discrete-event simulation
to solve an LRP in which both transportation costs and vehicle travel speeds are considered
stochastic. Authors demonstrate that their proposed approach is not only efficient but is
able to find statistical interactions among the different parameters. Zhang et al. [15] present
an approach that hybridizes a genetic algorithm with simulation to solve a sustainable
multiobjective LRP in the context of emergency logistics. The authors consider the travel
distance, the demand and the cost of opening a depot as uncertain variables. Additionally,
the emergence of new technologies introduces new challenges. This is the case of Zhang
et al. [12], who address the problem of locating battery swap stations and routing electric
vehicles with stochastic demands. This problem is solved using a hybrid approach that
combines a variable neighborhood search with a binary particle swarm optimization
algorithm. The problem’s complexity increases when considering the low autonomy of
this type of vehicles, since route failures can frequently be present when demands are not
known in an accurate manner.

Uncertainty in the LRP has been studied using either stochastic or fuzzy parameters.
Table 1 shows an overview of works addressing this topic, which includes: (i) whether the
uncertainty is addressed stochastically or in a fuzzy fashion; (ii) the considered uncertain
parameter; (iii) the mathematical modeling approach; (iv) the approach used to solve
the problem; and (v) the objective function. Analyzed works show a clear preference for
considering an uncertain demand, as well as for using fuzzy chance constrained models.

23

Algorithms 2021, 14, 45

Given both the considered uncertainty and the combinatorial nature of the LRP, most works
employ a hybrid approach combining simulation with a metaheuristic algorithm. Finally,
cost minimization is the prevalent objective, although a few works also consider the mini-
mization of risk or the minimization of the additional travel distance due to route failures.
Regarding works on fuzzy parameters, Zhang et al. [17] propose a hybrid particle swarm
optimization (PSO) algorithm to solve a capacitated LRP with fuzzy triangular demands
(CLRP-FD). The hybrid PSO algorithm is composed of three phases including a local search
method and stochastic simulation. In addition, the authors propose a chance-constrained
programming model for the CLRP-FD. Zarandi et al. [21] consider a multidepot LRP with
fixed depot capacity and fuzzy travel times. Mehrjerdi and Nadizadeh [18] present a fuzzy
chance constrained programming model where demands are modeled as fuzzy numbers.
A four-phase method called “greedy clustering” is proposed, in which both an ant colony
system metaheuristic and stochastic simulation are included. Fazayeli et al. [19] propose
an LRP with time windows and fuzzy demands as the delivery part of a multimodal
transport network. The mixed integer mathematical fuzzy model is coded and solved
using GAMS and compared to the results provided by a genetic algorithm. Nadizadeh
and Kafash [20] analyze a LRP with simultaneous pick-up and delivery in the context of
reverse logistics. Both types of demands (pick-up and deliveries) are fuzzy variables. A
fuzzy chance constrained programming model is proposed to represent the problem, and a
greedy clustering method is used to solve it.

Table 1. Recent works related to the location routing problem with uncertain parameters.

Reference Type of
Uncertainty

Uncertain
Parameter

Mathematical
Approach

Solving Approach Objective Criterion

Quintero-Araujo
et al. [9] Stochastic Demand

Mixed-integer
linear programming

Simheuristic
Iterated local search

Monte Carlo simulation
Minimize cost

Rabbani et al. [10] Stochastic
Demand

Number of
people at risk

Mixed-integer non-
linear programming

Simheuristic
NSGA-II

Monte Carlo Simulation

Minimize cost
Minimize

environmental risk

Sun et al. [11] Stochastic Demand
Mixed-integer

linear programming
Biogeography-based optimization

Adaptive large neighborhood search
Minimize cost

Zhang et al. [12] Stochastic Demand — Variable neighborhood search
Particle swarm optimization

Minimize cost

Tordecilla et al. [13] Stochastic Demand — Simheuristic
Iterated local search

Monte Carlo simulation
Minimize cost

Herazo-Padilla
et al. [14]

Stochastic Transportation cost
Travel speed

Mixed-integer
linear programming

Ant colony optimization
Discrete-event simulation

Minimize cost

Zhang et al. [15] Stochastic
Demand

Travel distance
Depot opening cost

Mixed-integer non-
linear programming

Genetic algorithm
Uncertain simulation

Minimize travel time
Minimize emergency relief cost

Minimize CO2 emissions

Zhang et al. [17] Fuzzy Demand A fuzzy chance
constrained model

Particle swarm optimization
Variable neighborhood search

Stochastic simulation

Minimize cost
Minimize additional travel

distance due to route failures

Mehrjerdi and
Nadizadeh [18] Fuzzy Demand

A fuzzy chance
constrained model

A greedy clustering method
Ant colony system

Stochastic simulation
Minimize cost

Fazayeli et al. [19] Fuzzy Demand
Mixed-integer non-
linear programming

Exact approach
Genetic algorithm

Minimize cost

Nadizadeh and
Kafash [20] Fuzzy Demand A fuzzy chance

constrained model

A greedy clustering method
Ant colony system

Stochastic simulation
Minimize cost

Zarandi et al. [21] Fuzzy Travel time A fuzzy chance
constrained model

Simulated annealing
Fuzzy simulation

Minimize cost

Zarandi et al. [22] Fuzzy
Demand

Travel time
A fuzzy chance

constrained model
Simulated annealing

Fuzzy simulation
Minimize cost

Minimize additional travel
distance due to route failures

24

Algorithms 2021, 14, 45

Table 1. Cont.

Reference Type of
Uncertainty

Uncertain
Parameter

Mathematical
Approach

Solving Approach Objective Criterion

Ghezavati and
Morakabatchian

[23]
Fuzzy Time windows Mixed-integer

linear programming
Exact approach Minimize cost

Minimize risks

Ghaffari-Nasab
et al. [40] Fuzzy Demand A fuzzy chance

constrained model
Simulated annealing
Stochastic simulation

Minimize cost
Minimize additional travel

distance due to route failures

Nadizadeh and
Nasab [41] Fuzzy Demand A fuzzy chance

constrained model

A hybrid heuristic algorithm
Ant colony system

Stochastic simulation

Minimize cost
Minimize additional travel

distance due to route failures

Wei et al. [42] Fuzzy
Transportation cost
Number of people
that may be at risk

A fuzzy chance
constrained model

Genetic algorithm
Fuzzy simulation

Minimize cost
Minimize risks

The analyzed works show that uncertainty in the LRP has been addressed either by
using stochastic or fuzzy demands but never considering both types of uncertainty at
the same time—e.g., that some customers’ demands are modeled as stochastic variables
while others are modeled as fuzzy values. In addition, to the best of our knowledge,
there are no previous studies on the LRP with facility sizing decisions and hybrid fuzzy-
stochastic demands. Only Tordecilla et al. [13] have studied a similar LRP variant, although
considering all customers’ demands as stochastic. Thus, our work aims to fulfill the existing
gap by considering a flexible-size LRP and two different types of uncertain parameters:
stochastic and fuzzy demands.

2.2. Simheuristics and Fuzzy Logic for Vehicle Routing Problems under Uncertainty

When dealing with combinatorial optimization problems subject to uncertain pa-
rameters, one of the most recommended approaches is the combination of simulation (to
handle stochasticity) with heuristic-based methods (to deal with the optimization part of
the problem) [43,44]. In that sense, a simheuristic approach is a relatively new and efficient
technique to tackle combinatorial optimization problems under uncertainty [24,45]. In
general, a simheuristic algorithm works as follows: (i) given a stochastic problem, the
random variables are transformed into their deterministic counterpart by using expected
values; (ii) an approximated framework (heuristic or metaheuristic) is used to generate
high-quality solutions for the transformed deterministic instance that can also be “promis-
ing” solutions for the stochastic version of the problem; (iii) these promising solutions are
sent to a simulation engine in order to estimate its quality in a stochastic environment. The
simulation engine, in addition, provides feedback to better guide the search used by the
approximated procedure; and (iv) an improved estimation of the quality of the solutions
is obtained for a subset of “elite” solutions using a longer simulation process. Different
simheuristic algorithms have been presented in the literature to solve routing problems.

Stochastic demands in vehicle routing problems are addressed by Quintero-Araujo
et al. [46] and Gruler et al. [47]. Moreover, stochastic demands are also studied in arc routing
problems [48]. Stochastic versions of the inventory routing problem can be found in Gruler
et al. [49]. Real applications like the waste collection problem with stochastic demands
are analyzed in Gruler et al. [50]. Intermodal routing problems have also considered other
stochastic parameters, such as capacity [51] or travel times [52,53]. Additionally, the need
of using fuzzy logic in vehicle routing problems arises when there are some vague or
uncertain parameters. The literature presents various works in which fuzzy logic is added,
for instance, to model uncertain demands [54–57], travel times [58,59], capacity [57,59],
and service times [60]. Additional aspects are also considered by these works, such as
time windows [57,61,62], environmental aspects [59], multiple objectives [59], intermodal
transportation [57,59] and an open VRP [63]. Additional applications of metaheuristics
combined either with Monte Carlo simulation or fuzzy logic can be found in several
fields, such as scheduling [64,65], controller optimization [66,67] parameter estimation [68],
finance [69], facility location [70], etc.

25

Algorithms 2021, 14, 45

3. Problem Description

The location routing problem is a well-known problem in which three main decisions
must be made: (i) locating one or more facilities; (ii) allocating customers to open facilities
without exceeding their capacity; and (iii) designing a number of routes whose aggregated
customers’ demand does not exceed a vehicle capacity. Each route must start and finish at
the same facility. Furthermore, we consider a location routing problem with facility sizing
decisions, where the size of each open facility is also a variable to decide on. Furthermore,
we also consider both stochastic and fuzzy demands. Hence, a percentage of the vehicles’
capacity is reserved as a safety stock (SS), in case the demand is higher than expected.
Therefore, the main decision variables in this problem are related to the number of facilities
to open, the facilities’ size and location, which customers must be allocated to each open
facility, how many vehicles must be used and how to design the associated routes. This
problem is NP-hard since it contains, as special cases, the capacitated vehicle routing
problem, the multidepot VRP and the facility location problem, all of them known to be
computationally hard. Figure 1 provides an example of a complete LRP solution. Facilities
are represented by diamonds and customers by circles. Black (solid) diamonds are the
open facilities, while noncolored diamonds correspond to nonopen facilities. For each open
depot, a set of routes starting and finishing at the corresponding depot location is designed
to serve all customers’ demands. Each route is assigned a single vehicle.

Figure 1. Graphical representation of a location routing problem (LRP) solution.

Formally speaking, the LRP can be defined on a complete, weighted, and undirected
graph G(V, E, C), in which V = J ∪ I is the set of nodes (comprising the subset J of potential
facility locations and subset I of customers), E is the set of edges, and C is the cost matrix of
traversing each edge. Delivery routes are performed by a set K of unlimited homogeneous
vehicles with limited capacity. This problem also assumes that all vehicles are shared by
all facilities (i.e., no depot has a specific fleet) and each edge e ∈ E satisfies the triangle
inequality. The customers’ demands are uncertain and are modeled using stochastic values
for a subset of customers I1, and fuzzy values for a subset of customers I2, such that
I1 ∪ I2 = I. The variant of the LRP considered in this paper is the one in which a decision
must be made about the size of the facilities to open. Hence, a set L of alternative sizes for
each facility and associated fixed and variable opening costs are provided as inputs. Depots
might have equal or different capacities. Each customer node must be served by exactly
one vehicle that starts and finishes its route in the facility to which it has been allocated (i.e.,
split deliveries are not allowed). The following notation is used to describe our problem:

Parameters

sl = Available size of type l ∈ L
Di = Uncertain demand of customer i ∈ I
fj = Fixed opening cost of depot j ∈ J
ojl = Variable opening cost of depot j ∈ J with size of type l ∈ L
ce = Cost of traversing arc e ∈ E

26

Algorithms 2021, 14, 45

q = Capacity of each vehicle
%SS = Safety stock percentage

Decision variables

yjl = Binary variable that indicates whether the depot j ∈ J is open with size l ∈ L
or not.

xij = Binary variable that indicates whether customer i ∈ I is assigned to the depot
j ∈ J or not

wek = Binary variable that indicates whether arc e ∈ E is used in the route performed
by vehicle k ∈ K or not

The objective is to minimize the total cost (TC), which includes opening facilities costs
(OC), routing costs (RC), and failure costs (FC), i.e., TC = OC + RC + FC. These parts are
defined in Equations (1)–(3).

OC = ∑
j∈J

∑
l∈L

(f j + ojl)yjl (1)

RC = ∑
e∈E

∑
k∈K

cewek (2)

FC = min{creac, cprev} (3)

FC represents the cost incurred whenever the actual demand of a route is greater
than the vehicle capacity, where creac and cprev depend on the corrective action consid-
ered, namely:

1. A reactive strategy with a cost creac, in which a vehicle must perform a round-trip
to its assigned facility for a replenishment if the actual current-customer demand is
higher than the vehicle’s current load.

2. A preventive strategy with a cost cprev, in which a vehicle must perform a detour to the
facility before visiting the next customer. The decision about performing this detour
depends on the type of demand of the next customer. If the demand is stochastic, the
detour is carried out whenever the expected demand of the next customer is higher
than the current capacity of the vehicle. Alternatively, if the demand is fuzzy, this
decision depends on the comparison between the fuzzy values of both the demand of
the next customer and the current capacity.

Let ∅ 	= S ⊂ V be a subset of nodes, δ+(S) the set of edges leaving S, δ−(S) the set
of edges entering S, and A(S) the set of edges with both ends in S. Hence, the location
routing problem with facility sizing decisions and uncertain demands can be modeled as
the following integer program:

Minimize TC (4)

subject to:

∑
k∈K

∑
e∈δ−(i)

wek = 1 ∀i ∈ I (5)

∑
i∈I

∑
e∈δ−(i)

Diwek ≤ (1 − %SS)q ∀k ∈ K (6)

∑
e∈δ+(n)

wek = ∑
e∈δ−(n)

wek, ∀k ∈ K, ∀n ∈ V (7)

∑
e∈δ+(J)

wek ≤ 1 ∀k ∈ K (8)

∑
e∈A(S)

wek ≤ |S| − 1 ∀S ⊆ I, ∀k ∈ K (9)

27

Algorithms 2021, 14, 45

∑
e∈δ+(j)

wek + ∑
e∈δ−(i)

wek ≤ 1 + xij ∀i ∈ I, ∀j ∈ J, ∀k ∈ K (10)

∑
j∈J

xij = 1 ∀i ∈ I (11)

∑
i∈I

Dixij ≤ ∑
l∈L

slyjl ∀j ∈ J (12)

∑
l∈L

yjl ≤ 1 ∀j ∈ J (13)

∀ yjl , xij, wek ∈ {0, 1} (14)

The objective function (4) minimizes the total cost. Constraint (5) ensures that each
customer is served by a single route and a single vehicle. Constraint (6) guarantees that
the total demand served by a vehicle in a route does not exceed its capacity. This limit
is reduced by a safety stock, which is a percentage of the vehicle capacity reserved to
respond more effectively to the uncertain demand. Constraint (7) guarantees the continuity
of each route. Constraint (8) ensures the return of each vehicle to its starting depot.
Constraint (9) guarantees the subtour elimination. Constraint (10) ensures that a customer
is served by a route departing from an open depot only if this customer is allocated
to this depot. Constraint (11) guarantees that a customer is assigned to only one depot.
Constraint (12) ensures that the total demand served from a depot does not exceed its
assigned size. Constraint (13) guarantees that only one size is assigned to an open depot.
Finally, Constraint (14) determines that all decision variables are binary.

4. Solution Approach

Since the problem described in Section 3 is known for being NP-hard, the formulated
mathematical model is not employed to find an optimal solution but just to provide a better
understanding of the problem details Hence, we propose a fuzzy simheuristic approach [24]
for minimizing the expected total cost. Traditionally, simheuristics have been used to solve
optimization problems with stochastic components, such as arc routing problems with
stochastic demands [48], stochastic waste collection problems [50] or team orienteering
problems with stochastic travel times [71]. We have extended the simheuristic framework
by including fuzzy components in order to deal with combinatorial optimization problems
with uncertainty components of both stochastic and nonstochastic nature. In particular,
our methodology combines an iterated local search (ILS) metaheuristic with Monte Carlo
simulation and fuzzy inference systems (FIS) to deal with stochastic and fuzzy variables,
respectively. As discussed in Ferone et al. [72], several metaheuristic frameworks offer a
well-balanced combination of efficiency and relative simplicity and can be easily extended
to a fuzzy simheuristic. In general, our approach is composed of three stages. During the
first stage, a set of promising LRP solutions are generated using a constructive heuristic,
which employs biased-randomization techniques [73]. In the second stage, the ILS meta-
heuristic tries to improve each of these promising solutions by iteratively exploring the
search space and conducting a short number of simulations. Finally, in the third stage, a
refinement procedure using a larger number of simulation runs is applied to these elite
solutions, which allows one to obtain a more accurate estimation of the expected total cost.

Algorithm 1 outlines the main components of Stage 1. It generates quickly a ranked
list of “promising” LRP solutions. The main input parameters of this heuristic are: the list of
customers with both their demand and location in Cartesian coordinates, the list of facilities
including their opening costs and the vehicle capacity. The algorithm procedure is as
follows: initially, the minimum and maximum (nbDepots0 and maxNbDepots, respectively)
numbers of facilities required to serve the total demand are computed. Both bounds are
calculated by dividing the total demand by the maximum available facility size, and the

28

Algorithms 2021, 14, 45

minimum available facility size, respectively, and they are rounded up to the next integer
number. Then we run our algorithm for each number of facilities between nbDepots0 and
maxNbDepots (line 3). Later, for each iteration of the line 4 loop, a new set of random
locations are generated (line 5). This is stored in usedOpenDepots to avoid repeating. Next,
if the available capacity of facilities in openDepots is enough to satisfy customers demand,
customers’ allocation and routing procedures are carried out; otherwise, openDepots is
rejected. The customers’ allocation procedure is performed by producing a new map (line 9)
where each facility has a list of all customers sorted by savings. These savings represent
the benefit of allocating each customer to the current depot instead to the best alternative
facility. Then a facility in openDepots is selected randomly, and a biased-randomized
procedure is used to allocate a customer of the list to the current depot. This procedure
ends when all customers have been allocated. In the step in line 10 a VRP is solved for each
subset facility-customers in the map. Finally, a feasible LRP solution is yielded and stored
in the pool of solutions poolSol. The algorithm ends returning a top list of complete LRP
solutions, assessed in terms of opening and routing costs.

Algorithm 1 Constructive heuristic (cust, depots, vehCap, β, itermax)
1: usedOpenDepots ← ∅

2: 〈nbDepots0, maxNbDepots〉 ← computeDepotsBound(depots)

3: for nbDepots ← nbDepots0 to maxNbDepots do

4: for iter ← 1 to itermax do

5: openDepots ← depotsToOpen(nbDepots)

6: if openDepots /∈ usedOpenDepots then

7: if capacity(openDepots) ≥ demand(cust) then

8: usedOpenDepots ← add(usedOpenDepots, openDepots)

9: map ← allocateCustomers(openDepots, cust)

10: lrpSol ← CWS(map, β, vehCap)

11: poolSol ← add(poolSol, lrpSol)

12: end if

13: end if

14: end for

15: end for

16: return sortingByCost(poolSol)

Algorithm 2 outlines Stages 2 and 3. During the second stage, each “promising”
map generated by the constructive heuristic is processed by the simulation and the fuzzy
components to estimate its safety stock (line 4). This procedure is carried out by performing
a low number of runs, where a new value is assigned to each random or fuzzy element
based on its probability distribution or fuzzy function, respectively. We use Monte Carlo
simulation in order to estimate the stochastic variables, whilst a fuzzy inference system is
used to estimate the fuzzy variables. Then, the objective function and the constraints are
evaluated under the random/fuzzy generated values to compute the expected cost of each
promising map. Next, the ILS metaheuristic tries to improve the set of “promising” maps by
iteratively exploring the search space and conducting a second process of fuzzy/simulation
runs. We start the process by perturbing the current base solution baseSol (line 8). In this
phase we use two different strategies. In the first one, the algorithm randomly selects a
set of customers and tries to reassign them in a random way to another facility without
violating its capacity. Regarding the second strategy, the algorithm randomly exchanges
the allocation of a percentage of customers among facilities. This process is dependent
on the value of k, which represents the degree of exchange to be applied. This value is

29

Algorithms 2021, 14, 45

updated in each iteration between Kmin and Kmax, i.e., it is reset to Kmin whenever a new
solution newSol outperforms the baseSol, and it is increased whenever the algorithm fails to
improve the current solution until a maximum value Kmax. The strategy to be used in each
iteration of the algorithm is randomly selected.

Algorithm 2 ILS-based Fuzzy Simheuristic (inputs, α, β, λ, Inc, T0, Kmin, Kmax, I0, tmax)
1: initSol ← genInitSol(inputs,α, β)

2: baseSol ← initSol

3: bestSol ← baseSol

4: fastSimulation(baseSol) % Fuzzy and Monte Carlo Simulation

5: T ← T0

6: while (time ≤ tmax) do % ILS stage

7: k ← Kmin

8: perturbationSol ← perturbation(baseSol, k, α, β)

9: newSol ← localSearch(perturbationSol)

10: if (detCost(newSol) < detCost(baseSol)) then

11: fastSimulation(newSol) % Fuzzy and Monte Carlo simulation

12: if (expCost(newSol) < expCost(baseSol)) then

13: baseSol ← newSol

14: if (expCost(newSol) < expCost(bestSol)) then

15: bestSol ← newSol

16: insert(poolBestSol,bestSol)

17: end if

18: k ← Kmin

19: end if

20: else % SA-based acceptance criterion

21: temperature ← updateTemperature(detCost(newSol), detCost(baseSol), T)

22: if (U (0,1) ≤ temperature) then

23: baseSol ← newSol

24: k ← Kmin

25: else

26: k ← min(k * Inc,Kmax)

27: end if

28: end if

29: T ← λT

30: end while

31: for (sol ∈ poolBestSol) do % Refinement stage - Fuzzy and Monte Carlo simulation

32: longSimulation(sol)

33: if (expCost(sol) < expCost(bestSol)) then

34: bestSol ← sol

35: end if

36: end for

37: return bestSol

30

Algorithms 2021, 14, 45

Afterwards, the algorithm starts a local search around the perturbed solution in order
to improve it (line 9). This stage consists in a two-opt inter-route operator, which interchanges
two chains of randomly selected customers between different facilities. A newSol is returned
whenever no more improvements are achieved. Later, whenever the deterministic cost of
the baseSol is improved (line 10), the newSol is processed by the simulation and the fuzzy
components to deal with the uncertainty of the proposed problem, using a low number
of runs to compute the expected cost of the solution (line 11). Notice that this procedure
does not only provide estimated values to the expected cost associated with the solutions
generated by our approach, but it also reports feedback to the metaheuristic search process.
If the newSol is also able to improve the expected cost of the baseSol (line 12), the latter
is updated. In the same way, if the expected cost of the newSol improves the cost of the
best solution (bestSol) found so far (line 14), the latter is updated and added to the pool
of elite solutions (line 16). This pool contains the best stochastic/fuzzy solutions found
so far. The number of solutions in this pool is a known parameter that depends on the
available computational time. Moreover, by limiting the size of this pool we ensure that we
only keep track of the top solutions as the algorithm evolves. In order to further diversify
the search, the algorithm might occasionally accept nonimproving solutions following
an acceptance criterion (lines 20–28). Specifically, we have used a simulated-annealing
acceptance criterion, which contains a decaying probability that is regulated by a dynamic
temperature parameter (T).

Finally, a refinement procedure using a larger number of simulation runs is executed
in the third stage for each elite solution (lines 31–36). Hence, a more accurate summary
of output variables can be obtained. As before, both probability distributions and fuzzy
functions are employed in this simulation, depending on whether the element has a
stochastic or fuzzy nature. Finally, the ”best” solution (or pull of best alternative solutions)
is returned, considering that the decision maker might be not only interested in the average
value associated with a solution but also in its variability level. Particularly, the main
output variables in our experiments are: the opening and routing costs, the cost incurred
whenever a route fails and the safety stock.

5. Computational Experiments

Multiple sets of instances are found in the literature to test the algorithms designed
to solve the LRP [74–76]. Nevertheless, these sets do not consider characteristics such
as parameters uncertainty and flexible facility sizes, i.e., instances must be adapted
to our problem’s features. Therefore, we use Akca’s [74] instances and introduce the
following modifications:

1. Traditional LRP instances consider that a single fixed size is available to assign to
open depots. We extend this unit set to five alternative sizes, so that our algorithm
selects one of them for each open depot. If sj is the size proposed by the original
instance for each potential depot j ∈ J, and L is the set of available sizes, our approach’
alternative sizes are sjl ∈ {(1 − 2r)sj, (1 − r)sj, sj, (1 + r)sj, (1 + 2r)sj}, where l ∈ L,
0.0 < r < 0.5, and r is the range of difference between available sizes. When r = 0,
the case is the same as the traditional LRP. We consider that r = 0.25.

2. Traditional LRP instances consider a fixed cost (f j) incurred whenever a depot j ∈ J is
open. We keep this parameter unaltered. Additionally, we introduce a variable cost

(ojl) depending on f j and sjl , namely: ojl =
(sjl − sj)

2sj

∑j f j

|J| . This formula preserves ojl

in the same order as f j for each depot j ∈ J. Besides, it yields negative costs whenever
sjl < sj, positive costs whenever sjl > sj, and a null cost when sjl = sj. Thus our
results can be compared with those found in the LRP literature.

3. An uncertain demand Di for each customer i ∈ I is considered. The demand of half of
the customers is assumed to follow a log-normal probability distribution. If φi is the
deterministic demand in the Akca’s set, then E[Di] = φi. In addition, three different
values of variance are considered: low, medium and high, i.e., for λ ∈ {0.05, 0.10, 0.20},

31

Algorithms 2021, 14, 45

Var[Di] = λφi. These variability values are preserved identical to the ones used by
Tordecilla et al. [13], in order to perform a suitable results comparison. The demand
of the other half of the customers is considered to be fuzzy. In this case, Di can be
estimated as low (DL), medium (DM) or high (DH). The demand in each of these
fuzzy sets is represented by a triangular fuzzy number Di = (d1i, d2i, d3i). If q is the
vehicle total load capacity, all fuzzy demand values are expressed as a proportion of q
in order to perform an appropriate comparison between the demand and the vehicle
available capacity, i.e., 0 ≤ Di ≤ 1. The membership function of these fuzzy sets are
displayed in Figure 2.

Figure 2. Fuzzy sets for the demand of the customer i.

A Fuzzy Approach for the Demand and the Vehicle Available Capacity

When considering customers with stochastic demands, the decision about visiting
the next customer in a route is made simply by comparing its expected demand with the
vehicle’s current capacity. If this demand is greater, the vehicle will perform a detour to
the depot for a replenishment. Nevertheless, when the next customer demand is fuzzy,
the decision about serving it is made employing a preference index pi [77]. It indicates the
strength of our inclination to visit the next node in a route. This index depends on both the
estimated demand of the next node Di+1 and the vehicle capacity Ci that remains available
after serving the customer i ∈ I. Ci is expressed as a proportion of q, i.e., 0 ≤ Ci ≤ 1. It
also can be treated as low (CL), medium (CM) or high (CH), and it is represented by a
triangular fuzzy number Ci = (c1i, c2i, c3i). The membership function of the capacity fuzzy
sets are displayed in Figure 3.

Figure 3. Fuzzy sets for the vehicle available capacity after visiting the customer i.

The preference index is defined between 0 and 1, i.e., 0 ≤ pi ≤ 1. When pi = 1, we will
definitely visit the next node in a route since the vehicle available capacity can for sure meet
its demand. When pi = 0, we are sure that Di+1 exceeds Ci and the vehicle must return to

32

Algorithms 2021, 14, 45

the depot for a replenishment. We consider that the preference can be very low (PVL), low
(PL), medium (PM), high (PH) or very high (PVH). Each of these categories is represented
by a fuzzy set, whose membership function is depicted in Figure 4. Additionally, we
define a set of reasoning rules (Table 2) to determine the preference to visit the next node
depending on the levels of both the demand and the vehicle available capacity.

Figure 4. Fuzzy sets for the preference strength to visit the customer i.

Table 2. Reasoning rules determining the visit preference strength.

Demand
Available Capacity

CL CM CH

DL PM PH PVH
DM PL PM PH
DH PVL PL PM

Figure 5 displays the procedure used to compute the preference index pi after serving
the customer i ∈ I. This procedure is described as follows:

Simulate the actual
demand

Calculate the vehicle
available capacity

Estimate the fuzzy
demand

Estimate the fuzzy
available capacity

Determine the
membership function of

the preference index

Calculate a crisp
preference index

Figure 5. Procedure used to compute the preference index pi.

1. Simulate the actual demand of each customer employing a fuzzy simulation approach.
Based on the works by Teodorović and Pavković [77], Sun et al. [59] and Sun [78], we
follow the steps described below:

(a) Generate a random demand di between a lower bound and an upper bound.
Since the objective is preserving the variability conditions similar to the
stochastic demands, the lower and upper bounds are given by the expres-

sions
φi−

√
3λφi

q and
φi+

√
3λφi

q , respectively.

(b) Calculate the membership degree μ(di) of this demand. Notice that μ(di) ∈ [0, 1].
(c) Generate a random number ρ ∈ [0, 1].
(d) Compare ρ and μ(di). If ρ ≤ μ(di), then assume the actual demand of the

customer i as di; otherwise, repeat steps (a)–(d) until this condition is fulfilled.

33

Algorithms 2021, 14, 45

2. Calculate the vehicle available capacity subtracting from q the sum of the simulated
demand of the first m customers visited in the current route, including the customer
i. Whenever the route fails and the vehicle must perform a trip to the depot for a
replenishment, the counting of m starts again from 1.

3. Estimate the fuzzy demand and the fuzzy available capacity according to the cate-
gories previously defined: low, medium or high.

4. Determine the membership function of the preference index using the reasoning rules
defined in Table 2.

5. Calculate a crisp preference index using the center of gravity as defuzzification
method. Additional methods can be found in Klir and Yuan [79], and Opricovic and
Tzeng [80].

We define a known threshold p∗, such that 0 ≤ p∗ ≤ 1. The computed preference index
pi must be compared with p∗ in order to make a decision about the vehicle next destination.
If pi ≥ p∗, the vehicle should visit the next customer directly; otherwise, we estimate that
the vehicle available capacity cannot meet the next customer demand. In this case, both
preventive (cprev) and reactive (creac) costs are calculated (see Section 3). If cprev < creac, the
vehicle should perform a detour to the depot for a preventive replenishment; otherwise, it
should visit the next customer directly and react to its real demand. The lower the threshold
level, the greater the inclination to unload the vehicle as much as possible before making a
replenishment trip to the depot. In this case, less preventive detours are performed. Hence,
the number of times that a reactive round-trip must be carried out increases. Previous tests
using modified Akca’s instances yielded lower costs when p∗ = 0.45.

The following parameters are used by our algorithm to run the experiments: (i) 350 iter-
ations for map perturbations; (ii) 150 iterations for the biased-randomized savings heuristic;
(iii) 150 iterations for splitting; (iv) a random value between 0.05 and 0.80 for β1, the
parameter of the geometric distribution associated with the biased-randomized selection
during the allocation map process; (v) a random value between 0.07 and 0.23 for β2, the
parameter of the geometric distribution associated with the biased-randomized heuristic
for routing; (vi) n = 100 runs for the initial simulation stage; (vii) N = 5000 runs for
the intensive simulation stage; and (viii) 100 iterations to estimate the safety stock (SS),
testing only discrete values between 0% and 10%. Our proposed algorithm was coded
as a Java application. All experiments were executed on a standard Windows PC with
a Core i5 processor and 6 GB RAM. A total of ten different random seeds were used for
each instance.

6. Results and Discussion

Table 3 shows our obtained results for 12 Akca’s instances. Five main indicators are
computed: depots opening costs (OC), which is formed by both fixed and variable costs;
routing costs (RC); failure costs (FC), which is incurred whenever the vehicle must perform
either a detour or a round-trip to the depot; total costs (TC); and the estimated safety stock
(SS) level. Four types of solutions are compared. All of them are flexible, i.e., they consider
facility sizing decisions. Firstly, our best deterministic solutions are shown, i.e, there is no
uncertainty in the customers’ demand and its realization is exactly as expected. In this case,
a safety stock is not necessary and there are no failure costs. Secondly, we show the best
stochastic solutions reported by Tordecilla et al. [13], in which the exact customers’ demand
is not known. Instead, all of them follow a log-normal distribution with known mean
and standard deviation. Thirdly, our best hybrid fuzzy-stochastic solutions are displayed,
in which half of the customers’ demand follows a log-normal distribution, and half of
the customers’ demand is considered to be fuzzy. Finally, our best fuzzy solutions are
shown, in which all customers’ demand is considered to be fuzzy, due to a high level of
uncertainty. Additionally, results for three levels of variability (λ) are shown. Clearly, our
best deterministic solutions are the same regardless of the variability level, given the total
absence of uncertainty.

34

Algorithms 2021, 14, 45

T
a

b
le

3
.

C
om

pa
ra

ti
ve

re
su

lt
s

be
tw

ee
n

ou
r

fle
xi

bl
e

so
lu

ti
on

s
un

de
r

di
ff

er
en

tu
nc

er
ta

in
ty

le
ve

ls
.

In
st

a
n

ce
B

e
st

D
e

te
rm

in
is

ti
c

S
o

lu
ti

o
n

B
e

st
S

to
ch

a
st

ic
S

o
lu

ti
o

n
[1

3
]

B
e

st
H

y
b

ri
d

S
o

lu
ti

o
n

B
e

st
F

u
z

z
y

S
o

lu
ti

o
n

O
C

R
C

T
C

O
C

R
C

F
C

T
C

S
S

O
C

R
C

F
C

T
C

S
S

O
C

R
C

F
C

T
C

S
S

L
o

w
v

a
ri

a
b

il
it

y

C
r3

0x
5a

-1
20

0.
00

57
5.

14
77

5.
14

20
0.

00
57

5.
14

2.
37

77
7.

51
0%

20
0.

00
57

5.
14

3.
31

77
8.

45
2%

20
0.

00
57

5.
14

5.
86

78
1.

00
2%

C
r3

0x
5a

-2
20

0.
00

60
7.

28
80

7.
28

20
0.

00
60

7.
28

0.
04

80
7.

32
3%

20
0.

00
60

7.
28

0.
12

80
7.

40
3%

20
0.

00
60

7.
28

0.
12

80
7.

40
3%

C
r3

0x
5a

-3
18

7.
50

50
7.

92
69

5.
42

18
7.

50
50

9.
25

10
.9

9
70

7.
74

3%
18

7.
50

50
9.

25
17

.4
8

71
4.

22
3%

18
7.

50
50

9.
25

25
.5

0
72

2.
25

3%
C

r3
0x

5b
-1

22
5.

00
62

3.
22

84
8.

22
22

5.
00

62
3.

22
9.

37
85

7.
59

0%
22

5.
00

62
3.

22
14

.5
9

86
2.

81
0%

22
5.

00
62

3.
22

22
.8

5
87

1.
07

1%
C

r3
0x

5b
-2

18
7.

50
62

5.
32

81
2.

82
18

7.
50

62
5.

32
0.

00
81

2.
82

2%
18

7.
50

62
5.

32
0.

00
81

2.
82

2%
18

7.
50

62
5.

32
0.

00
81

2.
82

2%
C

r3
0x

5b
-3

18
7.

50
68

4.
58

87
2.

08
18

7.
50

68
4.

58
2.

25
87

4.
33

1%
18

7.
50

68
4.

58
6.

35
87

8.
43

1%
18

7.
50

68
4.

58
9.

50
88

1.
58

1%
C

r4
0x

5a
-1

16
2.

50
73

1.
84

89
4.

34
16

2.
50

73
1.

84
0.

03
89

4.
37

1%
16

2.
50

73
1.

84
0.

07
89

4.
41

1%
16

2.
50

73
1.

84
0.

59
89

4.
93

1%
C

r4
0x

5a
-2

22
5.

00
63

7.
26

86
2.

26
22

5.
00

63
9.

02
0.

10
86

4.
12

0%
22

5.
00

63
9.

02
0.

81
86

4.
83

1%
22

5.
00

64
2.

02
0.

03
86

7.
05

3%
C

r4
0x

5a
-3

16
2.

50
75

2.
88

91
5.

38
16

2.
50

75
2.

88
0.

97
91

6.
35

0%
16

2.
50

75
2.

88
3.

26
91

8.
64

0%
16

2.
50

75
2.

88
6.

82
92

2.
21

1%
C

r4
0x

5b
-1

16
2.

50
85

2.
04

10
14

.5
4

16
2.

50
85

2.
04

6.
90

10
21

.4
5

1%
16

2.
50

85
2.

04
12

.2
4

10
26

.7
8

1%
16

2.
50

85
2.

04
20

.7
9

10
35

.3
3

1%
C

r4
0x

5b
-2

22
5.

00
69

0.
57

91
5.

57
22

5.
00

69
0.

57
0.

08
91

5.
65

1%
22

5.
00

69
0.

57
0.

62
91

6.
18

1%
22

5.
00

69
0.

57
1.

23
91

6.
79

1%
C

r4
0x

5b
-3

17
5.

00
76

4.
33

93
9.

33
17

5.
00

77
2.

87
0.

07
94

7.
93

2%
17

5.
00

77
2.

87
0.

29
94

8.
16

2%
17

5.
00

77
2.

87
0.

35
94

8.
22

2%

A
v

e
ra

g
e

19
1.

67
67

1.
03

86
2.

70
19

1.
67

67
2.

00
2.

76
86

6.
43

1.
17

%
19

1.
67

67
2.

00
4.

93
86

8.
59

1.
42

%
19

1.
67

67
2.

25
7.

80
87

1.
72

1.
75

%

M
e

d
iu

m
v

a
ri

a
b

il
it

y

C
r3

0x
5a

-1
20

0.
00

57
5.

14
77

5.
14

20
0.

00
57

5.
14

7.
63

78
2.

77
2%

20
0.

00
57

5.
14

9.
67

78
4.

81
2%

20
0.

00
57

5.
14

12
.9

1
78

8.
05

2%
C

r3
0x

5a
-2

20
0.

00
60

7.
28

80
7.

28
20

0.
00

60
7.

28
0.

46
80

7.
74

3%
20

0.
00

60
7.

28
1.

94
80

9.
22

3%
20

0.
00

60
7.

28
1.

43
80

8.
71

3%
C

r3
0x

5a
-3

18
7.

50
50

7.
92

69
5.

42
18

7.
50

50
9.

25
18

.5
0

71
5.

25
3%

18
7.

50
50

9.
25

24
.1

0
72

0.
85

3%
18

7.
50

50
9.

25
29

.7
3

72
6.

48
3%

C
r3

0x
5b

-1
22

5.
00

62
3.

22
84

8.
22

22
5.

00
62

3.
22

14
.6

3
86

2.
85

0%
22

5.
00

62
3.

22
18

.3
2

86
6.

53
3%

22
5.

00
62

3.
22

24
.2

3
87

2.
45

3%
C

r3
0x

5b
-2

18
7.

50
62

5.
32

81
2.

82
18

7.
50

62
5.

32
0.

00
81

2.
82

2%
18

7.
50

62
5.

32
0.

00
81

2.
82

2%
18

7.
50

62
5.

32
0.

00
81

2.
82

2%
C

r3
0x

5b
-3

18
7.

50
68

4.
58

87
2.

08
18

7.
50

68
4.

58
10

.2
1

88
2.

28
0%

18
7.

50
68

4.
58

12
.7

9
88

4.
87

1%
18

7.
50

68
4.

58
12

.8
8

88
4.

96
1%

C
r4

0x
5a

-1
16

2.
50

73
1.

84
89

4.
34

16
2.

50
73

9.
24

0.
01

90
1.

75
3%

16
2.

50
73

9.
24

0.
01

90
1.

75
3%

16
2.

50
73

9.
24

0.
00

90
1.

74
3%

C
r4

0x
5a

-2
22

5.
00

63
7.

26
86

2.
26

22
5.

00
64

3.
52

3.
07

87
1.

59
1%

22
5.

00
64

2.
02

0.
24

86
7.

26
3%

22
5.

00
64

2.
02

0.
57

86
7.

59
3%

C
r4

0x
5a

-3
16

2.
50

75
2.

88
91

5.
38

16
2.

50
75

2.
88

4.
46

91
9.

85
1%

16
2.

50
75

2.
88

8.
57

92
3.

95
1%

16
2.

50
75

2.
88

11
.8

3
92

7.
22

1%
C

r4
0x

5b
-1

16
2.

50
85

2.
04

10
14

.5
4

16
2.

50
85

8.
58

4.
54

10
25

.6
2

2%
16

2.
50

85
8.

58
8.

01
10

29
.0

9
2%

23
7.

50
79

5.
18

0.
00

10
32

.6
8

4%
C

r4
0x

5b
-2

22
5.

00
69

0.
57

91
5.

57
22

5.
00

69
0.

57
2.

06
91

7.
63

1%
22

5.
00

69
0.

57
3.

77
91

9.
33

0%
22

5.
00

69
0.

57
5.

80
92

1.
37

1%
C

r4
0x

5b
-3

17
5.

00
76

4.
33

93
9.

33
17

5.
00

77
2.

87
1.

42
94

9.
29

2%
17

5.
00

77
2.

87
2.

53
95

0.
40

2%
17

5.
00

77
2.

87
2.

96
95

0.
82

2%

A
v

e
ra

g
e

19
1.

67
67

1.
03

86
2.

70
19

1.
67

67
3.

54
5.

58
87

0.
79

1.
67

%
19

1.
67

67
3.

41
7.

50
87

2.
57

2.
08

%
19

7.
92

66
8.

13
8.

53
87

4.
57

2.
33

%

35

Algorithms 2021, 14, 45

T
a

b
le

3
.

C
on

t.

In
st

a
n

ce
B

e
st

D
e

te
rm

in
is

ti
c

S
o

lu
ti

o
n

B
e

st
S

to
ch

a
st

ic
S

o
lu

ti
o

n
[1

3
]

B
e

st
H

y
b

ri
d

S
o

lu
ti

o
n

B
e

st
F

u
z

z
y

S
o

lu
ti

o
n

O
C

R
C

T
C

O
C

R
C

F
C

T
C

S
S

O
C

R
C

F
C

T
C

S
S

O
C

R
C

F
C

T
C

S
S

H
ig

h
v

a
ri

a
b

il
it

y

C
r3

0x
5a

-1
20

0.
00

57
5.

14
77

5.
14

20
0.

00
57

5.
14

19
.6

6
79

4.
80

2%
20

0.
00

57
5.

14
19

.8
2

79
4.

96
0%

20
0.

00
57

5.
14

24
.2

5
79

9.
38

1%
C

r3
0x

5a
-2

20
0.

00
60

7.
28

80
7.

28
20

0.
00

60
7.

74
0.

02
80

7.
76

5%
20

0.
00

61
1.

41
0.

02
81

1.
43

7%
20

0.
00

60
7.

74
0.

04
80

7.
78

5%
C

r3
0x

5a
-3

18
7.

50
50

7.
92

69
5.

42
18

7.
50

50
9.

25
27

.8
6

72
4.

61
2%

18
7.

50
50

9.
25

29
.9

5
72

6.
70

4%
18

7.
50

50
9.

25
33

.4
1

73
0.

16
3%

C
r3

0x
5b

-1
22

5.
00

62
3.

22
84

8.
22

22
5.

00
62

3.
22

19
.9

9
86

8.
21

10
%

22
5.

00
62

3.
22

20
.7

3
86

8.
95

10
%

22
5.

00
62

3.
22

24
.8

6
87

3.
08

10
%

C
r3

0x
5b

-2
18

7.
50

62
5.

32
81

2.
82

18
7.

50
62

5.
32

0.
10

81
2.

92
3%

18
7.

50
62

5.
32

0.
20

81
3.

02
5%

18
7.

50
62

5.
32

0.
15

81
2.

97
3%

C
r3

0x
5b

-3
18

7.
50

68
4.

58
87

2.
08

18
7.

50
68

4.
58

24
.9

3
89

7.
00

1%
18

7.
50

68
4.

58
29

.0
3

90
1.

11
5%

18
7.

50
68

4.
58

34
.0

1
90

6.
09

5%
C

r4
0x

5a
-1

16
2.

50
73

1.
84

89
4.

34
16

2.
50

73
7.

20
2.

85
90

2.
55

2%
16

2.
50

73
5.

84
7.

83
90

6.
17

1%
16

2.
50

73
5.

84
9.

38
90

7.
71

1%
C

r4
0x

5a
-2

22
5.

00
63

7.
26

86
2.

26
22

5.
00

64
2.

02
1.

79
86

8.
82

3%
22

5.
00

64
2.

02
1.

48
86

8.
50

3%
22

5.
00

64
2.

02
2.

25
86

9.
27

3%
C

r4
0x

5a
-3

16
2.

50
75

2.
88

91
5.

38
16

2.
50

76
3.

69
5.

78
93

1.
97

2%
16

2.
50

76
3.

69
7.

76
93

3.
96

2%
16

2.
50

75
2.

88
18

.6
5

93
4.

04
1%

C
r4

0x
5b

-1
16

2.
50

85
2.

04
10

14
.5

4
23

7.
50

78
6.

00
4.

65
10

28
.1

4
3%

23
7.

50
79

2.
36

2.
84

10
32

.7
0

4%
23

7.
50

78
6.

00
8.

47
10

31
.9

7
3%

C
r4

0x
5b

-2
22

5.
00

69
0.

57
91

5.
57

22
5.

00
69

0.
57

9.
35

92
4.

91
2%

22
5.

00
69

0.
57

12
.5

9
92

8.
15

2%
22

5.
00

69
0.

57
14

.9
6

93
0.

53
2%

C
r4

0x
5b

-3
17

5.
00

76
4.

33
93

9.
33

17
5.

00
78

0.
62

4.
14

95
9.

76
3%

17
5.

00
78

0.
62

4.
90

96
0.

52
3%

17
5.

00
78

0.
62

5.
86

96
1.

48
3%

A
v

e
ra

g
e

19
1.

67
67

1.
03

86
2.

70
19

7.
92

66
8.

78
10

.0
9

87
6.

79
3.

17
%

19
7.

92
66

9.
50

11
.4

3
87

8.
85

3.
83

%
19

7.
92

66
7.

77
14

.6
9

88
0.

37
3.

33
%

36

Algorithms 2021, 14, 45

Results in Table 3 show a slight average increase in total costs when increasing the
variability level for all types of solutions, except the best deterministic solution. This
growth is caused mainly by the rise in failure costs, since a greater number of detours and
round-trips is expected when the demand variability level is higher. Additionally, total
costs also increase when the uncertainty level is higher regardless of the variability level,
i.e., the deterministic solution is the cheapest one, and the fuzzy solution is the most costly.
If we compare only the average deterministic cost of each set of solutions, formed by the
sum of OC and RC, we obtain values with negligible differences. Hence, the contrasts in
total costs are caused mainly by failure costs. For example, for the instance Cr30x5a-3 in the
low variability scenario, 1.6% of total costs are failure costs in the best stochastic solution.
However, in the best fuzzy solution this percentage rises to 3.5%. Most instances show this
steady growth when increasing the uncertainty level, which confirms that fuzzy scenarios
have a higher uncertainty level when compared with deterministic and stochastic scenarios.
Finally, the average safety stock increases when both variability and uncertainty levels rise,
since more protection against uncertainty is necessary in both cases.

Results corresponding to our best deterministic solution in Table 3 were yielded
assuming that the realized demand is deterministic. Hence, an additional experiment has
been performed, in which this solution (called henceforth OBD) is tested in a hybrid fuzzy-
stochastic environment, using 0% of safety stock protection against uncertainty. Figure 6
compares this solution’s results with our best-found hybrid fuzzy-stochastic solution (OBF)
in terms of failure costs. Results for 12 Akca’s instances are depicted for each demand
variability scenario. Extreme points in dashed lines indicate the average cost for each set
of data. As expected, average failure costs show an increasing trend when the variability
grows, regardless of the type of solution. Conversely, Figure 6 shows that OBF outperforms
OBD when tested under uncertainty conditions. This fact demonstrates the quality of our
fuzzy simheuristic approach, especially in scenarios where the demand variability is high.

Figure 6. Failure costs of our best deterministic and our best hybrid solutions.

Table 4 compares two types of hybrid fuzzy-stochastic solutions. Firstly, we show our
best solution with a single facility size alternative given by the original Akca’s instances—

37

Algorithms 2021, 14, 45

i.e., the solution is not flexible since only one size is available to select. Secondly, we
show our best flexible solution, which corresponds to our best hybrid solution in Table 3.
When comparing the total costs of both types of solutions, the negative gap obtained for all
instances and under all variability levels shows the advantages of considering facility sizing
decisions. For example, we reach a maximum absolute gap of 7.71% in total cost savings for
a single instance. In average, both opening and routing costs decrease whenever alternative
depot sizes are available. Nevertheless, each instance shows different results regarding
OC and RC. The most evident case is that in which opening costs decrease. Clearly, this
is a direct result of having smaller facility size alternatives. Without loss of generality, all
examples below take as reference the high variability scenario. For example, the instance
Cr30x5b-3 has a total demand of 1620. Both flexible and nonflexible approaches design the
same routes and yield equal routing costs. Nevertheless, the nonflexible approach locates
two depots of size 1000 each. Conversely, our flexible approach locates one depot of size
1000 and one depot of size 750. Hence, the nonflexible solution assigns an extra capacity
that is not necessary under the problem’s current conditions.

Table 4. Comparative results between our hybrid solutions when considering facility sizing decisions.

Instance
Best Nonflexible Hybrid Solution Best Flexible Hybrid Solution Gap

TCOC RC FC TC SS OC RC FC TC SS

Low variability

Cr30x5a-1 200.00 619.51 3.45 822.96 1% 200.00 575.14 3.31 778.45 2% −5.41%
Cr30x5a-2 200.00 626.01 0.04 826.05 1% 200.00 607.28 0.12 807.40 3% −2.26%
Cr30x5a-3 200.00 507.99 17.56 725.55 2% 187.50 509.25 17.48 714.22 3% −1.56%
Cr30x5b-1 200.00 682.97 0.32 883.29 2% 225.00 623.22 14.59 862.81 0% −2.32%
Cr30x5b-2 200.00 625.32 0.00 825.32 2% 187.50 625.32 0.00 812.82 2% −1.51%
Cr30x5b-3 200.00 684.58 5.95 890.53 1% 187.50 684.58 6.35 878.43 1% −1.36%
Cr40x5a-1 200.00 733.47 3.22 936.70 0% 162.50 731.84 0.07 894.41 1% −4.51%
Cr40x5a-2 200.00 691.47 11.15 902.63 1% 225.00 639.02 0.81 864.83 1% −4.19%
Cr40x5a-3 200.00 748.64 9.88 958.52 1% 162.50 752.88 3.26 918.64 0% −4.16%
Cr40x5b-1 200.00 858.58 1.94 1060.53 2% 162.50 852.04 12.24 1026.78 1% −3.18%
Cr40x5b-2 300.00 690.57 0.65 991.22 2% 225.00 690.57 0.62 916.18 1% −7.57%
Cr40x5b-3 200.00 780.62 0.07 980.69 2% 175.00 772.87 0.29 948.16 2% −3.32%

Average 208.33 687.48 4.52 900.33 1.42% 191.67 672.00 4.93 868.59 1.42% −3.45%

Medium variability

Cr30x5a-1 200.00 619.51 9.17 828.68 0% 200.00 575.14 9.67 784.81 2% −5.29%
Cr30x5a-2 200.00 626.01 0.60 826.61 2% 200.00 607.28 1.94 809.22 3% −2.10%
Cr30x5a-3 200.00 507.99 24.30 732.29 2% 187.50 509.25 24.10 720.85 3% −1.56%
Cr30x5b-1 200.00 681.50 14.31 895.80 1% 225.00 623.22 18.32 866.53 3% −3.27%
Cr30x5b-2 200.00 625.32 0.01 825.33 2% 187.50 625.32 0.00 812.82 2% −1.52%
Cr30x5b-3 200.00 684.58 15.60 900.18 1% 187.50 684.58 12.79 884.87 1% −1.70%
Cr40x5a-1 200.00 733.47 7.69 941.17 1% 162.50 739.24 0.01 901.75 3% −4.19%
Cr40x5a-2 200.00 700.80 12.59 913.39 3% 225.00 642.02 0.24 867.26 3% −5.05%
Cr40x5a-3 200.00 748.64 20.15 968.79 0% 162.50 752.88 8.57 923.95 1% −4.63%
Cr40x5b-1 200.00 863.91 2.32 1066.23 3% 162.50 858.58 8.01 1029.09 2% −3.48%
Cr40x5b-2 300.00 690.57 4.18 994.75 1% 225.00 690.57 3.77 919.33 0% −7.58%
Cr40x5b-3 200.00 780.62 0.94 981.56 3% 175.00 772.87 2.53 950.40 2% −3.17%

Average 208.33 688.58 9.32 906.23 1.58% 191.67 673.41 7.50 872.57 2.08% −3.63%

High variability

Cr30x5a-1 200.00 619.51 20.69 840.20 0% 200.00 575.14 19.82 794.96 0% −5.38%
Cr30x5a-2 200.00 621.45 5.66 827.12 3% 200.00 611.41 0.02 811.43 7% −1.90%
Cr30x5a-3 200.00 507.99 30.16 738.15 4% 187.50 509.25 29.95 726.70 4% −1.55%
Cr30x5b-1 200.00 681.50 18.85 900.35 0% 225.00 623.22 20.73 868.95 10% −3.49%
Cr30x5b-2 200.00 625.32 0.14 825.46 5% 187.50 625.32 0.20 813.02 5% −1.51%
Cr30x5b-3 200.00 684.58 30.23 914.81 1% 187.50 684.58 29.03 901.11 5% −1.50%
Cr40x5a-1 200.00 737.94 5.78 943.73 2% 162.50 735.84 7.83 906.17 1% −3.98%
Cr40x5a-2 200.00 700.80 15.98 916.78 3% 225.00 642.02 1.48 868.50 3% −5.27%
Cr40x5a-3 200.00 748.64 32.89 981.54 0% 162.50 763.69 7.76 933.96 2% −4.85%
Cr40x5b-1 200.00 858.58 22.53 1081.11 2% 237.50 792.36 2.84 1032.70 4% −4.48%
Cr40x5b-2 300.00 693.03 12.66 1005.69 0% 225.00 690.57 12.59 928.15 2% −7.71%
Cr40x5b-3 200.00 772.87 13.22 986.09 2% 175.00 780.62 4.90 960.52 3% −2.59%

Average 208.33 687.68 17.40 913.42 1.83% 197.92 669.50 11.43 878.85 3.83% −3.68%

38

Algorithms 2021, 14, 45

Some instances show an opposite behavior, i.e., opening costs either increase or remain
the same while routing costs decrease. For example, the nonflexible solution of the instance
Cr30x5a-1 opens two depots of size 1000 each. Alternatively, the flexible solution opens
one depot of size 1500 and one depot of size 500, i.e., the total capacity is equal and, given
our defined costs structure, also the opening costs. However, this slight change drives
a redesign of routes that decreases RC. An additional example is given by the instance
Cr40x5a-2. Figure 7 depicts the best solution found by both the nonflexible approach (a)
and our flexible approach (b). The solution in Figure 7a locates two depots of size 1750 each,
and the solution in Figure 7b locates three depots of size 875 each. The latter case has a
total capacity that is smaller than the former’s; however, opening costs are higher since the
fixed cost is clearly greater when 3 facilities are open instead of 2. This new configuration
decreases considerably routing costs (Table 4), which shows that considering facility sizing
decisions not only reduces total costs by decreasing depots capacity but also by increasing
it, since shorter routes can be designed.

(a) (b)

D2

D3

D5

D4 D1

0

20

40

60

80

100

0 20 40 60 80 100

D3

D5

D4 D1

D2

0

20

40

60

80

100

0 20 40 60 80 100

Figure 7. Best-found solution by a nonflexible (a) and a flexible (b) fuzzy LRP for the instance Cr40x5a-2.

Managerial Insights

From a managerial perspective, we have shown a general algorithm useful to solve
a flexible-size LRP where a subset of customers provides enough information to model
stochastically their demand, while the complementary subset provides scarce data. In this
case, decision makers may estimate a fuzzy demand. Our algorithm is general because
scenarios where the demand of all customers is deterministic, stochastic or fuzzy represent
particular cases of our described problem. Hence, decision makers can employ our ap-
proach more extensively than other algorithms. We analyze these scenarios through some
numerical results and assess how the level of uncertainty influences opening, routing and
route-failure costs. Clearly, more precise data decrease total costs. Furthermore, we have
calculated the cost of assuming a deterministic demand when the real scenario is fuzzy or
stochastic. It has been shown that our hybrid approach yields less average costs, which
leads to a more competitive supply chain. Additionally, we have also shown that important
cost savings are generated whenever a set of facility size alternatives are analyzed by deci-
sion makers, instead of considering a single alternative—as in most LRP studies. Finally,
our algorithm is able to generate detailed information about the location-allocation-routing
decisions that should be made.

7. Conclusions

This work presented a location routing problem where the facility size is an additional
variable, instead of a known parameter as the traditional LRP assumes. Moreover, we
consider a hybrid fuzzy-stochastic setting in which some customers’ demands are fuzzy

39

Algorithms 2021, 14, 45

and others are stochastic. Hence, a fuzzy simheuristic approach is proposed to solve this
problem cost- and time- efficiently. Initially, our algorithm selects the best size for each open
facility from a set of provided alternatives. We perform an iterative procedure in which a set
of location-allocation-routing configurations are assessed in terms of opening and routing
costs. Then a top list of complete LRP solutions is iteratively perturbed and simulated. The
perturbation stage is performed by employing an iterated local search metaheuristic. The
simulation stage is carried out by running a classic Monte Carlo simulation for the stochastic
demands and a fuzzy simulation for the fuzzy demands. Failure costs are introduced as
an additional performance indicator. Finally, a set of elite solutions is assessed through a
refinement procedure where a larger number of simulation runs is executed.

Our fuzzy simheuristic approach has been proved to be flexible enough not only to
combine efficiently stochastic and fuzzy demands in a single execution but also to address
less general scenarios in which demands of all customers are either deterministic or fuzzy.
Our approach has also been proved to be a cost-efficient algorithm when considering
uncertainty scenarios. It decreases route failure costs when compared with the best de-
terministic solution tested in a hybrid fuzzy-stochastic environment. The use of a safety
stock policy as a protection against uncertainty has also contributed to this decrease. In
order to design a time-efficient algorithm, our current approach employs stochastic and
fuzzy simulation only to assess the designed routes. Hence, our algorithm results can be
enhanced by introducing fuzzy-stochastic aspects from the construction stage. However,
this approach might also increase computational times.

To the best of our knowledge, this is the first time that a hybrid fuzzy-stochastic LRP
with facility sizing decisions is addressed. Medium-sized benchmark instances considering
three demand variability levels were used. Obtained results show that introducing such
flexibility decreases total costs in two mutually nonexclusive ways: firstly, yielding savings
in opening costs by locating facilities of smaller size; and secondly, yielding savings in
routing costs by locating facilities of higher size, which drives a routes redesign that
reduces the total traveled distance. We also have demonstrated that these savings are
always incurred regardless of the demand variability level.

Multiple challenges remain open for future research. Since we are considering that only
routes fail when demands are higher than expected, future work can include the simulation
of facility failures, which would prompt a revision of location-allocation decisions. In
addition, failure costs are currently measured only by considering the distances traveled to
perform round-trips and detours. Still, real-life customers might not allow a delivery delay,
e.g., because a time windows constraint must be met. This delay may drive lost sales or a
goodwill reduction. Hence, this type of costs can be included in the computation of failure
costs. Finally, large-sized instances can be used to assess the influence of the number of
nodes in our approach performance.

Author Contributions: Conceptualization, R.D.T. and A.A.J.; methodology, R.D.T., P.J.C.-M. and J.P.;
software, P.J.C.-M. and J.P.; formal analysis, R.D.T.; investigation, R.D.T., P.J.C.-M., C.L.Q.-A. and
J.R.M.-T.; writing—original draft preparation, all authors; writing—review and editing, R.D.T. and
A.A.J. All authors have read and agreed to the published version of the manuscript.

Funding: This work has been partially supported by the Spanish Ministry of Science (PID2019-
111100RB-C21/AEI/10.13039/501100011033). In addition, it has received the support of the Doc-
toral School at the Universitat Oberta de Catalunya (Spain) and the Universidad de La Sabana
(INGPhD-12-2020).

Data Availability Statement: Data are available upon reasonable request to the corresponding author.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Salhi, S.; Rand, G.K. The effect of ignoring routes when locating depots. Eur. J. Oper. Res. 1989, 39, 150–156. [CrossRef]
2. Nagy, G.; Salhi, S. Location-routing: Issues, models and methods. Eur. J. Oper. Res. 2007, 177, 649–672. [CrossRef]
3. Prodhon, C.; Prins, C. A survey of recent research on location-routing problems. Eur. J. Oper. Res. 2014, 238, 1–17. [CrossRef]

40

Algorithms 2021, 14, 45

4. Zhou, L.; Lin, Y.; Wang, X.; Zhou, F. Model and algorithm for bilevel multisized terminal location-routing problem for the last
mile delivery. Int. Trans.Oper. Res. 2019, 26, 131–156. [CrossRef]

5. Tordecilla-Madera, R.; Polo, A.; Muñoz, D.; González-Rodríguez, L. A robust design for a Colombian dairy cooperative’s milk
storage and refrigeration logistics system using binary programming. Int. J. Prod. Econ. 2017, 183, 710–720. [CrossRef]

6. Correia, I.; Melo, T. Multi-period capacitated facility location under delayed demand satisfaction. Eur. J. Oper. Res. 2016,
255, 729–746. [CrossRef]

7. Hemmelmayr, V.; Smilowitz, K.; de la Torre, L. A periodic location routing problem for collaborative recycling. IISE Trans. 2017,
49, 414–428. [CrossRef]

8. Tunalıoğlu, R.; Koç, Ç.; Bektaş, T. A multiperiod location-routing problem arising in the collection of Olive Oil Mill Wastewater. J.
Oper. Res. Soc. 2016, 67, 1012–1024. [CrossRef]

9. Quintero-Araujo, C.L.; Guimarans, D.; Juan, A.A. A simheuristic algorithm for the capacitated location routing problem with
stochastic demands. J. Simul. 2019, 1–18. [CrossRef]

10. Rabbani, M.; Heidari, R.; Yazdanparast, R. A stochastic multi-period industrial hazardous waste location-routing problem:
Integrating NSGA-II and Monte Carlo simulation. Eur. J. Oper. Res. 2019, 272, 945–961. [CrossRef]

11. Sun, Z.; Yan, N.; Sun, Y.; Li, H. Location-routing optimization with split demand for customer self-pickup via data analysis and
heuristics search. Asia-Pac. J. Oper. Res. 2019, 36, 1940013. [CrossRef]

12. Zhang, S.; Chen, M.; Zhang, W. A novel location-routing problem in electric vehicle transportation with stochastic demands. J.
Clean. Prod. 2019, 221, 567–581. [CrossRef]

13. Tordecilla, R.D.; Panadero, J.; Quintero-Araujo, C.L.; Montoya-Torres, J.R.; Juan, A.A. A simheuristic algorithm for the location
routing problem with facility sizing decisions and stochastic demands. In Proceedings of the 2020 Winter Simulation Conference,
IEEE, Marriott, Orlando, FL, USA, 14–18 December 2020; pp. 1265–1275.

14. Herazo-Padilla, N.; Montoya-Torres, J.R.; Nieto Isaza, S.; Alvarado-Valencia, J. Simulation-optimization approach for the
stochastic location-routing problem. J. Simul. 2015, 9, 296–311. [CrossRef]

15. Zhang, B.; Li, H.; Li, S.; Peng, J. Sustainable multi-depot emergency facilities location-routing problem with uncertain information.
Appl. Math. Comput. 2018, 333, 506–520. [CrossRef]

16. Corlu, C.G.; Panadero, J.; Onggo, S.; Juan, A.A. On the scarcity of observations when modelling random inputs and the quality of
solutions to stochastic optimisation problems. In Proceedings of the 2020 Winter Simulation Conference, IEEE, Marriott, Orlando,
FL, USA, 14–18 December 2020; pp. 2105–2113.

17. Zhang, H.; Liu, F.; Ma, L.; Zhang, Z. A hybrid heuristic based on a particle swarm algorithm to solve the capacitated location-
routing problem with fuzzy demands. IEEE Access 2020, 8, 153671–153691. [CrossRef]

18. Mehrjerdi, Y.Z.; Nadizadeh, A. Using greedy clustering method to solve capacitated location-routing problem with fuzzy
demands. Eur. J. Oper. Res. 2013, 229, 75–84. [CrossRef]

19. Fazayeli, S.; Eydi, A.; Kamalabadi, I.N. Location-routing problem in multimodal transportation network with time windows and
fuzzy demands: Presenting a two-part genetic algorithm. Comput. Ind. Eng. 2018, 119, 233–246. [CrossRef]

20. Nadizadeh, A.; Kafash, B. Fuzzy capacitated location-routing problem with simultaneous pickup and delivery demands. Transp.
Lett. 2019, 11, 1–19. [CrossRef]

21. Zarandi, M.H.F.; Hemmati, A.; Davari, S. The multi-depot capacitated location-routing problem with fuzzy travel times. Expert
Syst. Appl. 2011, 38, 10075–10084. [CrossRef]

22. Zarandi, M.H.F.; Hemmati, A.; Davari, S.; Turksen, I.B. Capacitated location-routing problem with time windows under
uncertainty. Knowl. Based Syst. 2013, 37, 480–489. [CrossRef]

23. Ghezavati, V.; Morakabatchian, S. Application of a fuzzy service level constraint for solving a multi-objective location-routing
problem for the industrial hazardous wastes. J. Intell. Fuzzy Syst. 2015, 28, 2003–2013. [CrossRef]

24. Juan, A.A.; Kelton, W.D.; Currie, C.S.; Faulin, J. Simheuristics applications: dealing with uncertainty in logistics, transportation,
and other supply chain areas. In Proceedings of the 2018 Winter Simulation Conference, IEEE, Marriott, Orlando, FL, USA, 14–18
December 2018; pp. 3048–3059.

25. Maranzana, F. On the location of supply points to minimize transport costs. J. Oper. Res. Soc. 1964, 15, 261–270. [CrossRef]
26. Dai, Z.; Aqlan, F.; Gao, K.; Zhou, Y. A two-phase method for multi-echelon location-routing problems in supply chains. Expert

Syst. Appl. 2019, 115, 618–634. [CrossRef]
27. Quintero-Araujo, C.L.; Caballero-Villalobos, J.P.; Juan, A.A.; Montoya-Torres, J.R. A biased-randomized metaheuristic for the

capacitated location routing problem. Int. Trans. Oper. Res. 2017, 24, 1079–1098. [CrossRef]
28. Escobar, J.W.; Linfati, R.; Baldoquin, M.G.; Toth, P. A granular variable tabu neighborhood search for the capacitated location-

routing problem. Transp. Res. Part B Methodol. 2014, 67, 344–356. [CrossRef]
29. Ferdi, I.; Layeb, A. A GRASP algorithm based new heuristic for the capacitated location routing problem. J. Exp. Theor. Artif.

Intell. 2018, 30, 369–387. [CrossRef]
30. Quintero-Araujo, C.L.; Gruler, A.; Juan, A.A.; Faulin, J. Using horizontal cooperation concepts in integrated routing and

facility-location decisions. Int. Trans. Oper. Res. 2019, 26, 551–576. [CrossRef]
31. Hof, J.; Schneider, M.; Goeke, D. Solving the battery swap station location-routing problem with capacitated electric vehicles

using an AVNS algorithm for vehicle-routing problems with intermediate stops. Transp. Res. Part B Methodol. 2017, 97, 102–112.
[CrossRef]

41

Algorithms 2021, 14, 45

32. Almouhanna, A.; Quintero-Araujo, C.L.; Panadero, J.; Juan, A.A.; Khosravi, B.; Ouelhadj, D. The location routing problem using
electric vehicles with constrained distance. Comput. Oper. Res. 2020, 115, 104864. [CrossRef]

33. Theeraviriya, C.; Sirirak, W.; Praseeratasang, N. Location and routing planning considering electric vehicles with restricted
distance in agriculture. World Electr. Veh. J. 2020, 11, 61. [CrossRef]

34. Nataraj, S.; Ferone, D.; Quintero-Araujo, C.; Juan, A.; Festa, P. Consolidation centers in city logistics: A cooperative approach
based on the location routing problem. Int. J. Ind. Eng. Comput. 2019, 10, 393–404. [CrossRef]

35. Ukkusuri, S.V.; Yushimito, W.F. Location routing approach for the humanitarian prepositioning problem. Transp. Res. Record
2008, 2089, 18–25. [CrossRef]

36. Lashine, S.H.; Fattouh, M.; Issa, A. Location/allocation and routing decisions in supply chain network design. J. Model. Manag.
2006, 1, 173–183. [CrossRef]

37. Leng, L.; Zhao, Y.; Zhang, J.; Zhang, C. An effective approach for the multiobjective regional low-carbon location-routing problem.
Int. J. Environ. Res. Public Health 2019, 16, 2064. [CrossRef]

38. Wang, Z.; Leng, L.; Wang, S.; Li, G.; Zhao, Y. A hyperheuristic approach for location-routing problem of cold chain logistics
considering fuel consumption. Comput. Intell. Neurosci. 2020, 2020, 8395754 . [CrossRef]

39. Rabbani, M.; Sadati, S.A.; Farrokhi-Asl, H. Incorporating location routing model and decision making techniques in industrial
waste management: Application in the automotive industry. Comput. Ind. Eng. 2020, 148, 106692. [CrossRef]

40. Ghaffari-Nasab, N.; Ahari, S.G.; Ghazanfari, M. A hybrid simulated annealing based heuristic for solving the location-routing
problem with fuzzy demands. Sci. Iran. 2013, 20, 919–930.

41. Nadizadeh, A.; Nasab, H.H. Solving the dynamic capacitated location-routing problem with fuzzy demands by hybrid heuristic
algorithm. Eur. J. Oper. Res. 2014, 238, 458–470. [CrossRef]

42. Wei, M.; Yu, L.; Li, X. Credibilistic Location-Routing Model for Hazardous Materials Transportation. Int. J. Intell. Syst. 2015,
30, 23–39. [CrossRef]

43. Faulin, J.; Gilibert, M.; Juan, A.A.; Vilajosana, X.; Ruiz, R. SR-1: A simulation-based algorithm for the capacitated vehicle routing
problem. In Proceedings of the 2008 Winter Simulation Conference, IEEE, Miami, FL, USA, 7–10 December 2008; pp. 2708–2716.

44. Juan, A.A.; Faulin, J.; Ruiz, R.; Barrios, B.; Gilibert, M.; Vilajosana, X. Using oriented random search to provide a set of alternative
solutions to the capacitated vehicle routing problem. In Operations Research and Cyber-Infrastructure; Springer: Berlin, Germany,
2009; pp. 331–345.

45. Oliva, D.; Copado, P.; Hinojosa, S.; Panadero, J.; Riera, D.; Juan, A.A. Fuzzy simheuristics: Solving optimization problems under
stochastic and uncertainty scenarios. Mathematics 2021, 1, 00005.

46. Quintero-Araujo, C.L.; Gruler, A.; Juan, A.A.; de Armas, J.; Ramalhinho, H. Using simheuristics to promote horizontal
collaboration in stochastic city logistics. Prog. Artif. Intell. 2017, 6, 275–284. [CrossRef]

47. Gruler, A.; Panadero, J.; de Armas, J.; Moreno, J.A.; Juan, A.A. A variable neighborhood search simheuristic for the multiperiod
inventory routing problem with stochastic demands. Int. Trans. Oper. Res. 2020, 27, 314–335. [CrossRef]

48. Gonzalez-Martin, S.; Juan, A.A.; Riera, D.; Elizondo, M.G.; Ramos, J.J. A simheuristic algorithm for solving the arc routing
problem with stochastic demands. J. Simul. 2018, 12, 53–66. [CrossRef]

49. Gruler, A.; Panadero, J.; de Armas, J.; Moreno, J.A.; Juan, A.A. Combining variable neighborhood search with simulation for the
inventory routing problem with stochastic demands and stock-outs. Comput. Ind. Eng. 2018, 123, 278–288. [CrossRef]

50. Gruler, A.; Fikar, C.; Juan, A.A.; Hirsch, P.; Contreras-Bolton, C. Supporting multi-depot and stochastic waste collection
management in clustered urban areas via simulation–optimization. J. Simul. 2017, 11, 11–19. [CrossRef]

51. Uddin, M.; Huynh, N. Reliable routing of road-rail intermodal freight under uncertainty. Netw. Spat. Econ. 2019, 19, 929–952.
[CrossRef]

52. Hrušovskỳ, M.; Demir, E.; Jammernegg, W.; Van Woensel, T. Hybrid simulation and optimization approach for green intermodal
transportation problem with travel time uncertainty. Flex. Serv. Manuf. J. 2018, 30, 486–516. [CrossRef]

53. Zhao, Y.; Liu, R.; Zhang, X.; Whiteing, A. A chance-constrained stochastic approach to intermodal container routing problems.
PLoS ONE 2018, 13, e0192275. [CrossRef]

54. Werners, B.; Drawe, M. Capacitated vehicle routing problem with fuzzy demand. In Fuzzy Sets Based Heuristics for Optimization;
Springer: Berlin, Germany, 2003; pp. 317–335.

55. Erbao, C.; Mingyong, L. A hybrid differential evolution algorithm to vehicle routing problem with fuzzy demands. J. Comput.
Appl. Math. 2009, 231, 302–310. [CrossRef]

56. Xue, L.; Dai, X.X. Research on the vehicle routing problem with fuzzy demands. In Advanced Materials Research; Trans Tech
Publications Ltd.: Stafa-Zurich, Switzerland, 2011; Volume 186, pp. 570–575.

57. Sun, Y. Fuzzy approaches and simulation-based reliability modeling to solve a Road–Rail intermodal routing problem with soft
delivery time windows when demand and capacity are uncertain. Int. J. Fuzzy Syst. 2020, 22, 2119–2148. [CrossRef]

58. Zheng, Y.; Liu, B. Fuzzy vehicle routing model with credibility measure and its hybrid intelligent algorithm. Appl. Math. Comput.
2006, 176, 673–683. [CrossRef]

59. Sun, Y.; Hrušovskỳ, M.; Zhang, C.; Lang, M. A time-dependent fuzzy programming approach for the green multimodal routing
problem with rail service capacity uncertainty and road traffic congestion. Complexity 2018, 2018, 8645793. [CrossRef]

60. Gupta, R.; Singh, B.; Pandey, D. Fuzzy vehicle routing problem with uncertainty in service time. Int. J. Contemp. Math. Sci. 2010,
5, 497–507.

42

Algorithms 2021, 14, 45

61. Tang, J.; Pan, Z.; Fung, R.Y.; Lau, H. Vehicle routing problem with fuzzy time windows. Fuzzy Sets Syst. 2009, 160, 683–695.
[CrossRef]

62. López-Castro, L.F.; Montoya-Torres, J.R. Vehicle routing with fuzzy time windows using a genetic algorithm. In Proceedings of
the 2011 Workshop On Computational Intelligence In Production And Logistics Systems, IEEE, Paris, France, 11–15 April 2011;
pp. 1–8.

63. Cao, E.; Lai, M. The open vehicle routing problem with fuzzy demands. Expert Syst. Appl. 2010, 37, 2405–2411. [CrossRef]
64. Gonzalez-Neira, E.M.; Ferone, D.; Hatami, S.; Juan, A.A. A biased-randomized simheuristic for the distributed assembly

permutation flowshop problem with stochastic processing times. Simul. Model. Pract. Theory 2017, 79, 23–36. [CrossRef]
65. Zarandi, M.H.F.; Asl, A.A.S.; Sotudian, S.; Castillo, O. A state of the art review of intelligent scheduling. Artif. Intell. Rev. 2020,

53, 501–593. [CrossRef]
66. Ochoa, P.; Castillo, O.; Soria, J. High-Speed Interval Type-2 Fuzzy System for Dynamic Crossover Parameter Adaptation in

Differential Evolution and Its Application to Controller Optimization. Int. J. Fuzzy Syst. 2019, 22, 414–427. [CrossRef]
67. Bernal, E.; Castillo, O.; Soria, J.; Valdez, F. Generalized type-2 fuzzy logic in galactic swarm optimization: Design of an optimal

ball and beam fuzzy controller. J. Intell. Fuzzy Syst. 2020, 39, 3545–3559. [CrossRef]
68. Anter, A.M.; Gupta, D.; Castillo, O. A novel parameter estimation in dynamic model via fuzzy swarm intelligence and chaos

theory for faults in wastewater treatment plant. Soft Comput. 2020, 24, 111–129. [CrossRef]
69. Panadero, J.; Doering, J.; Kizys, R.; Juan, A.A.; Fito, A. A variable neighborhood search simheuristic for project portfolio selection

under uncertainty. J. Heuristics 2020, 26, 353–375. [CrossRef]
70. de Armas, J.; Juan, A.A.; Marquès, J.M.; Pedroso, J.P. Solving the deterministic and stochastic uncapacitated facility location

problem: From a heuristic to a simheuristic. J. Oper. Res. Soc. 2017, 68, 1161–1176. [CrossRef]
71. Panadero, J.; Juan, A.A.; Bayliss, C.; Currie, C. Maximising reward from a team of surveillance drones: A simheuristic approach

to the stochastic team orienteering problem. Eur. J. Ind. Eng. 2020, 14, 485–516. [CrossRef]
72. Ferone, D.; Gruler, A.; Festa, P.; Juan, A.A. Enhancing and extending the classical GRASP framework with biased randomisation

and simulation. J. Oper. Res. Soc. 2019, 70, 1362–1375. [CrossRef]
73. Ferrer, A.; Guimarans, D.; Ramalhinho, H.; Juan, A.A. A BRILS metaheuristic for non-smooth flow-shop problems with failure-risk

costs. Expert Syst. Appl. 2016, 44, 177–186. [CrossRef]
74. Akca, Z.; Berger, R.; Ralphs, T. A branch-and-price algorithm for combined location and routing problems under capacity

restrictions. In Operations Research and Cyber-Infrastructure; Springer: Boston, MA, USA, 2009; pp. 309–330.
75. Barreto, S.; Ferreira, C.; Paixao, J.; Santos, B.S. Using clustering analysis in a capacitated location-routing problem. Eur. J. Oper.

Res. 2007, 179, 968–977. [CrossRef]
76. Belenguer, J.M.; Benavent, E.; Prins, C.; Prodhon, C.; Calvo, R.W. A branch-and-cut method for the capacitated location-routing

problem. Comput. Oper. Res. 2011, 38, 931–941. [CrossRef]
77. Teodorović, D.; Pavković, G. The fuzzy set theory approach to the vehicle routing problem when demand at nodes is uncertain.

Fuzzy Sets Syst. 1996, 82, 307–317. [CrossRef]
78. Sun, Y. A Fuzzy Multi-Objective Routing Model for Managing Hazardous Materials Door-to-Door Transportation in the Road-Rail

Multimodal Network With Uncertain Demand and Improved Service Level. IEEE Access 2020, 8, 172808–172828. [CrossRef]
79. Klir, G.; Yuan, B. Fuzzy Sets and Fuzzy Logic: Theory and Applications. Possibility Theory Versus Probab. Theory 1996, 32, 207–208.
80. Opricovic, S.; Tzeng, G.H. Defuzzification within a multicriteria decision model. Int. J. Uncertain. Fuzziness Knowl. Based Syst.

2003, 11, 635–652. [CrossRef]

43

algorithms

Article

Integrated Simulation-Based Optimization of Operational
Decisions at Container Terminals

Marvin Kastner *,†, Nicole Nellen †, Anne Schwientek † and Carlos Jahn

��������	
�������

Citation: Kastner, M.; Nellen, N.;

Schwientek, A.; Jahn, C. Integrated

Simulation-Based Optimization of

Operational Decisions at Container

Terminals. Algorithms 2021, 14, 42.

https://doi.org/10.3390/a14020042

Academic Editor: Angel A. Juan

Received: 6 December 2020

Accepted: 25 January 2021

Published: 28 January 2021

Publisher’s Note: MDPI stays neu-

tral with regard to jurisdictional clai-

ms in published maps and institutio-

nal affiliations.

Copyright: © 2021 by the authors. Li-

censee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and con-

ditions of the Creative Commons At-

tribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Institute of Maritime Logistics, Hamburg University of Technology, 21073 Hamburg, Germany;
nicole.nellen@tuhh.de (N.N.); a.schwientek@tuhh.de (A.S.); carlos.jahn@tuhh.de (C.J.)
* Correspondence: marvin.kastner@tuhh.de; Tel.: +49-40-42878-4793
† These authors contributed equally to this work.

Abstract: At container terminals, many cargo handling processes are interconnected and occur in par-
allel. Within short time windows, many operational decisions need to be made and should consider
both time efficiency and equipment utilization. During operation, many sources of disturbance and,
thus, uncertainty exist. For these reasons, perfectly coordinated processes can potentially unravel.
This study analyzes simulation-based optimization, an approach that considers uncertainty by means
of simulation while optimizing a given objective. The developed procedure simultaneously scales
the amount of utilized equipment and adjusts the selection and tuning of operational policies. Thus,
the benefits of a simulation study and an integrated optimization framework are combined in a new
way. Four meta-heuristics—Tree-structured Parzen Estimator, Bayesian Optimization, Simulated
Annealing, and Random Search—guide the simulation-based optimization process. Thus, this study
aims to determine a favorable configuration of equipment quantity and operational policies for con-
tainer terminals using a small number of experiments and, simultaneously, to empirically compare
the chosen meta-heuristics including the reproducibility of the optimization runs. The results show
that simulation-based optimization is suitable for identifying the amount of required equipment and
well-performing policies. Among the presented scenarios, no clear ranking between meta-heuristics
regarding the solution quality exists. The approximated optima suggest that pooling yard trucks and
a yard block assignment that is close to the quay crane are preferable.

Keywords: container terminal; simulation; simulation-based optimization; meta-heuristic; horizontal
transportation; hyper-parameter optimization

1. Introduction

Seaports are the interface between various transport modes in the maritime supply
chain. In 2019, the volume of global maritime containerized trade had tripled to 152 million
TEU (Twenty-foot Equivalent Unit, the size of a standard container) from its value in
1997 [1]. Moreover, ship sizes have also tripled in the past 20 years, from an 8000 TEU
capacity to around 24,000 TEU. This implies that, in addition to adjustments to the port’s
infrastructure and superstructure, container terminals have to substantially increase their
efficiency in ship handling in order to keep unproductive berthing times as short as possible
while container volumes that are handled during one ship call increase. Thus, the challenge
for terminals is to handle a large number of containers within a very short period of time.
Terminals can address this challenge by creating technical prerequisites (i.e., using more
and higher-performance equipment) and by optimizing operational processes. While the
use of more equipment entails correspondingly more investment and higher running costs,
intelligent control of operational processes leads to more efficient cargo handling without
additional costs. Therefore, it is reasonable to minimize the amount of necessary equipment
and to coordinate operational processes.

Container handling requires a large number of process steps in the terminal. When
a ship is berthed, Quay Cranes (QCs) unload the containers and set them onto waiting

Algorithms 2021, 14, 42. https://doi.org/10.3390/a14020042 https://www.mdpi.com/journal/algorithms45

Algorithms 2021, 14, 42

Yard Trucks (YTs), which then transport them to the storage area. There, Rubber-Tired
Gantry (RTGs) cranes lift the containers into the respective Yard Block (YB) for short-term
storage until the container is picked up. The steps in the process of loading a ship run in
the opposite direction. The processes are coupled because YTs are passive equipment and
are not able to lift the containers themselves. As a result, waiting times and utilization of
the respective equipment must be weighed against each other. In order to perform ship
handling as quickly as possible and to reduce the waiting times of the QCs, it is preferable
to use more YTs however, this leads to longer waiting times and lower utilization of
YTs. Furthermore, using too many YTs leads to congestion and, therefore, to delays in
ship handling [2]. The better the balance between these conflicting objectives, the more
efficiently the terminal works.

There are several decision problems in the design and operation of container terminals,
which strongly influence the efficiency of container handling. Figure 1 shows an overview
of typical decision problems at container terminals.

Quayside Horizontal transport Storage area Landside

Strategic &
tactical

Operational

Terminal layout

Quantity of equipment per type

Berth allocation

Stowage planning

QC assignment
and scheduling

Dispatching or
scheduling

Routing

Dispatching

YB assignment Dispatching

Gate organization

Equipment type

YB position
assignment

Figure 1. Decision problems at container terminals.

Decisions regarding the design of the terminal layout (e.g., location and size of the YBs)
or the equipment that must be used and how much of it to procure have a rather long-term
influence (refer to [3] for a recent overview). From a short-term perspective, on the quayside,
decisions include berth allocation, stowage planning, and QC assignment and scheduling
(refer to [4] for an overview). In horizontal transport, the decision problems are dispatching
or scheduling (assigning vehicles and transport orders) and routing. Dispatching (assigning
RTGs and storage orders), YB assignment, and YB position assignment are the primary
decision problems in the storage area. On the land side, there are also questions of order
assignment and gate control. Kizilay and Eliiyi [5] provide a recent overview of container
terminal decision problems.

These decision problems influence each other [6]. For example, berth allocation
directly influences the YB assignment and vice versa. The distances between the ship
at the berth and the assigned YBs should be as short as possible, and at the same time,
sufficient YBs should be assigned to a berth or QC. RTGs in the yard can typically move
15 containers within one hour, while QCs have a productivity of around 30 moves/h. Thus,
at least two YBs (each being served by at least one RTG) have to be connected to one QC.
Another example is the relationship between gate organization and dispatching in the yard:
If the number of truck arrivals is regulated by a truck appointment system, then this also
influences the number of handling orders for RTGs and thus affects dispatching [7]. These
are just two examples of the numerous interactions between decision problems. Therefore,
there is a risk that the overall solution will deteriorate if only one decision problem is

46

Algorithms 2021, 14, 42

optimized. Hence, it is necessary to combine the different related decision problems into a
single integrated decision problem. Usually, the operations on the waterside are focused
on due to the high costs related to the berth time of a ship. This means that the number
of QCs, YTs, and RTGs as well as the integration of the handling processes need to be
jointly considered to ensure efficient operations. Thus, this study analyzes a combination
of QC assignment and dispatching, as well as YB assignment as shown with a dark frame
around the respective boxes in Figure 1. Additionally, the dashed frame around the quantity
of equipment per type indicates that the number of YTs used is modified.

Integrated decision problems covering QCs, YTs, and RTGs have been traditionally
solved by formulating and solving a mathematical model. At first glance, this seems like a
reasonable approach. However, this results in a very complex problem for which a solution
is difficult to find and, especially under the real-time requirements of a container terminal,
is almost impossible to solve in terms of computing power. Therefore, it is worthwhile
stepping back and considering different methods, including the use of policies.

1.1. Literature Review on Integrated Decision Problems

There are two main approaches to addressing the operational decision problems
of container terminals [8]. The first approach takes into account the complex dynamic
environment of a container terminal. It typically uses priority rules, which are analyzed
with the help of simulation models that can represent stochastic processes. Simulation
models involving container terminals are reviewed in [9,10]. In the second approach, a
simplified deterministic mathematical model is formulated. Either the model can be solved
optimally for small instances, or an approximation can be found with the help of heuristics.

While the first approach is better suited to volatile processes at container termi-
nals, simulation studies that aim to investigate several decision problems quickly be-
come very complex [11]. The second approach also quickly reaches its limits. In this
context, Zhen et al. [12] showed that the integrated QC and YT scheduling problem is
non-deterministic polynomial-time hard, which means that the computing time required
to optimally solve the problem is too long to be used in practice. To take advantage of both
approaches, especially in order to investigate integrated decision problems that influence
each other, the approach of combining simulation and optimization has been developed
in recent years. He et al. [13] addressed integrated QC, YT, and RTG scheduling. They
developed a mixed-integer programming model and proposed a simulation-based opti-
mization method. Their optimization algorithm integrates genetic and particle swarm
optimization algorithms. Cao et al. [14] aimed to schedule RTGs and YTs simultaneously
in order to decrease the ship turnaround time. They introduced a multi-layer genetic
algorithm to solve the scheduling problem and designed an algorithm-accelerating strategy.
Castilla-Rodríguez et al. [15] focused on the QC scheduling problem: They integrated
artificial intelligence techniques and simulation, combining an evolutionary algorithm
with a simulation model to embed uncertainty. Kizilay et al. [16] studied the integrated
problem of QC assignment and scheduling, YB assignment, and YT dispatching. They
proposed a mixed-integer programming and constraint programming model and showed
that the constraint programming model performed much better in terms of calculating time.
Integrated quayside problems can also be investigated with other aims, such as saving
costs and energy simultaneously [17] or exploring different modes of integration [18].
Sislioglu et al. [19] combined discrete event simulation, data envelopment analysis, and
cost-efficiency analysis to investigate different investment alternatives based on the number
of QCs, total length of a quay, YTs, and RTGs. They applied their model to 16 different
scenarios but did not modify the operating policies. Furthermore, other research has com-
bined different simulation paradigms to solve optimization problems at different decision
levels. For example, in [20], a system-dynamic model was used to optimize the main
parameters of a dry port, and in [21], a combination of system-dynamic and discrete-event
simulation models was used. Kastner et al. [22] provide a literature overview of simulation-
based optimization at container terminals. They focused on the covered problems, chosen

47

Algorithms 2021, 14, 42

meta-heuristics, and the shapes of the parameter configuration space in the respective
publications. Similarly, Zhou et al. [23] present a summary of publications on the integra-
tion of simulation and optimization for maritime logistics. They classified five modes of
integration according to the interaction of the two techniques.

Kastner et al. [24] proposed applying the Tree-structured Parzen Estimation (TPE)
approach to scale the amount of utilized equipment in a simulation model. With the help
of simulation-based optimization, only a subset of the experiments was executed. At the
same time, a fine search grid (all equipment was scaled in step sizes of 1) enabled a very
good approximation of the unknown optimum.

The presented study is an extension of [24]. The reviewed literature is expanded and
updated. Previously, the three meta-heuristics TPE, Simulated Annealing (SA), and Ran-
dom Search (RS) were used to scale the number of QCs and YTs. In this study, in addition,
the number of YBs is alternated, and the coordination of equipment is varied by using
different policies. This enrichment required several extensions of the simulation model and
the parameter configuration space. In the new study, the number of QCs is considered to
be fixed during an optimization run and a caching mechanism is implemented to speed
up optimization. As a new meta-heuristic, Bayesian Optimization (BO) is introduced. The
application of dispatching and other policies differentiates this publication from most of the
previously mentioned publications. Previous works often directly search for near-optimal
sequences of container handling tasks. For larger container terminals, terminal operating
systems integrate the computed schedules of different equipment [25]. Smaller container
terminals tend to use less complex IT solutions that lack automated scheduling methods,
relying more on operational rules of thumb, such as dispatching policies [26]. This study
presents a solution method that is applicable for these smaller container terminals. The
simulation results describe the near-optimal combination of multiple decisions, such as the
quantity of equipment, the dispatching policy, and other policies for a given situation. In
this study, optimization plays a role that is very different from that in the above-mentioned
scheduling methods. Several parameters, some of them categorical, some discrete, and
some continuous, are adjusted in parallel. It is known from similar prior studies (e.g., [11])
that different parameters also affect each other. In this study, therefore, a multivariate
optimization problem is solved.

1.2. Optimizing Objective Functions without Mathematical Optimization

The integration of several operational problems leads to many decisions that are
made in parallel. In the presented study, the number of utilized resources is scaled, while,
concurrently, different storage and equipment control policies are taken into account,
potentially allowing for policy tuning. All of these parameters are optimized without a
mathematical model. This section elaborates on the options that a simulator can choose
from if no mathematical model is present but an optimum, or at least its approximation,
is sought.

For simulation studies, a full factorial design is often used, where each parameter
combination is tested by running a corresponding simulation experiment [27]. The param-
eter combination that performs best according to an objective function is then reported
as the best known solution. In other words, it is the best available approximation of the
unknown optimum. Such simulation studies do not include a mathematical model, and
hence, the distance between the best approximation of the optimum and the optimum of
the mathematical model cannot be reported.

A study that covers a full factorial design is only feasible for finite sets, such as
categorical values or selected numerical values. Continuous parameters (e.g., real numbers)
need to be restricted to a finite set of selected values. The search grid for such a study needs
to be sufficiently fine (i.e., for natural numbers, few omissions within a given range; for
real numbers, small step sizes are used) so that the optimum can be approximated well.
For high-dimensional parameter configuration spaces, the combination of all concurrently
varied parameters, at some point, becomes too large for exhaustive examination. This

48

Algorithms 2021, 14, 42

holds true for large simulation studies as well as for hyper-parameter optimization in
machine learning. Furthermore, if all permissible values of a parameter are exhaustively
examined, for real numbers, only an approximation for the optimal input parameter might
be identified.

As soon as the combination of all varied parameters results in an amount of expensive
simulation runs that could not be executed within a reasonable time frame, some of the
simulation runs need to be skipped or simplified. If the goal of the study is to approximate
an optimum, expensive simulation runs which are expected to result in a lower objective
function value need to be avoided. Several approaches presented in the following para-
graphs exist. However, if the simulation model is sufficiently complex, any approach might
fail to identify the best approximated optimum in the set of feasible solutions.

One option to reduce computational time is to use a multi-fidelity approach [28]. With
a low-fidelity simulation model, each parameter combination is evaluated. These results are
used to identify promising parameter configurations, which are further examined with a
high-fidelity simulation model. From that subset, the best solution can be determined. This
approach requires the simulator to create two simulation models of a different fidelity. The
low-fidelity simulation model requires special skills during creation as all important aspects
need to be covered in the model because, otherwise, a promising parameter configuration
for the high-fidelity simulation experiment may be omitted. At the same time, the processes
must be sufficiently simplified to improve the required time for running the experiments.

An alternative option to reduce computational time is to maintain a computing bud-
get, i.e., the total amount of computing resources that are available to approximate the
optimal solution [29]. The initial experiments are randomly chosen from the parameter
configuration space [30]. If, during the evaluation, a given parameter configuration is iden-
tified as having superior performance, more computing resources are invested to obtain a
better picture of the corresponding objective function value. The longer the total observed
time range for a given simulation model, the more that typically noisier sample statistics
approximate the population parameters. AlSalem et al. [29] stated that this approach
does not necessarily create optimal solutions, but solutions that are close to the optimum
with a very high probability. Furthermore, in industry, such approximations often satisfy
requirements [29]. Even if optimal input parameters are calculated for a given simulation
model, the difference in performance might be of little practical relevance.

Another option to reduce computational time is to embed the simulation into an outer
loop of optimization. The simulation model itself is regarded as a black-box function. If
the optimization problem (i.e., the objective values derived from the simulation model) has
some known structural properties, one might prefer to derive a simpler representation that
enables optimization with other tools than simulation [31]. The optimization algorithm
in the outer loop tests a subset of the feasible parameter configurations to approximate
the optimum of the black-box function. This concept goes by many different names, such
as “simulation optimization” [32], “simulation evaluation” [33], “simulation integrated
into optimization” [34], and “simulation-based optimization” [23]. For cases in which a
combinatorial optimization problem is solved, the term “simheuristic” has been coined [35].
This concept is the only combination of simulation and optimization that does not rely
on maintaining an additional mathematical model [34]. If the simulation model is suffi-
ciently complex, then the optimization algorithm can only consist of general guidelines for
searching good (but not necessarily optimal) solutions. These general guidelines, which
are applicable across research domains, are also referred to as meta-heuristics [36]. Meta-
heuristics often start with several randomly drawn parameter configurations, and the first
objective values that are obtained direct further search. A good meta-heuristic balances
exploration and exploitation. During exploration, parameter configurations that are quite
different from the previous samples are tested. During exploitation, well-performing pa-
rameter configurations are slightly altered to obtain an improved parameter configuration.
After several iterations, a stopping criterion is reached, and the best solution found so far is
returned as an approximation of the global optimum. For a guided search, a meta-heuristic

49

Algorithms 2021, 14, 42

needs to keep track of past evaluations. The large number of meta-heuristics reported in
the literature stems from the fact that it is a non-trivial decision as to how to continue a
search given a set of observations.

To the best of the authors’ knowledge [37], and the authors’ previous study [24] are
the only ones that have used the simulation-based optimization approach at a container
terminal for scaling the amount of several utilized resources. Kotachi et al. [37] simulta-
neously optimized the berth length, the number of QCs, the number of gates, the fleet
size of YTs, the number of export and import rows, and the number of RTGs per row. The
objective function balanced the throughput and the utilization, weighted by investment
costs. While a high throughput was achieved with more resources, the weighted utiliza-
tion ensured that no superfluous resources were added to the container terminal. Even
though not all permissible realistic values were taken into account, the authors calculated
72,576 possible parameter combinations. They decided that these were too many to fully
cover in a simulation study. They built an optimization framework that consisted of two
stages: First, the interactions between resources were examined to determine the most
promising sequence of resource optimization tasks. As seven different types of resources
were checked, 7! = 5040 possible permutations existed. Second, the gained sequence was
utilized to optimize each resource one by one. The resources that were not yet optimized
were selected according to stochastic sampling. Following the proposed optimization
framework, the number of executed experiments could be reduced by 34% and it is stated
that further enhancements are possible. In the following, some applicable ideas for such an
optimization framework are explored.

1.3. Relationship between Hyper-Parameter Optimization and Simulation-Based Optimization

Identifying high-performing solutions for a given model is a typical research question
in many fields of science. The speed of the necessary search process has increased since
the advent of computers and the new possibility of automating tedious and complex
computations. Complex computations often become quite resource-intensive and tend to
contain a large number of parameters that can be varied. Each parameter configuration
describes an alternative shape of the executed computation. For categorical parameters (i.e.,
an element of a finite set), the size of the parameter configuration space grows exponentially
with every additional parameter. For continuous parameters (e.g., a range of real numbers),
even for a single parameter, the search space is infinite. Therefore, for many applications,
the parameter configuration reaches a size that is impossible or impractical to cover. Hence,
scientists are forced to evaluate only a subset of all feasible parameter configurations.
This search process is further complicated if the model contains stochastic components.
Therefore, a single parameter configuration often needs to be tested several times before the
resulting statistics reliably inform the scientist of the quality of a parameter configuration.

One field of science that faces similar difficulties is machine learning. Here, often learn-
ing algorithms that consist of many exchangeable components are optimized according to
some metric. For neural networks, e.g., for the activation function, different mathematical
functions can be inserted, the weights inside a neural network can be adjusted by differ-
ent algorithms, the number of neurons for each layer can vary, etc. [38]. These decisions
are referred to as hyper-parameters. They are usually considered to be constant during
one experiment. It is a non-trivial problem to identify the best hyper-parameters for a
given machine learning problem. Since machine learning pipelines often contain stochastic
components, a repeated evaluation is often necessary.

The task of constructing and adjusting machine learning is so complex that, in some
cases, randomly picking parameter configurations outperforms manual model calibration
by scientists [39]. The authors explain these results by the higher resolution of the search
grid and less wasting of the computational budget on the variation of parameters that
have little or no impact on the final result. To support the expert in automating the search
through a parameter configuration space, Hutter et al. [40] were the first to present an
optimization procedure that can deal with numerical and categorical parameters in a

50

Algorithms 2021, 14, 42

problem-independent manner. Bergstra et al. [41] quickly followed with an alternative
approach that they called TPE. A comparison between several data sets showed that
the performance of such a hyper-parameter optimization technique varies with each
setup [42–44]. This research topic is often referred to as hyper-parameter optimization and
is the subject of active research and development [44–46].

In the past several years, many newly developed hyper-parameter optimization
approaches have advanced the field. Studies such as [42–44] have empirically compared
different meta-heuristics. This approach is the key to identifying characteristics of each
meta-heuristic, which, in turn, can result in the recommendation of one meta-heuristic.
Such an empirical approach is necessary because of the No Free Lunch Theorem (NFLT)
in the optimization of black-box functions: One cannot determine the most successful
optimization algorithm for an unseen problem [47]. This means that, for simulation-based
optimization, a meta-heuristic that has worked well in one study might fail to lead to
good approximations of the optimum for a different “problem”, i.e., the black-box function
that consists of a simulation model and an objective function. In machine learning, the
black-box function can be understood as a combination of the learning algorithm and the
data set on which it operates. Once one of the components is changed, it constitutes “an
unseen problem” according to the NFLT.

As McDermott [48] elaborated, this claim might not be in harmony with observations
from scientific literature as often, certain meta-heuristics tend to provide better results than
others. Therefore, no published ranking of different optimization algorithms is guaranteed
to be reproducible for other problem instances. However, when several optimization
studies are considered together, the observed characteristics of each optimization algorithm
(e.g., a meta-heuristic) should fit into the broader picture. Hence, a comparison study such
as [42–44] or this publication contributes to these deeper insights.

This study uses simulation-based optimization on a multivariate optimization prob-
lem at a container terminal. As parameters, only categorical, discrete, and continuous
value ranges are permissible. This makes it suitable for choosing policies, determining the
amount of employed equipment, and defining policies that accept tuning parameters. The
simulation model and the objective function together are treated as a black-box function
that is repeatedly evaluated because of its stochasticity. The novelty of this optimization
study is that meta-heuristics that have also been used in the context of hyper-parameter op-
timization are applied to a discrete event simulation model that models several integrated
problems of a container terminal. As only meta-heuristics are deployed, the parameter
configuration space and the simulation model can both be extended to represent additional
complex integrated decisions with little effort. Alternative approaches that couple simu-
lation and optimization require that both the simulation model and mathematical model
remain aligned [34].

2. Materials and Methods

First, the simulation model is presented in Section 2.1. Then, the subsequently used
meta-heuristics are presented in Section 2.2. Section 2.3 describes the method of identifying
good parameter configurations for the simulation model. In this context, the objective
function is presented.

2.1. Simulation Model

In the following, the created simulation model of the container terminal and its restric-
tions are presented. The discrete-event simulation model is implemented in Tecnomatix
Plant Simulation and is based on the data of a real terminal. The layout of the terminal is
shown in Figure 2.

51

Algorithms 2021, 14, 42

Ga
te

Loading
process

Loading
ship

Horizontal
transport

Storage

Unloading
process

Unloading
ship

Horizontal
transport

Storage

Figure 2. Layout and process illustration of the simulation model.

The terminal has a quay length of 800 m and a total of 20 YBs. The simulation model
represents container handling between the quayside and container yard. As displayed
in Figure 2, the specifics of the design of the land-side transport interface as well as the
berths are not considered in detail. In this study, parallel handling of several ships is not
modeled. Consequently, the simulation model of the container terminal is stressed by the
arrival of a single ship. For this, 12 bays of the ship with a total of 4000 containers have
to be handled. About half of them are import containers to be unloaded and the other
half are export containers to be loaded. The container transport orders are pre-defined
and contain details such as the origin and destination of the containers at the terminal and
the availability time for handling in the yard or quayside by gantry cranes. To reduce the
execution time of a simulation run, three variations for each parameter combination are
generated before all experiments. Depending on the experiment, at least 3 and at most
6 QCs are available for loading and unloading the ship. The ship is unloaded and loaded
bay by bay, whereby the QC always handles the entire bay that is assigned to it. Thus, the
QC moves after the unloading of a bay and before the loading of the next bay. These bay
changes are represented by a delay between the handling of two containers of the same
QC. When fewer QCs are used for one ship, more bays are served by each QC.

In the simulation model, an average quayside handling rate of 30 containers per hour
is assumed, which is represented by an expected handling frequency of 120 s by each
QC. To model stochastic influences, a triangular distribution of the QC handling times is
assumed with a minimum handling time of 80 s and a maximum value of 180 s. YTs carry
out horizontal transport between the quay and yard. Since YTs are unable to lift containers
themselves, the transfer between the QC and YT must be synchronized. The travel times of
the YTs are determined by the distances between QCs and YBs, as specified by the terminal
layout. For calculating the travel times, an average speed of 8.4 m/s is assumed for the YTs.
By inserting a triangular distribution, stochastic influences are taken into account when
calculating the travel times. The total number of YTs used per experiment is generated in
the yard at the beginning of the simulation.

The inbound and outbound yard operations are performed by RTGs. For the simula-
tion model, it is assumed that RTGs can handle an average of 15 containers per hour, which
corresponds to an expected value of 240 s per handling. Deviations and irregularities in
the process are modeled by a triangular distribution with a minimum handling time of
180 s and a maximum value of 420 s. For all experiments, at least two YBs are required for
each active QC. Thus, it can be ensured that sufficient stowage space is available for the
containers to be handled. Depending on the experiment, one of the two storage policies

52

Algorithms 2021, 14, 42

random YB assignment and close YB assignment is investigated with the simulation model.
For the storage policy random YB assignment, containers from all active YBs can be trans-
ported to and from each of the QCs. In addition, import containers are randomly assigned
to YBs, regardless of which QC is used for the unloading. All active YBs are ensured to be
equally burdened as much as possible. The second storage policy is close YB assignment,
which seeks to minimize the distance between QCs and YBs. YBs with the shortest possible
distance for horizontal transport are assigned to every QC. The handling of containers only
takes place between the defined QCs and YBs.

Furthermore, the two different dispatching policies fixed QC-YT assignment and free
QC-YT assignment are implemented in the simulation model. In the first policy, fixed QC-YT
assignment, a fixed number of YTs are assigned to each QC. This policy is typically used in
practical terminal operations, as it is the simplest to apply. Every YT receives an attribute
that assigns it to a specific QC. In the second dispatching policy, free QC-YT assignment,
each YT can approach every QC. This policy is a modified version of the hybrid method
from Schwientek et al. [11]. The next suitable job is chosen on the basis of the necessary
driving time at the terminal and the waiting time of orders. The driving time and waiting
time can be weighted differently for each experiment, controlled by the policy tuning
parameter Dispatching Weight. For the selection of the next suitable order, each free YT
inspects the next 20 orders. The order with the earliest availability time is determined. For
the other 19 orders, the difference between the order’s availability time and the earliest
availability time is determined. Additionally, the required travel time to the start position
of the respective order is calculated. Both values are multiplied by the intended weighting
factor Dispatching Weight of the experiment. Finally, the results are added, and the order
with the smallest sum is chosen by the YT. If no YT is available at the quay, the QCs have
to wait. Otherwise, the containers can be loaded directly onto the YTs. Loaded YTs drive
the containers to the defined YB. There, the YTs and containers are separated from each
other. The same process steps for handling export containers occur in the reverse sequence
of that described above.

2.2. Employed Meta-Heuristics

Meta-heuristics are used to approximate the best parameter configuration for the
given simulation model described in the previous subsection. The corresponding process
is depicted in Figure 3. First, the history H and the counter i are initialized as an empty
set and 0, respectively. Since no prior observations are recorded in H, the meta-heuristic
must select the experiment randomly. In the next step, the meta-heuristic suggests a
parameter configuration x(i). If this is a previously unseen parameter configuration, a
simulation experiment is executed and the fitness is calculated. Otherwise, from the
previous experiment runs stored in H, the fitness value corresponding to x(i) is retrieved.
In both cases, H is extended with the new value, and the meta-heuristic is set up with
this H. After 50 evaluations, the results are reported, and the optimization study is
completed. The history H is implemented with a global database that shares the history
over several optimization runs independently from the employed meta-heuristic during
the retrieval phase, which helps to reduce the wall time. The meta-heuristic is only set
up with experiments that are previously suggested within the same optimization run to
ensure the independence of each optimization run for the subsequent evaluation.

Without having executed any simulation experiments, the simulation model must
be considered a black-box. It is, therefore, impossible to know which of a set of given
meta-heuristics would lead to the best approximation. Since many meta-heuristics them-
selves have a stochastic component, even two different optimization runs of the same
meta-heuristic can result in different approximations of the optimum. Hence, for a yet
unknown simulation model, it is unpredictable whether the optimum will be approximated
sufficiently well and, if so, which meta-heuristic will achieve this. Each meta-heuristic
needs to empirically prove its applicability to a problem [48]. In this study, TPE was

53

Algorithms 2021, 14, 42

applied to a discrete event simulation model and compared with SA, BO, and RS. These
meta-heuristics are introduced next.

Initialize variables
History ≔ ∅
Counter ≔ 0

Report results

Run simulation
experiment:() = ()

() ∈p h h ∈ H}?

Record experiment:≔ ∪ { , (), () }

Setup meta-
heuristic with , ≔ + 1 Meta-heuristic

suggests () ∈ Χ
Retrieve from history:() = p hh ∈ H ∧ p h = ()}

yes no

≤ 50
yes

no

Figure 3. The optimization process.

2.2.1. Tree-Structured Parzen Estimator

TPE was developed to automate the search for a sufficiently well-performing config-
uration of a Deep Belief Network [41]. For a Deep Belief Network, parameters are either
categorical variables (e.g., the decision whether to use pre-processed or raw data) or contin-
uous variables (e.g., the learning rate). Integer values can be modeled as either categorical
variables (the numbers are mere labels) or continuous variables that are rounded before
further use. In addition, dependencies between variables exist: One variable determines
the number of network layers and then each layer is configured on its own. Having the
configuration of the third layer as part of a parameter configuration is only reasonable if
the variable encoding the number of layers is set to at least three. Such a parameter is called
a conditional parameter. To reflect the dependencies, this type of parameter configuration
space is adequately represented as a tree. This requires specific meta-heuristics that support
such a tree structure. The TPE approach has produced good benchmark results [42,49], and
the initial paper is among the most cited publications on hyper-parameter optimization; at
the time of writing, Scopus indicates that there are 939 citations.

The TPE models p(y < y∗), p(x|y < y∗), and p(x|y ≥ y∗), where p denotes a
probability density function (short: density), y is a point evaluation of the model, and x is a
parameter configuration. The first density p(y < y∗) = γ is a fixed value (e.g., 0.15 was
used in the first publication) set by the experimenter, and y∗ is altered to fit the set value of
γ for each iteration. The other two densities can be summarized as p(x|y): The probability
that a certain parameter configuration has been used, given a desired point evaluation value.
Typically, TPE is formulated to find a minimum and, therefore, p(x|y < y∗) describes the
density of parameters that have shown better results, whereas p(x|y ≥ y∗) describes the
density of the parameters that have led to poorer performance. As the true densities are
unknown, they need to be estimated based on the obtained evaluations in each iteration.
For each categorical parameter, two probability vectors are maintained and updated: Given
the prior vector of probabilities p = (p1, ..., pN), with each probability pi for i ∈ 1, ..., N
representing one category, the posterior vector elements are proportional to N · pi + Ci,
where Ci counts the occurrences of choice i in the recorded evaluations so far. An example
is depicted in Figure 4a. The estimator for the better-performing parameters (the top 15%)
and that for the worse-performing parameters (the bottom 85%) are calculated based on
the observations already recorded. For each continuous parameter, two adaptive Parzen
estimators are used. Given a prior probability density distribution determined by the
experimenter, with each point evaluation of the parameter configuration space with the help
of the simulation model and the objective function, the densities are further approximated.
An example is depicted in Figure 4b. The parameter choices of the better- and worse-

54

Algorithms 2021, 14, 42

performing models are used to create the respective densities. In each iteration, the
model consisting of the two densities is used to select the next parameter configuration x to
evaluate. To achieve this, several parameters x are sampled from the promising distribution
p(x|y < y∗). The parameter configuration x with the greatest expected improvement is
chosen. This criterion is positively correlated with the ratio p(x|y < y∗)/p(x|y ≥ y∗) [41].
In Figure 4, this is referred to as ratio. The criterion favors the parameter configuration
that has a high probability of leading to small evaluation values and a low probability
of obtaining large evaluation values for the minimization problem at hand. After the
parameter configuration has been evaluated by running the experiment and calculating
the objective function value, the probability estimators are updated. For this publication,
the reference implementation [49] in version 0.2.5 (the newest at the time of conducting the
study), provided by the original authors, was chosen. As the prior distribution, a uniform
distribution was chosen.

�D �E �F

������

������

������

������

����	

������

�3
�U�R
�E
�D
�E
���
�W�

�7�R�S����������

�%�R�W�W�R�P��	������

�5�D�W��R����V�F�D��H�G�

(a) Categorical variable.

������ ������ ������ ����� �������� �������� �������� ������� ��������

������

������

������

������

������

������

�'
�H
�Q
�V
�W
�

�7�R�S����������

�%�R�W�W�R�P���������

�3�D�U��H�Q���(�V�W�P�D�W�R�U����7�R�S�����������

�3�D�U��H�Q���(�V�W�P�D�W�R�U����%�R�W�W�R�P����������

�5�D�W�R����V�F�D!�H�G�

(b) Continuous variable.

Figure 4. The Tree-structured Parzen Estimation (TPE) uses the ratio of better- and worse-performing
parameters to guide the search. In the example on the left, the categorical variable takes one of the
three values “a”, “b”, and “c”. For the continuous variable, in the example on the right the values
range from 0 to 20.

2.2.2. Simulated Annealing

SA is a meta-heuristic that is applicable to both combinatorial and multivariate prob-
lems [50], the latter of which is relevant for this optimization study. For this publication,
the implementation of [49] in version 0.2.5 (the newest at the time of conducting the study)
was used. This version of SA works on the tree structure presented in Figure 5. The tree
structure requires some specific adjustments of the algorithm documented in [51]. The
default initialization values of the implementation were used.

root

QC-YT Assignment YB Assignment

fixed free close random

#YTs #YBs #YBs#YTs Dispatching
Weight

[3,7] [#QCs ∙ 2, 20] [#QCs ∙ 3,
#QCs ∙ 7] [#QCs ∙ 2, 20] {0, 0.1, ..., 1}

Policy

Equipment

Value

Figure 5. The parameter configuration space in tree form.

55

Algorithms 2021, 14, 42

2.2.3. Bayesian Optimization

BO, also referred to as Gaussian process optimization, aims to minimize the expected
deviation [52]. The response surface (i.e., the objective function values for given parameter
configurations), including the uncertainty about the result, is estimated. For this publica-
tion, the implementation from [53] in version 1.2.6 (the newest at the time of conducting
the study) was used. Since this procedure does not support tree-structured parameter
configuration spaces, two simplifications are made. First, the numbers of YTs for the QC-YT
Assignment fixed and free are grouped together. The parameter value ranges as in the right
branch. If the fixed assignment is chosen, the number of YTs is divided by the number of
QCs, and the result is rounded to the closest integer. Second, the dispatching weight is
always set, even if it is not interpreted by the simulation model. During the initialization
of an optimization run, five random experiments are conducted before BO takes over and
guides the search.

2.2.4. Random Search

RS serves as a baseline. According to the NFLT, for some optimization problems, meta-
heuristics perform worse than RS. It is crucial to identify meta-heuristics that misguide the
search (e.g., by becoming stuck in local optima). For this publication, the implementation
of [49] in version 0.2.5 (the newest at the time of conducting the study) was used, which is
capable of sampling from a tree-structured parameter configuration space.

2.3. Optimization Procedure

The optimization procedure is written as an external program that encapsulates the
simulation. First, the simulation model is initialized with the parameter configuration
to examine. After the simulation runs for one experiment are finished, the output of the
simulation model is read. The communication between the two programs is realized
through the COM-Interface. The output values of the simulation model are inserted into
the objective function, which determines the fitness of a given solution. This optimization
procedure is described in more detail in the following.

2.3.1. Parameter Configuration Space

During initialization, each parameter of the parameter configuration is set as a global
variable in the simulation model. The interpretation of one global variable in the simu-
lation model can depend on another global variable. For example, the parameter #YTs
is interpreted as the number of YTs for each QC for a fixed QC-YT assignment, but it
is interpreted as the number of YTs for all QCs for a free QC-YT assignment. The pa-
rameter Dispatching Weight is the weight for the travel time and ranges from 0 to 1 in
steps of 0.1. The weight for the availability time for handling is deduced by calculating
1−dispatching weight for travel time. This parameter is only used for a free QC-YT assign-
ment. Although setting this uninterpreted parameter does not harm the simulation ex-
periment, the recorded observations for the meta-heuristic are flawed. This is because
the meta-heuristic might use a record that includes the uninterpreted parameter to guide
further search, despite the lack of any effect, which might guide the search process in the
wrong direction.

In Figure 5, the parameter configuration space is depicted in its tree form. It is
dependent on the number of QCs, which can be either 3, 4, 5, or 6. Each case is considered
to be independent and requires optimization.

The presented tree is used for TPE, SA, and RS. For BO, a vector representation is
derived whereby each of the parameters QC-YT Assignment, YB Assignment, #YTs, #YBs,
and Dispatching Weight are represented by one dimension of this vector. The different
interpretation of #YTs is alleviated by varying the value over the range from #QCs · 3 to
#QCs · 7 and, in the case of a fixed assignment, dividing by #QCs and then rounding that
value to the closest integer value before using it to parameterize the simulation model. The

56

Algorithms 2021, 14, 42

parameter Dispatching Weight can theoretically take any value between 0 and 1. To make
use of the caching mechanism, only steps of 0.1 were permitted in this study.

2.3.2. Objective Function

After a simulation run is executed, the objective function is invoked to calculate
the fitness for the given parameter configuration. The objective function needs to reflect
the fact that the unloading and loading process needs to be fast, while at the same time,
resources are only added if they are needed. Therefore, the following objective function
was developed (based on [37]):

f itness =
t̃ship

tship
· 50 · #QCs · utilQCs + 5 · #RTGs · utilRTGs + #YTs · utilYTs

50 · #QCs + 5 · #RTGs + #YTs
(1)

The left factor of the multiplication reflects the inverted relative makespan of the ship.
tship is the time used to unload and load the ship. As an approximation of t̃ship, prior to the
optimization runs, 100 random samples are drawn from the parameter configuration space,
and the makespan for the ship is measured. This normalization process centers the left
factor to around 1 and ensures that it remains in proportion to the right factor. The shorter
the makespan, the larger the left factor becomes.

The right factor of the multiplication is the weighted utilization. #QCs refers to the
number of QCs, #RTGs is the number of RTGs and, therefore, also the number of YBs,
and #YTs is the number of trucks. util<equipment> refers to the ratio of the time for which
the equipment has been working to the overall makespan. When summarizing these
utilization values to one factor, weights are assigned according to the investment costs. It
is assumed that a QC is 50 times more expensive than a truck, and the cost of an RTG is
10% of a QC [37]. The higher the equipment utilization (with a special focus on expensive
equipment), the larger the right factor becomes.

2.3.3. Structure of Optimization Study

For each scenario (3, 4, 5, and 6 QCs) and meta-heuristic (TPE, BO, SA, and RS),
50 optimization runs are executed. This allows for gaining insights on the reproducibil-
ity of the optimization results using meta-heuristics. Each optimization run consists of
50 experiments. For each experiment, 30 simulation runs are executed. The results of each
simulation run vary slightly due to stochastic factors. These are implemented by drawing
handling times from random distributions, as described in Section 2.1.

3. Results and Discussion

In the following, the experimental results of the optimization study are analyzed.
Then, the solutions found for the different meta-heuristics are compared and discussed.

3.1. Preparatory Study

The objective function (see Equation (1)) requires t̃ship, the median of tship. The popu-
lation parameter is only known after exhaustive coverage of the parameter configuration
space, which must be avoided for an optimization study. As a replacement, a sample
estimate must suffice. For this purpose, for each scenario, 100 parameter configurations
were sampled randomly, and the corresponding simulation experiments were run. For
each of these simulation experiments, the makespan of the ship was recorded. The median,
minimum, and maximum of the makespan are noted in Table 1. The values in the median
column are used as t̃ship for the respective scenario.

57

Algorithms 2021, 14, 42

Table 1. Makespan of the ship for 100 randomly drawn experiments.

Number of QCs Makespan (in Hours, Rounded)

Median Minimum Maximum

3 61 51 158
4 49 39 161
5 47 38 160
6 35 29 161

Table 1 shows that the median and minimum both decrease as the number of QCs
increases. The median shows that using 4 QCs instead of 3 results in a reduction of ca. 20%
in the makespan. By doubling the number of QCs from 3 to 6, the performance can be
increased by ca. 57%. This is not true for the maximum, which remains nearly constant at
around 160 h. Furthermore, the difference between 4 and 5 QCs is rather small. This can be
explained by the fact that in the simulation model, 12 bays of the ship are handled. With
4 QCs, each QC handles exactly 3 bays. With 5 QCs, 3 QCs are responsible for 2 bays each,
and 2 QCs are responsible for 3 bays each. Thus, 3 QCs complete the container handling
task earlier, but the makespan is based on the QC that finishes last.

3.2. Observations from All Experiments

In the scope of the optimization study, 40,000 experiments in total were evaluated.
For each scenario (3, 4, 5, and 6 QCs) and each meta-heuristic (TPE, BO, SA, and RS), 50
optimization runs were executed, each consisting of 50 experiments. This set of experiments
covers many randomly chosen experiments (e.g., RS or initialization phase of any of the
meta-heuristics) in addition to experiments that are biased by the manner in which each
meta-heuristic works during its search process. This overview, which omits the search
process, provides some insights into the characteristics of the simulation model.

For each experiment, among others, the makespan, as well as the utilization of the
equipment, is measured. The utilization is the arithmetic mean of the working time of
all equipment of its respective type. In Figure 6, the utilization of YTs, YBs, and QCs is
shown. Due to the larger investment costs, the weighted utilization is closest to the QCs.
The median of the utilization of the YTs is the lowest. Since a YT cannot lift a container
itself, it must wait for a gantry crane (either QC or RTG) to load or unload the YT. High
utilization of QCs and YBs is only possible if enough YTs are available, which inevitably
results in lower utilization on the YT side. As the utilization of YTs is assigned a rather
small weight in the fitness function, the lower utilization rate carries no relevant weight.

In Figure 7, the difference between the maximum and minimum working times of
the YTs for each experiment that used the global assignment policy is depicted. This is an
indicator of how effectively the work is shared among YTs. As a general tendency, it can be
seen that more QCs lead to less statistical scattering.

YTs YBs QCs Weighted
Utilization

0

20

40

60

80

100

P
e
rc
e
n
ta
g
e

Figure 6. The utilization of the equipment over all experiments.

58

Algorithms 2021, 14, 42

3 QCs 4 QCs 5 QCs 6 QCs

2

4

6

8

10

12

T
im

e
 D

if
fe

re
n
c
e
 (

in
 h

o
u
rs

)

Figure 7. Time difference between maximum and minimum working times of YTs.

3.3. Approximated Optima

Both the preparatory study and the first screening of all executed experiments created
first impressions of the underlying processes. Within the parameter configuration tree, there
are exceptionally low-performing solutions. This raises the following question: Which of
the meta-heuristics identified the best parameter configuration? To determine this, for each
optimization run, the experiment with the highest fitness is extracted. During optimization,
both TPE and BO select the next experiment with the greatest expected improvement.
Hence, in contrast to SA, after a phase of exploitation (i.e., minor adjustments), a phase
of exploration (i.e., larger changes) can follow. RS is the most extreme example since
exploitation is never sought. This, in turn, means that the best result of an optimization
run can appear at any position of the sequence of recorded experiments.

In Figure 8, the four meta-heuristics TPE, BO, SA, and RS are compared for each
scenario with 3, 4, 5, and 6 QCs. Consistent with the preparatory study, the results for
5 QCs are far worse than those of all other scenarios. Each of the meta-heuristics shows
outliers in at least three of the boxplots, which indicates the importance of stochastic
influences during the search process. There is no clear ranking among the meta-heuristics.
For 3 QCs, BO performs considerably worse than the other three meta-heuristics. These
results are similar for 4 and 5 QCs, although with less severity. This is especially interesting
since, for 6 QCs, BO produces the highest median. Over the first three scenarios, RS and
SA have very similar performances, and for 6 QCs, SA has the worst median, with outliers
in both directions. TPE performs very well in the first three scenarios, providing many of
the best solutions with few outliers that are substantially worse. For 6 QCs, the median of
TPE is much lower than that of BO. However, in two instances, BO arrived at substantially
lower-performing solutions.

The differences between meta-heuristics were examined statistically. A significance
level of α = 0.01 was chosen for the whole study and corrected for each test using Bonfer-
roni correction. To make general statements regarding the meta-heuristics, all scenarios
(different numbers of QCs) are agglomerated. The large number of outliers for some
of the meta-heuristics precludes the assumption of a normal distribution and requires a
nonparametric approach. Hence, a Kruskal–Wallis H test was employed. The test statistic
of H = 31.303 leads to p � 0.005. Hence, the null hypothesis that the four groups stem
from a single population is rejected. In a posthoc Nemenyi’s test for pairwise comparison,
only TPE was significantly different from the other meta-heuristics. In other words, BO
and SA are not significantly different from RS. The comparison of descriptive statistics (as
the reader can approximate from Figure 8) shows the superiority of TPE in this study.

The wide range of approximated optima and the large difference between meta-
heuristics are indicators of the complexity of the simulation model. The parameter con-
figurations of all optima are more closely examined in the following. The meta-heuristics
always determine that the fixed assignment of YTs to QCs leads to an inferior performance
compared with pooling. Furthermore, in all instances, the pairing of each QC with its clos-

59

Algorithms 2021, 14, 42

est YBs performs better than delivering each container to a randomly chosen YB. In contrast
to these parameters, the parameter Dispatching Weight shows no clear interpretable results.

TPE BO SA RS

0.70

0.75

0.80

0.85

0.90

F
it

n
e
s
s

Fitness after 50 iterations for 3 QCs

TPE BO SA RS

Fitness after 50 iterations for 4 QCs

TPE BO SA RS

0.70

0.75

0.80

0.85

0.90

F
it

n
e
s
s

Fitness after 50 iterations for 5 QCs

TPE BO SA RS

Fitness after 50 iterations for 6 QCs

Figure 8. The approximated optima for each scenario and each meta-heuristic.

In Figure 9, the frequencies of specific numbers of YBs for 3, 4, 5, and 6 QCs are
depicted. A small number of YBs creates a bottleneck in the yard, while having too many
YBs leads to a low utilization of each YB as well as longer travel paths of the YTs. The fewer
YBs are used, the shorter the traveled paths, the higher the probability that an unloading
job and a loading job can be combined. The number of used YBs is often a multiple of
the number of QCs. This can be explained by the rather conservative transportation job
assignment policy in place, which is designed to avoid traffic jams but rather postpones
a job.

In Figure 10, the number of YTs per QC for each scenario is presented. The large
number of outliers to the right can be explained by the rather small impact of the number
of trucks on the weighted utilization and, therefore, on the objective function.

60

Algorithms 2021, 14, 42

0

25

50

75

F
re

q
u
e
n
c
y

fo
r

3
 Q

C
s

0

50

100

F
re

q
u
e
n
c
y

fo
r

4
 Q

C
s

0

50

100

150

F
re

q
u
e
n
c
y

fo
r

5
 Q

C
s

6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Number YBs

0

50

100

F
re

q
u
e
n
c
y

fo
r

6
 Q

C
s

Figure 9. The number of YBs in the set of approximated optima. The parameter value that leads to
the best objective function value over all optimization runs is marked with an asterisk.

3.0 3.5 4.0 4.5 5.0 5.5 6.0 6.5 7.0

Number YTs for each QC

3 QCs

4 QCs

5 QCs

6 QCs

Figure 10. The number of YTs in the set of approximated optima. The parameter value that leads to
the best objective function value over all optimization runs is marked with an asterisk.

In this study, as in [24], TPE exhibits the most robust behavior. Of the 200 optimization
runs, TPE never returns the worst approximation of the optimum. For some scenarios,
other meta-heuristics provide better medians of approximations. At the same time, only
TPE is significantly different from RS when the data are agglomerated over all scenarios.

61

Algorithms 2021, 14, 42

These observations provide evidence that TPE is an appropriate approach. For an explicit
recommendation, meta-analyses of several publications using the same meta-heuristics are
required in future to accumulate such evidence.

In comparison with [37], this study shows an alternative approach to calibrating the
quantity of equipment used in different functional areas of a container terminal. In addition,
policies are selected and tuned (if the policy accepts a parameter). The approach of Kotachi
et al. [37] requires all parameters to be at least on an ordinal scale since the mutation
is defined as changing a parameter one level up or down. For categorical parameters
that can take more than two values, there is no order. For continuous parameters, this
mutation makes it necessary to define a step size. The approach presented in this study
also discretizes the parameter Dispatching Weight to the the set {0, 0.1, ..., 1}. However,
this is performed to enable caching to speed up the optimization study. All of the meta-
heuristics used support continuous parameters, which might be of interest for future
optimization studies.

4. Conclusions

This study provides an approach to solving integrated decision problems at container
terminals. Earlier studies have often approached such problems by using a mathematical
model that aims to optimize the schedule of jobs. Depending on the concept, sometimes the
schedule is determined hours before the actual execution of a job, which is an appropriate
approach in rather deterministic environments. Another common approach in the literature
is to define a policy that is evaluated using a simulation study. The design of experiments—
e.g., a full-factorial design with a coarse grid—leads to either very large simulation studies
or a selection of experiments biased by the researcher’s beliefs. These shortcomings of
optimization alone and manually designed large simulation studies are partly overcome
by the presented simulation-based optimization approach. This approach uses simulation
to evaluate the quality of a given solution, and only in this way can the dynamics of real
systems be properly represented. Simulation-based optimization allows for the possibility
of illustrating these dynamics, providing an approximated solution to the problem without
maintaining a separate mathematical model. Therefore, further decision problems can
be integrated into the simulation model and the parameter configuration space with
little effort.

The authors showed the transferability of meta-heuristics, which originate from the
domain of machine learning or have been successfully applied in that area. These methods
could be used to optimize discrete event simulation models. A special focus was placed
on discrete and continuous parameters that were potentially interdependent. Several
optimization runs guided by different meta-heuristics were executed and with a restricted
computational budget, promising parameter configuration ranges were identified. This
publication focused on examining the results of different optimization runs. For this
purpose, the numbers of QCs, YTs, and YBs were modified during different experiments.
At the same time, different dispatching policies, as well as QC-YB assignment policies,
were investigated. Furthermore, different allocation policies of YBs were applied. In this
study, the approximated optima suggest that the pooling of YTs was preferable to free
allocation. Furthermore, a YB assignment close to the QCs was considered better than a
random one. By choosing more QCs, the number of bays to be served per QC decreased.
Thus, a reduction of the makespan could be achieved. A doubling of the number of QCs
from 3 to 6 led to a reduction of the makespan by 57%.

Due to the NFLT, it is not clear whether these empirical results can be generalized to
future studies that use simulation-based optimization. The applicability of meta-heuristics
such as TPE or BO needs to be demonstrated by further optimization studies, poten-
tially with various simulation models, different objective functions, and additional meta-
heuristics or different fine-tuning of the same meta-heuristic for comparison.

Author Contributions: Conceptualization, M.K., A.S., C.J., and N.N.; methodology, M.K., A.S., and
N.N.; software, M.K., A.S., and N.N.; validation, M.K.; formal analysis, M.K.; investigation, N.N.,

62

Algorithms 2021, 14, 42

M.K.; resources, N.N.; data curation, M.K.; writing—original draft preparation, M.K., A.S., and
N.N.; writing—review and editing, A.S., C.J.; visualization, N.N., M.K.; supervision, C.J.; project
administration, M.K. All authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Data Availability Statement: The data presented in this study are openly available in zenodo at
10.5281/zenodo.4473251.

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations

The following abbreviations are used in this manuscript:

BO Bayesian Optimization
NFLT No Free Lunch Theorem
QC Quay Crane
RS Random Search
RTG Rubber-tired Gantry Crane
SA Simulated Annealing
TPE Tree-structured Parzen Estimator
TEU Twenty-foot Equivalent Unit
YB Yard Block
YT Yard Truck

References

1. UNCTAD. Review of Maritime Transport; United Nations: New York, NY, USA, 2020.
2. Karam, A.; Eltawil, A.; Harraz, N. Simultaneous assignment of quay cranes and internal trucks in container terminals. Int. J. Ind.

Syst. Eng. 2016, 24, 107–125. [CrossRef]
3. Gharehgozli, A.; Zaerpour, N.; de Koster, R. Container terminal layout design: transition and future. Marit. Econ. Logist. 2020,

22, 610–639. [CrossRef]
4. Bierwirth, C.; Meisel, F. A follow-up survey of berth allocation and quay crane scheduling problems in container terminals. Eur.

J. Oper. Res. 2015, 244, 675–689. [CrossRef]
5. Kizilay, D.; Eliiyi, D.T. A comprehensive review of quay crane scheduling, yard operations and integrations thereof in container

terminals. Flex. Serv. Manuf. J. 2020, 1, 1–42. [CrossRef]
6. Chen, L.; Langevin, A.; Lu, Z. Integrated scheduling of crane handling and truck transportation in a maritime container terminal.

Eur. J. Oper. Res. 2013, 225, 142–152. [CrossRef]
7. Lange, A.K.; Schwientek, A.K.; Jahn, C. Reducing truck congestion at ports—Classification and trends. Digitalization in

Maritime and Sustainable Logistics. In Proceedings of the Hamburg International Conference of Logistics (HICL); Jahn, C., Kersten, W.,
Ringle, C.M., Eds.; Epubli: Berlin, Germany, 2017; pp. 37–58.

8. Cordeau, J.F.; Legato, P.; Mazza, R.M.; Trunfio, R. Simulation-based optimization for housekeeping in a container transshipment
terminal. Comput. Oper. Res. 2015, 53, 81–95. [CrossRef]

9. Dragovic, B.; Tzannatos, E.; Park, N.K. Simulation modelling in ports and container terminals: Literature overview and analysis
by research field, application area and tool. Flex. Serv. Manuf. J. 2017, 29, 4–34. [CrossRef]

10. Angeloudis, P.; Bell, M.G. A review of container terminal simulation models. Marit. Policy Manag. 2011, 38, 523–540. [CrossRef]
11. Schwientek, A.K.; Lange, A.K.; Jahn, C. Effects of terminal size, yard block assignment, and dispatching methods on container

terminal performance. In Winter Simulation Conference 2020; Bae, K.H., Feng, B., Kim, S., Zheng, Z., Roeder, T., Thiesing, R., Eds.;
IEEE Press: New York, NY, USA, 2020.

12. Zhen, L.; Yu, S.; Wang, S.; Sun, Z. Scheduling quay cranes and yard trucks for unloading operations in container ports. Ann. Oper.
Res. 2016, 122, 21. [CrossRef]

13. He, J.; Huang, Y.; Yan, W.; Wang, S. Integrated internal truck, yard crane and quay crane scheduling in a container terminal
considering energy consumption. Expert Syst. Appl. 2015, 42, 2464–2487. [CrossRef]

14. Cao, P.; Jiang, G.; Huang, S.; Ma, L. Integrated simulation and optimisation of scheduling yard crane and yard truck in loading
operation. Int. J. Shipp. Transp. Logist. 2020, 12, 230–250. [CrossRef]

15. Castilla-Rodríguez, I.; Expósito-Izquierdo, C.; Melián-Batista, B.; Aguilar, R.M.; Moreno-Vega, J.M. Simulation-optimization for
the management of the transshipment operations at maritime container terminals. Expert Syst. Appl. 2020, 139, 112852. [CrossRef]

16. Kizilay, D.; Eliiyi, D.T.; van Hentenryck, P. Constraint and mathematical programming models for integrated port container
terminal operations. Integration of Constraint Programming, Artificial Intelligence, and Operations Research. Lect. Notes Comput.
Sci. 2018, 10848, 344–360. [CrossRef]

63

Algorithms 2021, 14, 42

17. Karam, A.; Eltawil, A.; Hegner Reinau, K. Energy-Efficient and Integrated Allocation of Berths, Quay Cranes, and Internal Trucks
in Container Terminals. Sustainability 2020, 12, 3202. [CrossRef]

18. Karam, A.; Eltawil, A. Functional integration approach for the berth allocation, quay crane assignment and specific quay crane
assignment problems. Comput. Ind. Eng. 2016, 102, 458–466. [CrossRef]

19. Sislioglu, M.; Celik, M.; Ozkaynak, S. A simulation model proposal to improve the productivity of container terminal operations
through investment alternatives. Marit. Policy Manag. 2019, 46, 156–177. [CrossRef]

20. Muravev, D.; Rakhmangulov, A.; Hu, H.; Zhou, H. The introduction to system dynamics approach to operational efficiency and
sustainability of dry port’s main parameters. Sustainability 2019, 11, 2413. [CrossRef]

21. Muravev, D.; Hu, H.; Rakhmangulov, A.; Mishkurov, P. Multi-agent optimization of the intermodal terminal main parameters by
using AnyLogic simulation platform: Case study on the Ningbo-Zhoushan Port. Int. J. Inf. Manag. 2020, 1, 102133. [CrossRef]

22. Kastner, M.; Pache, H.; Jahn, C. Simulation-based optimization at container terminals: A literature review. In Digital Transformation
in Maritime and City Logistics, Proceedings of the Hamburg International Conference of Logistics (HICL); Jahn, C., Kersten, W., Ringle,
C.M., Eds.; Epubli GmbH: Berlin, Germany, 2019; pp. 111–135. [CrossRef]

23. Zhou, C.; Li, H.; Liu, W.; Stephen, A.; Lee, L.H.; Peng Chew, E. Challenges and opportunities in integration of simulation
and optimization in maritime logistics. In Proceedings of the 2018 Winter Simulation Conference, Gothenburg, Sweden, 9–12
December 2018, pp. 2897–2908. [CrossRef]

24. Kastner, M.; Nellen, N.; Jahn, C. Model-based optimisation with tree-structured parzen estimation for container terminals.
In ASIM 2019 Simulation in Produktion und Logistik 2019; Putz, M., Schlegel, A., Eds.; Wissenschaftliche Scripten: Auerbach,
Germany, 2019; pp. 489–498.

25. Singgih, I.K.; Jin, X.; Hong, S.; Kim, K.H. Architectural design of terminal operating system for a container terminal based on a
new concept. Ind. Eng. Manag. Syst. 2016, 15, 278–288. [CrossRef]

26. Schwientek, A. Abilities of the Used Terminal Operating Systems: Personal Conversation, 2012–2013.
27. Barton, R.R. Simulation experiment design. iN Proceedings of the 2010 Winter Simulation Conference, Piscataway, NJ, USA, 5–8

December 2010; pp. 75–86. [CrossRef]
28. Li, H.; Zhou, C.; Lee, B.K.; Lee, L.H.; Chew, E.P.; Goh, R.S.M. Capacity planning for mega container terminals with multi-objective

and multi-fidelity simulation optimization. IISE Trans. 2017, 49, 849–862. [CrossRef]
29. Al-Salem, M.; Almomani, M.; Alrefaei, M.; Diabat, A. On the optimal computing budget allocation problem for large scale

simulation optimization. Simul. Model. Pract. Theory 2017, 71, 149–159. [CrossRef]
30. Ho, Y.C.; Zhao, Q.C.; Jia, Q.S., Eds. Ordinal Optimization: Soft Optimization for hard Problems; Springer: New York, NY, USA, 2007.
31. Xu, J.; Huang, E.; Chen, C.H.; Lee, L.H. Simulation optimization: A review and exploration in the new era of cloud computing

and big data. Asia-Pac. J. Oper. Res. 2015, 32, 1–34. [CrossRef]
32. Fu, M.C.; Glover, F.W.; April, J. Simulation optimization: A review, new developments, and applications. In Proceedings of the

2005 Winter Simulation Conference, Orlando, FL, USA, 4–7 December 2005; pp. 351–380.
33. Figueira, G.; Almada-Lobo, B. Hybrid simulation–optimization methods: A taxonomy and discussion. Simul. Model. Pract.

Theory 2014, 46, 118–134. [CrossRef]
34. Hanschke, T.; Krug, W.; Nickel, S.; Zisgen, H. VDI 3633 Blatt 12 - Simulation und Optimierung. In VDI-Handbuch Fabrikplanung

und -Betrieb-Band 2: Modellierung und SIMULATION; Beuth: Berlin, Germany, 2016.
35. Juan, A.A.; Faulin, J.; Grasman, S.E.; Rabe, M.; Figueira, G. A review of simheuristics: Extending metaheuristics to deal with

stochastic combinatorial optimization problems. Oper. Res. Perspect. 2015, 2, 62–72. [CrossRef]
36. Chopard, B.; Tomassini, M. An Introduction to Metaheuristics for Optimization, 1st ed.; Natural Computing Series; Springer

International Publishing: Cham, Switzerland, 2018.
37. Kotachi, M.; Rabadi, G.; Seck, M.; Msakni, M.K.; Al-Salem, M.; Diabat, A. Sequence-based simulation optimization: An application

to container terminals. In Proceedings of the 2018 IEEE Technology & Engineering Management Conference, Piscataway, NJ,
USA, 27 June–1 July 2018; pp. 1–7. [CrossRef]

38. Géron, A. Hands-on Machine Learning with Scikit-Learn, Keras, and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent
Systems, 2nd ed.; O’Reilly UK Ltd.: Newton, MA, USA, 2019.

39. Bergstra, J.; Bengio, Y. Random search for hyper-parameter optimization. J. Mach. Learn. Res. 2012, 13, 281–305.
40. Hutter, F.; Hoos, H.H.; Leyton-Brown, K. Sequential model-based optimization for general algorithm configuration. In Learning

and Intelligent Optimization; Coello, C.A.C., Ed.; Springer: Berlin/Heidelberg, Germany, 2011; pp. 507–523.
41. Bergstra, J.; Bardenet, R.; Bengio, Y.; Kégl, B. Algorithms for hyper-parameter optimization. In Proceedings of the 25th Annual

Conference on Neural Information Processing Systems, Granada, Spain, 12–14 December 2011; Volume 24, pp. 2546–2554.
42. Eggensperger, K.; Feurer, M.; Hutter, F.; Bergstra, J.; Snoek, J.; Hoos, H.; Leyton-Brown, K. Towards an empirical foundation for

assessing Bayesian optimization of hyperparameters. In Proceedings of the NIPS Workshop on Bayesian Optimization in Theory
and Practice, Lake Tahoe, NV, USA, 10 December 2013; pp. 1–5.

43. Madrigal, F.; Maurice, C.; Lerasle, F. Hyper-parameter optimization tools comparison for multiple object tracking applications.
Mach. Vis. Appl. 2019, 30, 269–289. [CrossRef]

44. Yang, L.; Shami, A. On hyperparameter optimization of machine learning algorithms: Theory and practice. Neurocomputing 2020,
415, 295–316. [CrossRef]

64

Algorithms 2021, 14, 42

45. Gijsbers, P.; LeDell, E.; Poirier, S.; Thomas, J.; Bischl, B.; Vanschoren, J. An open source AutoML benchmark. In Proceedings of
the 6th ICML Workshop on Automated Machine Learning, Long Beach, CA, USA, 14–15 June 2019.

46. Akiba, T.; Sano, S.; Yanase, T.; Ohta, T.; Koyama, M. Optuna: A next-generation hyperparameter optimization framework.
In Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, Anchorage, AK,
USA, 4–8 August 2019; pp. 2623–2631. [CrossRef]

47. Wolpert, D.H.; Macready, W.G. No free lunch theorems for optimization. IEEE Trans. Evol. Comput. 1997, 1, 67–82. [CrossRef]
48. McDermott, J. When and why metaheuristics researchers can ignore “No Free Lunch” theorems. Metaheuristics 2019, 1, 67.

[CrossRef]
49. Bergstra, J.; Yamins, D.; Cox, D.D. Making a science of model search: hyperparameter optimization in hundreds of dimensions

for vision architectures. In Proceedings of the 30th International Conference on Machine Learning, Atlanta, GA, USA, 16–21 June
2013; pp. 115–123.

50. Kirkpatrick, S.; Gelatt, C.D.; Vecchi, M.P. Optimization by simulated annealing. Science 1983, 220, 671–680. [CrossRef]
51. Bergstra, J. Simulated Annealing. Available online: https://github.com/hyperopt/hyperopt/blob/master/hyperopt/anneal.py

(accessed on 29 December 2020).
52. Močkus, J. On Bayesian methods for seeking the extremum. In Optimization Techniques IFIP Technical Conference; Spring:

Berlin/Heidelberg, Germany, 1975; pp. 400–404.
53. The GPyOpt authors. GPyOpt: A Bayesian Optimization Framework in Python. Available online: http://github.com/

SheffieldML/GPyOpt (accessed on 29 December 2020).

65

algorithms

Article

Simulation-Optimization Approach for Multi-Period Facility
Location Problems with Forecasted and Random Demands in a
Last-Mile Logistics Application

Markus Rabe 1, Jesus Gonzalez-Feliu 2, Jorge Chicaiza-Vaca 1,* and Rafael D. Tordecilla 3,4

��������	
�������

Citation: Rabe, M.; Gonzalez-Feliu, J.;

Chicaiza-Vaca, J.; Tordecilla, R.D.

Simulation-Optimization Approach

for Multi-Period Facility Location

Problems with Forecasted and

Random Demands in a Last-Mile

Logistics Application. Algorithms

2021, 14, 41. https://doi.org/

10.3390/a14020041

Academic Editor: Alberto Policriti

Received: 14 December 2020

Accepted: 24 January 2021

Published: 28 January 2021

Publisher’s Note: MDPI stays neu-

tral with regard to jurisdictional clai-

ms in published maps and institutio-

nal affiliations.

Copyright: © 2021 by the authors. Li-

censee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and con-

ditions of the Creative Commons At-

tribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 IT in Production and Logistics, Faculty of Mechanical Engineering, TU Dortmund, 44227 Dortmund,
Germany; markus.rabe@tu-dortmund.de

2 Centre de Recherche en Intelligence et Innovation Managériales, Excelia Business School, 17000 La Rochelle,
France; gonzalezfeliuj@excelia-group.com

3 IN3—Computer Science Department, Universitat Oberta de Catalunya, 08018 Barcelona, Spain;
rtordecilla@uoc.edu

4 School of Engineering, Universidad de La Sabana, 53753 Chia, Colombia; rafael.tordecilla@unisabana.edu.co
* Correspondence: jorge.chicaiza@tu-dortmund.de

Abstract: The introduction of automated parcel locker (APL) systems is one possible approach to
improve urban logistics (UL) activities. Based on the city of Dortmund as case study, we propose a
simulation-optimization approach integrating a system dynamics simulation model (SDSM) with
a multi-period capacitated facility location problem (CFLP). We propose this integrated model as
a decision support tool for future APL implementations as a last-mile distribution scheme. First,
we built a causal-loop and stock-flow diagram to show main components and interdependencies
of the APL systems. Then, we formulated a multi-period CFLP model to determine the optimal
number of APLs for each period. Finally, we used a Monte Carlo simulation to estimate the costs
and reliability level with random demands. We evaluate three e-shopper rate scenarios with the
SDSM, and then analyze ten detailed demand configurations based on the results for the middle-size
scenario with our CFLP model. After 36 months, the number of APLs increases from 99 to 165
with the growing demand, and stabilizes in all configurations from month 24. A middle-demand
configuration, which has total costs of about 750, 000e, already locates a suitable number of APLs.
If the budget is lower, our approach offers alternatives for decision-makers.

Keywords: hybrid modeling; system dynamics; facility location problems; Monte Carlo simulation;
automated parcel lockers; last-mile delivery

1. Introduction

Last-mile logistics (LML) is known as the least efficient and most complex part of the
supply chain. LML activities have negative impacts on pollution and traffic congestion
in urban areas [1]. The growth of e-commerce activities has increased the number of
individual home deliveries, thus driving up LML flows. Improving the efficiency of LML
in urban areas through research is an important driver for the success of e-commerce and
helps to reduce the negative externalities associated with urban logistics (UL).

An automated parcel locker (APL) is a potential solution to LML challenges. In our
current work, we analyze the use of APLs such as packstations or locker boxes as a promising
alternative to improve UL activities [2]. An APL is a group of electronic lockers with variable
opening codes. APLs can be used by different consumers whenever it is convenient for
them. APLs are located near consumers’ homes, workplaces, and train stations, where online
shoppers deliver or ship packages. The costs of home delivery and the related risk of missed
delivery are likely to be higher compared APL systems. Online shoppers are likely to use
APLs more often in the future [3]. Third-party logistics providers such as DHL, InPost, Nor-
way Post, UPS, or Amazon continue to invest in APLs to gain a competitive advantage [3].

Algorithms 2021, 14, 41. https://doi.org/10.3390/a14020041 https://www.mdpi.com/journal/algorithms67

Algorithms 2021, 14, 41

The general overview of experiences with APLs is presented in [1,4]. APLs have several
advantages, such as less traffic in city centers, out-of-hours deliveries, fewer kilometers and
stops, and cost reductions for e-retailers and delivery companies [5]. Unattended delivery
could reduce the number of failed deliveries [4,6,7]. In addition, the use of APLs also offers
environmental benefits, such less pollutant emissions [8]. Furthermore, online shoppers are
free to choose any pickup time for their parcels, and they can use it as both a delivery and a
collection point to return unsatisfactory items. However, APLs have some disadvantages,
such as limited payment flexibility in situ, limited storage space, and susceptibility to crime
or vandalism [6].

Despite the advantages of the APL concept, from a scientific point of view this strategy
has not been discussed sufficiently in the field of LML [9]. Urban parcel deliveries need to be
studied in more detail. Most current research shows that the simulation of system dynamics
(SD) applied in the LML field [10] is almost completely missing. In the available publications,
local visions are adopted without a systemic or holistic perspective. Most of these did
not take into account the different viewpoints of stakeholders, processes, interactions, and
others [7,11]. Furthermore, for online buyers, the location of APLs is important to decide
on their use [6,7]. Many studies have focused on analyzing the savings potential of using
APLs, but have not addressed network design issues such as their number and review
the associated installation costs. In this paper, we focus on a challenging and appropriate
approach to analyze a number of APL configurations in an uncertain demand environment.

Different methods can be used for decision support in UL [1,12], such as empirical ap-
proaches, statistical analyses, or integrated computer science models and algorithms, to name
a few. As for the last category of methods, researchers use simulation and optimization (SO)
techniques as separate approaches in the field of operational research to solve complex prob-
lems [13]. On the one hand, exploring the behavior of systems and estimating their response
to various environmental changes is a main purpose of using simulation [14]. On the other
hand, optimization seeks to solve logistic problems, minimize total costs of ownership, or
maximize profit. However, in real complex systems there are very specific properties that
make it almost impossible to address the complexity of the problem with only one specific
approach. Therefore, it is better to develop models that reflect the complexity of real systems
and combine different modeling approaches. This type of combination is called a hybrid
modeling approach [15]. By combining different modeling approaches, a hybrid model
could provide a more comprehensive and holistic view of the system and a useful approach
to understanding complexity. Moreover, according to the authors of [16] a good model
is the one that is not only solved with a relevant method (and has an internal coherence
and robustness proven), but also the one that represents the reality it aims to relate to in
a satisfactory way with respect to the stakeholders that will use it and the decisions it
involves. Given that, hybrid methods allow firstly for involving different capabilities, as
they result of mixing different methods (so taking the advantages of each involved method).
Second, hybrid methods can highlight synergies between the involved methods, as well as
complements, aiming at a better representation of a reality [17].

This paper deals with the case of the city of Dortmund, which is located in the federal
state North Rhine-Westphalia, Germany. With a population of about 600, 000 people, it
is the seventh largest city in Germany and the 34th largest city in the European Union.
Based on the case study, we propose an SO approach as a hybrid model that integrates
a system dynamics simulation model (SDSM) with a multi-period capacitated facility
location problem (CFLP). We propose this integrated model as a decision support tool for
future APL implementations as a last-mile distribution scheme. The paper is structured
as follows. First, we use an SDSM to understand the behavior of the components of APL
systems with respect to the specific customers and characteristics of the city of Dortmund.
A planning horizon of three years (divided into months) is considered. Second, the problem
is modeled as a multi-period CFLP. Taking into account the needs to be satisfied by the
users, the goal is to find the minimum number of APLs to be installed per month within
the time horizon. Several scenarios from the SDSM are considered and solved, taking into

68

Algorithms 2021, 14, 41

account different estimates for the requirements. Third, the performance of the associated
solutions in a stochastic environment is evaluated using a Monte Carlo simulation. Finally,
the conclusions present possible future work and applications.

2. Related Work

2.1. System Dynamics Modeling

The System Dynamics (SD) methodology was developed by Jay W. Forrester [18].
SD was originally introduced to facilitate the understanding of industrial processes. SD is
used as a methodological approach to explain the effects of decisions in complex dynamic
systems. The SD approach emphasizes time functions [19,20]. SD Models undergo con-
stant interaction, continuous questioning, testing, and refinement. Based on the feedback
concepts of control theory, the SD methodology generates the dynamic behavior of the
associated model. The feedback loop structure of systems is represented by causal loop
diagrams (CLD) [19,21]. A feedback loop contains two or more causality-related variables
that are self-contained. The variable relationships in the loop can be either positive or
negative. A positive relationship means that when one variable increases, the other one
increases, too. In a balanced relationship, the change in the variables is inverse. The
stock and flow diagram (SFD) is the underlying physical structure of the system. The
SFD is normally structured according to the CLD. The stock (level) represents the state of
the system and the flow (rate) is changed by decisions based on the state of the system.
The stock and flow structure (including feedback) of a system determines the quantitative
modes of behavior that the system can adopt. For the development of an SD model, the
work in [19] presents a modeling process with the following steps: (i) problem analysis, (ii)
system conceptualization, (iii) model formulation, (iv) simulation and verification, and (v)
policy analysis and improvement. Figure 1 illustrates the SDSM process.

Figure 1. Steps to build an system dynamics simulation model (SDSM) based on the work in [19].

In the context of logistics, some studies show the application of SD to LML activities.
In [22], the authors analyzed the decisions and interdependencies between customers,
retailers, and suppliers using an SD model from an economic perspective. In [23], the authors
applied an SD approach to model interdependencies of decisions by various stakeholders
and their impact on city logistics. In [24], the authors presented a specific SD application in
UL operations. They also used an SD model in [25] to understand customer behavior from
an LML perspective. Although modeling efforts are important in urban logistics [12,26], the
simulation seems to be still in the development phase [10] . The most popular simulation
approaches remain multi-agent approaches [10,27] . While SD is still preliminary in its
applications for urban freight distribution, it has great potential because it can take into
account the complexity of the dynamics and heterogeneity of the systems [23].

69

Algorithms 2021, 14, 41

2.2. Facility Location Problems

Facility location determination is a critical strategic business decision. There are
several factors that determine facility location, including competition, costs, and associated
impacts. The facility location decision has a profound impact on tactical and operational
operations. For dealing with this strategic decision, the Facility Location Problem (FLP)
was introduced to the field of operations research in the 1960s [28] and was initially called
the Plant Location Problem.

FLPs consist of determining the optimal location for one or more facilities to serve a
range of demand points. The importance of the optimal location depends on the nature of
the problem in terms of the constraints and optimality criteria considered for the site [29].
FLPs are useful for determining the location of facilities such as hospitals, fire stations,
bus stops, train stations, truck terminals, gas stations, blood bank centers, retail stores,
neighborhoods, libraries, parks, post offices, airports, and landfills. The FLP can be seen
as a generalization of the vehicle routing problem with fixed costs for the installation of
facilities. An exhaustive review and discussion of the FLPs is provided in [30].

In a basic formulation, the FLP consists of a number of potential plant locations at
which a plant can be opened and a number of demand points that must be served. The aim
is to determine what subset of facilities needs to be opened in order to minimize the total
costs of delivering goods to customers plus the sum of the facility opening costs. A simple
example of a classic FLP instance is shown in Figure 2, where each customer (blue circle) is
assigned to the nearest open facility (red square) via an active connection.

Figure 2. Illustrative example of the classical FLP based on the work in [31].

One of the most frequently investigated discrete location problems is the uncapacitated
facility location problem (UFLP). The UFLP is the problem of determining the best location for
a given facility—or the best locations for a given group of facilities—given some limitations
on the environment in which it can be placed. This contrasts with the capacitated FLP, where
facilities limit the number of customers they can serve. In the uncapacitated version, there is
no such limitation. Some applications of FLP in UL context are presented in [31–38].

2.3. Monte Carlo Simulation

Monte Carlo simulation (MCS) generates distributions of possible result values. By us-
ing probability distributions, variables can have different probabilities of different outcomes
occurring. Probability distributions are a suitable way to describe the uncertainty in vari-
ables of a risk analysis. During an MCS process, values are randomly selected from input
probability distributions. Each set of samples is called an iteration, and the result of that
sample is recorded. MCS conducts this hundreds or thousands of times, and the result is
a probability distribution of possible outcomes. In this way, MCS provides a much more
complete prediction of what may happen because it also delivers the probability that it will
happen [39].

Many quantitative problems in science, engineering, and finance are solved today with
MCS techniques. We list some important application areas, such as industrial engineering

70

Algorithms 2021, 14, 41

and operations research, physical processes, economics and finance, computer-based
statistics and parallel computing, adaptive Monte Carlo Algorithms, spatial processes, and
quasi Monte Carlo [40]. The MCS has been applied to last mile logistics in the real-world,
which depends on many external random factors. This is especially true for last-mile
deliveries. Challenging factors include—but are not limited to—traffic, weather, and the
size of individual orders. To this end, MCS has found great use in assessing the risk and
reliability of supply chains.

3. Integrated Simulation-Optimization Approach

Hybrid models play an important role in most real-world systems. Multiple per-
spectives can be obtained, each of which can answer a different important question. For
answering the range of questions that can be asked with respect to a system, a combined
set of model types can be the answer. Hybrid methods can bring more comprehensive and
efficient estimations of a reality by enhancing the synergies among different methods and
giving the suitable output for decision-makers [41]. One of the main goals of the SO method
as a hybrid model is to efficiently address both the optimization and the uncertainty. An
overview of the application of SO methods in designing resilient supply chain networks
is presented in [42]. There are many ways to combine simulation and optimization, and
the appropriate design depends strongly on the properties of the problem. The guideline
3633.12 [43] by the German Association of Engineers (Verein Deutscher Ingenieure (VDI))
provides a classification for different combinations of simulation and optimization in terms
of sequential and hierarchical combination, which has been in detail elaborated by the Ar-
beitsgemeinschaft Simulation (ASIM) in Germany [44]. A sequential combination assumes
that either simulation or optimization is completed before the other one can be executed.
Within a hierarchical combined approach that can be called several times during the overall
execution. Moreover, the details of the main classifications of various SO combinations
are described in [13]. According to their classifications, we consider an analytical model
improvement approach, where simulation is used to improve the model results, either
by refining its parameters or by extending them, e.g., by considering different scenarios.
In this context, the SDSM, based on an SO concept for APLs presented in [45], provides
a suitable methodology to determine the behavior of the parameters in our multi-period
capacitated FLP model. A well-proven SO approach to solve this kind of problems is
provided by simheuristic algorithms [46,47].

In particular, our approach consists of the following steps, which are shown in Figure 3:
(i) for each district, we use the SDSM to generate an estimate of expected demand; (ii) for
different scenarios, each scenario being defined by a different level of demand (e.g., lower
than expected, as expected, or higher than expected), solve the associated CFLP model; and
(iii) use a Monte Carlo simulation to evaluate the solutions obtained in the previous step
when used in a stochastic environment. Here, we assumed that the demand per district is
uncertain and follows a known probability distribution, with the aim of comparing total
costs with the reliability.

71

Algorithms 2021, 14, 41

Figure 3. Schema of the integrated simulation-optimization approach.

4. Application in the City of Dortmund

This paper deals with the case of the city of Dortmund, which is divided into 62 dis-
tricts, codified from 000 to 960. Figure 4 shows the map of the city of Dortmund with its
respective districts.

Figure 4. The map of city of Dortmund with its codified districts.

4.1. System Dynamics Simulation Model

We propose an SDSM for APL as a UL delivery scheme. The SDSM is designed to
understand the behavior of components of APL systems, and it will be used as a decision
support for future implementations. To develop an SD model, we followed the steps shown
in Figure 1.

4.1.1. Problem Identification

E-commerce does not necessarily mean the absence of physical shops, but rather
an evolution in the way retailers carry out orders. For this reason, e-commerce has led
to an increase in innovative combinations of physical and digital solutions, resulting
in different ways of preparing, distributing, and collecting orders from customers [48].

72

Algorithms 2021, 14, 41

Examples include home delivery, collection points, and APLs. We focus on understanding
APL systems as a UL delivery scheme in the context of e-commerce and evaluating its
components over time.

4.1.2. System Conceptualization

From a qualitative point of view, we use an SDSM to understand the behavior and
interdependencies of the components of APL systems. From the existing literature on APLs
(mainly based on case studies and field data), we define the main components that have an
impact on the system. Following SD standard procedures [19], we use the software tool
Vensim to create the causal-loop and stock-flow diagrams. Figure 5 describes the main APL
system components that third-party logistics service providers will need to consider for
future APL applications.

Figure 5. The automated parcel locker (APL) system causal-loop diagram.

The CLD describes that the market size is positively influenced by the population and
the population growth rate. The potential number of e-customers is positively influenced
by the e-shoppers growth rate and balanced by the number of APL users. In turn, the
number of deliveries is positively reinforced by purchases per month and number of APL
users. In turn, the purchases per month are positively reinforced by the average purchases
per month and the online purchase rate.

4.1.3. Model Formulation

From a quantitative perspective, we present the evaluation of the APL components.
Based on the CLD, we built the SFD, as shown in Figure 6. First, the variables of market
size, potential e-customers, purchases per month, and APL users are defined as stocks
(squared). Then, population growth rate, e-shoppers growth rate, online purchase rate, and
APL market growth rate are defined as flows. Finally, population, accessibility, service level,
average purchase per month, APL market share, and number of deliveries are auxiliary
variables. The main output in this model is the number of deliveries, which are used as
input values in the FLP model.

73

Algorithms 2021, 14, 41

Figure 6. The APL systems stock-flow diagram.

4.1.4. Simulation and Verification

We apply the SDSM based on public data of the city of Dortmund and using the
e-commerce trends in the German context. Taking into account the volatility of the e-
commerce sector, the SDSM evaluates the system components of APL for a planning
horizon of three years (divided into 36 months). Table 1 shows the components used in the
SDSM application and their values.

Table 1. List and characteristics of variables used on the SDSM of the APL systems

.

Parameter Definition Initial Values

Population Number of inhabitants in city of Dortmund 602,566 inhabitants
Population growth rate Factor 0.02/12 (%) per month

Market Size Population×Population growth rate Population
Service level Factor 90 (%)
Accessibility Factor 70 (%)

Potential e-customers (Market Size×E-shopper share-APL users) × Market Size×
E-shoppers growth rate E-shopper share

E-shoppers growth rate Factor 0.2/12 (%)
E-shoppers share Factor 50 (%)

APL market share Factor 15 (%)
Avg. purchase per month Constant×Service level 3 units per month

On-line purchase rate Factor 10 (%)
Purchases per month Avg. purchase per e-customer× Avg. purchase

On-line purchase rate per month
APL users (Potential e-customers×APL market share× Potential e-customers

APL market growth rate)× ×APL market share
(Service level×Accessibility)

Number of deliveries APL users×Purchases per month 0 Units

4.1.5. Policy Analysis and Scenario Building

Table 2 shows the significant changes in the e-shoppers rate to build the scenarios.
We consider Scenario 1 (S1), Scenario 2 (S2), and Scenario 3 (S3) with increasing rates of
e-shoppers.

Table 2. Value changes to develop the scenarios.

Variable S1 S2 S3

E-shoppers rate 50% 60% 70%

74

Algorithms 2021, 14, 41

4.2. Multi-Period Facility Location Problem

The FLP is a well-known optimization challenge where the typical goal is to find the
minimum costs and location of facilities that must be open to meet customer requirements,
either deterministically [30] or stochastically [31,49]. If routing decisions are also included,
the FLP turns into the so-called location routing problem [50,51]. In general, FLPs are
classified either as capacitated or uncapacitated. The former refers to the case where the
facilities have a known limit to the demand they can meet. The latter is the case where the
service capacity of each facility exceeds the total demand of customers. Figure 7 illustrates
the capacitated FLP (CFLP) for the APL network in the city of Dortmund. Here, each
district is a potential APL location (yellow square) and each APL is connected to each
other in the APLs configuration (dashed lines). These connections are used to calculate the
distance matrix between districts.

Figure 7. Illustrative CFLP for APLs in the city of Dortmund.

A multi-period CFLP is taken into account in our work. Decisions made in a given
period affect future periods over a time horizon of T. In particular, as demand is expected
to increase in future periods, we assume that whenever an APL is opened within a period
t ∈ T, it must remain open until the end of the time horizon, i.e., for all t′ ∈ T : t′ > t.
Similarly, third-party logistics providers indicate that a minimum percentage of m ∈ (0, 1)
of total installed capacity must be used. Therefore, with the set I of nodes representing
all districts in the city, each district i ∈ I could contain no, one, or more APLs, each with
a known capacity ai > 0. Similarly, each district j ∈ I has an aggregated demand in the
period t ∈ T, djt > 0. For two districts i, j ∈ I, the unit costs of assigning an APL located in
the district i to a customer located in the district j is cij > 0. Similarly, the costs of opening
an APL in district i ∈ I during the period t ∈ T is indicated as fit > 0. In this context, the
binary variable xijt takes the value 1 if customers in the district j ∈ I are assigned to an
APL in the district i ∈ I during the period t ∈ T; otherwise, the value is 0. Similarly, the
integer variable yit represents the number of APLs that are open in district i ∈ I and in
period t ∈ T. Then, our multi-period CFLP can be formulated as follows.

Minimize ∑
i∈I

∑
j∈I

∑
t∈T

cijdjtxijt + ∑
i∈I

∑
t∈T

fit(yit − yit−1) (1)

75

Algorithms 2021, 14, 41

subject to:

∑
i∈I

xijt = 1 ∀j ∈ I, ∀t ∈ T (2)

yit ≥ yit−1 ∀i ∈ I, ∀t ∈ T\{1} (3)

∑
j∈I

djtxijt ≤ aiyit ∀i ∈ I, ∀t ∈ T (4)

∑
j∈I

djt ≥ m ∑
i∈I

aiyit ∀t ∈ T (5)

xijt ∈ {0, 1} ∀i ∈ I, ∀j ∈ I, ∀t ∈ T (6)

yit ∈ Z
+ ∀i ∈ I, ∀t ∈ T (7)

The expression (1) indicates the objective function that minimizes the total costs: The
first term indicates the service costs of APLs, while the second represents the fixed costs of
opening new APLs in the time horizon. Constraints (2) ensure that for each period t ∈ T
and each district j ∈ I exactly one APL is assigned. Restrictions (3) ensure that once an
APL is opened, it remains open until the end of the time horizon. Constraints (4) ensure
that for each APL in district i ∈ I and time period t ∈ T, the demand served by that APL
does not exceed its capacity. Constraints (5) guarantee a minimum utilization percentage
of the total installed capacity of APLs for each t ∈ T period. Finally, constraints (6) and (7)
specify the ranges of the decision variables.

5. Computational Results and Discussion

Based on the city of Dortmund as a real-world case, a set of experiments considering a
36-month planning horizon has been tested. Table 1 shows the parameters provided by
the SDSM. It yields multiple outputs, from which the yearly demand per district is the
most relevant one to feed the multi-period CFLP model. Then, the integrated SO approach
described in Section 3 is applied to obtain a set of solutions assessed in terms of stochastic
cost and reliability level.

5.1. System Dynamics Simulation Model Results

The market size increases in line with the population growth rate from from 602,666
in month 1 to 606,182 inhabitants in month 36. The purchases per month, the number of
deliveries and the number of APLs show an increasing trend over time. The number of
deliveries increases from 125, 353 to 277, 910 packages per month. We applied the SDSM
and changed the average purchases per month as shown in Table 2. The results for APL
users in the first month are 45,666 for S1, 54,799 for S2, and 63,933 for S3, and at the
36th month 64,331 for S1, 77,202 for S2, and 90,071 for S3. The results of the number of
deliveries (units) in the first month are 125,353 for S1, 150,423 for S2, and 175,496 for S3,
and in the 36th month 277,910 for S1, 333,512 for S2, and 389,106 for S3. Figure 8 illustrates
the scenario comparison of the users of APL and the number of deliveries. The complete
results generated by the SDSM of the default scenarios are shown in Tables A1–A3 in
Appendix A.

76

Algorithms 2021, 14, 41

Figure 8. Scenario comparison: APL users (left) and number of deliveries (right).

5.2. Generating and Simulating Optimal Configurations

As soon as our SDSM provides the number of deliveries (expected demand) for the
three scenarios (s ∈ S, where S = {S1, S2, S3}) under consideration of Table 2, are used
to feed our CFLP model. We evaluate ten APL network configurations (k ∈ K, where
K = {1, 2, ..., 10}) with the demand increasing proportional to k, based on the scenario S2.
Each configuration is obtained by optimally solving the CFLP model using the procedure
described below.

1. Consider a uniformly distributed random demand Djtk per district j ∈ J during the
period t ∈ T for generating the configurations.

2. Define μjt = E[Djtk] and assume that μjt is the medium demand corresponding to the
scenario S2.

3. Define a factor δ = 0.01 to increase the size of the uniform interval as we move
forward into future periods.

4. Generate the random demand using Equation (8). The expression 1+ k−1
|K|−1 is useful to

increase μjt proportionally to the value of k. In this way, we guarantee that generated
configurations differ in size.

Djtk ∼ U
([

1 +
k − 1
|K| − 1

]
(1 − δt)μjt,

[
1 +

k − 1
|K| − 1

]
(1 + δt)μjt

)
∀j ∈ I, ∀t ∈ T, ∀k ∈ K (8)

The variable costs cij are proportional to the distance between each pair of districts.
They were estimated using a web mapping service. The fixed costs are fit = 5500e for
the first year and each district, and increase according to an average inflation rate of 2%
per year. The capacity of each APL in a district i ∈ I is ai = 6000 units per month, and
the minimum utilization percentage is m = 40%. Then, our CFLP model is solved with
Cplex for all ten configurations. The number of resulting open APLs per month is shown
in Figure 9 for three out of these configurations. The lowest and highest lines represent
solutions for the lowest and highest demand, respectively. The rest of the solutions are in
between. As the demand μjt increases over time, the number of open APLs will behave the
same regardless of the configuration. However, this consistent behavior does not extend
beyond the year 1 for k = 10 and beyond the year 2 for k = 1 and k = 5, when the total
installed APLs are sufficient to cover the total demand by the end of the planning horizon.
Furthermore, there is a sharp increase in open APLs from months 11 to 12. This behavior is
caused by two parameters: The annual growth of the fixed costs fit drives the APLs that
are opened when they are less expensive, but always limited by the minimum utilization
percentage m. Finally, the total number of APLs installed varies significantly from one
scenario to another, for example, while 165 APLs are required for k = 10, only 99 APLs are
installed in the configuration k = 1 at the end of the planning horizon. All configuration
results are stored in Tables A4–A6 in Appendix B.

77

Algorithms 2021, 14, 41

Figure 9. Number of total open APLs along the planning horizon for three configurations (k = 1, 5, 10).

Once all configurations have been generated, they are tested in a stochastic environ-
ment, assuming that the demand per district is uncertain and follows a known probability
distribution. Consider a random demand Djts whose mean and standard deviation are
μjts and σjts, respectively, per district j ∈ J during the period t ∈ T for the scenario s ∈ S.
We assume that μjts is the demand generated by our SDSM. Now, as the goal is to evalu-
ate the performance of each configuration, they must be tested under the same demand
conditions; therefore, the demand does not depend further on the configuration. Then,
Djts is simulated and each configuration is evaluated in terms of total costs (Equation (1))
and reliability. Studies on reliability in supply chains are found in [52,53]. We define the
reliability Rks of the configuration k ∈ K for the scenario s ∈ S as the probability that the
stochastic demand of all districts in the city can be successfully satisfied, i.e.,

Rks =

(
1 − bks

n

)
· 100% ∀k ∈ K, ∀s ∈ S (9)

where bks is the total number of simulation runs where the configuration does not cover
all district demands, and n is the total number of runs. In other words, if at least one APL
in a configuration is not able to cover all assigned needs, that configuration will fail. In
our experiments, a total of n = 5000 runs are performed for each combination of scenario s
and configuration k. Without losing generality, we assume that demand is independent of
the customers’ district, but our methodology can easily be adapted to take into account
correlated demand. For the realization of the demand, three probability distributions have
been tested:

1. A uniform distribution, according to Equation (10). In this case, σjts =
√

3
3 δtμjts.

Djts ∼ U
(
[1 − δt]μjts, [1 + δt]μjts

)
(10)

2. A symmetric triangular distribution, according to Equation (11), i.e., the mode equals
μjts. To obtain conditions similar to 1, the lower and upper limits of this distribution
are calculated assuming that the standard deviation is equal.

Djts ∼ T
([

1 −
√

2δt
]
μjts, μjts,

[
1 +

√
2δt
]
μjts

)
(11)

3. A lognormal distribution, according to Equation (12). Again, the standard deviation
is the same as in the point 1 to preserve similar conditions.

Djts ∼ Lognormal
(
μjts, σjts

)
(12)

78

Algorithms 2021, 14, 41

Figure 10 shows the main results of the simulation process for each configuration.
Blue, orange, and green lines represent the results from the demand for uniform, triangular,
or log-normal distribution. In addition, dotted, solid, and dashed lines represent the
results for the scenarios S1 (low demand), S2 (medium demand), and S3 (high demand),
respectively. Each dot on each line represents a single configuration. In general, more
expensive configurations result in higher reliability, because they include a larger number
of installed APLs. When the demand follows either a uniform or a triangular distribution,
the most expensive half of the configurations always achieve a 100.0% reliability level,
regardless of the scenario. In other words, the configuration k = 6, with total costs of
748,660e, already locates a suitable number of APLs and eliminates the need to consider
more expensive configurations. However, if the budget is lower, our approach offers other
good alternatives for the decision makers.

In general, configurations are less reliable when demand scenarios are increased. For
example, configuration k = 4, with total costs of 661,100e, only achieves a reliability level
of 14.0% under the high demand scenario and a log-normal distribution. Conversely, this
configuration achieves a reliability level of 98.8% under the low demand scenario. Fur-
thermore, the reliability is very sensitive to the probability distribution. Broadly speaking,
a configuration fails if the demand is too high (Equation (9)). Therefore, configurations
simulating a log-normal demand, which has no upper limit, are less reliable than those
where the probability distribution is either uniform or triangular (Equations (10) and (11)).
This fact underlines the relevance of integrating the study to determine the behavior of
demand in the real case.

Figure 10. Optimal solutions evaluated in terms of costs and reliability.

6. Conclusions

With the goal of determining the optimal number and location of automated parcel
locker (APL) systems in a multi-period time horizon, this paper has proposed the use of
an integrated simulation-optimization approach combining system dynamics with exact
optimization and Monte Carlo simulation. We propose this integrated model as a decision
support tool for future APL implementations as a last-mile distribution scheme. The
analysis is based on a real-world case study where service requirements are considered
as random variables that evolve over time. First, a system dynamics simulation model is
designed to determine the 36-month performance of parameters such as APL users and

79

Algorithms 2021, 14, 41

number of deliveries. Then, these results feed a multi-period facility location model that
provides the optimal number of APLs. To deal with the demand uncertainty, different
scenarios are considered and solved with precise methods. The solutions associated with
each scenario are then sent to a Monte Carlo simulation to estimate both their costs and
reliability level.

The model provides an optimal number of APLs, taking into account the expectations
of user demands. We have considered three scenarios S1, S2, and S3 for 50%, 60%, and
70% of the e-shopper rate. The results for the number of deliveries (units) after 36 months
show a wide range of shipments from about 277,000 in S1 to nearly 400,000 in S3. We
used our CFLP to evaluate ten APL network configurations (k = 1, ..., 10) with increasing
demand in relation to each scenario. Obviously, there is a strong impact on the number
of APLs that the city needs. After 36 months, the number of APLs increases from 99 in
the case of the lowest demand to 165 at maximum demand. Interestingly, the number
of APLs stabilizes from month 24 in all configurations. Thus, we can conclude that the
effect on APLs appears linear in relation to the potential users of APL with no obvious
scale effects. From a stochastic environment, we assumed that the demand per district is
uncertain and follows a known probability distribution. Whenever the demand follows
either a uniform or a triangular distribution, the most expensive configurations always
reach a reliability level of 100.0% regardless of the scenario. The configuration k = 6, with
total costs of 748,660e, already locates a suitable number of APLs. However, if the budget
is lower, our approach offers other alternatives for decision makers.

All in all, the work illustrates the potential of combining different simulation and
optimization techniques to correctly address complex optimization problems in real urban
logistics, where uncertainties must also be taken into account. The following research
lines are still open for the future: (i) increasing the level of detail on the demand side,
taking into account correlated and individual customers’ demands instead of aggregated
ones—which will significantly increase the size of the problem; (ii) develop a metaheuristic-
based approach for the optimization phase, as this will be a necessary step when larger
instances are to be analyzed; and (iii) extend the approach to a fully simheuristic algorithm,
so that the feedback provided by the Monte Carlo simulation can be reused to guide the
metaheuristic search.

Author Contributions: Conceptualization, M.R., J.G.-F., and J.C.-V.; methodology, J.C.-V. and R.D.T.;
software, J.C.-V. and R.D.T.; validation, J.C.-V. and R.D.T.; formal analysis, M.R. and J.G.-F.; writing—
original draft preparation, J.C.-V. and R.D.T.; writing—review and editing, M.R. and J.G.-F. All
authors have read and agreed to the published version of the manuscript.

Funding: This work has been partially supported by the German Academic Exchange Service
(DAAD) Research Grants—Doctoral Programmes in Germany, 2017/18.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Data are available upon reasonable request to the corresponding
author.

Conflicts of Interest: The authors declare no conflict of interest.

80

Algorithms 2021, 14, 41

Appendix A. Results Generated by the SDSM for the Horizon Planning in the

Proposal Scenarios

Appendix A shows the results by the SDSM for the first three years.

Table A1. Results generated by the SDSM in the first year.

Output Parameter
Month

1 2 3 4 5 6 7 8 9 10 11 12

Market size (thousands)
S1 602.6 602.7 602.8 602.9 603 603.1 603.2 603.3 603.4 603.5 603.6 603.7
S2 602.6 602.7 602.8 602.9 603 603.1 603.2 603.3 603.4 603.5 603.6 603.7
S3 602.6 602.7 602.8 602.9 603 603.1 603.2 603.3 603.4 603.5 603.6 603.7

Potential e-customers (thousands)
S1 303.4 305.5 307.6 309.7 311.9 314 316.1 318.5 320 322.4 324.5 326.6
S2 364.1 366.6 369.2 371.7 374.3 376.8 379.3 381.9 384.4 386.9 389.4 391.9
S3 424.7 427.7 430.7 433.7 436.6 439.6 442.6 445.5 448.5 451.4 454.3 457.3

APL users (thousands)
S1 45.6 46.1 46.6 47.1 47.5 48 48.5 49 49.5 50 50.5 51.1
S2 54.7 55.3 55.9 56.6 57.1 57.7 58.2 58.8 59.4 60.1 60.7 61.3
S3 63.9 64.6 65.2 65.9 66.6 67.3 68 68.7 69.4 70.1 70.8 71.5

Number of deliveries (thousands)
S1 125.3 128.7 132.1 135.6 139.2 142.8 146.4 150.1 153.9 157.7 161.6 165.5
S2 150.4 154.4 158.6 162.8 167 171.3 175.7 180.2 184.7 189.3 193.9 198.6
S3 175.4 180.2 185 189.9 194.9 199.9 205 210.2 215.5 220.8 226.3 231.8

Table A2. Results generated by the SDSM in the second year.

Output Parameter
Month

13 14 15 16 17 18 19 20 21 22 23 24

Market size (thousands)
S1 603.8 603.9 604 604.1 604.2 604.3 604.4 604.5 604.6 604.7 604.8 604.9
S2 603.8 603.9 604 604.1 604.2 604.3 604.4 604.5 604.6 604.7 604.8 604.9
S3 603.8 603.9 604 604.1 604.2 604.3 604.4 604.5 604.6 604.7 604.8 604.9

Potential e-customers (thousands)
S1 328.7 330.8 332.9 334.9 337 339.1 341.2 343.2 345.3 347.3 349.425 351.4
S2 394.4 396.9 399.4 401.9 404.4 406.9 409.4 411.9 414.3 416.8 419.3 421.7
S3 457.3 460.2 463.1 466 468.9 471.8 474.7 477.6 480.5 483.4 486.3 489.1

APL users (thousands)
S1 51.6 52.1 52.6 53.1 53.7 54.2 54.7 55.3 55.8 56.3 56.9 57.4
S2 61.9 62.5 63.1 63.8 64.4 65 65.7 66.3 67 67.6 68.3 68.9
S3 72.2 72.9 73.7 74.4 75.1 75.9 76.6 77.4 78.1 78.9 79.7 80.4

Number of deliveries (thousands)
S1 169.5 173.5 177.7 181.8 186 190.3 194.6 199 203.5 208 212.6 217.2
S2 203.4 208.3 213.2 218.2 223.3 228.4 233.6 238.9 244.2 249.6 255.1 260.7
S3 237.3 243 248.7 254.6 260.5 266.5 272.5 278.7 284.9 291.3 297.7 304.2

Table A3. Results generated by the SDSM in the third year.

Output Parameter
Month

25 26 27 28 29 30 31 32 33 34 35 36

Market size (thousands)
S1 605 605.1 605.2 605.3 605.4 605.5 605.6 605.7 605.8 605.9 606 606.1
S2 605 605.1 605.2 605.3 605.4 605.5 605.6 605.7 605.8 605.9 606 606.1
S3 605 605.1 605.2 605.3 605.4 605.5 605.6 605.7 605.8 605.9 606 606.1

Potential e-customers (thousands)
S1 353.5 355.5 357.5 359.6 361.6 363.6 365.6 367.6 369.6 371.6 373.6 375.6
S2 424.2 426.6 429 431.5 433.9 436.3 438.8 441.2 443.6 446 448.4 450.8
S3 494.9 497.7 500 503.4 506.2 509.1 511.9 514.7 517.5 520.3 523.1 525.9

APL users (thousands)
S1 58 58.5 59.1 59.7 60.2 60.8 61.4 61.9 62.5 63.1 63.7 64.3
S2 69.6 70.3 70.9 71.6 72.3 73 73.7 74.4 75 75.7 76.4 77.2
S3 81.2 82 82.8 83.6 84.4 85.1 85.9 86.8 87.6 88.4 89.2 90

Number of deliveries (thousands)
S1 221.9 226.7 231.5 236.4 241.4 246.4 251.5 256.6 261.8 267.1 272.5 277.9
S2 266.4 272.1 277.9 283.7 289.7 295.7 301.8 308 314.2 320.6 327 333.5
S3 310.8 317.4 324.2 331 338 345 352.1 359.3 366.6 374 381.5 389.1

Appendix B. Number of APLs by Period and Configuration

Appendix B shows the results for the required number of APLs for the first three years.

81

Algorithms 2021, 14, 41

Table A4. Number of APLs in the first year.

Output Parameter
Month

1 2 3 4 5 6 7 8 9 10 11 12

Number of APLs
k1 62 64 66 67 69 69 69 69 69 70 70 81
k2 69 69 69 69 69 69 70 71 71 71 73 92
k2 69 69 70 70 70 71 72 73 73 73 74 101
k4 71 71 72 72 72 73 74 75 76 76 76 110
k5 72 72 72 74 75 75 75 76 77 80 83 119
k6 73 75 75 76 76 76 78 80 82 84 86 130
k7 75 76 76 77 77 81 83 83 85 87 90 139
k8 76 76 78 80 83 85 88 89 89 90 91 148
k9 80 81 83 86 87 89 89 89 90 92 92 153
k10 84 87 87 87 90 90 91 93 95 97 99 164

Table A5. Number of APLs in the second year.

Output Parameter
Month

13 14 15 16 17 18 19 20 21 22 23 24

Number of APLs
k1 83 86 87 90 91 92 93 95 95 97 97 99
k2 94 97 100 100 100 102 104 105 105 106 106 107
k3 102 106 108 110 112 112 113 113 113 113 113 113
k4 113 113 118 119 119 119 120 120 120 120 120 120
k5 124 124 128 129 129 129 129 129 129 129 129 130
k6 132 135 135 135 135 135 135 135 135 135 136 136
k7 143 144 144 144 144 144 144 144 144 144 144 144
k8 149 149 149 149 149 149 149 149 149 149 149 150
k9 157 157 157 157 157 157 157 157 157 157 157 157
k10 165 165 165 165 165 165 165 165 165 165 165 165

Table A6. Number of APLs in the third year.

Output Parameter
Month

25 26 27 28 29 30 31 32 33 34 35 36

Number of APLs
k1 99 99 99 99 99 99 99 99 99 99 99 99
k2 107 107 107 107 107 107 107 107 107 107 107 107
k3 113 113 113 113 113 113 113 113 113 113 113 113
k4 120 120 120 120 120 120 120 120 120 120 120 120
k5 130 130 130 130 130 130 130 130 130 130 130 130
k6 135 135 135 135 135 135 135 135 135 135 136 136
k7 144 144 144 144 144 144 144 144 144 144 144 144
k8 150 150 150 150 150 150 150 150 150 150 150 150
k9 157 157 157 157 157 157 157 157 157 157 157 157
k10 165 165 165 165 165 165 165 165 165 165 165 165

References

1. Gonzalez-Feliu, J. Sustainable Urban Logistics: Planning and Evaluation; ISTE Ltd./John Wiley and Sons Inc.: Hoboken, NJ, USA, 2017.
2. Boudoin, D.; Morel, C.; Gardat, M. Supply Chains and Urban Logistics Platforms. In Sustainable Urban Logistics: Concepts, Methods

and Information Systems; Gonzalez-Feliu, J., Semet, F., Routhier, J., Eds.; Springer: New York, NY, USA, 2013; pp. 1–20.
3. Moroz, M.; Polkowski, Z. The Last Mile Issue and Urban Logistics: Choosing Parcel Machines in the Context of the Ecological

Attitudes of the Y Generation Consumers Purchasing Online. Transp. Res. Procedia 2016, 16, 378–393. [CrossRef]

82

Algorithms 2021, 14, 41

4. Zurel, Ö.; van Hoyweghen, L.; Braes, S.; Seghers, A. Parcel Lockers, an Answer to the Pressure on the Last Mile Delivery? In
New Business and Regulatory Strategies in the Postal Sector; Parcu, P., Brennan, T., Glass, V., Eds.; Springer International Publishing:
Cham, Switzerland, 2018; pp. 299–312.

5. Verlinde, S.; Rojas, C.; Buldeo Rai, H.; Kin, B.; Macharis, C. E-Consumers and Their Perception of Automated Parcel Stations.
In City Logistics 3: Towards Sustainable and Liveable Cities; Taniguchi, E., Thompson, R., Eds.; ISTE Ltd./John Wiley and Sons Inc.:
Hoboken, NJ, USA, 2018; pp. 147–160.

6. Vakulenko, Y.; Hellstrom, D.; Hjort, K. What’s in the Parcel Locker? Exploring Customer Value in E-commerce Last Mile Delivery.
J. Bus. Res. 2018, 88, 421–427. [CrossRef]

7. Iwan, S.; Kijewska, K.; Lemke, J. Analysis of Parcel Lockers’ Efficiency as the Last Mile Delivery Solution—The Results of the
Research in Poland. Transp. Res. Procedia 2016, 12, 644–655. [CrossRef]

8. Faulin, J.; Grasman, S.; Juan, A.; Hirsch, P. Sustainable Transportation and Smart Logistics: Decision-Making Models and Solutions;
Elsevier: Oxford, UK, 2018.

9. Guerrero, J.; Dıaz-Ramırez, J. A Review on Transportation Last-mile Network Design and Urban Freight Vehicles. In Proceedings of
the 2017 International Conference on Industrial Engineering and Operations Management, Bristol, UK, 24–25 July 2017; pp. 533–552.

10. Jlassi, S.; Tamayo, S.; Gaudron, A. Simulation Applied to Urban Logistics: A State of the Art. In City Logistics 3: Towards Sustainable
and Liveable Cities; Taniguchi, E., Thompson, R., Eds.; ISTE Ltd./John Wiley and Sons Inc.: Hoboken, NJ, USA, 2018; pp. 32–58.

11. Morganti, E.; Dablanc, L.; Fortin, F. Final Deliveries for Online Shopping: The Deployment of Pickup Point Networks in Urban
and Suburban Areas. Res. Transp. Bus. Manag. 2014, 11, 23–31. [CrossRef]

12. Gonzalez-Feliu, J. (Ed.) Logistics and Transport Modeling in Urban Goods Movement; IGI Global: Hershey, PA, USA, 2019.
13. Figueira, G.; Almada-Lobo, B. Hybrid Simulation-Optimization Methods: A Taxonomy and Discussion. Simul. Model. Pract. Theory

2014, 46, 118–134. [CrossRef]
14. Crainic, T.G.; Perboli, G.; Rosano, M. Simulation of Intermodal Freight Transportation Systems: A Taxonomy. Eur. J. Oper. Res.

2018, 270, 401–418. [CrossRef]
15. Martinez-Moyano, I.; Macal, C. A Primer for Hydrid Modeling and Simulation. In Proceedings of the 2016 Winter Simulation

Conference (WSC), Washington, DC, USA, 11–14 December 2016; Roeder, T.M., Frazier, P.I., Szechtman, R., Zhou, E., Huschka, T.,
Chick, S.E., Eds.; Institute of Electrical and Electronics Engineers, Inc.: Piscataway, NJ, USA, 2016; pp. 133–147.

16. Ackoff, R.L. Optimization + Objectivity = Optout. Eur. J. Oper. Res. 1977, 1, 1–7. [CrossRef]
17. Le Bouthillier, A.; Crainic, T.G. A Cooperative Parallel Metaheuristic for the Vehicle Routing Problem with Time Windows.

Comput. Oper. Res. 2005, 32, 1685–1708. [CrossRef]
18. Forrester, J.W. Industrial Dynamics after the First Decade. Manag. Sci. 1968, 14, 398–415. [CrossRef]
19. Sterman, J. Business Dynamics; Irwin/McGraw-Hill: Boston, MA, USA, 2000.
20. Taniguchi, E.; Thompson, R.; Yamada, T. Emerging Techniques for Enhancing the Practical Application of City Logistics Models.

Procedia Soc. Behav. Sci. 2012, 39, 3–18. [CrossRef]
21. Bala, B.K.; Arshad, F.M.; Noh, K.M. System Dynamics: Modelling and Simulation; Springer: Singapore, 2017.
22. Villa, S.; Gonçalves, P.; Arango, S. Exploring Retailers’ Ordering Decisions Under Delays. Syst. Dyn. Rev. 2012, 31, 1–27.

[CrossRef]
23. Kunze, O.; Wulfhorst, G.; Minner, S. Applying Systems Thinking to City Logistics: A Qualitative (and Quantitative) Approach to

Model Interdependencies of Decisions by Various Stakeholders and their Impact on City Logistics. Transp. Res. Procedia 2016, 12,
692–706. [CrossRef]

24. Villa, S.; Gonçalves, P.; Arango, S. Describing and Explaining Urban Freight Transport by System Dynamics. Transp. Res. Procedia
2017, 25, 1075–1094. [CrossRef]

25. De La Torre, G.; Gruchmann, T.; Kamath, V.; Melkonyan, A.; Krumme, K. A System Dynamics-Based Simulation Model to Analyze
Consumers’ Behavior Based on Participatory Systems Mapping—A “Last Mile” Perspective. In Innovative Logistics Services and
Sustainable Lifestyles; Melkonyan, A., Krumme, K., Eds.; Springer Science and Business Media: New York, NY, USA, 2013; pp. 165–194.

26. Anand, N.; van Duin, J.R.; Quak, H.; Tavasszy, L. Relevance of City Logistics Modeling Efforts: A Review. Transp. Rev. 2015,
35, 701–719.

27. Anand, N.; van Duin, J.R.; Tavasszy, L. Framework for Modeling Multi-Stakeholder City Logistics Domain Using the Agent
Based Modeling Approach. Transp. Res. Procedia 2016, 16, 4–15. [CrossRef]

28. Balinski, M.L. Integer Programming: Methods, Uses, Computations. Manag. Sci. 1965, 12, 253–313. [CrossRef]
29. Laporte, G.; Nickel, S.; Saldanha da Gama, F. Location Science; Springer International Publishing: Cham, Switzerland, 2015.

[CrossRef]
30. Melo, M.T.; Nickel, S.; Saldanha-da-Gama, F. Facility Location and Supply Chain Management—A Review. Eur. J. Oper. Res. 2009,

196, 401–412.
31. De Armas, J.; Juan, A.; Marquès, J.M.; Pedroso, J.P. Solving the Deterministic and Stochastic Uncapacitated Facility Location

Problem: From a Heuristic to a Simheuristic. J. Oper. Res. Soc. 2017, 68, 1161–1176. [CrossRef]
32. Absi, N.; Feillet, D.; Garaix, T.; Guyon, O. The City Logistics Facility Location Problem. In Proceedings of the ODYSSEUS 2012,

Fifth International Workshop on Freight Transportation and Logistics, Mykonos Island, GR, USA, 21–25 May 2012. [CrossRef]
33. Pamučar, D.; Vasin, L.; Atanasković, P.; Miličić, M. Planning the City Logistics Terminal Location by Applying the Green-Median

Model and Type-2 Neurofuzzy Network. Comput. Intell. Neurosci. 2016, 2016. [CrossRef]

83

Algorithms 2021, 14, 41

34. Sopha, B.M.; Asih, A.M.S.; Pradana, F.D.; Gunawan, H.E.; Karuniawati, Y. Urban Distribution Center Location: Combination of
Spatial Analysis and Multi-Objective Mixed-Integer Linear Programming. Int. J. Eng. Bus. Manag. 2016, 8.

35. Dell’Amico, M.; Novellani, S. A Two-Echelon Facility Location Problem with Stochastic Demands for Urban Construction
Logistics: An Application within the SUCCESS Project. In Proceedings of the 2017 IEEE International Conference on Service
Operations and Logistics, and Informatics (SOLI), Bari, Italy, 18–20 September 2017; pp. 90–95. [CrossRef]

36. Gan, M.; Li, D.; Wang, M.; Zhang, G.; Yang, S.; Liu, J. Optimal Urban Logistics Facility Location with Consideration of
Truck-Related Greenhouse Gas Emissions: A Case Study of Shenzhen City. Math. Probl. Eng. 2018, 2018. [CrossRef]

37. Nataraj, S.; Ferone, D.; Quintero-Araujo, C.; Juan, A.; Festa, P. Consolidation Centers in City logistics: A Cooperative Approach
Based on the Location Routing Problem. Int. J. Ind. Eng. Comput. 2018, 10, 393–404.

38. Herrmann, E.; Kunze, O. Facility Location Problems in City Crowd Logistics. Transp. Res. Procedia 2019, 41, 117–134. [CrossRef]
39. Brandimarte, P. Handbook in Monte Carlo Simulation: Applications in Financial Engineering, Risk Management, and Economics; John

Wiley and Sons.: Hoboken, NJ, USA, 2014. [CrossRef]
40. Kroese, D.P.; Brereton, T.; Taimre, T.; Botev, Z.I. Why the Monte Carlo Method is so Important Today. Wiley Interdiscip. Rev.

Comput. Stat. 2014, 6, 386–392. [CrossRef]
41. Palacios-Argüello, L.; Gonzalez-Feliu, J.; Gondran, N.; Badeig, F. Assessing the Economic and Environmental Impacts of Urban

Food Systems for Public School Canteens: Case Study of Great Lyon Region. Eur. Transp. Res. Rev. 2018, 10, 37.
42. Tordecilla, R.D.; Juan, A.A.; Montoya-Torres, J.R.; Quintero-Araujo, C.L.; Panadero, J. Simulation-Optimization Methods for

Designing and Assessing Resilient Supply Chain Networks under Uncertainty Scenarios: A Review. Simul. Model. Pract. Theory
2021, 106, 102166. [CrossRef]

43. VDI 3633 Part 12. Simulation of Systems in Materials Handling, Logistics, and Production—Simulation and Optimisation; Beuth: Berlin,
Germany, 2020. [CrossRef]

44. Maerz, L.; Krug, W.; Rose, O.; Weigert, G. (Eds.) Simulation und Optimierung in Produktion und Logistik; Springer: Berlin/Heidelberg,
Germany, 2010. [CrossRef]

45. Rabe, M.; Chicaiza-Vaca, J. A Simulation-Optimization Conceptual Model of Automated Parcel Lockers on Macro and Micro
Planning Levels. In Proceedings of the 2019 Winter Simulation Conference (WSC), National Harbor, MD, USA, 8–11 December
2019; Mustafee, N., Bae, K.-H., Lazarova-Molnar, S., Rabe, M.C., Szabo, C., Haas, P., Son, Y.-J., Eds.; Institute of Electrical and
Electronics Engineers, Inc.: Piscataway, NJ, USA, 2019; pp. 2904–2905.

46. Juan, A.; Faulin, J.; Grasman, S.; Rabe, M.; Figueira, G. A Review of Simheuristics: Extending Metaheuristics to Deal with
Stochastic Combinatorial Optimization Problems. Oper. Res. Perspect. 2015, 2, 62–72.

47. Juan, A.A.; Kelton, W.D.; Currie, C.S.; Faulin, J. Simheuristics Applications: Dealing with Uncertainty in Logistics, Transportation,
and other Supply Chain Areas. In Proceedings of the 2019 Winter Simulation Conference (WSC), National Harbor, MD, USA, 8–11
December 2019; Rabe, M., Juan, A.A., Mustafee, N., Skoogh, A., Jain, S., Johansson, B., Eds.; Institute of Electrical and Electronics
Engineers, Inc.: Piscataway, NJ, USA, 2019; pp. 3048–3059.

48. Durand, B.; Gonzalez-Feliu, J. Urban Logistics and E-grocery: Have Proximity Delivery Services a Positive Impact on Shopping
Trips? Procedia Soc. Behav. Sci. 2012, 39, 510–520. [CrossRef]

49. Pages-Bernaus, A.; Ramalhinho, H.; Juan, A.A.; Calvet, L. Designing E-commerce Supply Chains: A Stochastic Facility-location
Approach. Int. Trans. Oper. Res. 2019, 26, 507–528.

50. Quintero-Araujo, C.L.; Caballero-Villalobos, J.P.; Juan, A.A.; Montoya-Torres, J.R. A Biased-randomized Metaheuristic for the
Capacitated Location Routing Problem. Int. Trans. Oper. Res. 2017, 24, 1079–1098. [CrossRef]

51. Quintero-Araujo, C.L.; Gruler, A.; Juan, A.A.; Faulin, J. Using Horizontal Cooperation Concepts in Integrated Routing and
Facility-location Decision. Int. Trans. Oper. Res. 2019, 26, 551–579. [CrossRef]

52. Adenso-Diaz, B.; Mena, C.; Garcia-Carbajal, S.; Liechty, M. The Impact of Supply Network Characteristics on Reliability. Supply
Chain. Manag. Int. J. 2012, 17, 263–276. [CrossRef]

53. Peng, P.; Snyder, L.V.; Lim, A.; Liu, Z. Reliable Logistics Networks Design with Facility Disruptions. Transp. Res. Part B Methodol.
2011, 45, 1190–1211. [CrossRef]

84

algorithms

Article

Urban e-Grocery Distribution Design in Pamplona (Spain)
Applying an Agent-Based Simulation Model with
Horizontal Cooperation Scenarios

Adrian Serrano-Hernandez 1,2,*, Rocio de la Torre 3, Luis Cadarso 2 and Javier Faulin 1

��������	
�������

Citation: Serrano-Hernandez, A.;

de la Torre, R.; Cadarso, L.; Faulin, J.

Urban e-Grocery Distribution

Design in Pamplona (Spain)

Applying an Agent-Based Simulation

Model with Horizontal Cooperation

Scenarios. Algorithms 2021, 14, 20.

https://doi.org/10.3390/a14010020

Received: 14 December 2020

Accepted: 6 January 2021

Published: 12 January 2021

Publisher’s Note: MDPI stays neu-

tral with regard to jurisdictional clai-

ms in published maps and institutio-

nal affiliations.

Copyright: © 2021 by the authors. Li-

censee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and con-

ditions of the Creative Commons At-

tribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Institute of Smart Cities, Public University of Navarre, 31006 Pamplona, Spain; javier.faulin@unavarra.es
2 Aerospace Systems and Transport Research Group, EIATA Institute, Rey Juan Carlos University,

28942 Fuenlabrada, Spain; luis.cadarso@urjc.es
3 INARBE Institute, Public University of Navarre, 31006 Pamplona, Spain; rocio.delatorre@unavarra.es
* Correspondence: adrian.serrano@unavarra.es; Tel.: +34-948169213

Abstract: E-commerce has boosted in the last decades because of the achievements of the information
and telecommunications technology along with the changes in the society life-style. More recently, the
groceries online purchase (or e-grocery), has also prevailed as a way of making the weekly shopping,
particularly, the one including fresh vegetables and fruit. Furthermore, this type of virtual shopping
in supermarkets is gaining importance as the most efficient delivery system in cost and time. Thus,
we have evaluated in this study the influence of the cooperation-based policies on costs and service
quality among different supermarkets in Pamplona, Spain. Concerning methodology, first of all,
we carried out a survey in Pamplona having the purpose of modelling the demand patterns about
e-grocery. Second, we have developed an agent-based simulation model for generating scenarios
in non-cooperative, limited cooperation, and full cooperation settings, considering the real data
obtained from the survey analysis. At this manner, Vehicle Routing Problems (VRP) and Multi Depot
VRPs (MDVRP) are dynamically generated and solved within the simulation framework using a
biased-randomization algorithm. Finally, the results show significant reductions in distance driven
and lead times when employing horizontal cooperation in e-grocery distribution.

Keywords: agent-based simulation; horizontal cooperation; e-groceries; optimization

1. Introduction

During the last decade, consumers’ shopping habits have drastically changed, not only
because of the massive incorporation of new technologies into our lives but also because
of a greater awareness of environmental and social sustainability, growing urbanization,
and time pressures. The outcome is a challenging scenario mainly driven by the increment
on demand for e-groceries (i.e., the online purchase of groceries, including fresh products)
because of an exceptional development of e-commerce. As a consequence of this paradigm
shift in consumption, companies have also adapted to this new order by adopting proactive
sustainable strategies and developing sustainable supply chain management practices.
However, and despite the complexity that features the growing demand, the existing
literature does not demonstrate the challenges of the field, especially those related to the
logistic process. Further, despite the promising development of the e-grocery business,
the lack of interest in developing cost-effective operations is also evident in companies,
since there are only a few e-grocers which have made progress on leading to profitable
operations [1,2]. Thus, the challenges in e-grocery logistics include from a wide-range of
food safety-related issues to differences in storage temperatures, including perishability
over time [3]. In addition, environmentally responsible customer profiles must also be
considered, who demand consumption of local products [4]. Note that, considering these
consumer requirements, it is more than likely that consumers’ wishes differ from the

Algorithms 2021, 14, 20. https://doi.org/10.3390/a14010020 https://www.mdpi.com/journal/algorithms85

Algorithms 2021, 14, 20

seller’s desires. While consumers usually prefer products from a close origin with long
date of expiry [5], sellers would benefit from shipping first items with shorter shelf lives in
order to reduce food waste [6].

In fact, many researchers recognize the strategic importance of sustainability as an
essential aspect in the supply chain management [7,8] . It is widely accepted that sustain-
ability cannot be achieved by companies in isolation, and that requires the involvement of
supply chain members [9]. Reinforcing the same idea, Soosay and Hyland [10] plead that
supply chain members operate in more dynamic environments, characterized by global-
ization, rapidly evolving technologies, and increased customer responsiveness. Therefore,
more integrative and cooperative efforts are required to reach the aforementioned supply
chain characteristics. Likewise, horizontal cooperation may be paramount when meeting
the requirements of demand and sellers in an efficient and sustainable way, for example,
improving efficiency in logistics. Therefore, the partnering sellers aim at increasing produc-
tivity through close cooperation, for example, by optimizing vehicle capacity utilization,
reducing empty mileage and cutting costs of non-core/supporting activities to increase
the competitiveness of their logistics networks [11,12]. At this manner, Cruijssen et al. [13]
have enumerated the potential benefits of cooperation as follows: (i) reduction of cost of
transportation; (ii) improvement of service quality by reducing operation times and lost
goods; (iii) diminution of environmental and social impacts; (iv) mitigation of risks; (v) and
enhancement of market share. Consequently, extrapolating the previous benefits, horizontal
cooperation might be particularly interesting for e-grocery, where a wide range of customers
are widespread in big cities or in rural areas, which generates long empty backhauls af-
ter deliveries. In this regard, load factors can be improved by means of cooperation (i.e.,
supermarkets sharing their logistics operations) to reduce empty backhauls.

Accordingly, the main contributions of the this paper can be summarized as follows:
(i) modeling the demand patterns about e-grocery (including ordering frequency, prefer-
ence of supermarket, and delivery windows); (ii) an agent-based simulation model for
generating scenarios in cooperative and non-cooperative settings, considering the real data
obtained from the survey analysis, and (iii) the integration of Vehicle Routing Problems
(VRP) and Multi Depot VRP within the simulation framework.

The remainder of the paper is organized as follows—Section 2 reviews concepts related
to e-groceries, Horizontal Cooperation, and Agent-Based Simulation. Section 3 contains
information about the geographical scope of our experiments, including the details of the
survey and the main insights. Section 4 describes the simulation model, the cooperative
protocols, and the routing algorithms. Section 5 presents the results of our simulation
model. Finally, Section 6 summarizes the main findings of this paper and points out some
future research lines.

2. Literature Review

This section presents an analysis of the literature regarding topics that are addressed
in this work: e-groceries, Horizontal Cooperation, and Agent-Based Simulation.

2.1. e-Grocery

Nowadays, online shopping has become a key element for reaching the development
and proper operation of our society. According to Fraser et al. [14], the electronic commerce
(e-commerce) is the process of trading goods, information, or services via computer net-
works including the Internet. This concept is included within a wider concept (e-business),
that refers to any business operation developed by means of information networks (i.e.,
customer services and knowledge sharing). Hence, this change in consumer habits has
impulsed many traditional sellers to adapt their operations and business strategy to be
adapted to more competitive scenarios. This situation has generated new challenges related
to the e-commerce integration—the customization in order to be competitive enough, a
sustainable logistic process (i.e., guarantee the optimum provisioning and delivery of
goods), and a company internationalization [15]. Similarly, this change in the supply

86

Algorithms 2021, 14, 20

chain value needs to be accompanied by procedures and methodologies that help to: (i)
reduce the transaction costs, (ii) facilitate just-in-time production strategies, (iii) boost
short delivery-times, (iv) and improve information gathering and processing. Focusing on
e-groceries, it refers to the purchase or acquisition of products by internet that provides
relative convenience to the consumers, since they can obtain the required groceries from the
comfort of their homes or offices and at a convenient time [16]. Regarding sellers, two types
of retailers can be distinguished: the ones that have their own vehicle fleets for regional
delivery, and the ones that ship nationwide via parcel delivery services. Furthermore, the
first group of retailers presents the competitive advantage of having specialized vehicle
fleets for different requirements and offering small time windows, although featuring local
narrowness [17]. As a consequence, some sellers within this first group are not delivering
any refrigerated food, making additional grocery shopping necessary (with the associated
risk of losing clients). Therefore, it is in this context where horizontal cooperation plays an
important role for survival of small retailers within the marketplace.

All this complex new system have led some authors, such as Wilson-Jeanselme and
Reynolds [18], to study the preferences of consumers who demand these services. In
particular, they find out that ordering, product quality, time, and reliability in the delivery
process are the most important characteristics to know the client preferences to decide
the purchase timing and the bought product. But, the design of a sustainable e-grocery
service, in both economic and environmental terms, involves not only the consideration
of those multiple attributes, but also a market segmentation based on the consumers’
preferences knowledge. Similarly, the development of a precise service offer, enhanc-
ing the quality service (i.e., punctual delivery) is another key aspect of the sustainable
e-grocery distribution.Thus, Ellinger et al. [19] have highlighted the importance of collabo-
ration between logistics and marketing. Reinforcing the same idea, Seidel et al. [20] and
Boyer et al. [21] show that being able to balance the desires for short delivery time-windows,
that are more attractive to consumers (marketing desire), with longer delivery windows,
which produce more efficient routes (sellers desire), can improve the outcome performance
of the e-grocery service and foster the positioning of the seller within the marketplace.

As a result, some authors, such as Fikar et al. [22], have designed and implemented a
simulation and optimization-based Decision Support System (DSS) that can help decision-
makers in developing e-grocery sustainable operations and proper service offers (e.g.,
perishability management or safety related issues). For addressing this topic, the most
common methodology is the Vehicle Routing Problem (VRP) and its variations (e.g., the
Capacity Vehicle Routing Problem (CVRP) or the Vehicle Routing Problem with Backhauls
(VRPB)). For example, Emeç et al. [16] designed a mathematical program for efficient
delivery services of online groceries to fulfill a diverse consumer demand without incurring
in additional inventory costs. That model is based on a distribution network in which the
goods are acquired from an external set of vendors, sited at multiple locations within the
supply network, and delivered to consumers in a single visit in an e-grocery environment.
Furthermore, Hornstra et al. [23] introduced the VRP with simultaneous pickup and
delivery, and managerial costs. In this work, the fleet of vehicles operates from a single
depot for serving all the orders, which considers a delivery and a pickup demand such
that all delivery items originate from and all pickup items go to the depot. Finally, it
is important to mention that the increment in the popularity of this new type of good
consumption has helped to reduce the carbon footprint in urban areas [24]. Note that, this
is one of the reasons of its success along with its excellent results when it is managed by
means of horizontal cooperation [25].

2.2. Horizontal Cooperation

Recently, new characteristics related to the current economic status quo, such as
strong competition in global markets, introduction of products with shorter life cycles,
or heightened customers expectations, have forced companies to invest in developing
stronger and mutually beneficial relationships between them. This collaborative-sharing

87

Algorithms 2021, 14, 20

process usually involves multiple companies or autonomous business entities engaging in
strategic relationships. Consequently, they can share improved outcomes and benefits [10]
in supply chain in inter-organizational and inter-functional stages [26]. In this context,
Bahinipati et al. [27] refers to horizontal cooperation as a set of actions developed by the
partnership of several companies within the same supply chain level and oriented to
improve their outcome in economic and sustainable terms. Lambert et al. [28] defined
horizontal cooperation as a business-oriented relationship that is based on mutual trust,
commitment, and openness, in which the main goal is to foster competitive advantage in
the marketplace (i.e., assuming that the cooperative outcome would be greater than the
one achieved in solitary, promoting the positioning within the market).

The partnering aims at increasing productivity through close cooperation, that is, small
and medium enterprises could act as large enterprise, and consequently, would increase
their benefits from economies of scale. For example, optimizing vehicle capacity utilization,
reducing empty mileage, and cutting costs of non-core/supporting activities to increase
the competitiveness of logistic networks [11]. According to Cao and Zhang [29], the main
cooperative advantages and the most desired synergic outcomes are the strategic benefits
gained over competitors through partnership, that enables inventory centralization and
ordering. In the same line, Nooteboom [30] depicted that some of the expected results of
the cooperative process are: (i) efficiency in the exploitation of resources; (ii) development
of new competencies along with strengthening of the production capacity; and (iii) better
positioning in markets.

However, some problems are expected to may arise in the process [31]—inequality in
power distribution, where less powerful partners are likely to feel discriminated against;
or the appearance of opportunism and dysfunctional disputes, because partnering firms
are competing for the same customers. Nevertheless, as Rindfleisch [32] pointed out, these
problems emerged within the same supply chain level are supposed to be lower in intensity,
since companies usually do not rely on the output of partners for developing their core
activity.

2.3. Agent-Based Simulation

Agent-based models (ABMs) are computational simulations in which artificial entities
interact over time within customized environments [33]. That means, ABMs try to repro-
duce individual processes of movement, behavior, birth, growth, and death according to a
set of information, such as genotype, history, and location of agents (i.e., crucial components
of the analysis). Furthermore, ABMs permit an unequaled control and some statistical
power by allowing to specify the behavior of any number of agents and observe their
interactions over time. In this scenario, an agent is considered an actor who plays a role
within a given environment and who functions independently (i.e., according to the nature
and behavior of other agents, responses can vary too) from other agents (i.e., settlements,
people, political entities or companies, among others). In order to be able to respond to this
dynamic system, agents have protocols or mechanisms that describe how they interact with
other agents, having themselves their own characteristic idiosyncrasies [34]. Moreover,
an agent is an identifiable, discrete individual with a set of characteristics or attributes,
behaviors, and decision-making capability which can be considered as a particular indi-
vidual [35]. Also, agents are adaptive in that they respond to their environment through
learning and evolution and are autonomous in that they control their own goals, states,
and conducts [36].

In addition, ABMs present an ideal framework for social simulation that helps to spec-
ify causal mechanisms, that is, models that simulate not only individual behavior but also
social interaction that characterizes society development and criterion [37]). Considering
the aforementioned approach, ABMs are present in the literature in a wide variety of fields,
such as economics [38], sociology [39], political science [40], or artificial intelligence [41].
Their use is widespread in modeling human social and organizational behavior and indi-
vidual decision-making [42,43], where individual and group behavior, social interaction,

88

Algorithms 2021, 14, 20

and collaboration, among others, are main actors. This trend seems likely to continue in
the same line, so their implementation will become frequent in geography and in urban
and regional planning [44].

According to Macal and North [45], the main reasons for popularity in the use of agent-
based modeling are: (i) the current systems that need to be analyzed and modeled have
become in complex systems in terms of interdependencies, and accordingly, traditional
modeling tools may not be as applicable as they once were; (ii) ABMs present an answer
for those systems that always have been too complex to be represented (i.e., economic
models); (iii) the collection process is finer now (i.e., individual-based simulations); and (iv)
computational power is advancing rapidly. Nowadays, it is possible to compute large-scale
microsimulation models that would not have been plausible just a few years ago.

3. The e-Grocery Demand Analysis in the City of Pamplona (Spain)

The interest of analysing the e-grocery demand in a medium sized city is three-fold.
Firstly, the e-grocery penetration is lower and customers’ characteristics heavily differ
from those in large cities [46]. Secondly, the transportation infrastructure is usually poorer
than in large cities, which makes transportation activities less efficient [47]. Thirdly, the
literature review has revealed a lack of research focused on small and medium cities, being
large cities the center of attention in most of the research. Therefore, the geographical scope
of our experiment is Pamplona area in Northern Spain, which includes a population of
about 250,000 inhabitants. Figure 1 shows the location of the city in Spain and demand and
supply points, where purple dots stand for demand locations and hexagon marks stand for
the selected supermarkets for the experiments.

Figure 1. Survey geographical scope, customer and supermarket agents, and Pamplona location in Spain.

A survey was distributed in the area for gathering e-grocery demand information in
the time period from 1 February 2020 to 31 March 2020. The questionnaire was compounded
by three blocks of questions. An introductory section, aimed at collecting socio-economic
information such as age, gender, and economic status, among others. This section is
particularly interesting because it introduces the topic to analyse and focuses the survey on
e-groceries. Therefore, the main objective of that section is to clarify what we refer to the

89

Algorithms 2021, 14, 20

e-grocery demand. The second section is intended to gather the e-grocery information. It
contains questions related to the supermarket preference, the type of product, the frequency
of shopping online groceries, and the expense made on e-grocery. Finally, the third section
is focused on the logistic part of the e-grocery service. Therefore, the questions here
referred to the day of the week, as well as the preferred time window for the delivery.
The selection procedure was based on simple random sampling using the e-mail. For this
purpose, different mail distribution lists, for example, from the Council and the Public
University of Navarra, were used for reaching the participants. All in all, we accounted for
182 observations.

Analysing carefully the survey, we can highlight the main aspects related to the
e-grocery demand patterns in Pamplona. Firstly, there are four main supermarkets for
ordering online. They are detailed in Table 1. Thus, we will use these four supermarkets
for our simulation model. Secondly, most of the participants do not usually order groceries
online. About a 25% of the total order e-groceries at least once a month. The frequency
of ordering is provided in Figure 2. Third, delivery preferences are basically during the
weekdays at the 19-22 h time window. The detailed delivery preferences are provided in
Figure 3.

Table 1. Preference for e-grocery supermarkets.

Supermarket Nickname Preference Webpage

Eroski S1 17.60% https://www.eroski.es/
Mercadona S2 9.10% https://www.mercadona.es/
Carrefour S3 7.50% https://www.carrefour.es/

Dia S4 4.80% https://www.dia.es/

Figure 2. E-groceries frequency ordering.

90

Algorithms 2021, 14, 20

Figure 3. E-grocery delivery preferences per day of the week.

With the information previously obtained, we can estimate the expected demand,
that is, number of orders, for the considered supermarkets. These estimations, shown in
Table 2, are the main input for our simulation model. In particular, we first computed
the expected weekly demand at the last row. These figures were obtained by using the
information in Table 1 and Figure 2. Since those computations and experiments have
been calculated on a weekly basis, we use a discrete random variable, for computing
weekly demands, associated to the customers ordering frequency as it is shown in Figure 2.
The possible values of that random variable are: 1 for purchasing once a week, 0.5 for
purchasing once every two weeks, 0.25 for purchasing once a month, 0.125 for purchasing
once every two months, 0.0625 for purchasing once every three months, and 0 for not
ordering online. Additionally, we assume the study area accounts for 100, 000 households.
We consider this a good approximation due to the fact that the Pamplona metropolitan area
has around 250, 000 inhabitants and the average household size is around 2.5 people [48].
Therefore, the expected weekly demand for any supermarket is obtained as the product of
the random variable, its probability distribution function, and the number of households.
Afterwards, the expected weekly demand is distributed among the time windows according
to estimated probabilities drawn from the information in Figure 3.

91

Algorithms 2021, 14, 20

Table 2. Expected demand (number of orders) per time window and day of the week.

Day of the Week Time Window S1 S2 S3 S4

Monday

7–10 h 38.88 20.10 16.57 10.60
10–13 h 64.79 33.50 27.61 17.67
13–16 h 64.79 33.50 27.61 17.67
16–19 h 103.67 53.60 44.18 28.27
19–22 h 181.42 93.80 77.31 49.48

Tuesday

7–10 h 25.92 13.40 11.04 7.07
10–13 h 38.88 20.10 16.57 10.60
13–16 h 64.79 33.50 27.61 17.67
16–19 h 129.58 67.00 55.22 35.34
19–22 h 155.50 80.40 66.27 42.41

Wednesday

7–10 h 25.92 13.40 11.04 7.07
10–13 h 38.88 20.10 16.57 10.60
13–16 h 51.83 26.80 22.09 14.14
16–19 h 103.67 53.60 44.18 28.27
19–22 h 194.38 100.50 82.83 53.01

Thursday

7–10 h 51.83 26.80 22.09 14.14
10–13 h 51.83 26.80 22.09 14.14
13–16 h 64.79 33.50 27.61 17.67
16–19 h 77.75 40.20 33.13 21.20
19–22 h 116.63 60.30 49.70 31.81

Friday

7–10 h 38.88 20.10 16.57 10.60
10–13 h 38.88 20.10 16.57 10.60
13–16 h 64.79 33.50 27.61 17.67
16–19 h 116.63 60.30 49.70 31.81
19–22 h 129.58 67.00 55.22 35.34

Saturday

7–10 h 0.00 0.00 0.00 0.00
10–13 h 77.75 40.20 33.13 21.20
13–16 h 38.88 20.10 16.57 10.60
16–19 h 12.96 6.70 5.52 3.53
19–22 h 38.88 20.10 16.57 10.60

Sunday

7–10 h 12.96 6.70 5.52 3.53
10–13 h 25.92 13.40 11.04 7.07
13–16 h 25.92 13.40 11.04 7.07
16–19 h 25.92 13.40 11.04 7.07
19–22 h 38.88 20.10 16.57 10.60

Expected weekly demand 2332.53 1206.02 993.98 636.14

4. Methodology

For analyzing the impacts of horizontal cooperation on the urban e-grocery distribu-
tion we have developed an agent-based simulation model. This simulation model accounts
for two populations of agents (i.e., the customers and the supermarket) who interact in the
Pamplona metropolitan physical environment. Additionally, the coalition of supermarkets
is also included as an agent. This coalition agent includes the supermarket agents and
the different cooperative protocols, including the non cooperative setting in which the
supermarkets act independently. Thus, each generated entity, as agent in the simulation
model, has its own parameters, variables and rules that describe its behavior in the en-
vironment. Actually, we chose an agent-based simulation approach because it allows to
easily deal with complexity and interdependencies between customers and supermarkets
in cooperative and non cooperative settings [45]. As it is described in forthcoming subsec-
tions, the idea behind the simulation model is that customers place orders to their preferred
supermarket choosing the time to receive their products inside a time window. Afterwards,
the supermarkets have to fulfill the orders using the cooperative policies or not, depending
on the running settings. This simulation model takes the backbone of the previous work

92

Algorithms 2021, 14, 20

performed by Serrano-Hernandez et al. [49] and Serrano-Hernandez et al. [50] and adapts
it to our research requirements. Thus, Serrano-Hernandez et al. [49] test horizontal cooper-
ation for a number of geographical distribution settings for last-mile urban distribution
in the city of Vienna (Austria). Similarly, Serrano-Hernandez et al. [50] investigate some
trust-related issues when some coalitions between supermarkets chains are created. The
main differences of our work in relation to the previous papers lie on the geographical
scope, the real-life based input data, the definition of horizontal cooperation policies, and
the solving algorithms for the resulting Vehicle Routing Problems.

The rest of this section is organised as follows. The key performance indicators for
our simulation are described in Section 4.1. The particularities of the agent are further
described in Sections 4.2 and 4.3 for customers and supermarkets, respectively. Section 4.4
describes the rules for the cooperative settings and Section 4.5 shows the simulation flow.

4.1. Key Performance Indicators

We used a bidimensional performance for evaluating the impact of horizontal cooper-
ation. The first dimension is an economic indicator whereas the second one is related to
service quality. They are further described in Figure 4.

Figure 4. Key Performance Indicators for evaluating horizontal cooperation.

4.2. The Customer Agents

Customers are represented by the cadastral information in the area using a geograph-
ical information system (GIS). They are the purple dots in Figure 1, which provide the
location for each building of the 12, 000 constructions in the metropolitan area of Pamplona
(Spain). Knowing the population of the city and the size of each household (its average is
2.5 [48]), we assume that each building lodges 8 households. Therefore, in our simulation
model, each demand point is replicated 8 times. Parameters and variables associated to
each of the roughly 96, 000 demand points in the simulation model are related to the nature
of the buyer, that is, whether it is an e-grocery buyer, and, if so, the preferred supermarket,
the preferred time windows and day of the week for e-grocery deliveries, and the lead time
from the beginning of the selected time window and the moment at which the products are
delivered. Additionally, we assume that each customer has a service time of 3 min, where
this time is considered as the temporal interval of making the physical delivery between
the last mile distribution vehicle and the customer home.

4.3. The Supermarket Agents

We consider the top four e-grocery supermarkets in Navarre, region where Pamplona
is located in Spain, for our experiments, that is, Eroski (S1), Mercadona (S2), Carrefour
(S3), and Dia (S4). Recall Table 1 for additional details. They are popular supermarket
chains in Spain and offer a wide range of online groceries, including fresh vegetables and
fruits. The locations of these supermarkets are shown in Figure 1. The parameters and

93

Algorithms 2021, 14, 20

variables associated to each supermarket consist in the list of customers to serve each day
and time window, distance driven, and available fleet. The fleet is a critical part in the
logistics performance of the company. At this manner, we assumed that each supermarket
owns an homogeneous fleet with a capacity of 20 orders. Likewise, the size of the fleet has
been determined with the expected weekly demand per time window, which is shown
in Table 2. Considering all the submitted orders to the supermarkets per day, we have
obtained an average value of 100.36, 51.89, 42.77, and 27.37 orders for the supermarkets
S1, S2, S3, and S4, respectively. Hence, knowing the aforementioned demand values, we
assume that the fleet size is 4 vehicles for S1, 2 for S2 and S3, and 1 for S4. The purpose
behind this assumption is to have a fleet size correlated to the number of orders at each
supermarket.

4.4. The Cooperative Protocols and the Routing Algorithms

We consider three scenarios based on the degree of cooperation. Each of them features
an algorithm to solve the problem. They are described in the following subsections.

4.4.1. No Cooperation Scenario

If cooperation is not enabled, each supermarket will serve its customers in an indepen-
dent way. Consequently, each supermarket has to solve as many Vehicle Routing Problems
(VRP) [51] as time window slots it offers to design the orders distribution plans. We have im-
plemented a heuristic algorithm to solve each VRP, which is based on a biased randomization
solution procedure of Clarke and Wright’s Savings algorithm [52,53]. Thus, we have followed
the instructions given in Grasas et al. [54] and Juan et al. [52] to design our own algorithm to
solve the corresponding VRP. In this sense, we use the value 0.2 for the skewed distribution
(a truncated geometrical distribution) mentioned by Grasas et al. [54] with 1000 iterations as
stopping criterion. The flowchart of the proposed algorithm is shown in Figure 5.

4.4.2. Limited Cooperation Scenario

In the intermediate scenario of limited cooperation, companies in the coalition are
allowed to share a given proportion of their customers for each logistic service, that is, each
time window and day. The cooperative mechanism consists of creating a pool of customers
that may be served from other companies in the coalition. We fix the quota for transferring
customers to a 50%. Note that, it is based on time-distance (time to make the delivery in
the real situation of traffic in a fixed time) to the chosen supermarket. Then, the customers
are iteratively assigned to the closest supermarket until the pool of customers is empty.
This process is illustrated in Figure 6 for a given time window, where companies transfer a
total of 30 customers to the common pool. The initial contributions of each company in the
example are 3 customers from S1, 15 from S2, 4 from S3 and 8 from S4. Then, customers
are transferred at different rounds until the pool of customers is empty. In this case, there
are 3 rounds for assigning the customers. In the first round, the percentage of customers
the biggest contributor (supermarket having the greatest number of orders in one day) may
pick is bounded by the percentage corresponding to the smallest contributor. Since there
are 3 rounds, the smallest contributor is assigned a 33% of customers per round, which
means that each company should receive a 33% of their given customers per round. That
gives 5 customers to the first picker, that is, S2. Recall that customers assignment is based
on time-distance. Therefore, the 5 closest customers in the pool are assigned to S2. If the
aforementioned proportions do not produce an integer number, as it is the case for S4 and
S3, then the number of assigned customers is rounded up. This process is repeated until all
the customers are assigned in forthcoming rounds. Then, the resulting VRP is solved using
the biased randomization procedure described in Figure 5. Finally, when customers are
served, they are reassigned to the chosen supermarket and this process is restarted for the
next time window.

94

Algorithms 2021, 14, 20

Figure 5. Flowchart of the proposed algorithm for solving the Vehicle Routing Problems (VRPs).

4.4.3. Full Cooperation Scenario

In full cooperative settings all supermarkets serve conjointly all customers. That is,
the four supermarket chains make a coalition which sets a delivery problem for the de-
manded orders. This problem must be solved considering a number of Multi Depot Vehicle
Routing Problems (MDVRP) [55] according to the time window slots we have. Conse-
quently, we implemented a heuristic MDVRP following the recommendations described in
Juan et al. [56]. The solution procedure starts sorting the supermarkets to each customer
based on time-distances. Then, each customer is randomly assigned to a supermarket
using a biased randomization procedure [56]. That is, closer supermarkets to the customers
have greater probabilities to be chosen. Once all customers are assigned, the same biased-
randomization procedure previously described in the VRP is applied to obtain a complete
solution (see Figure 5). Finally, this solution is saved and a percentage of customers (50%
in our experiments) are unassigned from their supermarkets and reassigned using the
biased-randomized assignment procedure. Then, the MDVRPs are again solved. This
process is repeated a number of iterations (150 in our case study) and the best solution

95

Algorithms 2021, 14, 20

so far is reported. The flowchart of the proposed algorithm for the MDVRP is shown in
Figure 7.

Figure 6. Example of the limited cooperation mechanism.

96

Algorithms 2021, 14, 20

Figure 7. Flowchart of the proposed algorithm for solving the Multi Depot VRPs (MDVRP).

4.5. Dynamics of the Simulation

All parameters related to customer and supermarket agents are set at each simulation
replication. That is, according to the input data, the customers place their e-groceries orders
to their preferred supermarket to be served at a specific time window on a day-week. Note
that customers are randomly assigned to a supermarket following the probability distribution
function (that is, the preferences) given in Table 1. Then, the three cooperation settings are
tested, following the next protocol: firstly, the non-cooperative settings; secondly, the limited
cooperation protocol; and finally, the full cooperation policy. The simulation model starts on
Monday with the non-cooperative settings. Orders are delivered following a sequential policy
according to time windows. That is, all the supermarkets start their deliveries at 7am using
the solution reported by the VRP algorithm described in Figure 5. Note that, the routes finish
once all customers have been served, which implies that violating a time window will delay
the starting time for the deliveries in the following time windows. This is repeated for the rest
of the week. Once the non-cooperative scenario is solved, the key performance indicators
are returned, and the limited cooperation protocol is evaluated following the procedure
described in Section 4.4.2. Notice that, we maintain the parameters set at the beginning
of the replication for these settings. Similarly, once limited cooperation is evaluated, the
process is repeated for the full cooperation policy and the KPIs are reported. In total, we
run 100 simulation replications. This simulation dynamics overview is shown in Figure 8.

97

Algorithms 2021, 14, 20

Figure 8. Simulation dynamics overview.

5. Experimental Results

The simulation model and the algorithms were implemented in AnyLogic 8.6.0 [57]
software, and run in a standard desktop with an Intel® Core™ i7- 9700K CPU @3.60 GHz
and 16 GB RAM. This section firstly describes the main results when running the simulation
for different cooperation settings. Secondly, we analyse the general effects of an unexpected
increase on demand figures.

98

Algorithms 2021, 14, 20

The main results are depicted in Figures 9 and 10. They show the boxplots of average
distances driven and lead times (which are defined as the temporal distances between
the minimum value of the time window and the time when the customer received his
or her order) of the 100 simulation replications, respectively. Tables 3 and 4 display
average distance driven (in km) and average lead times (in minutes), respectively, for each
supermarket and cooperation settings. They also show the percentage variation in the
averages for non- and limited cooperation and limited and full cooperation strategies. Note
that the last row in Table 3 shows the total distance driven by all supermarkets during a
week, whereas the last row in Table 4 shows the average lead time a customer has to be
waiting, independently from the chosen supermarket.

Table 3. Average distance driven (km) in the 100 replications for non-, limited, and full cooperation
settings for each supermarket.

No Cooperation Limited Cooperation % Change Full Cooperation % Change

S1 694.79 511.16 −26.43% 352.43 −49.27%
S2 357.24 297.21 −16.80% 210.68 −41.03%
S3 299.92 257.12 −14.27% 184.28 −38.56%
S4 192.27 166.04 −13.64% 133.48 −30.58%

Total 1544.21 1231.53 −20.25% 880.87 −42.96%

Table 4. Average lead times (minutes) in the 100 replications for non-, limited, and full cooperation
settings for each supermarket.

No Cooperation Limited Cooperation % Change Full Cooperation % Change

S1 166.69 126.74 −23.97% 80.36 −51.79%
S2 147.77 115.58 −21.78% 84.97 −42.50%
S3 134.14 106.41 −20.67% 80.19 −40.22%
S4 112.27 90.00 −19.84% 73.17 −34.83%

Average 149.74 115.99 −22.54% 80.55 −46.21%

As it can be observed, horizontal cooperation significantly improves the logistics
performance of the e-grocery distribution. First of all, the total distance driven is reduced
by a 20.25% when the limited cooperation mechanism is activated; and by a 42.96% when
full cooperation is achieved, on average. Nevertheless, this effect clearly depends on the
size of the supermarket (in terms of expected demand). Reductions are greater for large
supermarkets (up to 49.27%) and much lower for smaller supermarkets (up to 30.58%).
Secondly, service quality, measured as the lead time, is also benefited from the application of
horizontal cooperation in a similar way. Actually, average lead time is reduced by a 22.54%
and a 46.21%, on average, for limited and full cooperation, respectively. Here, the size of
the supermarket also determines the horizontal cooperation impacts amplitude. Finally,
we can observe how boxplots ranges and interquartile ranges clearly get reduced for all
supermarkets when cooperation is implemented. Therefore, the KPIs, that is, distances and
lead times, gain stability while uncertainty is mitigated.

99

Algorithms 2021, 14, 20

F
ig

u
re

9
.

Bo
xp

lo
ts

fo
r

th
e

av
er

ag
e

di
st

an
ce

dr
iv

en
in

th
e

10
0

re
pl

ic
at

io
ns

fo
r

no
n-

,l
im

it
ed

,a
nd

fu
ll

co
op

er
at

io
n

se
tt

in
gs

fo
r

ea
ch

su
pe

rm
ar

ke
t.

F
ig

u
re

1
0

.
Bo

xp
lo

ts
fo

r
th

e
av

er
ag

e
le

ad
ti

m
es

in
th

e
10

0
re

pl
ic

at
io

ns
fo

r
no

n-
,l

im
it

ed
,a

nd
fu

ll
co

op
er

at
io

n
se

tt
in

gs
fo

r
ea

ch
su

pe
rm

ar
ke

t.

100

Algorithms 2021, 14, 20

Furthermore, additional scenarios have been analysed in order to demonstrate the
robustness of the presented approach, featuring increases on the demand figures. Our aim
is showing that the horizontal cooperation benefits are kept when we depict a wide range
of scenarios. We consider three demand scenarios. Firstly, the base scenario, which has
been already analysed and whose demand is estimated in Section 3. Secondly, a scenario
featuring an increase of a 25% on demand figures. Finally, a scenario in which the number
of orders increase a 50%. The fleet size is kept fixed for all the scenarios according to the
description made in Section 4.3. Tables 5 and 6 show the KPIs obtained from the results in
the mentioned scenarios, that is, distance driven and lead times, respectively. The first row
in the tables show the scenarios to be addressed, the second one the cooperative strategy to
be employed, the next four rows show the average results for each of the four supermarkets,
and the last row the overall average results. As expected, an increase on demand levels
produces increments on both the distance driven and the lead times. Nevertheless, it
must be highlighted that those increments feature different patterns depending on the
cooperation settings. Actually, as it can be observed in Figure 11, the greater the increase
on demand figures is, the greater the positive effects on distances are. This is particularly
noticeable in the no cooperation settings, where the distance driven increases a 29% and a
65% when demand increases a 25% and a 50%, respectively. However, these increments
are lower in the full cooperation environment, a 20% and a 51%, respectively. That is, the
slope (i.e., the negative effects) is softer when cooperation is implemented, which leads to a
better response to unexpected demand increases. Similar insights can be obtained when
analysing the effects on leading times in Figure 12.

Table 5. Average distance driven (km) in the 100 replications for non-, limited, and full cooperation settings for each
supermarket by demand increase scenario.

Base 25% Demand Increase 50% Demand Increase

No Coop Limited Full No Coop Limited Full No Coop Limited Full

S1 694.79 511.16 352.43 920.92 672.00 437.60 1,170.52 823.10 537.42
S2 357.24 297.21 210.68 453.13 366.93 249.79 589.85 481.62 324.80
S3 299.92 257.12 184.28 383.76 317.32 220.14 502.50 423.37 285.92
S4 192.27 166.04 133.48 235.53 199.21 152.93 280.24 235.75 185.27

Total 1544.21 1231.53 880.87 1993.34 1555.46 1060.45 2543.11 1963.84 1333.41

Table 6. Average lead times (minutes) in the 100 replications for non-, limited, and full cooperation settings for each
supermarket by demand increase scenario.

Base 25% Demand Increase 50% Demand Increase

No Cooperation Limited Full No Coop Limited Full No Coop Limited Full

S1 166.69 126.74 80.36 220.94 166.62 99.78 280.82 204.08 122.54
S2 147.77 115.58 84.97 187.44 142.69 100.74 243.99 187.29 130.99
S3 134.14 106.41 80.19 171.64 131.33 95.79 224.75 175.21 124.42
S4 112.27 90.00 73.17 137.53 107.98 83.83 163.64 127.79 101.56

Total 149.74 115.99 80.55 717.55 548.61 380.15 913.20 694.38 479.51

101

Algorithms 2021, 14, 20

Figure 11. Mean plots by demand scenario and cooperative setting for total distances.

Figure 12. Mean plots by demand scenario and cooperative setting for average lead times.

102

Algorithms 2021, 14, 20

6. Conclusions, Limitations, and Future Research

This work presents the use of horizontal cooperation as a way to gain competitiveness
in the e-grocery delivery sector. For testing the convenience of using horizontal cooperation,
we develop an agent-based simulation model in the city of Pamplona (Spain). We evaluate
the effects on the economic and service quality sides of the logistics operations for different
scenarios which consist on distribution of online demand orders at supermarkets. Two
degrees of horizontal cooperation for performing the deliveries are tested, while distribu-
tion plans are determined by the implementation of a biased randomization algorithm.
As a result, the use of horizontal cooperation clearly improves the economic and service
quality performance of the e-grocery distribution. Furthermore, the distribution becomes
more robust to unexpected demand increases when the coalition is able to absorb the new
demand more efficiently than the actors independently.

Nevertheless, there are a number of assumptions made during the modeling process
that imply some limitations to our work. Firstly, we assume all the orders contain products
available at all supermarkets. Therefore, we are assuming that customers order products
that are identical in the different supermarkets in the coalition, such as top brand products
and fresh vegetables and fruits. Nonetheless, note that in our simulation experiments,
the customers do not change the preferred supermarket, they still order to their preferred
supermarket but it is the coalition that internally makes efficient assignments and then
the order is supplied, or not, by a different supermarket or, even, by a third party logistic
service provider. Secondly, we are considering that supermarkets will accept all orders they
receive. That means there are no limitations for dispatching any order at any time window.
Thirdly, we are assuming each supermarket owns an homogeneous fleet. This means
that all the fleets are composed of vehicles of identical capacity, which does not resemble
reality, as many different vehicle types may exist in a flotilla. Finally, we assume there are
cooperation agreements as exposed. Actually, horizontal cooperation may adapt many
different forms in terms of time frame, amplitude, stamina, and the involved organizational
levels [58].

Regarding future research, two new clear scopes can be considered. On the one
hand, there are opportunities to develop more complex simulation models. This involves
the access to high resolution data to better estimate demand patterns and supermarket
characteristics. Additionally, the ad-hoc definition of horizontal cooperation policies
that are currently running on logistics-related services would allow the calibration and
validation of forthcoming simulation-based researches. On the other hand, practical issues
should be analysed and integrated in the optimization models. This refers to the way in
which benefits and risks are shared in the coalition; as well as how the coalition should
evolve during time.

Author Contributions: Conceptualization, A.S.-H. and J.F.; methodology, A.S.-H.; writing–original
draft preparation, A.S.-H. and R.d.l.T.; writing—review and editing, L.C. and J.F. All authors have
read and agreed to the published version of the manuscript.

Funding: This work has been partially supported by the Spanish Ministry of Science, Innovation,
and Universities (RED2018-102642-T; PID2019-111100RB-C22/AEI/10.13039/501100011033) and the
SEPIE Erasmus+ Program (2019-I-ES01-KA103-062602). We also want to acknowledge the support
received from the CAN Foundation in Navarre, Spain (Grant ID 903 100010434 under the agreement
LCF/PR/PR15/51100007).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Data are available upon reasonable request to the corresponding
author.

Conflicts of Interest: The authors declare no conflict of interest.

103

Algorithms 2021, 14, 20

References

1. Kämäräinen, V.; Punakivi, M. Developing cost-effective operations for the e-grocery supply chain. Int. J. Logist. 2002, 5, 285–298.
[CrossRef]

2. Olsson, J.; Hellström, D.; Pålsson, H. Framework of last mile logistics research: A systematic review of the literature. Sustainability
2019, 11, 7131. [CrossRef]

3. Fredriksson, A.; Liljestrand, K. Capturing food logistics: A literature review and research agenda. Int. J. Logist. Res. Appl. 2015,
18, 16–34. [CrossRef]

4. Williams, J.; Memery, J.; Megicks, P.; Morrison, M. Ethics and social responsibility in Australian grocery shopping. Int. J. Retail.
Distrib. Manag. 2010, 38, 297–316. [CrossRef]

5. Teller, C.; Holweg, C.; Reiner, G.; Kotzab, H. Retail store operations and food waste. J. Clean. Prod. 2018, 185, 981–997. [CrossRef]
6. Fikar, C. A decision support system to investigate food losses in e-grocery deliveries. Comput. Ind. Eng. 2018, 117, 282–290.

[CrossRef]
7. Rodríguez, S.V.; Plà, L.M.; Faulin, J. New opportunities in operations research to improve pork supply chain efficiency. Ann.

Oper. Res. 2014, 219, 5–23. [CrossRef]
8. Sawik, B.; Faulin, J.; Pérez-Bernabeu, E. Multi-criteria optimization for fleet size with environmental aspects. Transp. Res. Procedia

2017, 27, 61–68. [CrossRef]
9. Schaltegger, S.; Burritt, R.; Varsei, M.; Soosay, C.; Fahimnia, B.; Sarkis, J. Framing sustainability performance of supply chains

with multidimensional indicators. Supply Chain. Manag. Int. J. 2014, 19, 242–257. [CrossRef]
10. Soosay, C.A.; Hyland, P. A decade of supply chain collaboration and directions for future research. Supply Chain. Manag. Int. J.

2015, 20, 613–630. [CrossRef]
11. Wang, X.; Kopfer, H. Collaborative transportation planning of less-than-truckload freight. OR Spectrum 2014, 36, 357–380.

[CrossRef]
12. Arlbjørn, J.S.; Wallenburg, C.M.; Raue, J.S. Conflict and its governance in horizontal cooperations of logistics service providers.

Int. J. Phys. Distrib. Logist. Manag. 2011, 41, 385–400.
13. Cruijssen, F.; Dullaert, W.; Fleuren, H. Horizontal cooperation in transport and logistics: A literature review. Transp. J. 2007,

46, 22–39.
14. Fraser, J.; Fraser, N.; McDonald, F. The strategic challenge of electronic commerce. Supply Chain. Manag. Int. J. 2000, 5, 7–14.

[CrossRef]
15. da Silveira, G.J. Towards a framework for operations management in e-commerce. Int. J. Oper. Prod. Manag. 2003, 23, 200–212.

[CrossRef]
16. Emeç, U.; Çatay, B.; Bozkaya, B. An adaptive large neighborhood search for an e-grocery delivery routing problem. Comput. Oper.

Res. 2016, 69, 109–125. [CrossRef]
17. Hübner, A.H.; Kuhn, H.; Wollenburg, J.; Towers, N.; Kotzab, H. Last mile fulfilment and distribution in omni-channel grocery

retailing: A strategic planning framework. Int. J. Retail. Distrib. Manag. 2016. [CrossRef]
18. Wilson-Jeanselme, M.; Reynolds, J. Understanding shoppers’ expectations of online grocery retailing. Int. J. Retail. Distrib. Manag.

2006, 34, 529–540. [CrossRef]
19. Ellinger, A.E.; Keller, S.B.; Hansen, J.D. Bridging the divide between logistics and marketing: facilitating collaborative behavior. J.

Bus. Logist. 2006, 27, 1–27. [CrossRef]
20. Seidel, S.; Mareï, N.; Blanquart, C. Innovations in e-grocery and logistics solutions for cities. Transp. Res. Procedia 2016, 12, 825–835.
21. Boyer, K.K.; Prud’homme, A.M.; Chung, W. The last mile challenge: evaluating the effects of customer density and delivery

window patterns. J. Bus. Logist. 2009, 30, 185–201. [CrossRef]
22. Fikar, C.; Mild, A.; Waitz, M. Facilitating consumer preferences and product shelf life data in the design of e-grocery deliveries.

Eur. J. Oper. Res. 2019. [CrossRef]
23. Hornstra, R.P.; Silva, A.; Roodbergen, K.J.; Coelho, L.C. The vehicle routing problem with simultaneous pickup and delivery and

handling costs. Comput. Oper. Res. 2020, 115, 104858. [CrossRef]
24. Figliozzi, M.; Saenz, J.; Faulin, J. Minimization of urban freight distribution lifecycle CO2e emissions: Results from an optimization

model and a real-world case study. Transp. Policy 2020, 86, 60–68. [CrossRef]
25. Zissis, D.; Aktas, E.; Bourlakis, M. Collaboration in urban distribution of online grocery orders. Int. J. Logist. Manag. 2018.

[CrossRef]
26. Calleja, G.; Corominas, A.; Martínez-Costa, C.; de la Torre, R. Methodological approaches to supply chain design. Int. J. Prod. Res.

2018, 56, 4467–4489. [CrossRef]
27. Bahinipati, B.K.; Kanda, A.; Deshmukh, S. Horizontal collaboration in semiconductor manufacturing industry supply chain: An

evaluation of collaboration intensity index. Comput. Ind. Eng. 2009, 57, 880–895. [CrossRef]
28. Lambert, D.M.; Emmelhainz, M.A.; Gardner, J.T. Building successful logistics partnerships. J. Bus. Logist. 1999, 20, 165.
29. Cao, M.; Zhang, Q. Supply chain collaborative advantage: A firm’s perspective. Int. J. Prod. Econ. 2010, 128, 358–367. [CrossRef]
30. Nooteboom, B. Inter-Firm Collaboration, Learning And Networks: An Integrated Approach; Routledge, Taylor and Francis Group:

New York, NY, USA, 2004.
31. Tidström, A. Causes of conflict in intercompetitor cooperation. J. Bus. Ind. Mark. 2009, 27, 506–518. [CrossRef]

104

Algorithms 2021, 14, 20

32. Rindfleisch, A. Organizational trust and interfirm cooperation: an examination of horizontal versus vertical alliances. Mark. Lett.
2000, 11, 81–95. [CrossRef]

33. Jackson, J.C.; Rand, D.; Lewis, K.; Norton, M.I.; Gray, K. Agent-based modeling: A guide for social psychologists. Soc. Psychol.
Personal. Sci. 2017, 8, 387–395. [CrossRef]

34. Garcia, R. Uses of agent-based modeling in innovation/new product development research. J. Prod. Innov. Manag. 2005,
22, 380–398. [CrossRef]

35. Macal, C.M.; North, M.J. Agent-based modeling and simulation. In Proceedings of the 2009 Winter Simulation Conference
(WSC), Austin, TX, USA, 13–16 December 2009; pp. 86–98.

36. Macy, M.; Flache, A. The Oxford Handbook of Analytical Sociology; Chapter Social Dynamics from the Bottom Up: Agent-Based Models of
Social Interaction; Oxford University Press: Oxford, UK, 2002; pp. 245–268.

37. Macal, C. Everything you need to know about agent-based modelling and simulation. J. Simul. 2016, 10, 144–156. [CrossRef]
38. Tesfatsion, L.; Judd, K.L. Handbook of Computational Economics: Agent-Based Computational Economics; Elsevier: Amsterdam,

The Netherlands, 2006.
39. Bruch, E.; Atwell, J. Agent-based models in empirical social research. Sociol. Methods Res. 2015, 44, 186–221. [CrossRef] [PubMed]
40. Cederman, L.E. Computational models of social forms: Advancing generative process theory. Am. J. Sociol. 2005, 110, 864–893.

[CrossRef]
41. Wooldridge, J.M. Cluster-sample methods in applied econometrics. Am. Econ. Rev. 2003, 93, 133–138. [CrossRef]
42. Liu, R.; Jiang, D.; Shi, L. Agent-based simulation of alternative classroom evacuation scenarios. Front. Archit. Res. 2016, 5, 111–125.

[CrossRef]
43. Bonabeau, E. Agent-based modeling: Methods and techniques for simulating human systems. Proc. Natl. Acad. Sci. USA 2002,

99, 7280–7287. [CrossRef] [PubMed]
44. O’Sullivan, D.; Haklay, M. Agent-based models and individualism: is the world agent-based? Environ. Plan. A 2000, 32, 1409–1425.

[CrossRef]
45. Macal, C.; North, M. Introductory tutorial: Agent-based modeling and simulation. In Proceedings of the Winter Simulation

Conference 2014, Savanah, GA, USA, 7–10 December 2014.
46. Mkansi, M.; de Leeuw, S.; Amosun, O. Mobile application supported urban-township e-grocery distribution. Int. J. Phys. Distrib.

Logist. Manag. 2019, 50, 26–53. [CrossRef]
47. Alvarez, P.; Serrano-Hernandez, A.; Faulin, J.; Juan, A. Using Modelling Techniques to Analyze Urban Freight Distribution. A

Case Study in Pamplona (Spain). Transp. Res. Procedia 2018, 33, 37–74. [CrossRef]
48. Spanish Institute of Statistics. Continuous Household Survey. 2019. Available online: https://www.ine.es/dyngs/INEbase/en/

operacion.htm?c=Estadistica_C&cid=1254736176952&menu=ultiDatos&idp=1254735572981 (accessed on 20 April 2020).
49. Serrano-Hernandez, A.; Hirsch, P.; Faulin, J.; Fikar, C. The role of horizontal cooperation to improve service quality in last-mile

distribution. Int. J. Simul. Process. Model. 2018, 13, 299–309. [CrossRef]
50. Serrano-Hernandez, A.; Faulin, J.; Hirsch, P.; Fikar, C. Agent-based simulation for horizontal cooperation in logistics and

transportation: From the individual to the grand coalition. Simul. Model. Pract. Theory 2018, 85, 47–59. [CrossRef]
51. Mor, A.; Speranza, M. Vehicle routing problems over time: A survey. 4OR 2020. [CrossRef]
52. Juan, A.; Faulin, J.; Ruiz, R.; Barrios, B.; Caballé, S. The SR-GCWS hybrid algorithm for solving the capacitated vehicle routing

problem. Appl. Soft Comput. Journal 2010, 10, 215–224. [CrossRef]
53. Juan, A.A.; David Kelton, W.; Currie, C.S.M.; Faulin, J. Simheuristics Applications: Dealing with Uncertainty in Logistics,

Transportation, and other Supply Chain Areas. In Proceedings of the 2018 Winter Simulation Conference (WSC), Gothenburg,
Sweden, 9–12 December 2018; pp. 3048–3059. [CrossRef]

54. Grasas, A.; Juan, A.; Faulin, J.; de Armas, J.; Ramalhinho, H. Biased randomization of heuristics using skewed probability
distributions: A survey and some applications. Comput. Ind. Eng. 2017, 110, 216–228. [CrossRef]

55. Ramachandiran, R.; Suresh Joseph, K.; Ravisasthiri, P.; Victer Paul, P. A comprehensive study on the recent variants of the VRP
and its solving methodologies. Int. J. Appl. Eng. Res. 2015, 10, 43635–43644.

56. Juan, A.; Pascual, I.; Guimarans, D.; Barrios, B. Combining biased randomization with iterated local search for solving the
multidepot vehicle routing problem. Int. Trans. Oper. Res. 2015, 22, 647–667. [CrossRef]

57. AnyLogic. Available online: https://www.anylogic.com/1 (accessed on 20 September 2020).
58. Serrano-Hernández, A.; Juan, A.; Faulin, J.; Perez-Bernabeu, E. Horizontal collaboration in freight transport: Concepts, benefits,

and environmental challenges. Stat. Oper. Res. Trans. 2017, 41, 1–22.

105

algorithms

Article

An Algorithm for Efficient Generation of Customized
Priority Rules for Production Control in Project
Manufacturing with Stochastic Job Processing Times

Mathias Kühn *, Michael Völker and Thorsten Schmidt

Institute of Material Handling and Industrial Engineering, Technische Universität Dresden, 01062 Dresden,
Germany; michael.voelker@tu-dresden.de (M.V.); thorsten.schmidt@tu-dresden.de (T.S.)
* Correspondence: mathias.kuehn@tu-dresden.de

Received: 15 November 2020; Accepted: 11 December 2020; Published: 13 December 2020 ��������	
�������

Abstract: Project Planning and Control (PPC) problems with stochastic job processing times belong to
the problem class of Stochastic Resource-Constrained Multi-Project Scheduling Problems (SRCMPSP).
A practical example of this problem class is the industrial domain of customer-specific assembly
of complex products. PPC approaches have to compensate stochastic influences and achieve high
objective fulfillment. This paper presents an efficient simulation-based optimization approach to
generate Combined Priority Rules (CPRs) for determining the next job in short-term production
control. The objective is to minimize project-specific objectives such as average and standard deviation
of project delay or makespan. For this, we generate project-specific CPRs and evaluate the results
with the Pareto dominance concept. However, generating CPRs considering stochastic influences is
computationally intensive. To tackle this problem, we developed a 2-phase algorithm by first learning
the algorithm with deterministic data and by generating promising starting solutions for the more
computationally intensive stochastic phase. Since a good deterministic solution does not always lead
to a good stochastic solution, we introduced the parameter Initial Copy Rate (ICR) to generate an
initial population of copied and randomized individuals. Evaluating this approach, we conducted
various computer-based experiments. Compared to Standard Priority Rules (SPRs) used in practice,
the approach shows a higher objective fulfilment. The 2-phase algorithm can reduce the computation
effort and increases the efficiency of generating CPRs.

Keywords: simulation-based optimization; stochastic project scheduling; genetic algorithm; discrete
event simulation; composite priority rules

1. Introduction

One of the challenges in industrial environments is the handling of a large number of product
variants [1] (p. 46). In production, this trend is accompanied by shorter product life cycles and
smaller batch sizes with simultaneously increased demands on the objective such as shorter delivery
times [2] (p. 5). Short delivery times play a decisive role for the customer [3] (pp. 25–26). The resulting
shorter time for product development as well as the prototype character of the products lead to
an increase in fuzzy and missing process parameters. These circumstances result in additional
requirements for Project Planning and Control (PPC), especially in complex assembly processes that are
characterized by human work. Stochastic influenced job processing times are inherent in the process
due to human error [4] (p. 31) and will therefore continue to exist in the future. Representative examples
of the characteristics mentioned above include the final assembly of customer-specific machine tools
and printing machines. An example for job processing time deviations in the considered industry is
shown in Figure 1. In addition, each project has its own objectives. At present, neither centrally acting

Algorithms 2020, 13, 337; doi:10.3390/a13120337 www.mdpi.com/journal/algorithms

107

Algorithms 2020, 13, 337

Manufacturing Execution Systems (MES) with integrated Advanced Planning and Scheduling Systems
(APS-Systems) [5] (pp. 63–64) nor decentrally used Simple Priority Rules (SPRs, e.g., FIFO (First In–First
Out)) can be used to control these requirements [6] (p. 8).

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

0 0.5 1 1.5 2 2.5

Re
la

tiv
e

Fr
eq

ue
nc

y
(%

)

Process Time (Hours)

Feedback Type Representative Assembly Complex Furniture Theory Logarithmic Normal Distribution

Coefficient of VarianceLogarithmic Normal Dirstribtion = 0.79

Figure 1. Example of job processing time deviations for a type representative in individual
furniture assembly.

In sequence control performed by MES and APS, production follows a deterministic schedule
that defines the next job [7] (p. 392). For the industrial domain under consideration, this approach is
only suitable to a limited extent, since permanent rescheduling is necessary due to the fuzzy process
parameters. Due to the lack of feedback on the processing status of individual work packages [8]
(pp. 80–81), it is not clear whether a schedule is still valid or not. In short, the schedule can be obsolete
after release. Furthermore, the necessary input of master and transaction data is often insufficient [9].
Sequencing with Priority Rules (PRs) means that a priority (e.g., shortest processing time) is assigned to
each job. The priority determines the next job [10] (p. 111). However, the effect of SPRs on the objective
values cannot be predicted in a dynamic production environment [11]. Moreover, project-specific
objectives are not explicitly taken into account. Promising approaches consist in the combination of
priority rules, the so-called Combined Priority Rules (CPRs). Here, different job attributes are combined,
and thus, a priority index is calculated for determining the next job. In project manufacturing,
CPRs are rarely used for decentralized control. On the one hand, the time for generation is very high;
on the other hand, approaches for project-specific objectives are rare. In this paper, we take up the
challenge of computational time for the generation of CPRs and develop a concept for project-specific
objective fulfillment under stochastic influences.

In the presented paper, we generate project-specific CPRs by combining different individual
job attributes with a weighted sum approach. These CPRs are assigned to the project jobs and used
for short-term project scheduling. The proposed Genetic Algorithm (GA) used as a hyper-heuristic
optimizes weight allocation of these individual attributes. For this purpose, we generate the CPRs by
iterative simulation and evaluate the results with the Pareto dominance concept. Since the resulting
optimized CPRs in deterministic condition do not necessarily lead to good results under stochastic
conditions, we propose a 2-phase algorithm to determine the CPRs. The first phase serves to explore the
solution space and to select the best individuals for the second stochastic phase. We validate the concept
with computer-aided experiments on a software platform developed especially for this problem. As a
simulation method, we use discrete event simulation combined with the theory of simulation-based
optimization. Within the scope of the paper, we perform experiments on computation time and
performance of the algorithm. In the context of the paper, we address the following research questions:

108

Algorithms 2020, 13, 337

• Is it possible to improve mean value and standard deviation of project individual objectives by
applying the generated CPRs?

• Is it possible to save computation time with the 2-phase algorithm?

The structure of the paper is as follows. Section 2 gives an overview of the state-of-the-art
literature related to the possibilities of the automated generation of CPRs. Section 3 contains the model
description. In Section 4, we describe the developed 2-phase algorithm. Furthermore, we present
the developed software framework for experiment execution. In Section 5, we run experiments to
investigate the computation time and performance of the approach. Section 6 provides a summary
and outlook.

2. State-of-the-Art

2.1. Problem Definition: RCMPSP

The basic model of resource-constrained multi-project scheduling problem (RCMPSP) was
developed by Pritsker et al. [12], Lova et al. [13], and Confessore et al. [14], among others. Based on the
work by Confessore et al. [14], Homberger [15] (pp. 556–567) formulated some extensions with regard
to decentralized control and developed a benchmark library [16] based on this model. The so-called
Multi-Project Scheduling Problem Library (MPSPLIB) is a library with 140 different models differing
in number of resources, projects, jobs, and network character. Solutions can be uploaded and
checked for feasibility. The MPSPLIB is based on models of the Project Scheduling Problem Library
(PSPLIB, [17]) which considers the RCPSP. The models differ mainly in terms of the number of projects
(|I| = 2, . . . , 20) and the number of jobs (|Ji| = 30, . . . , 120). Furthermore, there are differences
regarding the number of different instances of the individual projects (iz = 1: all projects have the
same instances; iz = 2: each project has an individual instance). For mathematical modelling of the
basic problem of the decentral resource constrained multi-project scheduling problem (DRCMPSP) [15]
(pp. 556–557), the problem is briefly described as follows: A set of projects with individual objective
functions has to be controlled in parallel in a production system. The production system consists of local
(only used by project i) and global renewable resources (used by all projects |I|). Each project consists of
a set of jobs with precedence constraints. The processing times of the jobs on the resources are stochastic.
At the time of sequencing, only the expected value of the distribution and the coefficient of variation
are known. The projects use both local and global renewable resources. Other project properties
concern the earliest start time and due date. As Blasewicz et al. [18] proved, the resource-constrained
project scheduling problem as a generalization of the job shop problem is one of the NP-hard
(non-deterministic polynomial-time hardness) optimization problems. As a generalization of the
resource-constrained project scheduling problem, the resource-constrained multi-project scheduling
problem with specific extensions of the process time variations considered in this paper thus belongs
to the NP-hard optimization problems [19] (p. 153). Exact procedures that lead to optimal results are
largely suitable for generating benchmark solutions [20] (p. 149). The number of calculation steps and
thus the calculation time increase with the problem size [21] (p. 38). Already from 60 jobs on, most
problems cannot be solved with exact methods [22]. For practical problems, which usually involve
considerably more jobs, heuristics are therefore indispensable in order to achieve good results in a
shorter computation time. The application of the theory of simulation-based optimization, coupled
with heuristics, is also more appropriate for complex models if complex relationships cannot be
described simply with the help of mathematical formulas. Furthermore, the advantage is the clarity
of simulation models (step-by-step event handling by discrete event simulation), which leads to a
higher acceptance than with mathematical optimization models [21] (p. 30). For this reason, we use
discrete event simulation as a simulation method. There are many software frameworks. With many
of these software frameworks, the job-shop problem can be mapped. For modelling project scheduling
problems, however, a high effort of customization is necessary.

109

Algorithms 2020, 13, 337

2.2. Approaches for Decentralized Control of RCMPSP

In contrast to deterministic optimization, at least one parameter in stochastic optimization is
subject to random events [23] (p. 45). Solutions, e.g., schedules or PRs, generated under deterministic
conditions may be invalid in the stochastic environment [24] (p. 2); [10] (p. 111); [25] (pp. 21–23).
The suitable methods for solving the stochastic optimization problem depend mainly on the dimension
of the stochastic influences [19] (p. 249). If stochastic influencing variables can only be described
by random variables, methods of stochastic optimization are suitable for scheduling [26] (p. 160).
With a static approach, the PRs do not change during the observation period. In contrast, in a
dynamic approach, the PRs are adapted during the production process. Thus, we focus on stochastic
optimization with a static approach of PR since in the case study of the customized assembly of complex
large products the job processing times are characterized by random variables of a logarithmic normal
distribution and there are no possibilities for adaption of the PR during production.

PRs such as CPRs are suitable for the considered problem domain with similar functionality
and application as SPRs. Simply stated, CPRs are attributes calculated according to a rule from the
information on the product, process, resource, and system. The result of the calculation determines
the job priority in the queue. A comprehensive review about CPRs and hyper-heuristics is given
by Branke et al. [10]. Their paper proposes a taxonomy and guidelines for designing CPRs. As a
hyper-heuristic, GAs or neuronal networks are mostly used. Multi-objective algorithms, such as the
NSGA-III [27], are not used in the literature.

There are a lot of PPC approaches using CPRs for production control. The majority of
existing approaches using CPRs focus on job-shop problems [10] (pp. 110–111), which are in
general less complex (e.g., less complex precedence constraints and disjoint resources) compared
to resource-constrained project scheduling problems (RCPSP). Kück et al. [28] developed a method
based on real-time data to adapt the control model based on CPRs. For this purpose, a simulation
is permanently carried out at the same time as actual production. If changes or disturbances occur,
the simulation model and consequently the control model are adapted. Permanent data availability
is necessary for concept implementation. Grundstein et al. [29] presented an approach to maintain
planning reliability while simultaneously taking advantage of the benefits of autonomous control.
Central planning provides information such as start and end times. Sequential decision trees determine
job release, sequencing, and resource allocation. In addition to the information provided by central
planning, these decision trees depend on extensive information on system status in production.
Moreover, this concept requires an extensive database which is not available yet.

Decentralized approaches for solving the project scheduling problem focus mainly on agent-based
auction and negotiation approaches [30] (pp. 695–704). Only Chand et al. [31] solves the control
problem of project manufacturing with CPRs in a stochastic environment. Chand et al. [31] considers
the stochastic RCPSP. Project-specific objectives are not considered. Hildebrandt et al. [32] also points
out that a Pareto optimization (multi-criteria) is hardly considered.

Strategies that are mainly used in shop-floor production can also be implemented in
project-oriented production and vice versa. In contrast with shop floor manufacturing with machines
as the main resource, project controlled environments with human resources have less sophisticated
data. Thus, it should not be assumed in such environments. While automatically generated CPRs
are widely used in job-shop scheduling [10], applications of automatically generated CPRs for
the solution of the RCPSP [31] and especially for the solution with a decentralized control of the
stochastic RCPSP are rather rare in the literature. We can only guess the reasons for this: while the
job-shop environment is traditionally stochastic, the RCPSP environment is also increasingly stochastic
(Section 1). Classical solutions for RCPSP by generating a baseline schedule are no longer effective,
and the interest in scheduling without a baseline schedule increases. One possibility for efficient
scheduling without a baseline schedule are those CPRs. The challenge consists in the project-specific
fulfilment of different individual objectives under stochastic influences.

110

Algorithms 2020, 13, 337

2.3. Reducing Computation Time for Generating CPRs

Branke et al. [10] describe the challenge of computation time for CPRs in their work. We draw
the following conclusions for our presented work: while sequencing with CPRs is comparatively fast,
generating CPRs with hyper-heuristics (e.g., with evolutionary algorithm) is often very computationally
intensive. If stochastic values are to be used as recommended during the generation of the CPRs
(so-called training phase), the computational effort increases further. A first possibility to reduce
computational effort is the representation of CPRs (Figure 2). The grammar-based tree representation
is a composition of individual components to a configurable function based on mathematical operators.
This representation has in theory no fixed length and is suitable for larger computational budgets [33].
The advantage of this representation is a large search space which fits the large computational
budget [34]. Another variant is parameter-based representation, which is a configurable function with
a defined format. The defined format means a fixed length and thus a calculable computational effort
but, at the same time, a smaller search space.

Figure 2. Combined Priority Rules (CPRs): (A) parameter-based representation and (B) grammar-based representation.

A further method to reduce computational effort is the generation of an optimized initial
population, which is currently of minor interest [35]. Most researchers generate the initial population
randomly (e.g., Werner [36]; Hildebrandt et al. [32]; Nguyen et al. [37]). Compared to a randomly
generated population, the algorithm converges later than with an optimized diverse population.
Thus, a decrease of simulation effort will be evolved with an optimized initial population. An approach
for improvement consists for example in the use of existing PRs to form the initial population
(e.g., Nguyen et al. [38]; Omar et al. [39]). However, research potential for the generation of good initial
solutions is an ongoing issue which we address in our paper.

2.4. Contribution and Motivation

Based on the above study on the use of CPRs in project control, some of the differences in
this paper compared to existing research are the following points:

• We consider the use of CPRs for short-term production control in an SRCMPSP environment.
The CPRs are assigned to each project.

• We perform a Pareto optimization [40] (pp. 197–199) with the NSGA-III on project level, where the
mean and standard deviation of delay and makespan of a single project are considered to evaluate
the generated CPRs.

• A deterministic and stochastic optimization phase takes place for reducing computational effort.
For the selection of deterministic solutions, we introduce the parameter Initial Copy Rate (ICR),
which indicates how many solutions are copied and how many are randomized.

• We developed a software framework for generating CPRs and compared results with several
different PRs.

111

Algorithms 2020, 13, 337

3. Model Extensions of the Stochastic RCMPSP

In order to achieve the requirements of the project-specific objectives, a Pareto optimization is
aimed as the multi-objective optimization method (minimize(f1(x), f2(x), . . . , fz f (x)) with z f > 2
objective functions fy).

Due to the stochastic influences, it is necessary to evaluate the individual objective values with
statistical parameters. A stochastic scenario n is a realized random number of a specific distribution
for job processing times (Section 2.1). The mean value and the standard deviation are considered.
The mean value is an indicator for optimality of the solution. The standard deviation is an indicator
for the robustness of the solution. A low standard deviation means that many solutions are close to
the mean value and therefore stochastic influences are better compensated. The following objective
functions are set up for the stochastic scenario.

For measuring the tardiness of project i of scenario n, the project delay PDin is calculated by
Equation (1):

fy = PDin = max
(

0, ω|J|in − f zi

)
(1)

where ω|J|in is the scheduled finish time of the last job j of project i of the stochastic scenario n and f zi
is the determined finish time of project i.

Another objective value is the makespan MSin, which is calculated by Equation (2):

fy = MSin =
(

ω|J|in − α1in

)
(2)

where α1in is the starting time of the first job j of project i of the stochastic scenario n. The following
objective functions are set up for statistic evaluation of the stochastic scenarios. Equation (3) calculates
the mean of project delay M_PDi of |N| stochastic scenarios:

fy = M_PDi =
1
|N| ∑

n∈N
PDin (3)

Equation (4) calculates the deviation of project delay M_PDi of |N| stochastic scenarios:

fy = STD_PDi =

√
1
|N| ∑

n∈N
(PDin − M_PDi)2 (4)

The corresponding statistical objective values for makespan MSi are calculated in the same way
as Equations (3) and (4) (STD_MSi; M_MSi). Statistical parameters for each objective value are
assigned individually (STD_ or M_) or in combination (STD_ and M_), so that, in total, six objective
functions are considered. For the objective makespan, the objective functions are given as an example.
Minimize the average makespan of individual projects M_MS as in Equation (5):

f = M_MS = (M_MSi, . . . , M_MS|I|) → min (5)

Minimize the standard deviation makespan of individual projects STD_MS using Equation (6):

f = STD_MS = (STD_MSi, . . . , STD_MS|I|) → min (6)

Minimize the average and standard deviation of the makespan of individual projects M_STD_MS
using Equation (7):

f = M__STD_MS = (STD_MSi, . . . , STD_MS|I|, M_MSi, . . . , M_MS|I|) → min (7)

112

Algorithms 2020, 13, 337

4. Proposed Algorithm for Generating CPR

4.1. Representation of CPR

As a sequence heuristic (SH), we use the basic approach of CPRs with weighting factors,
the so-called linear representation of CPRs (Figure 2). Job attributes ae are, for example, the expected
processing time or the required completion date. The weightings can be determined either by an expert,
randomly, or by an algorithm. As an extension to previous research work and in order to meet the
requirement of project-specific objective fulfillment, weighting factors pwie are assigned individually
to each project i. Thus, according to the individual objective function fy and project characteristics,
individual job attributes ae can be preferred or disadvantaged.

The considered job attributes ae are summarized in the tuple AA:

AA = (a1, . . . , ae), (8)

with e ∈ E, where e∈ N [1 . . . E]. A project-specific weight set PSWi is defined as follows and has the
same length like AA:

PSWi = (pwi1, . . . , pwie), (9)

with

∑
e∈E

pwie = 1 where pwie∈ R [0, 1] (10)

For each job in a queue, the first step is to calculate the individual job priority according to the
project-specific weight set and job attribute. Formally, the queue is a list of jobs with corresponding job
attributes. Normalizing the values is necessary due to the different dimensions of the job attributes.
After calculating the priority, the next step is sorting the jobs in descending order of priority. The job
with the highest priority is executed next. Calculation of the job priority JPji of job j of project i is done
with the following equation:

JPji (jie, max JIe) = PSWi · AA (jie, max JIe) = ∑
e∈E

pwie ·
ae (jie)

ae (max JIe)
(11)

where with jie is the considered value of attribute ae of the considered job j of project i and max JIe is
the maximum value of attribute ae of all jobs JI in the considered queue. The job attributes considered
were based on locally determined attributes (here, among other things, information is obtained from
the examples in MPSPLIB) and are oriented on the used information of the SPR (e.g., processing time,
due date, starting time, work remain, and cumulative waiting time).

4.2. Two-Phase Genetic Algorithm for Generating CPRs

The parameterization of the weighting set poses a combinatorial problem with a large solution
space. It is not possible to check all individual parameter combinations due to the high computational
effort involved. To handle such large search spaces, evolutionary algorithms such as GAs are
suitable. With regard to the problem of parameterizing the equation for determining job attributes,
the GA corresponds to a hyper-heuristic. Therefore, they are suitable for the problem under
consideration. Parallel computing can shorten computation time, especially in stochastic optimization.
Computation time increases if the stochastic influences are already taken into account during the
training phase. Since there is a correlation between the deterministic and stochastic solutions, we see
potential in the combination of deterministic and stochastic training data for saving computation
time. If the objective is to use this correlation, i.e., to generate a good quality initial population of
solutions for a shorter computation time in the next phase, it is necessary to consider a multitude
of deterministic solutions in the stochastic environment. We investigate the quantity and the best
solutions for this purpose. Within the scope of the present research, a two-phase algorithm is proposed.

113

Algorithms 2020, 13, 337

Phase one (Figure 3) starts with an initialization. This means that initial parameters of GA are
selected along with the production model (planning task), and it is possible to define the attributes
used for the CPRs. Next, initial solutions are generated randomly. Random numbers determine the
weightings pwie of the attributes ae. Based on the defined weightings for the respective attributes,
the production is simulated (shop-floor simulation) with deterministic process times. The result is
evaluated, and after a negative check of the stop criterion (unchanged objective values after a defined
number of iterations), the weightings are changed by the GA. This process continues until the stopping
criteria is reached. The result is a set of different weighting variations evaluated with respect to the
objective value. In phase two, the corresponding weighting variants from phase one are firstly selected
with the parameter initial copy rate ICR. An ICR = 0.2 means that the initial solution for stochastic
optimization consists of 20% copied solutions from the first phase. The other 80% are random solutions.
Then, in accordance with the theory of simulation-based optimization, GA adjusts weights until the
stopping criteria is reached. Although the algorithm generated many schedules with different CPRs,
the result is only the CPRs with which the best schedules were generated under stochastic conditions.
Under stochastic conditions, the objective value will be identical when using this CPRs. The result of
the training phase is therefore the result of the test phase.

Figure 3. Two-phase genetic algorithm.

In accordance with the research aim of project-specific multi-objective optimization, the differentiated
evaluation of the quality of solutions (solutions are the project-specific weight sets PSWi, in the context
of GA, an individual Ind) is carried out according to the Pareto dominance concept. Assuming two
solution tuples A and B with z f objective functions fy and the goal of minimizing the objective values
(fy(a); fy(b)), solution A dominates solution B if fy (a) ≤ fy (b) applies for y = 1, 2, . . . , z f and for at
least one y fy(a) < fy(b).

Based on this rule, all individuals Ind of a population Pgen of generation gen can be compared
in the current scenario. Non-dominated solutions are elements of a non-dominated solution front
(f ront = 1). Since there are more than one solution in the Pareto front, we aggregate and normalize
the individual objective to an overall objective value as a tiebreaker. The best solution gets the index
Best. The formation of a new population Pgen+1 is carried out with the NSGA-III. The algorithm was
developed for multi-objective problems with z f > 3 objective functions fy. The entire algorithm for
generating the CPRs is called Genetic Algorithm Weighted Sum (GAWS).

114

Algorithms 2020, 13, 337

4.3. Overall Concept for Using CPRs and Proposed Software-Framework

The presented concept (Figure 4) for decentralized sequencing is suitable for short-term
sequencing at the operation level. For a short-term horizon, SHs are defined by how individual
jobs are operatively sequenced on the shop floor. The result is therefore not an implemented schedule
by the control system but evolved CPRs that are applied by the control system. The input to generate
the CPRs is therefore a defined project pool with jobs or a predefined time horizon. The definition of the
input is not part of the analysis but is taken as given in medium-term planning (e.g., MRP-II). Based on
a project pool, the proposed algorithm for generating the CPRs is applied. The CPRs are transferred
to production resources and applied for the defined validity period. This process is comparable to
transfer of the production schedule to actual production. Various options are conceivable for technical
implementation: In addition to the transfer to stationary computers at the workstations, the transfer to
mobile devices (smartphones and handhelds) is also possible. A possible technical implementation of
the CPRs with regard to job identification is for example barcode technology. The barcode contains all
information about the projects. The stationary PC or handheld device contains CPRs for determining
job priority. New incoming jobs can thus be added to the queue, and if renewable resources become
available, the next job to be processed can be determined according to the CPRs. Thus, a rough status
regarding finished jobs is known. Moreover, it is possible to share reconfiguration-relevant events
(resource failure, etc.) through feedback and to initiate recalculation of CPRs based on the adjusted
production parameters.

Figure 4. Concept hybrid Project Planning and Control (PPC).

We developed a software framework based on the Python programming language [41]
called PyScOp (Python-Based Scheduling and Optimization Framework) to test the algorithm
when generating the project-specific CPRs [42,43]. The developed software framework covers all
functionalities from model generation to discrete-event simulation-based optimization and evaluation.
To calculate the proposed CPRs in the form of weighting sets, the model is first imported. The standard
format of MPSPLIB is used. The next step is parameterization of the model (definition of project-specific
objectives) and the algorithm (stop criterion, etc.). With subsequent simulation and optimization,
the project-specific CPRs are generated. In addition to the standard function for calculating CPRs,
various options for evaluating the performance of the algorithm itself and the CPRs are integrated,
which largely correspond to the experiments discussed in Section 5. For technical details, please refer
to the method documentation within the software code. The software framework has a graphical user

115

Algorithms 2020, 13, 337

interface for simplified use by third parties. Intended tool tips make it easier for the first user to carry
out experiments.

5. Results

5.1. Experiment Design for Concept Evaluation

As mentioned, we use benchmark problems from the MPSPLIB to evaluate the concept. We
carried out preliminary investigations to determine the runtime of an optimization run (Intel® Xenon®

Gold 6136 with 3.00 GHz CPU and 64 GB RAM). The average optimization takes about 12 h (average
from small model |Ji| = 30, |I| = 2 to large model |Ji| = 120, |I| = 5). The number of experiments
must be limited for this runtime. We chose a two-factor plan as the experimental plan for the model
parameters. Each factor is assigned two levels and is combined. The levels should represent a low
and a high level. This type of experimental design is chosen if many factors are to be investigated and
experiments are highly computation intensive. To avoid process-inherent coincidences, the number
of repetitions per single experiment is set to |W| = 10 [44] (p. 630); [45] (p. 593). The selected models
of the MPSPLIB differ in the number of jobs |Ji| = 30 and 120, number of projects |I| = 2 and 5,
and different instances (network character) iz = 1 and 2, so that a total of 8 models M are considered.
The distribution of the process time is considered with cvlognorm = 0.1 and 0.9. Other parameters are
considered to be multifactorial and combined with the mentioned two-factor plan. These parameters
are the objective functions f (6 factor stages) and the initial copy rate ICR (6 factor stages). These
factor combinations are combined with the number of stochastic scenarios |N|. Standard values are
assumed for the genetic operators by Schmidt et al. [43]. The population size is calculated according to
Das et al. [46]. The number of stochastic scenarios for the evaluation of one CPR = GAWS is |N| = 100
(usually, in Freitag et al. [47], |N| = 50, while in Hildebrandt et al. [48], |N| = 100) with n ∈ N.

5.2. Comparing Deterministic and Stochastic Solutions

For the comparison between deterministic and stochastic solutions, a deterministic optimization
is performed first. Afterwards, the generated deterministic solutions (f = PD and f = MS) are tested
with stochastic values of the scenarios |N|. f = M_PD, f = STD_PD, f = M_MS, and f = STD_MS
are used as objective functions to evaluate the stochastic influences. The maximum number of
generations is gen = 100. The deterministic optimization aborts after gen = 20 generations with an
unchanged objective value. Expamt = 2 · cvlognorm · 8M · 6 f · 10W = 960 experiments were performed.
To evaluate the correlation, the Pearson correlation coefficient r(x, y) is calculated. For this purpose,
the correlation between the deterministic solution (DET) and mean value (M) of the stochastic
solution, the correlation between the deterministic solution and standard deviation (STD) of the
stochastic solution, and the correlation between the mean value (M) and standard deviation (STD) of
the stochastic solution are calculated. The results are shown in Figure 5 as a boxplot diagram and in
Table 1 combined with the mean value and confidence interval ki0.95.

Table 1. Statistical analysis coefficient of correlation.

r(x,y) x ki0.95

DET, M 0.47 ±0.08
DET, STD 0.18 ±0.07

STD, M 0.34 ±0.08

A high correlation exists between the deterministic solution (DET) and the mean value of the
stochastic solution (M). Furthermore, there is a significant correlation between the mean value (M)

and the standard deviation of the stochastic solution (STD). A low correlation exists between the
deterministic solution (DET) and the standard deviation of the stochastic solution (STD). This reinforces

116

Algorithms 2020, 13, 337

the statement that deterministic solutions can be suitable as initial solutions for stochastic optimization.
Therefore, setting the parameter initial copy rate ICR is of interest.

DET: PD, MS
M:M_PD; M_MS
STD:STD_PD; STD_MS

1.00

0.80

0.60

0.20

0.40

0.00

co
ef

fic
ie

nt
 o

f c
or

re
la

tio
n

(,)

Figure 5. Boxplot correlation between the deterministic (DET) and stochastic (STD, M) solutions.

5.3. Comparing Computation Effort

In order to evaluate whether the simulation effort and thus the computational effort can be
reduced with the presented 2-phase algorithm, a comparison of the simulation effort between the
strategy for generating the initial population and the randomized generation of the initial population
is necessary. The strategy for optimization of the initial population is called copied in the following,
the strategy for the random generation of the initial population is called random. The simulation effort
SAICR to generate the initial population with an initial copy rate of ICR > 0.0 is higher in contrast
to the simulation effort of the randomized population SArand with an initial copy rate of ICR = 0.0.
In order to equate the simulation effort SAICR = SArand, the following assumptions for calculation
of the simulation effort are made and demonstrated using a calculation example: The deterministic
simulation effort SAdet for the first phase of the 2-phase algorithm with pop = 100, generation amount
GAdet = 100, and |W| = 10 repetitions is SAdet = 100,000 (GAdet · pop · |W|). Selection of the 100 best
solutions with respect to the objective value out of 10 repetitions |W| with subsequent stochastic
simulation with |N| = 100 scenarios to generate the stochastic initial population leads to a further
simulation effort of SAinit = 100,000(pop · |N| · |W|) simulations, so that the total simulation effort is
SAICR = 200,000(SAdet + SAinit). To compare the simulation effort, for example, more randomized
solutions can be generated SAinit = SArand = 200pop · 100|N| · 10|W| = 200,000. Another possibility is
to leave the population size pop unchanged at pop = 100 SAinit = 100pop · 100|N| · 10|W| = 100,000
and additionally to perform a generation step GAstoch = 1 within the framework of stochastic
optimization at SAstoch = 1GAstoch · 100pop · 100|N| · 10|W| = 100,000 , so that the simulation effort
with the randomized initial population also corresponds to SArand = 200,000(SAinit + SAstoch). The latter
option was chosen for comparison purposes, since it also uses the mode of action of the genetic algorithm,
which requires a certain calculation time and thus makes the results more comparable. Figure 6 illustrates
the performance of the different strategies for generating the initial population (randomized ICR = 0.0
and copied ICR = 0.2–1.0).

117

Algorithms 2020, 13, 337

Figure 6. Example of how the initial copy rate works; worst value: Best = 1.00.

One possibility to evaluate the effectiveness of a copied initial population ICR = 0.2–1.0 is to
compare the objective fulfillment of the best solution Best per experiment (Figure 7). A condensed
evaluation is the relative frequency with which an ICR achieves the best value for the objective value
Best per individual experiment. Of the 96 possible individual experiments (2VarKlognorm · 8M · 6 f),
a copied initial population (ICR = 0.2–1.0) achieves the best objective value Best in 79.17% of the
individual experiments. In 20.83% of the experiments, a randomized initial population achieves the
best objective value (ICR = 0.0). The initial copy rate of ICR = 0.4 and ICR = 0.6 is more often used
to achieve the best objective value Best (22.5%) than the initial copy rates ICR = 0.2, 0.8, and 1.0(12%).
The following conclusions can be drawn from the distribution of the frequency:

• An optimization of the initial population does not necessarily lead to the best result with respect
to the objective value Best.

• A low and a too high initial copy rate lead less frequently to the best objective value Best.
Therefore, it can be concluded that either too many randomized solutions (ICR < 0.4) or too many
copied solutions (ICR > 0.6) do not sufficiently represent the correlation between deterministic
and stochastic solution and that, therefore, for a diverse initial population, an equal ratio of copied
and randomized solutions is most promising.

The relative saving Bestrel between the copied population (ICR = 0.2, 0.4, 0.6, 0.8 and 1.0) compared
to the randomized population (ICR = 0.0) is used to evaluate the performance of the initial copy
rate ICR.

A positive value Bestrel means a saving; a negative value Bestrel is a loss. Bestrel% is calculated by
the following:

Bestrel(%) =

(
1 − Best(ICR = 0.2; 0.4; 0.6; 0.8; 1.0)

Best(ICR = 0.0)

)
· 100 (12)

118

Algorithms 2020, 13, 337

20.83%

13.54%

22.92%
23.96%

11.46%

7.29%

0

5

10

15

20

25

30

0 0.2 0.4 0.6 0.8 1.0

Re
la

tiv
e

fr
eq

ue
nc

y
Be

st

Initial Copy Rate ICR

Figure 7. Comparison frequency Best between random and copied initial solutions.

With increasing initial copy rate ICR, the range of the relative saving potential Bestrel increases
(Table 2). From this, it can be concluded that, with initial copy rate ICR, the saving potential Bestrel
fluctuates significantly more and can be predicted less reliably. Thus, the initial copy rate ICR should
be selected in such a way that the savings are maximized on average x̄(%) with a high probability
ki0.95(%). When using the initial copy rate of ICR = 0.2–1.0, better results Bestrel are obtained for 58.3%
(ICR = 1.0) to 69.7% (ICR = 0.4) of the considered individual experiments than with an initial copy
rate of ICR = 0.0. If the best initial copy rate ICRBest was always selected, the results Bestrel will
be better in 79.17% of the individual experiments compared to randomized solutions (ICR = 1.0).
In contrast, the results Bestrel will be worse in 55.2% of the individual experiments if the worst initial
copy rate ICRWorst was selected. The average x̄ best saving Bestrel is achieved with an initial copy
rate ICR = 0.6 (x̄ = 0.42%), and the median x̃ best saving Bestrel is achieved with an initial copy rate
ICR = 0.4 (x̃ = 0.46%). These values should not be regarded as too low, since, as will be examined
in Section 5.4, the overall optimization potential is approximately 4%. With both ICR = 0.4 and
ICR = 0.6, the confidence interval is ki0.95 = ±0.49%. Thus, there is no clear recommendation for the
selection of an initial copy rate ICR, but ICR = 0.4 or ICR = 0.6 should be preferred. The following
experiments uses ICR = 0.6.

Table 2. Relative saving potential initial copy rate for generating the copied population compared to
randomized population.

Statistic 0.2 0.4 0.6 0.8 1.0 0.2–1.0 Best Worst

Ant (%) 66.6 69.7 64.6 62.5 58.3 66.4 79.17 55.2
x (%) 0.28 0.39 0.42 0.26 0.05 0.26 0.66 −0.37
x̃ (%) 0.37 0.46 0.44 0.41 0.32 0.40 0.58 0.22
σ (%) 2.20 2.42 2.40 2.59 3.15 2.55 2.30 3.06

ki0.95(%) ±0.45 ±049 ±0.49 ±0.53 ±0.64 ±0.52 ±0.47 ±0.62

5.4. Evaluation of the Overall Quality of The Algorithm

To evaluate the performance of the overall concept, the objective value of the initial population
is compared with the objective value of the last population of the optimization run. The maximum
number of generations for deterministic and stochastic optimization is gen = 100 with a stop criterion
of gen = 20 generations. The number of experiments is similar to that mentioned in Section 5.3.
Since the results of the repetitions |W| do not differ significantly, |W| is set to |W| = 1 for the next
experiments. With a coefficient of variation of cvlognorm = 0.9, the optimization potential is between

119

Algorithms 2020, 13, 337

0–1% in about 50% of the experiments (Figure 8). For the remaining experiments, an optimization
potential between 1–5% is achieved.

Figure 8. Performance of the genetic algorithm: comparison between best value initial population and
best value last generation of optimization cvlognorm = 0.9.

A higher optimization potential is achieved with a coefficient of variation of cvlognorm = 0.1 (Figure 9).
In about 50% of the experiments, the optimization potential is higher than 5%. It is remarkable that,
in about 15% of the experiments, the optimization potential is between 15–30%. This represents that
the optimization potential decreases with large stochastic influences, which represents that the actual
process time deviates significantly from the expected value and that the solution is highly random.
This corresponds almost to a complete lack of process knowledge so that an online optimization is
probably more effective.

Figure 9. Performance of the genetic algorithm: comparison between best value initial population and
best value last generation of optimization cvlognorm = 0.1.

If we have a detailed look at the parameters (Figure 10), we see that there is a better improvement
in general for the objective function project delay toward makespan. The model parameters have

120

Algorithms 2020, 13, 337

no significant influence. The influence of the coefficient of variation of the distribution is significant.
In the median, an improvement of approximately 4% occurs independently of the parameters.

0

1

2

3

4

5

6

7

Im
pr

ov
em

en
t
x̅(%)

Category

Figure 10. Performance of the proposed algorithm depending on the single parameters.

5.5. Comparison with Standard Priority Rules

For evaluation of the presented algorithm, we compare the performance of the PR = GAWS with the
PR = SPR on 25 models M from the MPSPLIB, which essentially differ from the previously considered
models by the instances. The experiments vary with respect to the coefficient of variance cvlognorm and the
objective function f . The parameter initial copy rate ICR is still considered ICR = 0.6. The parameters of
the GA are the same as in Section 5.4. Common SPRs serve as comparison criteria [49,50].

The presented algorithm achieves under stochastic influences without Pareto criterion in 50%
better results than the considered SPR (Figure 11). The second best SPR MWRK (Most Work Remaining)
achieves better results in 12% of the experiments, the third best SPR EDD (Earliest Due Date) achieves
better results in 8% of the experiments, and the fourth best SPR FIFO achieves better results in 6% of
the experiments. The remaining SPRs achieve the best results in 1% on average.

Looking at the three best PRs (GAWS, MWRK, and EDD) in Figure 12, it can be seen that all
three PRs are represented on all ranks, with rank = 1 being the best PR and rank = 20 being the worst
PR. GAWS is 95% among the 10 best PRs (sum of the relative frequency of GAWS from rank = 1
to rank = 10). SPR EDD is among the ten best SPRs in 70% of the experiments (sum of the relative
frequency of EDD from rank = 1 to rank = 5). It is remarkable that the MWRK comes last (rank = 20)
in almost 10% of the experiments.

In the following, the saving potential is quantified if the CPR GAWS ranks first (Table 3).
On average, there is a saving of 3.3% compared to rank = 2 regarding the objective value. Compared to
the average performance, there is a saving of 10.8%, and compared to the worst SPR, there is a saving
of about 25%.

If CPR GAWS does not occupy rank = 1, there is an average loss compared to rank = 1 of −10.6%
regarding the objective value (Table 4). Compared to the medium performance of the other SPRs,
an average saving of 3.63% is still achieved. Comparing CPR GAWS to the worst SPR, an average
saving of 18.9% is achieved. In summary, the presented CPR can achieve an average improvement
over a randomly selected SPR.

For complete evaluation of the presented CPR GAWS, it is necessary to assess the fulfillment of
individual project objectives according to the Pareto criterion (Table 5). For this purpose, the solutions
are divided into solution fronts (Section 4.2). CPR GAWS is on average in 90% of the experiments in
the first front. There are no significant deviations when considering individual parameters. The only
difference shows the parameter instance iz. A performance analysis of the other SPRs shows that no

121

Algorithms 2020, 13, 337

SPR dominates another SPR with regard to its occurrence in the first front. The SPR FIFO is often in
the first front. As far as frequency is concerned, no other SPR comes close to the presented CPR GAWS.
This shows the real potential of CPR GAWS.

Figure 11. Performance of the proposed algorithm compared to Standard Priority Rules (SPRs):
MWRK: Most Work Remaining; EDD: Earliest Due Date; FIFO: First In First Out; MAXIS: Maximum
Immediate (Direct) Successors; MAXRR: Maximum Resource Request; LIFO: Last In First Out;
LWRK: Least Work Remaining; CR: Critical Ration; NCR: None Critical Ratio; LDD: Least Due
Date; LWT: Longest Wait Time; MSLK: Minimum Slack; MAXNW: Maximum Total Successors;
MINIS: Minimum Immediate (Direct) Successors; LPT: Longest Processing Time; SWT: Shortest Wait
Time (cumulative); NCR: None Critical Ration; MINRR: Minimal Resource Request.

0

10

20

30

40

50

60

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Re
la

tiv
e

fr
eq

ue
nc

y
(%

)

Rank

GAWS MWRK EDD

Figure 12. Comparison of the performance of the three priority rules.

Table 3. Improvement with GAWS = rank 1.

Comparing GAWS Rank = 1 to

Statistic Rank 2 MW Rank Rank 20

x (%) 3.31 10.82 24.86
x̃(%) 2.66 8.49 17.64
σ (%) 2.88 7.56 20.65
ki0.95 (%) ±0.46 ±1.20 ±3.27

122

Algorithms 2020, 13, 337

Table 4. Deterioration with GAWS 	= Rank 1.

Comparing GAWS Rank 	= 1 to

Statistic Rank 2 MW Rank Rank 20

x (%) −10.60 3.63 18.90
x̃(%) −3.22 2.91 14.68
σ (%) 19.15 5.43 15.66
ki0.95 (%) ±3.03 ±0.86 ±2.48

Table 5. Comparison of objective fulfillment with Pareto criterion.

Filter GAWS = 1st Front (%) 2nd Best PR = 1st Front 2nd Best PR = 1st Front (%)

All experiments 91 FIFO 65
cvlognorm = 0.1 95 FIFO 61
cvlognorm = 0.9 88 FIFO 69

M_PD 94 FIFO 74
STD_PD 90 MSLK 42

M_PD_STD_PD 92 FIFO 86
M_MS 92 FIFO 72

STD_MS 82 LWRK 42
M_MS_STD_MS 98 FIFO 88

|I| = 2 89 FIFO 55
|I| = 5 95 MAX_NW 88
|Ji| = 30 95 MAX_NW 64
Ji| = 120 89 FIFO 71

iz = 1 77 FIFO 72
iz = 2 100 MWRK 58

6. Conclusions and Outlook

In this paper, we present and study a 2-phase genetic algorithm for the efficient generation
of project-specific composite priority rules for short-term production control of the stochastic
resource-constrained multi-project scheduling problem. Computational results with our presented
discrete-event simulation-framework PyScOp show that, with the same simulation effort, the proposed
algorithm achieves better initial solutions compared to complete randomly generated initial solutions
on average. The best initial population is based on half copied best and half randomly selected
solutions. The experiments also show that, with our algorithm, the objective fulfillment compared to
priority rules used in practice is much better. Our solutions are in 90% of the experiments in the Pareto
front. The best priority rule FIFO is in about 65% of the experiments in the Pareto front. All experiments
show that the performance of the algorithm depends on the model parameter.

We see further research in the parameter optimization of the GA to improve the generated
composite priority rules. The computational effort can be further reduced if additional strategies
for generating the initial population are applied. This includes generation of the start solution with
known priority rules or with solutions from similar models. In general, the model-attribute-objective
effects need to be further analyzed in order to set model-dependent parameters that can improve both
computation time and objective values.

Author Contributions: Conceptualization, M.K.; methodology, M.K.; software, M.K.; writing—original draft
preparation, M.K.; writing—review and editing, Michael Völker and T.S.; visualization, M.K.; supervision, M.V.
and T.S.; project administration, T.S. All authors have read and agreed to the published version of the manuscript.

Funding: This work is funded by the German Research Foundation (DFG) within the projects Simulation-based
generation of robust heuristics for self-control of manual production processes: A hybrid approach on the way to
industry 4.0 (Project ID 418727532) https://gepris.dfg.de/gepris/projekt/418727532 and Sim4Pep (Project ID
439188616) https://gepris.dfg.de/gepris/projekt/439188616.

Conflicts of Interest: The authors declare no conflict of interest.

123

Algorithms 2020, 13, 337

Abbreviations

The following abbreviations are used in this manuscript:

APS Advanced Panning and Scheduling
CDR Composite Dispatching Rule
CPR Composite Priority Rule
CPPS Cyber Physical Production System
GA Genetic Algorithm
GAWS Genetic Algorithm Weighted Sum
ICR Initial Copy Rate
MES Manufacturing Execution System
MPSPLIB Multi-Project Scheduling Library
PPC Project Planning and Control
PSPLIB Project Scheduling Linrary
RCPSP Resource Constrained Project Scheduling Problem
SH Sequencing Heuristic
SPR Simple Priority Rules
SRCMPSP Stochastic Resource Constrained Multi-Project Scheduling Problem

References

1. Bischoff, J.; Taphorn, C.; Wolter, D.; Braun, N.; Fellbaum, M.; Goloverov, A.; Ludwig, S.; Hegmanns, T.;
Prasse, C.; Henke, M.; et al. Erschließen der Potenziale der Anwendung von Industrie 4.0 im Mittelstand; BMWi:
Berlin, Germany, 2015.

2. Huber, W. Industrie 4.0 Kompakt—Wie Technologien Unsere Wirtschaft und Unsere Unternehmen Verändern;
Springer Fachmedien Wiesbaden: Wiesbaden, Germany, 2018; doi:10.1007/978-3-658-20799-1. [CrossRef]

3. Lödding, H. Verfahren der Fertigungssteuerung: Grundlagen, Beschreibung, Konfiguration; Springer: Berlin/Heidelberg,
Germany, 2016.

4. Glonegger, M. Berücksichtigung Menschlicher Leistungsschwankungen bei der Planung von Variantenfließ-
montagesystemen; Forschungsberichte IWB; Utz, Herbert: München, Germany, 2014; Volume 292.

5. Marczinski, G. Einsatzgebiete von ERP-, APS- und MES-Lösungen. ERP Manag. 2008, 2008, 62–64.
6. Niehus, M.R. Adaptive Produktionssteuerung für Werkstattfertigungssysteme durch Fertigungsbegleitende

Reihenfolgebildung. Ph.D. Thesis, Technische Universität München, München, Germany, 2016.
7. Hansmann, K.W. Industrielles Management; 8., völlig überarb. und erw. aufl. ed.; Oldenbourg: München,

Germany, 2006.
8. Nyhuis, P.; Mayer, J.; Kuprat, T. Die Bedeutung von Industrie 4.0 als Enabler für logistische Modelle.

In Industrie 4.0; Kersten, W., Ed.; Schriftenreihe der Hochschulgruppe für Arbeits- und Betriebsorganisation
e.V. (HAB), Gito: Berlin, Germany, 2014; pp. 79–100.

9. Peßl, E. Digitale Produktion: Studie über Status, Hemmnisse und Anforderungen österreichischer Produzierender
Klein- und Mittelunternehmen und Analyse der Software-Hersteller von MES-Systemen; Inst. Industrial
Management/Industriewirtschaft FH JOANNEUM Kapfenberg: Kapfenberg, Austria, 2013.

10. Branke, J.; Nguyen, S.; Pickardt, C.W.; Zhang, M. Automated Design of Production Scheduling Heuristics:
A Review. IEEE Trans. Evol. Comput. 2016, 20, 110–124. [CrossRef]

11. Hildebrandt, T.; Heger, J.; Scholz-Reiter, B. Towards improved dispatching rules for complex shop floor
scenarios. In Proceedings of the 12th Annual Conference on Genetic and Evolutionary Computation; Pelikan, M.,
Branke, J., Eds.; ACM: New York, NY, USA, 2010; pp. 257–264. [CrossRef]

12. Pritsker, A.A.B.; Waiters, L.J.; Wolfe, P.M. Multiproject Scheduling with Limited Resources: A Zero-One
Programming Approach. Manag. Sci. 1969, 16, 93–108. [CrossRef]

13. Lova, A.; Tormos, P. Analysis of Scheduling Schemes and Heuristic Rules Performance in Resource-Constrained
Multiproject Scheduling. Ann. Oper. Res. 2001, 102, 263–286.:1010966401888. [CrossRef]

14. Confessore, G.; Giordani, S.; Rismondo, S. A market-based multi-agent system model for decentralized
multi-project scheduling. Ann. Oper. Res. 2007, 150, 115–135. [CrossRef]

15. Homberger, J. A multi-agent system for the decentralized resource-constrained multi-project scheduling
problem. Int. Trans. Oper. Res. 2007, 14, 565–589. [CrossRef]

124

Algorithms 2020, 13, 337

16. Homberger, J. MPSPLIB: Multi Project Scheduling Problem Library. Hochschule für Technik Stuttgart. 2008.
Available online: www.mpsplib.com (accessed on 17 October 2020).

17. Kolisch, R.; Sprecher, A. PSPLIB—A project scheduling problem library. Eur. J. Oper. Res. 1996, 96, 205–216.
[CrossRef]

18. Blazewicz, J.; Lenstra, J.; Rinnooy Kan, A. Scheduling subject to resource constraints: Classification and
complexity. Discret. Appl. Math. 1983, 5, 11–24. [CrossRef]

19. Ballestín, F. When it is worthwhile to work with the stochastic RCPSP? J. Sched. 2007, 10, 153–166. [CrossRef]
20. Kolisch, R.; Hartmann, S. Heuristic Algorithms for the Resource-Constrained Project Scheduling Problem:

Classification and Computational Analysis. In Project Scheduling: Recent Models, Algorithms and Applications;
Węglarz, J., Ed.; Springer US: Boston, MA, USA, 1999; pp. 147–178. [CrossRef]

21. März, L.; Krug, W.; Rose, O.; Weigert, G. Simulation und Optimierung in Produktion und Logistik; Springer:
Berlin, Germany, 2011; Volume 1. [CrossRef]

22. Herroelen, W. Project Scheduling—Theory and Practice. Prod. Oper. Manag. 2005, 14, 413–432.
[CrossRef]

23. Schade, K. Stochastische Optimierung. In Stochastische Optimierung; Schade, K., Ed.; Stochastic Programming,
Vieweg+Teubner: Wiesbaden, Germany, 2012; pp. 45–72. [CrossRef]

24. Ashtiani, B.; Leus, R.; Aryanezhad, M.B. A Novel Class of Scheduling Policies for the Stochastic
Resource-Constrained Project Scheduling Problem. SSRN Electron. J. 2008. [CrossRef]

25. Stork, F. Stochastic Resource-Constrained Project Scheduling. Ph.D. Thesis, Technische Universitat Berlin,
Berlin, Germany, 2001; doi:10.14279/DEPOSITONCE-398. [CrossRef]

26. Ashtiani, B.; Leus, R.; Aryanezhad, M.B. New competitive results for the stochastic resource-constrained
project scheduling problem: Exploring the benefits of pre-processing. J. Sched. 2011, 14, 157–171.
[CrossRef]

27. Deb, K.; Jain, H. An Evolutionary Many-Objective Optimization Algorithm Using Reference-Point-Based
Nondominated Sorting Approach, Part I: Solving Problems With Box Constraints. IEEE Trans. Evol. Comput.
2014, 18, 577–601. [CrossRef]

28. Kück, M.; Broda, E.; Freitag, M.; Hildebrandt, T.; Frazzon, E.M. Towards adaptive simulation-based optimization
to select individual dispatching rules for production control. In Proceedings of the 2017 Winter Simulation
Conference (WSC), Las Vegas, NV, USA, 3–6 December 2017; pp. 3852–3863. [CrossRef]

29. Grundstein, S.; Freitag, M.; Scholz-Reiter, B. A new method for autonomous control of complex job
shops—Integrating order release, sequencing and capacity control to meet due dates. J. Manuf. Syst. 2017,
42, 11–28. [CrossRef]

30. Fink, A.; Homberger, J. Decentralized Multi-Project Scheduling. In Handbook on Project Management and
Scheduling; Schwindt, C., Zimmermann, J., Eds.; Springer International Publishing: Cham, Switzerland, 2015;
Volume 1, pp. 685–706.

31. Chand, S.; Singh, H.; Ray, T. Evolving heuristics for the resource constrained project scheduling problem
with dynamic resource disruptions. Swarm Evol. Comput. 2019, 44, 897–912. [CrossRef]

32. Hildebrandt, T.; Freitag, M. Bessere Prioritätsregeln für komplexe Produktionssysteme mittels multi-kriterieller
simulationsbasierter Optimierung. In Simulation in Production and Logistics 2015; Rabe, M., Clausen, U., Eds.;
Fraunhofer Verlag: Stuttgart, Germany, 2015; pp. 309–318.

33. Branke, J.; Hildebrandt, T.; Scholz-Reiter, B. Hyper-heuristic Evolution of Dispatching Rules: A Comparison
of Rule Representations. Evol. Comput. 2015, 23, 249–277. [CrossRef]

34. Nguyen, S.; Zhang, M.; Tan, K.C. Surrogate-Assisted Genetic Programming With Simplified Models for Automated
Design of Dispatching Rules. IEEE Trans. Cybern. 2017, 47, 2951–2965. [CrossRef]

35. Jorapur, V.S.; Puranik, V.S.; Deshpande, A.S.; Sharma, M. A Promising Initial Population Based Genetic
Algorithm for Job Shop Scheduling Problem. J. Softw. Eng. Appl. 2016, 9, 208–214. [CrossRef]

36. Werner, F. A Survey of Genetic Algorithms for Shop Scheduling Problems. In Heuristics: Theory and
Application; Siar, P., Ed.; Nova Science Publishers: Hauppauge, NY, USA, 2013; pp. 161–222.

37. Nguyen, S.; Zhang, M.; Johnston, M.; Tan, K.C. Automatic Design of Scheduling Policies for Dynamic
Multi-objective Job Shop Scheduling via Cooperative Coevolution Genetic Programming. IEEE Trans.
Evol. Comput. 2014, 18, 193–208. [CrossRef]

125

Algorithms 2020, 13, 337

38. Nguyen, S.; Zhang, M.; Johnston, M.; Tan, K.C. A Computational Study of Representations in Genetic
Programming to Evolve Dispatching Rules for the Job Shop Scheduling Problem. IEEE Trans. Evol. Comput.
2013, 17, 621–639. [CrossRef]

39. Omar, M.; Baharum, A.; Hasan, Y. A job-shop scheduling problem (JSSP) using genetic algorithm (GA).
In Proceedings of the 2nd im TG T Regional Conference, Penang, Malaysia, 13–15 June 2006.

40. Goldberg, D.E. Genetic Algorithm in Search, Optimization, and Machine Learning; Addison-Wesley: Reading,
MA, USA, 1989; Volume XIII.

41. Python Software Foundation. Python. 2019. Available online: www.python.org (accessed on 17 October 2020).
42. Kühn, M. PyScOp. 2019. Available online: https://tlscm.mw.tu-dresden.de/scm/git/PyScOp_2.0

(accessed on 17 October 2020).
43. Schmidt, T.; Kühn, M.; Genßler, P.R. Design of Project-oriented Calculation Models for Job Priorities by Using

a Customized Genetic Algorithm. In Simulation in Produktion und Logistik 2017; Wenzel, S., Peter, T., Eds.;
Kassel University Press: Kassel, Germany, 2017; pp. 99–108.

44. Law, A.M.; Kelton, W.D. Simulation Modeling and Analysis, 3rd ed.; internat. ed., [nachdr.] ed.; McGraw-Hill
Series in Industrial Engineering und Management Science; McGraw-Hill: Boston, MA, USA, 2000.

45. Sexton, R.S.; Dorsey, R.E.; Johnson, J.D. Optimization of neural networks: A comparative analysis of the genetic
algorithm and simulated annealing. Eur. J. Oper. Res. 1999, 114, 589–601. [CrossRef]

46. Das, I.; Dennis, J.E. Normal-Boundary Intersection: A New Method for Generating the Pareto Surface in Nonlinear
Multicriteria Optimization Problems. SIAM J. Optim. 1998, 8, 631–657. [CrossRef]

47. Freitag, M.; Hildebrandt, T. Automatic design of scheduling rules for complex manufacturing systems by
multi-objective simulation-based optimization. CIRP Ann. 2016, 65, 433–436. [CrossRef]

48. Hildebrandt, T.; Branke, J. On Using Surrogates with Genetic Programming. Evol. Comput. 2015, 23, 343–367.
[CrossRef]

49. Haupt, R. A survey of priority rule-based scheduling. Spektrum 1989, 11, 3–16. [CrossRef]
50. Vanhoucke, M. Integrated Project Management Sourcebook; Springer International Publishing: Cham,

Switzerland, 2016; doi:10.1007/978-3-319-27373-0. [CrossRef]

Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional
affiliations.

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

126

algorithms

Article

Applying Neural Networks in Aerial Vehicle
Guidance to Simplify Navigation Systems

Raúl de Celis *, Pablo Solano and Luis Cadarso

Aerospace Systems and Transport Research Group, European Institute for Aviation Training and
Accreditation (EIATA), Rey Juan Carlos University, Fuenlabrada, 28943 Madrid, Spain;
pablo.solano@urjc.es (P.S.); luis.cadarso@urjc.es (L.C.)
* Correspondence: raul.decelis@urjc.es; Tel.: +34-914888775

Received: 12 November 2020; Accepted: 10 December 2020; Published: 11 December 2020 ��������	
�������

Abstract: The Guidance, Navigation and Control (GNC) of air and space vehicles has been one
of the spearheads of research in the aerospace field in recent times. Using Global Navigation
Satellite Systems (GNSS) and inertial navigation systems, accuracy may be detached from
range. However, these sensor-based GNC systems may cause significant errors in determining
attitude and position. These effects can be ameliorated using additional sensors, independent of
cumulative errors. The quadrant photodetector semiactive laser is a good candidate for such a
purpose. However, GNC systems’ development and construction costs are high. Reducing costs,
while maintaining safety and accuracy standards, is key for development in aerospace engineering.
Advanced algorithms for getting such standards while eliminating sensors are cornerstone.
The development and application of machine learning techniques to GNC poses an innovative
path for reducing complexity and costs. Here, a new nonlinear hybridization algorithm, which is
based on neural networks, to estimate the gravity vector is presented. Using a neural network means
that once it is trained, the physical-mathematical foundations of flight are not relevant; it is the
network that returns dynamics to be fed to the GNC algorithm. The gravity vector, which can be
accurately predicted, is used to determine vehicle attitude without calling for gyroscopes. Nonlinear
simulations based on real flight dynamics are used to train the neural networks. Then, the approach
is tested and simulated together with a GNC system. Monte Carlo analysis is conducted to determine
performance when uncertainty arises. Simulation results prove that the performance of the presented
approach is robust and precise in a six-degree-of-freedom simulation environment.

Keywords: nonlinear-flight-mechanics; neural networks; guidance, navigation, and control; machine
learning; model; matlab-simulink

1. Introduction

Global Navigation Satellite Systems (GNSS) signals are widely utilized for aerospace applications.
However, reliability decreases as the requirement of the application for which it is designed increases.
The main cause producing this effect is the reduced signal/noise relationship caused by the attenuation
and loss of the GNSS signal. This basically means that independent sources of data for navigation
are needed to ameliorate these negative effects and reduce interference. Inertial Navigation Systems
(INS) are a good example of devices which are independent of external perturbations. Particularly,
an inertial estimation unit (IMU) is an electronic gadget that measures and reports a body’s specific
force, angular rate, and orientation, utilizing a blend of accelerometers, gyroscopes, and sometimes
magnetometers. IMUs are normally used in airplanes, including unmanned aeronautical vehicles
(UAVs), and spacecraft. However, these systems also feature important lacks, such as frequent incorrect
initialization, accelerometer and gyroscope imperfections, which are trigger for cumulative errors

Algorithms 2020, 13, 333; doi:10.3390/a13120333 www.mdpi.com/journal/algorithms

127

Algorithms 2020, 13, 333

and imperfections in implemented dynamics model. Despite of this fact, Inertial Navigation Systems,
when hybridized with GNSS receivers to minimize drift, are excellent for GNC data acquisition [1,2].

However, precision and cost are counterposed objectives. Reducing costs, while maintaining
safety and accuracy standards, is key for development in aerospace engineering. Advanced algorithms
for getting such standards while cutting down costs are are cornerstone. For example, to maintain
an acceptable precision level while reducing costs, less precise devices may substitute expensive
systems as long as GNSS signal is reachable and persistent to update the inertial system. However,
many scenarios feature high uncertainty and alternatives are needed. An option to satisfy accuracy
needs and budget limitations is to merge data of a few low cost sensors, which makes possible increases
in accuracy levels.

The advantages of coordinated combination of information have appeared in numerous air
applications [3]. For example, information combination strategies for six degrees of freedom rockets
are depicted in [4]. The main issues in using various sorts of INS augmented with GNSS updates
have been considered by [5]. Notwithstanding INS/GNSS hybridization, a set of nonlinear observers
are presented by [6]. Note that, in case there are various sensors available, they may be additional
contributions to a filter, e.g., the Kalman filter [1,2].

As it is shown in [1,2], the need to develop new Guidance, Navigation and Control (GNC)
frameworks has fostered research on stability and controllability of aerospace vehicles. A novel
guidance law is presented in [7], where only observations of line-of-sight angle and its rate of
change coming from a seeker are employed. Ref. [8,9] present GNC cooperative techniques based on
the conventional Proportional Navigation (PN). In [10] a target-follower engagement is considered,
in which the target is followed while it tries to prevent interception. An attitude control-framework
device for a spinning sounding rocket, which depends on a proportional, integral, and derivative (PID)
controller, is created in [11]. Proportional-derivative GNC laws for the terminal phases of flight are
proposed in [12,13]. In [14], a limited time concurrent sliding-mode GNC law is introduced. An overall
scheme concerning the guidance and autopilot modules for a class of spin-stabilized balance controlled
devices is introduced in [15].

Yet, even in GNSS/IMU hybrid devices, there exist negative influences, such as irregular
estimations, which might be predominant during terminal guidance. Other methods, which are
based on image recognition using multispectral cameras and other sensors, may be used in navigation
for aerospace applications [16]. However, they usually feature high costs. Hence, advancement on new
algorithms which may easily fulfill the required precision levels and budget limitations is a foundation
in research. For instance, there are recent advances which consist of incorporating IMU, GPS, and laser
guidance capacity, offering high accuracy and all-weather capacity [17,18].

Laser guidance may be provided by means of Semi Active Laser Kits (SAL). These devices
are applied in many designing areas, such as calculating rotational speed of objects and estimating
dynamics of laser spots [19,20]. The bonus of these kits is their favorable position during the last
periods of the guidance, when they can provide high precision for GNC systems.

Therefore, it can be stated that sensor hybridization techniques [16,21] for viable and robust
estimations are a current need when autonomy, accuracy, and minimal cost are to be achieved.
However, also note that as the number of sensors to employed increases, the cost of system also increases.
In this sense, Machine Learning (ML) techniques come onto the scene. They offer multitudinous options
and innovative solutions of particular interest for GNC applications, where their foray is still latter
and shallow, yet with no doubt promising. The utilization of ML strategies for the estimation of
parameters dependent on the dynamics of aerial vehicles presents the bit of leeway that once the
algorithm is calibrated or trained, it is not important to know the physical-mathematical establishments
that rule the flight mechanics. Given the input signals, ML algorithms may restore the data that
can later be utilized within the GNC system, such that the subsequent solutions will fit the genuine
output [22,23]. Taking benefit of these facts, a reduced set of sensors may be selected to work together

128

Algorithms 2020, 13, 333

with ML algorithms, all while safety and accuracy standards are matched, and complexity and costs
are decreased.

However, the application of these strategies to a wide set of scenarios, which may also include
uncertain conditions, depends largely on the representativity and amount of input and output data
employed for training ML algorithms. This fact implies that desired performance stability and
convergence is to be restricted to the trained mission envelope. Other approaches, which could
ensure convergence and stability parameters under the proposed uncertain conditions, might also be
employed for this type of application. For instance, adaptive control that uses adaptation laws to online
estimate unknown system parameter variations for various mission envelopes [24–26].

Altogether, the objective of this paper is to improve current guidance strategies applying
a powerful hybridization approach, which also introduces ML to enable attitude determination
with a reduced availability of sensors, namely GNSS, accelerometer and semiactive laser quadrant
photo-detectors. In particular, neural networks (NN) are implemented to precisely estimate the gravity
vector to be combined with velocity and line of sight vectors in order to determine the attitude or
rotation of the vehicle without needing gyroscopes. Note that the mentioned vectors need to be
obtained in two different reference frames because otherwise the attitude determination problem
cannot be solved.

Contributions

The main contribution of this scientific research is the application of Machine Learning techniques,
i.e., neural network (NN) algorithms, to hybridize GNSS, accelerometer and semiactive laser quadrant
photo-detectors signals. The role of the neural networks is to predict the gravity vector to estimate
the attitude of the vehicle. Consequently, the advantage of such a hybrid system over the traditional
ones, which are usually based on GNSS and IMUs, is the capability of eliminating gyros, which may
be expensive and too sensitive for high demanding maneuvers and not reliable at all during some
stages of flight.

The presented approach relies on neural networks and training algorithms to predict the gravity
vector in body fixed axes while the vehicle is flying. The three components of the acceleration of
the vehicle in body fixed axes are the inputs for the NN. After that, the predicted gravity vector is
processed together, by means of a hybridisation algorithm, with velocity and line of sight vector to
determine body rotation or attitude.

To reproduce the flight dynamics of an aerial vehicle, a nonlinear mathematical model is proposed,
which considers nonlinear aerodynamic forces and moments and that has been validated to build
up realistic conditions for simulation experiments [1,2]. On top of that, a robust double-input
double-output control algorithm is employed to manage coupling among the normal and lateral
nonlinear dynamics.

Note that the presented approach depends on the amount of available data for training,
which means stability and convergence may be restricted to the trained mission envelope. However,
note that training has been performed for a wide variety of launching, flight, and destination
point conditions to resemble realistic settings, i.e., for a comprehensive set of missions. Overall,
the methodology results in good enough quality results, even including good response to uncertainty in
several conditions and characteristics, i.e., showing good GNC performance. Therefore, the presented
research poses a path for a generalized and systematic application of NN/Machine Learning in
GNC systems.

The rest of this paper is organized as follows. In Section 2, the system modeling is described
in detail. Section 3 describes the navigation, guidance and control algorithms. Section 4 exposes
simulations results. Finally, discussion and conclusions are presented.

129

Algorithms 2020, 13, 333

2. Vehicle Modeling

This section is dedicated to the vehicle description, the flight dynamics model, and sensor and
actuation models.

2.1. Definition of the Vehicle

The proposed GNC approach is applied to an aerial vehicle which features a maneuvering
system composed of four canard surfaces, which is roll-decoupled from the main body of the vehicle.
The motivation for this aerodynamic configuration is deeply explained in [1]. Note a canard is a small
winglike surface attached to an aircraft forward of the main wing to provide extra stability or control,
usually replacing the tail. Here, canards are decoupled 2 by 2, to produce control force and its related
torque (see [1] for more details on this).

Table 1 shows some characteristic parameters of the vehicle, including thrust typical parameter
values, vehicle and fuel mass, inertia, and aerodynamic parameters. These parameters are obtained
from fluid dynamics numerical simulations, experimental measurements, and wind tunnel verification
(see [1] for clarifications). Note that, to keep continuity and derivability on aerodynamic coefficients
and thrust, a cubic splines based interpolation method has been employed at intermediate points.
According to the shown moments of inertia, the vehicle features planes of symmetry.

Table 1. Aerial vehicle parameters.

Parameter Maximum Thrust Initial Mass

Value 29,160.00 N 62.40 kg

Parameter Fuel mass Ix0 Iy0

Value 21.00 kg 0.19 kg m2 18.85 kg m2

M CD0 CDα2 CLα
CLα3 Cm f CNq

0.00 0.27 10.74 8.01 19.82 −0.59 50.81
0.40 0.25 10.88 8.17 19.55 −0.64 53.25
0.60 0.24 11.10 8.43 19.12 −0.70 57.43
0.70 0.24 11.24 8.60 18.83 −0.72 60.31
0.80 0.23 11.40 8.79 18.49 −0.75 63.80
0.90 0.23 11.45 8.98 17.28 −0.78 67.93
1.00 0.41 15.12 8.93 44.05 −0.81 71.38

M CMα
CMα3 CMq Cmm Cspin CNαw

0.00 −35.58 −16.65 −225.73 3.02 −0.04 0.00
0.40 −35.72 −18.09 −232.75 3.29 −0.04 0.42
0.60 −36.00 −20.39 −245.32 3.57 −0.04 0.43
0.70 −36.21 −21.82 −254.10 3.71 −0.03 0.44
0.80 −36.51 −23.39 −264.85 3.84 −0.03 0.44
0.90 −36.57 −18.48 −276.57 3.98 −0.03 0.45
1.00 −35.99 15.39 −287.82 4.12 −0.03 0.45

2.2. Equations of Flight Mechanics

To construct the equations of flight, three reference frames are defined to project forces and
moments: NED axes, working axes and body axes. NED axes, which are ground axes, are depicted
by sub index NED. They are defined by xNED pointing north, zNED orthogonal to xNED and pointing
nadir, and yNED yielding a clockwise trihedron. Working axes are represented by sub index w. They are
given by xw pointing to the destination point, yw orthogonal to xw and pointing apex, and zw forming
a clockwise trihedron. AZ0 is the initial azimuth, i.e., the azimuth between xe and xw. Body axes are
depicted by sub index b. xb pointing forward and contained in the plane of symmetry of the vehicle,
zb orthogonal to xb pointing down and contained in the plane of symmetry of the vehicle, and yb
shaping a clockwise trihedron. The origin of body axes is located at the gravity center of the vehicle

130

Algorithms 2020, 13, 333

and they are rigid coupled to the roll-decoupled control device. Figure 1 shows the previously defined
axes systems.

Figure 1. The three employed reference frames.

Next, flight dynamics equations are described. Note that these equations are compliant with the
standard convention in [27]. Because the vehicle is assumed to be rigid, classical mechanics theory is
employed. The Newton–Euler equations describe the combined translational and rotational dynamics
of a rigid body. These laws, which are given by six equations, relate the motion of the center of gravity
of a rigid body with the sum of forces and moments acting on the rigid body.[−→

Fext−−→
Mext

]
=

[−→
L +

−→
D +

−→
P +

−→
M +

−→
T +

−→
W +

−→
C−→

PM +
−→
O +

−−→
MM +

−→
S

]
, (1)

Equation (1) shows total external forces and moments acting on the vehicle:
−→
L is the lift force,−→

D is the drag force,
−→
P is the pitch damping force,

−→
M is the Magnus force,

−→
T is the thrust force,

−→
W is

the weight force,
−→
C is the Coriolis force,

−→
PM the is pitch damping moment,

−→
O is the overturn moment,−−→

MM is the Magnus moment, and
−→
S is the spin damping moment.

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−→
L−→
D−→
P−→
M−→
T−→
W−→
C

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−π
8 d2ρ

⎡⎢⎢⎢⎢⎢⎢⎣

(
CLα(M) · α + CL

α3 (M)α2
) (‖−→vw‖2−→xw−

(−→xw · −→vw
)−→vw

)(
CD0(M) + CD

α2 (M)α2
)
‖−→vw‖−→vw

−d
CNq(M)

Iy
‖−→vw‖2

(−→
Lw ×−→xw

)
d

Cm f (M)

Ix

(−→
Lw · −→xw

) (−→xw ×−→vw
)

⎤⎥⎥⎥⎥⎥⎥⎦
T (t)−→xw

m−→gw

−2m
−→
Ω ×−→vw

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(2)

For the computational experiments in this paper, the external forces in working axes are shown
in expression (2), where CLα is the lift force linear coefficient, CL

α3 is the lift force cubic coefficient,
α is the total angle of attack, CD0 is the drag force linear coefficient, CD

α2 is the drag force square

coefficient,
−→
Lw is the vehicle angular momentum in working axes, Ix and Iy are the vehicle inertia

131

Algorithms 2020, 13, 333

moments in body axes, CNq is the pitch damping force coefficient, Cm f is the Magnus force coefficient,
−→xw is vehicle pointing vector in working axes, −→gw is the gravity vector in working axes,

−→
Ω is earth’s

angular speed vector, −→vw is vehicle velocity in working axes, d is the reference surface of the vehicle,
ρ is the air density, and m is the mass of the vehicle. Note that, −→xw is the unitary vector of the xw

axis, and −→gw is the gravity vector in working axes. Be aware they are nonlinear functions of the
variables describing the movement of the vehicle, such as aerodynamic speed, total angle of attack,
Mach number, and aerodynamic parameters.

⎡⎢⎢⎢⎢⎣
−→
PM−→
O−−→

MM−→
S

⎤⎥⎥⎥⎥⎦ =
π

8
d3ρ

⎡⎢⎢⎢⎢⎢⎢⎣

1
Iy

CMq(M)‖−→vw‖
(−→

Lw −
(−→

Lw · −→xw

)−→xw

)(
CMα(M) + CM

α3 (M)α2
)
‖−→vw‖2 (−→vw ×−→xw

)
− d

Ix
Cmm(M)

((−→
Lw · −→xw

) ((−→vw · −→xw
)−→xw

) − −→vw
)

d
Ix

Cspin(M)‖−→vw‖
(−→

Lw · −→xw

)−→xw

⎤⎥⎥⎥⎥⎥⎥⎦ , (3)

Similarly, the equations in (3) show the mathematical expressions for the moments, including
overturning, pitch damping, Magnus, spin damping, and variables and parameters. Here, CMq is
the pitch damping moment coefficient, CMα is the overturning moment linear coefficient, CM

α3 is the
overturning moment cubic coefficient, Cmm is the Magnus moment coefficient and Cspin is the spin
damping moment coefficient.

Control forces (
−→
CF) and moments (

−→
CM) are obtained from the maneuvering system, which is

composed of four canard surfaces. Therefore, the contribution of each of them is summed to obtain the
total control forces and moments.⎡⎢⎣

−→
CF

−→
CM

⎤⎥⎦ =
i=4

∑
i=1

⎡⎢⎣ 1
8 d2ρπ‖−→vb ‖2(CNαw(M)δi)

−→nci

1
8 d3ρπ‖−→vb ‖2(CMαw(M)δi)(

−→xb ×−→nci)

⎤⎥⎦ (4)

The expressions in (4) show the mathematical functions for control forces and moments,
where CNαw and CMαw are the force and moments coefficients of the canard surface respectively,−→nci is the normal vector of each canard, and δi is the deflection angle of the canard surface. Here, −→vb is
vehicle velocity in body axes.[−→

CF +
−→
Fext−→

CM +
−−→
Mext

]
=

[
dm−→vb

dt +−→ωb × m−→vb
d
−→
Lb
dt +−→ωb ×−→

Lb

]
(5)

As stated before, a Newton-Euler approach is used to formulate the equations of motion of the
aerial vehicle. These equations are in (5). Note that the body-fixed coordinate system (denoted by
frame b) and the flat-Earth coordinate system (denoted by frame e) are related by Euler yaw (ψ),
pitch (θ), and roll (φ) angles.

In Equations (5), −→vb stands for vehicle speed expressed in body axes, −→ωb for angular speed of the
vehicle in body axes, and

−→
Lb for the angular momentum also in body axes. Recall that control and

external forces and control and external moments must be expressed in body axes also to be employed
in Equations (5).

2.3. Sensors Models

As exposed in the introduction, this research aims at simplifying navigation systems.
Here, this means reducing the need for complex and/or expensive sensors. A gyroscope is a device
used for measuring orientation and angular velocity, and it is widely employed in navigation systems.
However, their precision downgrades for high-dynamics aerial platforms meanwhile costs increase if
performance is to be maintained. Therefore, the objective is to avoid them by fusing information from

132

Algorithms 2020, 13, 333

GNSS sensors, accelerometers, and photo-detector signals to improve vehicle navigation performance
in terms of accuracy. This section aims at describing the employed models for these sensors.

2.3.1. Global Navigation Satellite System (GNSS)

The GNSS sensor is modeled as a random noise and a bias added to the model calculated position.
Note that these systems have typical accuracy of 3 m; therefore, the random noise and bias parameters
have been adjusted to satisfy that performance. Because it is not the objective of this paper to model
such a sensor, the reader is referred to [2,28] for more details on this.

These kind of sensors provide good performance during intermediate phases of flight and are
employed to determine the line of sight vector expressed in NED axes. Note that GNSS sensors also
provide velocity vector in NED axes. This vector is also modeled as a random noise and a bias of
0.1 ms−1, which resembles real performance of these sensors.

2.3.2. Accelerometers

An accelerometer is a device that measures acceleration, i.e., the rate of change of velocity of the
vehicle in its own instantaneous reference frame. They are modeled as a random noise and bias of
0.001 ms−2 which resembles real performance of these sensors. Because they provide the acceleration
vector expressed in body axes, velocity vector expressed in body triad can be obtained after integration
of each of its components along time.

In addition, the magnitudes obtained from accelerometers will be used in the gravity vector
estimation approach. As it is explained in the following sections, the velocity vector module is required
to estimate it.

2.3.3. Semiactive Laser Kit

Laser guidance may be used to guide a vehicle to a target by means of a laser beam. With this
method, a laser is kept pointed at the objective and the laser radiation bobs off the objective and is
dispersed every which way. At the point when the vehicle is close enough for a portion of the reflected
laser energy from the objective to arrive at it, a laser seeker detects which direction this energy is
coming from and provides a signal to correct the trajectory towards the source. The device seeking the
laser and providing the signal is a semiactive laser kit.

The signal provided by this sensor features the centroid of the laser footprint in the photo-detector
of the kit, which is composed of four photodiodes that convert light into an electrical current.
To estimate its coordinates, the produced electrical intensities in the photodiodes (I1, I2, I3 and I4)
are employed, which rely upon the illuminated area. These coordinates can be determined
as [ln I4

I2
, ln I1

I3
] [17], and from them, it is possible to obtain the measured radial distance, rquad.

Notwithstanding, real coordinates differ from those calculated, although the transformation is
conformal [17]. To obtain the real radial distance, rc, the following mathematical functional relationship
may be employed: rc = f (rquad). Then, cubic splines based interpolation is applied to obtain a
continuous relationship. Equations (6) are utilized to estimate xc and yc (see [17] fore more details
on this), which are the real spot center coordinates:[

xc

yc

]
= Rquad · rc

rquad

[
ln I4

I2

ln I1
I3

]
, (6)

where the physical radius of the photo-detector of the kit is given by Rquad. Consequently, the line of
sight vector projected in body axes may be calculated from xc and yc and also from the distance of the
photo-detector of the kit to the center of mass of the vehicle.

Note that the signal of this sensor is only available during the terminal phase of the flight.
However, it is during final stages of flight when errors of 3 m in positioning target and vehicle induces
enormous errors. In this way, an accurate terminal guidance sensor, for example, a semiactive laser kit,

133

Algorithms 2020, 13, 333

is suggested for these last flight stages. This semiactive laser sensor, in combination with GNSS and
accelerometers, will provide an accurate determination of the line of sight, especially in the terminal
phase. For that purpose, the signals of these sensors’ must be hybridized.

Next, GNC algorithms are presented. At their kernel, neural networks are implemented to
determine gravity vector in two reference frames in order to determine vehicle attitude. In addition,
hybridization algorithms are applied to sensors’ signals to improve precision.

3. Guidance, Navigation and Control (GNC) Algorithm Definition

This section details the proposed navigation, guidance and control algorithms. A scheme of
the overall process is depicted in Figure 2. The navigation function determines the position and
attitude of the vehicle by means of the information sensed by the sensors. The position is determined
through the integration of the signals provided by the accelorometers and the hybridization of the
signal from a GNSS device. The determination of attitude is the core of the research in this paper.
From the information provided by the accelerometers and the GNSS, the neural network determines
the gravity vector in two different axes systems. Then Euler angles are devised from a triad algorithm.
The guidance function compares the information from the navigation function with a reference and
computes a desired action to the control function. The control function processes this desired action
and transforms it into a command to the actuators of the plant (i.e., the vehicle), which execute the
action. The action taken is again measured by the sensors, which closes the loop.

Figure 2. Scheme of the GNC process.

3.1. Navigation

Navigation refers to the determination during the flight, of the position and attitude of the vehicle,
and target position.

Determining the position of the vehicle may consist of integrating accelerometers’ measurements
to be hybridized with GNSS sensor information. The details of these calculations are out of the scope
of this paper, see [1,2,28,29] for details on this approach.

As it was mentioned before, determining attitude involves knowing two or more different vectors
in two different reference systems. The velocity vector and the line of sight vectors can be the two
needed vectors. If a GNSS sensor device is equipped on the aircraft, velocity vector can be directly
obtained from sensor measurements in the NED triad, which can be expressed as shown in (7),
where vxNED , vyNED and vzNED are the components of this velocity in NED axes.

134

Algorithms 2020, 13, 333

−−−→vNED = [vxNED , vyNED , vzNED]
T (7)

In parallel, the same velocity vector can also be calculated in body triad from a set of
accelerometers, one on each of the axes. Integrating each of their measures along time, the velocity
vector is obtained as shown in (8). Here, axB , ayB and azB are the components of the acceleration in

body axes as measured by the accelerometers and
−→̃
ωb is the estimated angular speed expressed in body

axes. Note that, at this point,
−→̃
ωb is unknown, and the algorithm for estimating it will be shown in the

following sections.
−→vB =

∫ {
[axB , ayB , azB]

T +
−→̃
ωb ×−→vB

}
dt (8)

Similarly, the line of sight vector must be obtained in NED and body reference systems,
−−−−−→
LOSNED

and
−−−→
LOSB, respectively.

−−−−−→
LOSNED can be easily obtained from GNSS sensor information. However,

the semiactive laser kit is needed to derive
−−−→
LOSB, and this sensor signal is not available until the

vehicle is close enough to the target. This means another vector is needed to successfully estimate the
attitude of the vehicle during all the phases of flight.

The gravity vector poses as a natural candidate for such a challenge. Notice that determining
the gravity vector in NED triad is straightforward. It is always parallel to −−→zNED. Its expression is
shown in (9), where g is the gravity acceleration, which is a fixed constant in this model (9.81 m/s2).
Note that precision may be increased using more sophisticated models, i.e., it can be made variable
with longitude, latitude, and altitude.

−−−→gNED = g[0, 0, 1]T (9)

However, the gravity vector expressed in another reference system, i.e, body axes, is also needed.
However, although there are multiple available approaches to obtain it, none of them is simple and/or
require additional sensors. For example, it can be estimated determining the constant component
of the measured acceleration employing a low pass filter, where Jerk in body axes is calculated by
derivation of the acceleration; then, it is integrated to obtain the nonconstant component of acceleration
and, by subtracting this nonconstant component from the measured acceleration, gravity vector may
be estimated. However, this method is not valid when the aircraft rotates. Another method to obtain
the gravity vector is to integrate the mechanization equations [30] to obtain it from the resulting
expressions. However, gyros are needed to implement this method. Therefore, the keystone of the
presented attitude determination method is determining gravity vector in body axes.

An estimation method for the gravity vector, which is valid for nonrotating and rotating aircraft
and which is only based on accelerometers, is presented in the following subsection.

3.1.1. Neural Network Based Gravity Vector Estimation

Among the numerous applications that machine learning offers to exemplary and current GNC
issues (see [23,31–34]), its potential to precisely estimate the gravity vector from sensor information
is one of the main unexplored settings. The utilization of neural networks (NN) to understand
the evolution of nonlinear equations has been demonstrated before [35], regardless of uncertainty.
Scientifically, this infers NN will learn flight mechanics equations [36] and produce an equal outcome.

The gravity vector estimation method presented here depends on the aerial platform on which it
will be employed. This means that the method must be adjusted for the aircraft of interest. Without loss
of generality, the estimation method detailed in this section is particularized for a four canard
controlled aerial vehicle. However, using the appropriate neural network training, it may be applied
to other aircraft.

135

Algorithms 2020, 13, 333

The estimated gravity vector may be expressed as shown in (10), where its components in body
axes are displayed. The point is to recoup a high precision gravity vector by consolidating the
estimations from the accelerometers and the potential offered by machine learning.

−→̃
gB = [g̃xB , g̃yB , g̃zB]

T (10)

In order to prove the suitability of the proposed approach two different methods or strategies are
proposed, as they can be visualized in Table 2:

• Method 1: it is based on a neural network which features two-layers with one hundred standard
sigmoid hidden neurons and the usual linear output neuron [35]. The input vector is composed
of three components constructed from axB , ayB and azB . The outputs of the neural networks are

the components of the gravity vector expressed in body axes (
−→̃
gB).

• Method 2: this method is the same as method 1, but the number of neurons in the hidden layer
is 50.

Table 2. Neural network schemes for the two different methods or strategies.

Method 1

axB

−→̃
gBayB

azB

Method 2

axB

−→̃
gBayB

azB

The choice of the number and shape of neurons as well as the amount of training and validation
data selected for the presented two strategies is a result of the literature review (specially from [35]) and
a performed hyperparametric study. This study provided two points of interest: around 100 neurons
and 50 neurons. Increasing the number or neurons or layers translated only into an increase of
computation time for a limited improvement in terms of error of approximation. A further and
detailed hyperparametric study will be performed in future work to precisely determine the optimal
working point but is not the objective of this research to formalize this statement. The preliminary
results of this hyperparametric study suggest that there is a limit number of neurons in the intermediate
layer (estimated at about 100 neurons), and over this limit, results do not get improved.

Then, neural networks are trained replicating the flight dynamics problem. Two examples of the
available 3 · 108 rows of data, which are obtained from 12,000 simulations, are showed in Table 3.

Table 3. Neural network input and target values.

Accelerometer Inputs Target

axB ayB azB g̃xB g̃yB g̃zB

−17.68 −0.004 9.761 −0.614 −0.002 9.791

−6.019 5.605 0.1891 5.838 −0.093 7.883

.

136

Algorithms 2020, 13, 333

Regarding the training process, three different backpropagation algorithms are employed: Scaled
Conjugate Gradient (SCG) [37], Bayesian regularization (BR) [38,39], and Levenberg-Marquardt
backpropagation (LM) [40,41]. The choice of these algorithms is a result of literature study.
The percentage of data employed in this training is 70%. As it is common practice, a representative
amount of sensor data and its corresponding gravity vector are left aside for validation purposes.
In this case, a 15% of the available data corresponds to validation data. Note that the total amount of
methods and training algorithms provide six different combinations which are analyzed next.

The performance of each of the six approaches can be quantified by means of the Mean Squared
Error (MSE) and the Regression (R) parameter values. The MSE is the average squared difference
between outputs and targets. Lower value means lower error. Zero means no error. R values measure
the correlation between outputs and targets. An R value of 1 means a close relationship and 0 a random
relationship. Other kind of error indicators (such as Mean Average Error, MAE) may also be used to
monitor and validate the training to avoid overfitting.

For each of the the training processes, a maximum number of 1000 iterations has been established.
As it is common practice in the field, classified by epochs. For the LM and SCG algorithms, training
automatically stops when generalization stops improving, as indicated by an increase in the MSE of
the validation samples. In the case of the BR algorithm, training stops according to adaptive weight
minimization (regularization). In both cases the MAE is controlled as usual to avoid overfitting.

In addition, the trained NN is tested with the independent data (15% of the collected data),
and MSE and R values are also calculated to validate the presented strategies.

Table 4 summarizes the obtained results for the training, validation and tests. It shows the values
for the MSE and the R parameters. In the first column, the “Set” of data is defined, i.e., train (70%),
validation (15%), or test (15%) data. The second column displays the employed training algorithm.
The third and forth columns present the MSE and R values for the methods 1 and 2 showed in Table 2.

Table 4. MSE and R values for neural network based gravity vector estimator.

Method 1 Method 2

Set Alg. MSE R MSE R

Train SCG 5.81 × 10−3 7.22 × 10−1 5.82 × 10−3 7.24 × 10−1

Validation SCG 5.89 × 10−3 7.21 × 10−1 5.98 × 10−3 7.25 × 10−1

Test SCG 5.94 × 10−3 7.18 × 10−1 5.85 × 10−3 7.21 × 10−1

Train BR 6.95 × 10−5 9.98 × 10−1 9.83 × 10−4 9.55 × 10−1

Validation BR 6.92 × 10−5 9.98 × 10−1 9.80 × 10−4 9.54 × 10−1

Test BR 6.95 × 10−5 9.97 × 10−1 9.81 × 10−4 9.56 × 10−1

Train LM 5.63 × 10−5 9.98 × 10−1 7.31 × 10−4 9.60 × 10−1

Validation LM 5.61 × 10−5 9.98 × 10−1 7.21 × 10−4 9.72 × 10−1

Test LM 5.70 × 10−5 9.97 × 10−1 7.32 × 10−4 9.65 × 10−1

Analyzing the results in Table 4, it may be concluded that the best results are obtained for the
combination of Method 1 and LM algorithm, which yields a MSE value of 5.63 · 10−5 and a Regression
value of 0.998. Additionally, the combinations of Method 2 and LM and BR algorithms also result
in acceptable values for MSE and R values, they are of the same order of magnitude. Consequently,
we may conclude that Methods 1 and 2 provide good results when the LM and BR training algorithms
are used. Nevertheless, the SCG training algorithm is not appropriate for this application, as the best
results for this algorithm are 2 orders of magnitude worse as compared to the the rest of the algorithms.

Next, the attitude determination algorithm is presented. It is based on the estimated gravity
vector by the neural networks (NN). In addition, note that, because there is information regarding

137

Algorithms 2020, 13, 333

two additional vectors during terminal flight, i.e., the speed vector and the line of sight vector,
a hybridization approach is also presented to improve performance.

3.1.2. Attitude Determination Algorithm

Attitude determination can be determined by solving a classical Wahba’s problem [42].
An orthonormal base must be defined in both axes systems, B and NED. This orthonormal base
is defined for intermediate phases of flight, when signal of the photo-detector is not available and for
the terminal phase of flight, when it is available, by unitary vectors�i,�j and�k expressed in both bases.
For the intermediate phases, these unitary vectors are calculated using the speed vector and the gravity
vector. Furthermore, for the terminal flight, the line of sight vector and the gravity vector are to be
employed. For the intermediate phases, f l, the unitary vectors are defined by expressions (11) and (12).

−−−→
iNEDf l =

−−−→vNED
‖−−−→vNED‖ ,

−−−→
jNEDf l =

−−−→vNED×−−−→gNED

‖−−−→vNED×−−−→gNED‖ ,
−−−→
kNEDf l =

−−−−→
iNED f l

×−−−−→
jNED f l∥∥∥−−−−→iNED f l

×−−−−→
jNED f l

∥∥∥ (11)

−→
iBf l =

−→vB
‖−→vB‖ ,

−→
jBf l =

−→vB×−→gB

‖−→vB×−→gB‖ ,
−→
kBf l =

−→
iB f l

×−→
jB f l∥∥∥−→iB f l

×−→
jB f l

∥∥∥ (12)

During the terminal guidance phase, t f , when the photo-detector is receiving information, a new
set of unitary vectors is obtained by Equations (13) and (14).

−−−→
iNEDt f =

−−−−−→
LOSNED∥∥∥−−−−−→LOSNED

∥∥∥ ,
−−−→
jNEDt f =

−−−−−→
LOSNED×−−−→gNED∥∥∥−−−−−→LOSNED×−−−→gNED

∥∥∥ ,
−−−→
kNEDt f =

−−−−→
iNEDt f

×−−−−→
jNEDt f∥∥∥−−−−→iNEDt f

×−−−−→
jNEDt f

∥∥∥ (13)

−→
iBt f =

−−−→
LOSB∥∥∥−−−→LOSB

∥∥∥ ,
−→
jBt f =

−−−→
LOSB×−→gB∥∥∥−−−→LOSB×−→gB

∥∥∥ ,
−→
kBt f =

−→
iBt f

×−→
jBt f∥∥∥−→iBt f

×−→
jBt f

∥∥∥ (14)

Note that to determine the attitude of a vehicle with respect to a reference frame, the direction
cosine matrix (DCM) must be determined. It represents the attitude of the body frame (B) relative to
the reference frame (NED). It is specified by a 3 × 3 rotation matrix, where the columns represent unit
vectors in the body axes projected along the reference axes. Therefore, the expression to determine
the DCM is as shown in Equation (15), where

[−→
iBi ,

−→
jBi ,

−→
kBi

]
is a 3 × 3 square matrix composed of

orthonormal vectors in body triad,
[−−→
iNEDi ,

−−−→
jNEDi ,

−−−→
kNEDi

]
expresses the same concept in NED triad,

and DCMB,NEDi is the director cosine matrix that transforms NED triad into body triad. Notice that
depending on the phase of flight, i.e., intermediate (f l) or terminal (t f), the matrix may be calculated
with different inputs.[−→

iBi ,
−→
jBi ,

−→
kBi

]
= DCMB,NEDi

[−−→
iNEDi ,

−−−→
jNEDi ,

−−−→
kNEDi

]
∀i ∈ {t f , f l} (15)

The DCM matrix can be solved from Equation (15) as it is shown in Equation (16). Employing an
orthonormal base simplifies the calculation of the inverse matrix as it is the transposed matrix.

DCMB,NEDi =
[−→

iBi ,
−→
jBi ,

−→
kBi

] [−−→
iNEDi ,

−−−→
jNEDi ,

−−−→
kNEDi

]T ∀i ∈ {t f , f l} (16)

After obtaining the two different director cosine matrices, which will be essentially similar
matrices, the rotation is characterized. The most suitable method to express this rotation is through
quaternions, as they avoid any possible singularities on the poles of rotation. It is widely known that
quaternions themselves are enough to express rotations without singularities, but it is also known
that conceptually they are difficult to be visualized. An easier manner to define these rotations is
by means of Euler angles. Concretely, the most common aeronautical rotation is defined by roll (φi),
pitch (θi), and yaw (ψi) angles for i ∈ {t f , f l}. A method to obtain a quaternion solution is explained

138

Algorithms 2020, 13, 333

in [2]. Note that two different values for each quaternion are obtained, i ∈ {t f , f l}. This fact requires
an hybridization between them in order to only obtain one value for each quaternion.

Hybridization Algorithm

The Euler angles (or their corresponding quaternions) values obtained for i ∈ {t f , f l} are
hybridized applying the recursive algorithm described in (17) and (18):

{−→
Eul
}∣∣∣

n
=

⎧⎪⎪⎨⎪⎪⎩
{−→

Eul
}∣∣∣

n−1
+ κ|n

[{−−→
Eul f l

}∣∣∣
n
−
{−→

Eul
}∣∣∣

n−1

]
if 	 ∃

{−−→
Eult f

}∣∣∣
n{−→

Eul
}∣∣∣

n−1
+ κ|n

[{−−→
Eult f

}∣∣∣
n
−
{−→

Eul
}∣∣∣

n−1

]
if ∃

{−−→
Eult f

}∣∣∣
n

(17)

κ|n = Γ · [Γ + Λ]−1, (18)

where
−→
Eul are the Euler angles (φ, θ, ψ), and Γ and Λ are the error covariance matrices for i = t f and

for i = f l measurements, which are set to 1.3 · 10−6 and 0.95 · 10−3, respectively. Those values were
determined empirically.

The Euler angles obtained in (17) may be used to characterize rotations and angular speeds in
navigation, guidance, and control algorithms. This basically means that

−→̃
ωb is now known. Furthermore,

from these Euler angles, the hybridized director cosine matrix (DCMB,NED) may be calculated.

3.2. Guidance Law

Guidance is given in two stages. The first comprises of a constant angle glide trajectory, while the
second one is based on a modified proportional law.

3.2.1. Constant Angle Glide Trajectory

Equation (19) proposes a law which is chosen to increase range. It adjusts the longitudinal axis
of the vehicle (xb) with a vertical flight plane, orthogonal to ground, parallel to the line joining the
gravity center of the vehicle and the destination target and containing the gravity center of the vehicle.
The line of sight is expressed in working axes is given by vector

−−−→
LOSw = [LOS1w , LOS2w , LOS3w]. xb in

working axes is represented by vector −→xbw = [xb1w , xb2w , xb3w]. Consequently, the lateral correction to
be applied (ψdem) is calculated by the first component of Equation (19), while the correction in the
vertical plane (θdem) with respect to a constant glide angle trajectory given by C1 [1] is given by the
second component. Note that guidance effectively starts after apogee, which is determined by the
pitch angle (θ) and after fuel burn time.

[
ψdem
θdem

]
=

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

[
(atan LOS3w

LOS1w
− atan xb3w

xb1w
)

C1

]
if t > 5 and θ ≤ 0[

0
0

]
else

(19)

3.2.2. Modified Proportional Law

The guidance for the terminal phase of flight is formulated as a modified proportional law ruled
by expression (20). Equation (21) calculates time to target, tgo. Guidance is activated only when the
vertical coordinate of the line of sight vector is greater than a given constant (C2) [1].

[
ψdem
θdem

]
=

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
−−−→
LOSw−−→vwtgo

t2
go

·
[−→

kw

−−→
iw

]
if atan

LOS3NED√
LOS2

1NED
+LOS2

2NED

≤ C2[
0
0

]
else

(20)

139

Algorithms 2020, 13, 333

tgo = max

⎡⎢⎢⎣
1
g

(
−→vw · −→jw +

√
(−→vw · −→jw)2 + 2gLOS2w

)
1
g

(
−→vw · −→jw −

√
(−→vw · −→jw)2 + 2gLOS2w

)
⎤⎥⎥⎦ (21)

Here,
−→
iw ,

−→
jw , and

−→
kw represent the orthonormal basis of the working axes, and

−−−→
LOSw =

[LOS1w , LOS2w , LOS3w]
T and

−−−−−→
LOSNED = [LOS1NED , LOS2NED , LOS3NED]

T are the vectors of the line
of sight and its components in working and NED axes, respectively.

3.3. Control System

The control law presented in [29] is employed in the current research. Two control conditions
are presented in the actuation device: the modulus and the angle for the control force. Control is
computed by a double loop feedback system. The inner loop aims at augmenting the stability of
the vehicle. Equation (22) characterizes modulus (τc) and angle (φc) of the control force. Its inputs
are pitch (θdem) and yaw (ψdem) errors. Ki, Kd and Kp are the integral, derivative and proportional
constants of the controller, Kmod is a constant to adjust force module and L1 and L2 are experimental
gains. The procedure to decide these constant values, which appear in Table 5, is clarified in [1].
Note that the acceleration, without accounting for gravity, of the vehicle in body axes is defined by
[accxb, accyb, acczb]. Euler angles as introduced before are represented by [φ, θ, ψ].[

φc

τc

]
=

[
Kp (E1 − E2) + Ki

∫
(E1 − E2) dt + Kd

d
dt (E1 − E2) + E1

Kmod
√
(θdem − L1θ)2 + (L2(ψdem − L1ψ))2

]

where

{
E1 = atan θdem−L1θ

L2(ψdem−L1ψ)

E2 = atan acczb
accyb

(22)

Table 5. Values for the constants of the control systems for each flight phase.

��������������Phase of Flight
Constant C1 C2 Ki Kp Kd Kmod L1 L2

Intermediate phases −7.5 deg −21 deg 0 0.5 0 0.08 0.01 100

Terminal phase −7.5 deg −21 deg 1 0.25 0.05 0.08 0.01 1

Summarizing, the control law works as follows. The controller determines the required pointing
angle of the aerodynamic force. This is calculated obtaining the arc-tangent of the quotient of the
pitch and yaw error, which provides an angle, in the yb − zb plane, at which the aerodynamic force
should point to reach the objective. However, due to gyroscopic effects, the response of the vehicle is
hard to govern, i.e., pointing the control force upwards may not make the vehicle to react upwards.
Consequently, knowing the acceleration of the vehicle, without accounting for gravity, is a must.
Similarly, the difference between φc and the angle the projection of the aerodynamic force in the yb − zb
plane forms with yb needs to be determined [1].

The aforementioned parameters of control are transformed into canard surface deflections,
i.e., δ1, δ2, δ3 and δ4, which are ruled by two different actuators, as it is shown in Equation (23).⎡⎢⎢⎢⎣

δ1

δ2

δ3

δ4

⎤⎥⎥⎥⎦ = τc

⎡⎢⎢⎢⎣
sinφc

cosφc

sinφc

cosφc

⎤⎥⎥⎥⎦ (23)

140

Algorithms 2020, 13, 333

4. Numerical Simulations

The described nonlinear dynamics are integrated forward in time utilizing a fixed time step
Runge–Kutta method of fourth grade to get a single flight path. [1] shows the validation of this
modeling and solving approach for aerial platforms. To demonstrate the precision of the novel
methodology introduced in this research, which is based on neural networks, the obtained results
are compared to the obtained outcomes in [29]. The methodology in [29] features a Kalman based
hybridization [43,44] of GNSS, IMU and semiactive laser quadrant photo-detector sensors. To integrate
the equations of motion and their interactions with GNC system and environment, MATLAB/Simulink
R2020a on a personal computer with a processor of 2.8 Ghz and 32 GB RAM is used.

The remainder of this section is separated in two subsections. The first one presents the
noncontrolled trajectories to which the developed navigation, guidance, and control algorithms will be
applied. The second one performs Monte Carlo simulations of ballistic flights, Kalman hybridization
based controlled flights, and neural networks based controlled flights. Moreover, an ideal controller
without induced errors in the line of sight is also developed to compare results with ideal results.

4.1. Noncontrolled Trajectories

Three nominal trajectories are established to test the developed approach. Each one differs in
its initial pitch angle: 20◦, 30◦ and 45◦. Destination points are at 18,790 m, 23,007 m, and 26,979 m,
respectively. In order to compensate Coriolis and gyroscopic forces, initial lateral correction is set
to 0.15◦, 0.19◦ and 0.31◦, respectively. Figure 3 shows many of these trajectories in a 3D setting for
different settings.

Figure 3. Noncontrolled flights for 20◦ (black), 30◦ (red) and 45◦ (blue) initial pitch angles.

4.2. Monte Carlo Simulations

Noncontrolled flights have been validated against real data provided by the Spanish air force.
Monte Carlo simulations are performed to calculate closed-loop performance over a full range of
uncertainty settings, which have been defined with the support of the Spanish air force. These settings
model the potential uncertainty that can arise in aspects such as initial conditions, sensor information
procurement, weather conditions, and thrust properties. Note that, details on uncertainty models for
sensors are given in the previous sections. Table 6 shows mean and standard deviation for the rest of
the considered uncertain parameters.

A set of 2000 flights is performed for each of the following approaches: noncontrolled flights,
Kalman hybridization based controlled flights, neural network based controlled flights, and ideally
controlled flights. Simulations are run for each of the initial pitch angles. Note that the previously used
data for neural network training is different from the data employed in the simulations in this section.

141

Algorithms 2020, 13, 333

Table 6. Monte Carlo simulation parameters.

Parameter (deg) Initial φ Initial Pitch Wind Speed Wind Direction Thrust Initial Azimuth

Mean 0◦ Nom. 10 m/s 0◦ T(t) Nom.

Standard Deviation 20◦ 0.01◦ 5 m/s 20◦ 10 N 0.01◦

4.3. Discussion

Results for noncontrolled trajectories are shown in Figure 3, which depicts destination point
dispersion patterns. This figure shows the ballistic trajectory that the vehicle follows for three different
launch angles without using the control system at all, that is, it shows the flight of the system before
implementing the improvements provided by the GNC system. The circular error probable (CEP),
which is defined as the radius of a circle, centered on the mean, whose boundary is expected to include
the landing points of 50% of the flights. The CEP is employed as a quality check parameter at the final
step of the simulation as it is a valid reference for any utilized method. Indeed, the lower the CEP is
the better the global GNC device is.

Table 7 displays the CEP for noncontrolled flights, Kalman hybridization based controlled flights
and ideally controlled flights for each of the initial pitch angles.

Table 7. The CEP for noncontrolled flights, Kalman hybridization based controlled flights and ideally
controlled flights for 20◦, 30◦ and 45◦ initial pitch angles.

Initial Pitch Angle (deg) Noncontrolled CEP (m) Kalman Based CEP (m) Ideal CEP (m)

20 169.34 1.28 1.18

30 239.37 1.18 1.06

45 281.59 0.98 0.83

Analyzing Table 7, it may be concluded that the CEP increases with target distance for
noncontrolled flights, as expected. However, it almost remains constant for either Kalman based
or ideally controlled flights, which means the use of an appropriate GNC device eliminates the
correlation between the CEP and the distance to the objective. Recall, the main purpose is to show that
these results are reproducible when employing machine learning and when reducing the availability
of sensors.

Table 8 shows again the CEP for different trajectories, now as obtained by the novel presented
approach. Each row, excluding the first one, which shows the headings of the columns, displays
the resulting CEPs for every combination of trajectory and NN training algorithm. The first column
in the table identifies the trajectory, the second one the training algorithm, the third one the CEP
for the NN architecture in method 1, and the last one the CEP for the NN architecture in method 2.
One of the main conclusions drawn from Table 8 is that the results for the SCG training algorithm
present an unacceptable big CEP, which means low accuracy when reaching destination. Consequently,
this training algorithm should be discarded in this case. Indeed, we recover results equivalent to a
defective GNC system, even showing worse performance than ballistic flights. Several tests and a
hyperparametric analysis were conducted, and it is observed that these kinds of errors were systematic,
concluding that this training algorithm does not match well with the fed data to the NN. However,
the results from BR and LM training algorithms show a good behavior throughout the trajectory,
which means level of accuracy at destination is high. Diving into the numerical results in Table 8,
it can be stated that the presented novel approach, which relaxes sensor requirements, is even able
of outperforming the Kalman hybridization based approach. It can also be observed that the results
are coherent with the training results depicted in Table 4. For example, the poor MSE and R values
for the SCG training algorithm are reflected in the unacceptable GNC device results. Comparing the

142

Algorithms 2020, 13, 333

obtained CEPs to what it was obtained in [1,22,29], it can be concluded that the results here are of the
same order of magnitude and that the NN algorithms are viable for these type of applications.

As a summary, results for ballistic trajectories and comparisons between different approaches are
shown in Figure 4. It is composed of four columns and three rows of subfigures. Each row features a
different initial pitch angle. The first column of subfigures compares ballistic flights against Kalman
hybridization assisted flights, the second one compares Kalman hybridization against neural network
hybridization, the third one neural network hybridization against ideal controller, and the last one
ballistic flights against neural network hybridization assisted flights. Note that, even with an ideal
controller, which features perfect information on the attitude angles, there are still errors associated to
the aerodynamic response of the vehicle.

1.87 1.88 1.89

x impact (m) 10 4

-150

-100

-50

0

50

100

150

y
im

pa
ct

 (
m

)

Ballistic Impacts
KF Hyb. GNC Impacts
Nominal Impact Point
CEP Ballistic
CEP KF Hyb. GNC GNC

1.8789 1.879 1.8791

x impact (m) 10 4

-1

-0.5

0

0.5

1

y
im

pa
ct

 (
m

)

KF Hyb. GNC Impacts
NN Hyb. GNC Impacts
Nominal Impact Point
CEP KF Hyb. GNC
CEP NN Hyb. GNC

1.8789 1.879 1.8791

x impact (m) 10 4

-1

-0.5

0

0.5

1

y
im

pa
ct

 (
m

)

NN Hyb. GNC Impacts
IDEAL GNC Impacts
Nominal Impact Point
CEP KF Hyb. GNC/SAL
CEP IDEAL GNC

1.87 1.88 1.89

x impact (m) 10 4

-150

-100

-50

0

50

100

150

y
im

pa
ct

 (
m

)

Ballistic Impacts
NN Hyb. GNC Impacts
Nominal Impact Point
CEP KF Hyb. GNC
CEP NN Hyb. GNC

2.28 2.3 2.32

x impact (m) 10 4

-200

-100

0

100

200

y
im

pa
ct

 (
m

)

2.3006 2.3007 2.3008

x impact (m) 10 4

-1

-0.5

0

0.5

1

y
im

pa
ct

 (
m

)

2.3006 2.3007 2.3008

x impact (m) 10 4

-1

-0.5

0

0.5

1

y
im

pa
ct

 (
m

)

2.28 2.3 2.32

x impact (m) 10 4

-200

-100

0

100

200
y

im
pa

ct
 (

m
)

2.68 2.7 2.72

x impact (m) 10 4

-300

-200

-100

0

100

200

300

y
im

pa
ct

 (
m

)

2.6978 2.6979 2.698

x impact (m) 10 4

-1

-0.5

0

0.5

1

y
im

pa
ct

 (
m

)

2.6978 2.6979 2.698
x impact (m) 10 4

-1

-0.5

0

0.5

1

y
im

pa
ct

 (
m

)

2.68 2.7 2.72

x impact (m) 10 4

-300

-200

-100

0

100

200

300

y
im

pa
ct

 (
m

)

20 deg

30 deg

45 deg

Figure 4. Detailed shots for different algorithms.

Table 8. The CEP in neural network based controlled flights for the different methods and training
algorithms for 20◦, 30◦ and 45◦ initial pitch angles.

CEP

Init. Ang. (deg) Alg. Method 1 Method 2

20 SCG 2211.93 2115.80

30 SCG 2174.67 2369.82

45 SCG 2565.99 2285.93

20 BR 1.23 1.33

30 BR 1.19 1.25

45 BR 0.99 1.15

20 LM 1.22 1.31

30 LM 1.17 1.26

45 LM 0.95 0.97

143

Algorithms 2020, 13, 333

5. Conclusions

A novel methodology, which depends on an innovative hybridization among several sensor
signals, has been proposed. At the core of the approach, neural networks are employed to get
estimations of the gravity vector, which allows avoiding the use of gyroscopes. Traditional GNSS/IMU
frameworks feature little errors of up to one meter, which may imply huge mistakes in line of sight
vector computation when separation to the objective is small. With the proposed approach the exactness
of line of sight calculation can be improved during the terminal GNC, enhancing the accuracy at the
destination point, while sensor needs are lowered.

The proposed approach employs information gathered from GNSS, acceloremeters, and a
semiactive laser kit. With that information, two different neural network architectures are applied
to estimate the gravity vector in order to determine the attitude of the vehicle. Three training
algorithms have been addressed to tune the parameters in the neural networks. In total, six different
strategies are developed for estimating the gravity vector along the trajectory. In addition, because the
methodology allows for determining attitude in two ways, the information is hybridized with the aim
of augmenting precision.

This innovative methodology is integrated into a two-phase guidance algorithm for aerial vehicles,
which provides the required input data for the GNC system. The guidance law is founded on a constant
glide angle and on a modified proportional law. The control algorithm is based on a robust and effective
but simple double-input double-output device. Overall, the resulting GNC system presents excellent
values regarding dispersion at the destination objective, significantly increasing the precision for
noncontrolled flights, as expected, but also matching accuracy as provided by other GNC systems
requiring more sensors on-board. Note that results also show good behavior of the system under
uncertainty conditions. Summarizing, the developed approach, which is based on neural networks,
shows that precision levels can be matched or improved as compared to other methodologies.

Future research will address the increase of the use of neural networks in other modules of GNC
algorithms to further simplify the overall architecture.

Author Contributions: Conceptualization, R.d.C.; methodology, R.d.C. and L.C.; software, L.C.; validation, R.d.C.;
formal analysis, R.d.C. and P.S.; investigation, R.d.C. and P.S.; resources, L.C.; data curation, R.d.C. and P.S.;
writing–original draft preparation, L.C.; writing–review and editing, R.d.C.; visualization, R.d.C. All authors have
read and agreed to the published version of the manuscript.

Funding: This research was funded by Project Grant F663—AAGNCS by the “Dirección General de Investigación
e Innovación Tecnológica, Consejería de Ciencia, Universidades e Innovación, Comunidad de Madrid” and
“Universidad Rey Juan Carlos”.

Acknowledgments: The authors would like to thank Lieutenant Colonel Jesús Sánchez (NMT) of the National
Institute for Aerospace Technology (INTA) for the solid modeling of the concept.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. De Celis, R.; Cadarso, L.; Sánchez, J. Guidance and control for high dynamic rotating artillery rockets.
Aerosp. Sci. Technol. 2017, 64, 204–212. [CrossRef]

2. De Celis, R.; Cadarso, L. Hybridized attitude determination techniques to improve ballistic projectile
navigation, guidance and control. Aerosp. Sci. Technol. 2018, 77, 138–148. [CrossRef]

3. Waltz, E.L.; Buede, D.M. Data fusion and decision support for command and control. IEEE Trans. Syst.
Man Cybern. 1986, 16, 865–879. [CrossRef]

4. Nguyen, N.V.; Tyan, M.; Lee, J.W. Efficient Framework for Missile Design and 6DoF Simulation using
Multi-fidelity Analysis and Data Fusion. In Proceedings of the 17th AIAA/ISSMO Multidisciplinary
Analysis and Optimization Conference, Washington, DC, USA, 13–17 June 2016; p. 3365.

5. Schmidt, G.T.; Phillips, R.E. INS/GPS Integration Architecture Performance Comparisons. Available
online: https://www.semanticscholar.org/paper/INS%2FGPS-Integration-Architecture-Performance-
Schmidt-Phillips/1cb8e282e25d90048c1232778f3fbb21eb4c9de8 (accessed on 12 November 2020).

144

Algorithms 2020, 13, 333

6. Bryne, T.H.; Hansen, J.M.; Rogne, R.H.; Sokolova, N.; Fossen, T.I.; Johansen, T.A. Nonlinear observers for
integrated INS\/GNSS navigation: Implementation aspects. IEEE Control Syst. Mag. 2017, 37, 59–86.

7. Gaudet, B.; Furfaro, R.; Linares, R. Reinforcement learning for angle-only intercept guidance of maneuvering
targets. Aerosp. Sci. Technol. 2020, 99, 105746. [CrossRef]

8. Zhao, J.; Zhou, R. Unified approach to cooperative guidance laws against stationary and maneuvering
targets. Nonlinear Dyn. 2015, 81, 1635–1647. [CrossRef]

9. Creagh, M.A.; Mee, D.J. Attitude guidance for spinning vehicles with independent pitch and yaw control.
J. Guid. Control. Dyn. 2010, 33, 915–922. [CrossRef]

10. Shalumov, V. Cooperative Online Guide-Launch-Guide Policy in a Target-Missile-Defender Engagement
using Deep Reinforcement Learning. Aerosp. Sci. Technol. 2020, 104, 105996. [CrossRef]

11. Lee, H.I.; Sun, B.C.; Tahk, M.J.; Lee, H. Control design of spinning rockets based on co-evolutionary
optimization. Control Eng. Pract. 2001, 9, 149–157. [CrossRef]

12. Lechevin, N.; Rabbath, C.A. Robust discrete-time proportional-derivative navigation guidance. J. Guid.
Control. Dyn. 2012, 35, 1007–1013. [CrossRef]

13. Wang, X.; Wang, J.; Gao, G. Partial integrated missile guidance and control with state observer. Nonlinear Dyn.
2015, 79, 2497–2514. [CrossRef]

14. Zhang, Y.; Sun, M.; Chen, Z. Finite-time convergent guidance law with impact angle constraint based on
sliding-mode control. Nonlinear Dyn. 2012, 70, 619–625. [CrossRef]

15. Theodoulis, S.; Gassmann, V.; Wernert, P.; Dritsas, L.; Kitsios, I.; Tzes, A. Guidance and control design for a
class of spin-stabilized fin-controlled projectiles. J. Guid. Control. Dyn. 2013, 36, 517–531. [CrossRef]

16. Safari, S.; Shabani, F.; Simon, D. Multirate multisensor data fusion for linear systems using Kalman filters
and a neural network. Aerosp. Sci. Technol. 2014, 39, 465–471. [CrossRef]

17. De Celis, R.; Cadarso, L. Spot-Centroid Determination Algorithms in Semiactive Laser Photodiodes for
Artillery Applications. J. Sens. 2019, 2019, 7938415. [CrossRef]

18. Zhang, X.; Yang, Z.; Sun, T.; Yang, H.; Han, K.; Hu, B. Optical system design with common aperture for
mid-infrared and laser composite guidance. In Proceedings of the Second International Conference on
Photonics and Optical Engineering, Xi’an, China, 14–17 October 2016; International Society for Optics and
Photonics: Bellingham, WA, USA, 2017; Volume 10256, p. 102560S.

19. Zeng, X.; Zhu, Z.; Chen, Y. Remote evaluation of rotational velocity using a quadrant photo-detector and a
DSC algorithm. Sensors 2016, 16, 587. [CrossRef]

20. Esper-Chaín, R.; Escuela, A.M.; Fariña, D.; Sendra, J.R. Configurable quadrant photodetector: An improved
position sensitive device. IEEE Sens. J. 2015, 16, 109–119. [CrossRef]

21. Razmi, H.; Afshinfar, S. Neural network-based adaptive sliding mode control design for position and
attitude control of a quadrotor UAV. Aerosp. Sci. Technol. 2019, 91, 12–27. [CrossRef]

22. Solano-López, P.; de Celis, R.; Fuentes, M.; Cadarso, L.; Barea, A. Strategies for high performance GNSS/IMU
Guidance, Navigation and Control of Rocketry. In Proceedings of the 8th European Conference for
Aeronautics and Space Sciences, Madrid, Spain, 1–4 July 2019; Volume 1, pp. 1–8. [CrossRef]

23. Mohamed, M.; Dongare, V. Aircraft neural modeling and parameter estimation using neural partial
differentiation. Aircr. Eng. Aerosp. Technol. 2018, 90, 764–778. [CrossRef]

24. Ferreres, G.; Hardier, G.; Seren, C. Adaptive control of a civil aircraft through on-line parameter estimation.
In Proceedings of the 2016 3rd Conference on Control and Fault-Tolerant Systems (SysTol), Barcelona, Spain,
7–9 September 2016; IEEE: Piscataway, NJ, USA, 2016; pp. 798–804.

25. Hardier, G.; Ferreres, G.; Sato, M. On-line parameter estimation for indirect adaptive flight control: A practical
evaluation of several techniques. In Proceedings of the 2020 IEEE Conference on Control Technology
and Applications (CCTA), Montreal, QC, Canada, 24–26 August 2020; IEEE: Piscataway, NJ, USA, 2020;
pp. 180–187.

26. Ignatyev, D.I.; Shin, H.S.; Tsourdos, A. Two-layer adaptive augmentation for incremental backstepping flight
control of transport aircraft in uncertain conditions. Aerosp. Sci. Technol. 2020, 105, 106051. [CrossRef]

27. North Atlantic Treaty Organization, N. Standardization Agreement (STANAG 4355). In The Modified Point
Mass Trajectory Model; NATO Headquarters: Brussels, Belgium, 1992.

28. De Celis, R.; Cadarso, L. Attitude determination algorithms through accelerometers, GNSS sensors,
and gravity vector estimator. Int. J. Aerosp. Eng. 2018, 2018, 5394057. [CrossRef]

145

Algorithms 2020, 13, 333

29. De Celis, R.; Cadarso, L. GNSS/IMU laser quadrant detector hybridization techniques for artillery rocket
guidance. Nonlinear Dyn. 2018, 91, 2683–2698. [CrossRef]

30. Britting, K.R. Inertial Navigation Systems Analysis; NASA: Washington, DC, USA, 1971.
31. Yu, J.Y.; Zhang, Y.A.; Gu, W.J. An approach to integrated guidance/autopilot design for missiles based on

terminal sliding mode control. In Proceedings of 2004 International Conference on Machine Learning and
Cybernetics (IEEE Cat. No. 04EX826), Shanghai, China, 26–29 August 2004; IEEE: Piscataway, NJ, USA, 2004;
Volume 1, pp. 610–615.

32. Jankovic, M.; Paul, J.; Kirchner, F. GNC architecture for autonomous robotic capture of a non-cooperative
target: Preliminary concept design. Adv. Space Res. 2016, 57, 1715–1736. [CrossRef]

33. Yu, Y.; Yao, H.; Liu, Y. Aircraft dynamics simulation using a novel physics-based learning method.
Aerosp. Sci. Technol. 2019, 87, 254–264. [CrossRef]

34. Villa, J.; Taipalmaa, J.; Gerasimenko, M.; Pyattaev, A.; Ukonaho, M.; Zhang, H.; Raitoharju, J.; Passalis, N.;
Perttula, A.; Aaltonen, J.; et al. aColor: Mechatronics, Machine Learning, and Communications in an
Unmanned Surface Vehicle. arXiv 2020, arXiv:2003.00745.

35. Yadav, N.; Yadav, A.; Kumar, M. An Introduction to Neural Network Methods for Differential Equations; Springer:
Berlin/Heidelberg, Germany, 2015.

36. Tatar, M.; Masdari, M. Investigation of pitch damping derivatives for the Standard Dynamic Model at high
angles of attack using neural network. Aerosp. Sci. Technol. 2019, 92, 685–695. [CrossRef]

37. Møller, M.F. A Scaled Conjugate Gradient Algorithm for Fast Supervised Learning; Aarhus University, Computer
Science Department: Aarhus, Denmark, 1990.

38. MacKay, D.J. Bayesian interpolation. Neural Comput. 1992, 4, 415–447. [CrossRef]
39. Foresee, F.D.; Hagan, M.T. Gauss-Newton approximation to Bayesian learning. In Proceedings of

International Conference on Neural Networks (ICNN’97), Houston, TX, USA, 12 June 1997; IEEE: Piscataway,
NJ, USA, 1997; Volume 3, pp. 1930–1935. [CrossRef]

40. Moré, J.J. The Levenberg-Marquardt algorithm: Implementation and theory. In Numerical Analysis; Springer:
Berlin/Heidelberg, Germany, 1978; pp. 105–116.

41. Kanzow, C.; Yamashita, N.; Fukushima, M. Withdrawn: Levenberg–marquardt methods with strong local
convergence properties for solving nonlinear equations with convex constraints. J. Comput. Appl. Math.
2005, 173, 321–343. [CrossRef]

42. Wahba, G. A least squares estimate of satellite attitude. SIAM Rev. 1965, 7, 409–409. [CrossRef]
43. Borkowski, P.; Pietrzykowski, Z.; Magaj, J.; Mąka, M. Fusion of data from GPS receivers based on a

multi-sensor Kalman filter. Transp. Probl. 2008, 3, 5–11.
44. Jaroś, K.; Witkowska, A.; Śmierzchalski, R. Data fusion of GPS sensors using particle Kalman filter for ship

dynamic positioning system. In Proceedings of the 2017 22nd International Conference on Methods and
Models in Automation and Robotics (MMAR), Miedzyzdroje, Poland, 28–31 August 2017; IEEE: Piscataway,
NJ, USA, 2017; pp. 89–94.

Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional
affiliations.

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

146

algorithms

Article

A Simulation-Based Optimization Method for
Warehouse Worker Assignment

Odkhishig Ganbold *, Kaustav Kundu, Haobin Li and Wei Zhang *

Department of Industrial Systems Engineering and Management, Faculty of Engineering, National University
of Singapore, Singapore 117576, Singapore; isekk@nus.edu.sg (K.K.); li_haobin@nus.edu.sg (H.L.)
* Correspondence: iseog@nus.edu.sg (O.G.); isezw@nus.edu.sg (W.Z.)

Received: 30 September 2020; Accepted: 1 December 2020; Published: 4 December 2020
��������	
�������

Abstract: The general assignment problem is a classical NP-hard (non-deterministic polynomial-time)
problem. In a warehouse, the constraints on the equipment and the characteristics of consecutive
processes make it even more complicated. To overcome the difficulty in calculating the benefit of an
assignment and in finding the optimal assignment plan, a simulation-based optimization method is
introduced. We first built a simulation model of the warehouse with the object-oriented discrete-event
simulation (O2DES) framework, and then implemented a random neighborhood search method
utilizing the simulation output. With this method, the throughput and service level of the warehouse
can be improved, while keeping the number of workers constant. Numerical results with real data
demonstrate the reduction of discrepancy between inbound and outbound service level performance.
With a less than 10% reduction in inbound service level, we can achieve an over 30% increase in
outbound service level. The proposed decision support tool assists the warehouse manager in dealing
with warehouse worker allocation problem under conditions of random daily workload.

Keywords: discrete-event simulation; simulation-based optimization; assignment problem;
neighborhood search; warehouse

1. Introduction

Workforce planning has been reported to be a persistent problem for a variety of process-centered
industries [1]. These include healthcare operations—in particular, emergency departments,
service industries, and warehouse management—whose performances are dependent on swift
and even flows of resources and customers [2–4]. As the theory of swift and even flow suggests,
the bottleneck management and process standardization are key to the speed and variance of the
process flow [2]. The productivity of any process increases with the speed at which the materials
(or information) flow through the process [5]. This indicates the importance of workforce planning for
improving productivity.

Warehousing is a vital component of the supply chain, where the optimal planning of its
workforce is a prerequisite towards achieving its global efficiency [6]. In a warehouse, a sequence of
multiple processes is performed, starting from shipment arrivals and ending in shipment releases.
These processes are usually constrained by space and workforce capacity. The main focus of the current
study is the workforce planning system implemented in a warehouse. As the labor resources represent
a significant cost item in a labor-short country such as Singapore; this poses new challenges for cost
minimization and efficiency improvements via innovations in workforce planning and optimization.
The preliminary analysis of the warehouse operations, and specifically worker allocation, revealed an
unbalanced utilization of workers across different warehouse activities. It was identified that one of
the critical bottlenecks affecting overall service level of the warehouse was the need to optimize worker
assignment to each task/workstation while balancing the workload of each workstation.

Algorithms 2020, 13, 326; doi:10.3390/a13120326 www.mdpi.com/journal/algorithms

147

Algorithms 2020, 13, 326

In the traditional assignment optimization problem, the benefit can be directly calculated given
a fixed worker–task pairing. Even with this assumption, the assignment problem is NP-hard [7].
The problem in the warehouse is more complicated due to the precedence constraints, whereby the
succeeding activity cannot start until the preceding activity is completed. Another related problem is
the assembly line balancing, which considers the precedence constraints. However, oftentimes such
problems do not consider worker capability and capacity factors, which are critical to human resource
allocation problems [8].

Discrete-event simulation (DES) is one of the popular modeling techniques in which a model
changes only at a discrete random set of time points [9]. Nowadays, many commercial simulation
software packages such as Arena integrate optimization techniques with DES [10,11]. Although such
commercial software packages are designed to provide users with functionality to create their desired
simulation models based on processes, oftentimes the users are not allowed to customize the event
logic, which is an integral part of each DES model [10]. In this study, we adopt the object-oriented
discrete-event simulation (O2DES in C#) framework developed by Li et al. [12]. This novel framework
features a flexible simulation modeling environment, which allows the user to customize the event logic,
configure simulation parameters, and incorporate add-on algorithms, including optimization models.

Our research aim was to develop a simulation-based optimization method to improve the
warehouse service level, i.e., daily productivity, by optimally allocating warehouse workers into
inbound and outbound activities, while at the same time considering all operational constraints
of the warehouse’s operation. In addressing this aim, a warehouse manpower planning tool was
developed based on the simulation-based optimization method, which combines the O2DES simulation
framework and a random neighborhood search method. Our study is the first in the operations research
domain to introduce a decision support tool for warehouse worker allocation using a simulation-based
optimization method.

The manpower allocation tool was tested in a warehouse located at Singapore. It is now used to
support the warehouse managers’ decisions on a weekly and/or daily basis.

The rest of the paper is organized as follows. In Section 2, a literature review on the related topics is
presented. Next, the worker assignment problem in the warehouse is described in Section 3. Section 4
outlines the simulation-based optimization method. The O2DES framework and the warehouse
simulation model are introduced in Section 5, followed by the simulation-based optimization algorithm
specifications in Section 6. Section 7 presents the numerical results.

2. Literature Review

Customer satisfaction via effective resource utilization, the shipment of the right product in
good condition and within the target shipment time, is the key objective of warehousing [13–16].
Warehousing aims to address the differences in time and space between suppliers and customers, while
adapting to the fluctuating market conditions [17]. Warehouses execute a broad range of process-based
functions, including temporary storage, protecting goods, service support in customer order fulfillment,
goods packaging, after sales service support, quality inspections, testing, assembly, and repairs [18,19].

In the current global economic environment, the warehouses face an unprecedented level of
competitive and economic pressures [20], including a high level of uncertainty and risk of supply chain
disruptions due to the COVID-19 pandemic [21,22]. The pressures from competitors and customers
result in the reduction of profit margins [23,24]. Under this situation, efficient resource utilization
becomes more critical than ever.

Humans are the central and most critical elements of the resource base in warehousing [25].
Due to the high fluctuations (both predictable and unexpected) in workload demand [18], research has
advocated the need for the implementation of manpower planning strategies [20,26]. For example,
Edwards et al. [27] distinguishes three phases of manpower planning, which include the prediction
of manpower demand, the prediction of the future supply of manpower, and reconciliation of the
discrepancies between supply and demand via workforce scheduling and staffing. Considering

148

Algorithms 2020, 13, 326

the above, workforce scheduling—and specifically personnel work assignments that deal with
the allocation of personnel to tasks and work stations—is crucial to warehouse operational
efficiency [6,28,29]. Optimal staffing, or allocation of workers to tasks, is the key to tackling the
challenges of high demand fluctuations on a daily basis. In the warehouse, this problem is dependent
on workers; qualifications, i.e., skill sets, which are very specific to each employee.

The most relevant problem to our topic is the mixed-model assembly line balancing problem
(MALBP), which tries to assign the tasks of different models to the workstations. It is called a
mixed-model as multiple models are assembled on the same assembly line. As summarized in
Becker et al. [8], there are three types of MALBP problems, categorized according to the constraint
and objective:

1. MALBP-I: given the cycle time to minimize the number of workstations;
2. MALBP-II: given the number of workstations to minimize the cycle time;
3. MALBP-III: minimize both the cycle time and the number of workstations.

However, our target is to maximize the service level, i.e., the ratio between the number of
completed tasks and the number of arriving tasks, given a fixed number of workers. Our research
problem is different from the above-mentioned three problems by Becker et al. [8], except for
the MALBP-II which can be considered the most relevant to our problem. The major points that
differentiate our problem are:

• In our problem, each worker is only capable of performing a subset of operations.
• The processing time of each task is stochastic.
• The objective is to maximize the service level.

In Dou et al. [30], a machine deployment problem is considered, where the objective is to
minimize the cost of setting up all the machines, while satisfying the precedence and space constraints.
This involves also assignments of the machines to the tasks, and a GA-based optimization approach
was designed to identify a set of best solutions. The machines in Dou et al.’s [30] model can be
considered as workers in our model. However, in our problem the number of workers is fixed,
while the objective is to maximize the service level. In contrast, in Dou et al.’s [30] model the number
of machines in different stages (tasks) are independent.

Simulation-based optimization has been used for a number of decades for problem solving in
logistics. For example, Azadivar [31] showed that the discrete rack systems can be better optimized
through simulations rather than approximating with mathematical models. Later on, Ding et al. [32]
extended this idea to the supply chain context. They developed a simulation-based optimization
method for the selection of potential suppliers. To obtain an optimal design of the cold supply
chain, Saif and Elheldhli [33] developed an innovative simulation-based optimization approach to
minimize the total cost that includes the logistics costs and the global warming impact. More recently,
Ghasemi and Khalili-Damghani [34] developed a novel simulation-based optimization approach to
solve a multi-period inventory planning problem for the supply chain of a company in Iran.

3. Problem Description

Warehouses typically handle a variety of stock-keeping units (SKUs), which require a range of
activities to be executed. Different products may require different activities. Considering the space and
workforce constraints, the warehouse aims to maximize its productivity with via appropriate worker
assignment. As warehouse workers may have different skills, it is not only the number of the workers
that count, but also every specific worker–activity pairing becomes critical. Under the conditions of
high fluctuations in daily workload, it is important for the warehouse planner to obtain an optimal
worker assignment in a rather short period of time. To address this problem, a simulation-based
optimization method was developed. Specifically, the optimal worker assignment to warehouse
activities/tasks should be achieved while satisfying all operational and worker skill set constraints.

149

Algorithms 2020, 13, 326

In our showcase, the following operational assumptions are considered:

• Product types: We chose to consider all product types, i.e., franchises, that the warehouse handles.
There are in total nine franchises being handled in the warehouse. Different franchises require
different processing times for different activities. More details are provided in Section 5.

• Inbound activities: Inbound activities start with the arrival of shipments at the warehouse.
Immediately after the dock-in, the products in pallets are unloaded at the inbound staging area
and later moved to the sorting workstation. After manual counting and checking for defects
and damage, the products are moved to the goods receipt (GR) workstation. At the GR station,
workers scan the barcode on each item and register the items in the warehouse management
system (WMS), while putaway slips with storage bins are generated for each pallet load. After the
GR, they are ready for putaway to the storage area(s). The putaway worker puts away the pallet
in its designated storage area following the storage bin information printed on the putaway slip.
Putaway activity is denoted as the terminal inbound activity. Figure 1 shows the entity flow
diagram for inbound shipments.

• Outbound activities: Outbound activities start when order information arrives into the WMS and
a pick slip is generated. One order is assigned to one picker. After the order picking is completed,
depending on the labeling requirements, the items need to be labeled before scanning starts.
Otherwise, the picked items are sent to the scanning station. There are two types of scanning,
each for a certain type of product, i.e., manual scanning and scanning via auto-scanning tunnel
(AST). The scanning activity makes sure that all the items are picked against the order lists,
and it generates slips that denote items which need to be packed together based on pallet or case
dimension constraints. Then the items are packed into pallets and cases accordingly. A release
worker moves the order to the outbound staging, from where the order is shipped out with an
outbound truck. Figure 2 describes the outbound entity flow diagram.

• Three types of storage areas: There are three storage areas in the warehouse, i.e., racking,
long-span shelving (LSS), and vertical lift modules (VLMs). Racking is designed to store SKUs in
full pallets, LSS contains SKUs in loose boxes, and VLMs are for loose boxes. Each storage type is
dedicated to one or more product types.

• Shift configuration and working days: There are two shifts operating during business days
(excluding weekends and holidays): the morning shift operates from 8:00 a.m. to 6:00 p.m. with a
one-hour break during 12:00–1:00 p.m., and the night shift operates from 9:00 p.m. to 7:00 a.m.
(next day) with a one-hour break during 1:00–2:00 a.m.

• Worker numbers and shift assignment: The total number of workers is fixed (31 workers in total).
Worker numbers assigned to each shift are pre-fixed; 21 workers are assigned to the morning shift
and 5 workers are assigned to the night shift. Additionally, 5 outsourced workers are assigned to
value-added service (VAS) activity for labeling upon request.

• Worker skill set matrix: We assume that each worker has his/her own unique skill set. If the
worker is trained to conduct an activity, “yes” is put in the respective activity cell. Table 1 shows
the worker skill set matrix assumed in our model.

• Workload demand for one-week period is known upfront.

SortingShipment
arrival Q Goods

ReceiptQ Putaway (Racking
& LSS)Q

Putaway
(VLM)

End

Q

Figure 1. Inbound entity flow diagram.

150

Algorithms 2020, 13, 326

PickingOrder
arrival Q Manual

ScanningQ

Packing

Q

Labelling
(VAS)Q

ReleaseQ End

Auto Scanning
Tunnel (AST)Q

Figure 2. Outbound entity flow diagram.

Table 1. Worker skill set.

Worker id Shift Sorting GR Putaway VLM Picking AST Scanning Packing Release VAS

Worker 1 Shift 1 Yes Yes Yes Yes Yes
Worker 2 Shift 1 Yes Yes Yes Yes
Worker 3 Shift 1 Yes Yes Yes Yes Yes
Worker 4 Shift 1 Yes Yes Yes Yes Yes
Worker 5 Shift 1 Yes Yes Yes Yes Yes
Worker 6 Shift 1 Yes Yes Yes Yes Yes
Worker 7 Shift 1 Yes Yes Yes Yes Yes
Worker 8 Shift 1 Yes Yes Yes Yes Yes Yes
Worker 9 Shift 1 Yes Yes Yes Yes Yes
Worker 10 Shift 1 Yes Yes Yes Yes Yes Yes Yes Yes Yes
Worker 11 Shift 1 Yes Yes Yes
Worker 12 Shift 2 Yes Yes Yes Yes Yes Yes
Worker 13 Shift 2 Yes Yes Yes Yes Yes Yes Yes Yes
Worker 14 Shift 2 Yes Yes Yes Yes Yes Yes
Worker 15 Shift 2 Yes Yes Yes Yes Yes Yes Yes
Worker 16 Shift 2 Yes Yes Yes Yes Yes Yes Yes Yes
Worker 17 Shift 1 Yes Yes Yes Yes Yes Yes
Worker 18 Shift 1 Yes Yes Yes Yes
Worker 19 Shift 1 Yes Yes Yes Yes
Worker 20 Shift 1 Yes Yes Yes Yes Yes Yes Yes
Worker 21 Shift 1 Yes Yes Yes Yes Yes
Worker 22 Shift 1 Yes Yes Yes Yes Yes Yes
Worker 23 Shift 1 Yes Yes Yes Yes Yes Yes Yes Yes
Worker 24 Shift 1 Yes Yes Yes Yes Yes Yes Yes
Worker 25 Shift 1 Yes Yes Yes Yes Yes
Worker 26 Shift 1 Yes Yes Yes Yes Yes Yes Yes
Worker 27 Shift 1 Yes
Worker 28 Shift 1 Yes
Worker 29 Shift 1 Yes
Worker 30 Shift 1 Yes
Worker 31 Shift 1 Yes

To tackle the problem, the constraints on the workforce should be dealt with. These constraints
may be worker-specific, such as the skill set, or arise from the resource limits and operational rules in
the warehouse. For example, due to the warehouse equipment capacity, there is an upper bound on the
number of workers allowed to be assigned to some activities. Namely, there is a limited amount of the
material handling equipment (MHE) and a limited number of scanning computers at a workstation,
thereby determining the maximum number of workers allowed to work at each workstation or activity
at the same time. In our showcase in Section 7, it is assumed that GR allows up to two workers,
putaway three workers, VLM two workers, picking six workers, AST either two or zero workers,
and scanning up to three workers. However, we do not impose any constraints on sorting, packing,
and release activities regarding the maximum number of workers, as such activities do not require any
specific equipment. Moreover, following the warehouse operation requirements, we assume that the
night shift can perform only putaway, picking, scanning, and packing activities.

151

Algorithms 2020, 13, 326

Worker skill set is an important constraint in the assignment problem, which is also considered
here. As shown in Table 1, each worker owns a distinct set of skills that allows the worker to perform
the corresponding warehouse activities. If the worker is not trained to perform an activity, that worker
cannot be considered as a candidate for assignment to this activity.

Nonetheless, we do not impose any constraints on warehouse storage capacity, working areas,
and buffer zones between activities.

In the following sections, we will show how the simulation-based optimization method can
be used to solve this problem. As the situation in reality may vary day by day, and also from one
warehouse to another, our tool will provide the solution for the specific settings of the warehouse,
including flexibility of both products and workers.

First of all, inbound and outbound workload information should be defined. For example,
the inbound shipment arrival and/or outbound order start time-stamp, product name, workload
in terms of number of pallets, and target completion time-stamp information, are all handled by
the warehouse planners. This information is dependent on the forecast or expectation. Hence,
this information may vary. Moreover, we allow the model to capture the pending workload from
the previous day in pallet quantity, and by each type of inbound and outbound activity. Besides,
the more detailed information, such as the product type and processing time for each activity, can also
be customized by the user. Here we specify product name, designated storage area, whether the
product requires AST for scanning or not, and per-pallet processing time (mean, standard deviation)
by all inbound and outbound activities needed by each product type.

The tool also allows variability in the worker parameters. The number of workers assigned to
a shift and the shift duration can vary. As an example, we consider two shifts in the showcase of
Section 7, i.e., morning and night, operating from 8 am to 6 pm and from 9 pm to 7 am (next day),
respectively, with a one-hour break in each shift. Besides, the information on national holidays can
also be captured by our tool to specify the non-working days.

The worker skill set matrix is another important parameter. As defined in Table 1, each worker
has a skill set (“Yes” if the worker owns the skill for the activity) with respect to each type of activity
conducted in the warehouse.

To measure the performances of different worker assignment options in the warehouse, the hourly
and daily KPIs are generated. The hourly KPIs include worker utilization by each activity in each
hour, inbound and outbound throughput in terms of the number of completed pallets by each hour,
and overall inbound and outbound team utilization rate by each hour. Overall daily KPIs include
inbound and outbound team overall daily utilization, total work-in-progress (WIP) pallet quantity in
inbound and outbound activities, total quantity of completed pallets by inbound and outbound teams,
inbound and outbound service levels, and per-worker average productivity rate in terms of number of
completed pallets.

To express the KPIs formally, we define the following notation:

• wocc: number of occupied workers;
• wava: total number of available workers;
• pcom: number of completed pallets;
• parr: number of arrived pallets;
• pincom: number of completed inbound pallets;
• poutcom: number of completed outbound pallets;
• win: number of inbound workers;
• wout: number of outbound workers.

We define avg(·) as the average function over the simulation days. The KPIs can be calculated
with the following formula:

Utilization rate by activities and overall utilization rate = avg(
wocc

wava
) (1)

152

Algorithms 2020, 13, 326

Daily service level =
pcom

parr
(2)

Daily per-worker productivity for Inbound =
pincom

win
(3)

Daily per-worker productivity for Outbound =
poutcom

wout
(4)

In our simulation-based optimization model we consider service level as the target KPI,
as communicated by the warehouse team. The warehouse operations team measures their service level
performance as the ratio of total number of completed pallets (output) to total number of arrived pallets
(input) on a given day, which is oftentimes denoted as throughput productivity in the warehouse
literature. Additionally, it is considered to be one of the frequently used direct warehouse performance
indicators [35,36].

For the purpose of parsimony, we further concentrate on the service level performance as per our
target optimization objective of the simulation-based optimization tool.

4. Methodology

Ladier et al. [6] considered the staff scheduling in the warehouse on both weekly and daily
granularity levels. They built three mixed integer programming (MIP) models and solved the models
to obtain the optimal staff assignment and shift pattern. Their objective was to minimize the cost,
while assuming that all the tasks should be completed by hiring sufficient number of staff. However,
in the daily operations of the warehouse, the number of available workers may not be enough to
complete all the tasks. In this situation, the objective is to finish as many tasks, with an optimal
worker assignment.

The selected warehouse in this study serves as a distribution center with variations in product
types and demands. There are different teams working on different activities. The warehouse operates
as one single processing unit, which consists of sequence of activities. The major concern of the
warehouse is to assign the optimal number of workers to each team. Moreover, under uncertainty in
demand and processing time, this may require reallocation of worker(s) to other teams. This adds
an additional layer of complexity to the problem and requires a methodology that can solve the
problem. Given these requirements, following Amorim et al. [37], we devised a simulation–based
optimization model that explores both simulation and optimization methods to improve the service
level performance, by suggesting appropriate manpower assignment to different activities. First of all,
the discrete-event simulation model was developed, considering the relationship between different
activities. Then, the processing time of each activity was defined along with an initial assignment of
manpower. Due to uncertainty in daily workload, the initial solution is not always optimal. Therefore,
additional effort is required to optimally assign the manpower. As the assignment of workers to
different activities is a complex task, a heuristic algorithm instead of exact algorithm was developed to
find the optimal worker assignment. With each iteration, the new assignment of workers is input to
the simulation model until the model output achieves the highest service level performance.

5. O2DES Framework and Warehouse Simulation

For the worker assignment problem in the warehouse, it is difficult to obtain a direct calculation
for the worker assignment problem. In this case the simulation comes into play. With the simulation
modeling of the warehouse, we can replicate the real system in a computer environment. The systems
performance can be evaluated in a simulation, and additional features of system can be tested before
its deployment. The simulation outcome allows the decision maker to fine tune a set of parameters to
improve the operational performance. However, configuring these parameters for a complex system,
such as warehouses, can be challenging. Therefore, the simulation-based optimization approach,
which integrates the best of optimization with discrete-event simulation (DES) techniques, can be used
to handle this complexity.

153

Algorithms 2020, 13, 326

The object-oriented discrete-event simulation (O2DES) was adopted from Li et al. [12] and
implemented as a core simulation engine in our simulation-based optimization tool to achieve the
main objective of our research, i.e., the development of a decision support tool that can optimally
assign workers to the warehouse activities.

5.1. O2DES

The main features of O2DES are as follows:

1. Events are described in modules and they interact with each other.
2. Simplified syntax for:

(a) Event execution;
(b) Event scheduling;
(c) Input/output event interfacing.

3. Automated warm-up induction.

5.2. Simulation Modeling

Any process system consists of a sequence of steps, i.e., activities. Entities move through the
activities. Similarly, in the simulation modeling, the real life situation can be represented using an
entity flow diagram (EFD), a logical flow diagram of entities between the activities. The resources
required for the different activities are mapped in the EFD.

As described in Section 3, the warehouse operations consist of two main types, i.e., inbound and
outbound, while the pallet is the entity that flows through inbound and outbound activities. To build
the simulation model, an EFD based on the warehouse operational processes needs to be developed,
as shown in Figure 3.

Start Activity 1 Que
ue 1 Activity 2 Que

ue 2

Activity 3 Que
ue 3 Activity 4 End

Entity Entity

Entity

Entity

Figure 3. Entity flow diagram (EFD).

With certain assumptions, the simulation model was built using these EFDs in C# code and simple
heuristics integrated with simulation were used to assign the manpower.

Input information on inbound and outbound workload has been provided by the warehouse for
simulation. On top of incoming inbound shipment load and customer order volume, leftover workload
information was also considered.

Due to possible uncertainties in warehouse operations, we assumed the processing time of each
activity follows a gamma distribution. The characteristics and advantages of gamma distribution
can be found in several previous studies [38–41]. For example, in a study by Song [39], the Poisson
distribution was considered to be inappropriate to describe the lead time, as the uncertainty may arise
due to several reasons, which makes a more centralized distribution like the gamma distribution a
preferred method.

154

Algorithms 2020, 13, 326

The values of mean μ and standard deviation σ for each activity are calculated based on the
time-motion study conducted in the warehouse. Gamma distribution can be characterized by α and λ,
where the density probability function:

f (x; α, λ) =
λαxα−1e−λx

Γ(α)
, (5)

with Γ(α) = (α − 1)! As the mean μ = α
λ and squared deviation σ2 = α

λ2 , we can derive α and λ

as following:

λ =
μ

σ2 , α = μλ. (6)

Table 2 shows the processing time data used in the simulation model.

Table 2. Processing times of different franchises and processes. GR represents goods receipt; VAS value
added service.

Franchise Name Storage Type AST
Sorting GR Putaway Picking Scanning Packing Release VAS

μ σ μ σ μ σ μ σ μ σ μ σ μ σ μ σ

Product 1 LSS Y 48.9 23.4 13.3 1 77.4 1.8 77.6 1.5 30.1 2.6 67.6 6.3 1 0.2 289 13
Product 2 Racking N 23.4 2.2 6.5 1 6.4 1.5 4.7 1.5 27.3 2.7 67.6 6.3 1 0.2 482 22.5
Product 3 Racking N 19.9 3.3 3.3 1.2 6.4 1.5 4.7 1.5 13.3 2.7 67.6 6.3 1 0.2 482 22.5
Product 4 VLM N 72 11.6 26.3 0.2 54.6 0.7 75.1 1.3 20.4 2.8 67.6 6.3 1 0.2 482 22.5
Product 5 LSS N 40.4 2.6 16.1 1.1 77.4 1.8 77.6 1.5 15.5 7.5 67.6 6.3 1 0.2 482 22.5
Product 6 LSS N 40.4 2.6 16.1 1.1 77.4 1.8 77.6 1.5 15.5 7.5 67.6 6.3 1 0.2 482 22.5
Product 7 LSS N 40.4 2.6 16.1 1.1 77.4 1.8 77.6 1.5 15.5 7.5 67.6 6.3 1 0.2 482 22.5
Product 8 LSS N 40.4 2.6 16.1 1.1 77.4 1.8 77.6 1.5 15.5 7.5 67.6 6.3 1 0.2 482 22.5
Product 9 LSS N 40.4 2.6 16.1 1.1 77.4 1.8 77.6 1.5 15.5 7.5 67.6 6.3 1 0.2 482 22.5

All simulation experiments were performed on an Intel Core™ i7-8550U CPU 1.80 GHz 1.99 GHz
with 16 GB RAM and a 64-bit operating system. First of all, it was necessary to determine the simulation
settings: initial conditions, warm-up length, and number of replications [10]. Preliminary tests were
performed to evaluate the simulation duration and the number of replications necessary to achieve the
steady-state results. Upon the initiation, the simulation tool reads input data and adjusts for the real
simulation start time by running a single replication. As a warm-up, this process does not generate any
statistics. Using real forecast data of the workload with arrival times, the simulation results indicate
that one replication is sufficient to achieve steady output.

Once the model was validated, simulation iterations were run for each possible scenario,
in combination with the optimization algorithm. This will be explained in the next section.

6. Simulation-Based Optimization

The objective is to maximize service level for both inbound and outbound operations,
where service level= pcom

parr
.

Considering the constraints, the model is defined as follows:

max fnn + λ fout (7)

s.t. xij ≤ aij (8)

∑i xij ≤ mj, ∀j. (9)

where fin and fout represent inbound and outbound service levels, respectively; λ is a weight factor to
control the trade-off between inbound and outbound. X is an assignment matrix, where xij = 1 means
that the worker i is assigned to the activity i, otherwise xij = 0. aij = 1 indicates that worker i has the
skill j. In practice, the outbound service level performance is considered to be of a high priority as it is
directly related to the customer satisfaction. Hence, a higher weight λ is set for the outbound service
level fout.

155

Algorithms 2020, 13, 326

The constraint part of the model is an assignment problem, where multiple workers can be
assigned to the same task. As the objective is not an explicit function of the assignment scheme,
but some metric given by the simulation output, it is not easy to solve the problem by an exact algorithm.
In the context of a similar problem, i.e., the assembly line worker assignment, the neighborhood search
method was shown to be effective in Polat et al. [42] and to outperform other heuristic methods.
Motivated by this, we adopted a neighborhood search method in our model.

For a binary vector of matrix, the Hamming distance is the number of bit positions in which the
two corresponding bits are different. For two assignment matrices X1 and X2; D(X1, X2) is denoted as
the Hamming distance between them. For each worker wi, if the worker is assigned to different tasks
in X1 and X2, the difference will be two in row i. Thus X1 is called a c-neighbor of X2 if D(X1, X2) = 2c.
In our problem, due to predetermined upper bounds for the number of workers in each activity,
a c-neighbor may not be feasible.

We propose a random neighborhood search algorithm to solve the problem, which is described in
Algorithm 1. Accordingly, every time a 1-neighborhood X′ of the current solution is built randomly.
If the new solution is feasible, the simulation will run with this assignment and generate the output
statistics. The metric used for our objective is the service level. If the service level of the new solution
is better than the incumbent solution, we will update the incumbent as this new solution. Usually,
a random 1-neighborhood is not feasible, in the sense that the number of workers assigned to a
task may be larger than Mj. In this case, a 1-neighborhood of X′ will be built and checked again.
This procedure will be repeated until a feasible solution is found, or the number of solutions we have
generated is larger than a determined threshold.

Note that our method is different from the 1-step neighborhood search. Before a new feasible
solution is found, several workers may have been reassigned to other task(s). This can help to avoid
the local optimum. As the random search is in a broader neighborhood, the probability of reaching a
global optimum is higher. From the practical perspective, the number of new solutions and the number
of simulation runs are both bounded, to make the total time reasonable for the industry application.

Algorithm 1: The random neighborhood search algorithm.
Data: the workload
Result: an optimal assignment
initialization: find a feasible assignment X0, set Y0 = X0, sopt = s = 0, loop = iteration = 0 ;
while loop<m1 and iteration<m2 do

if s > sopt then

set sopt = s;
set Yiteration = Xloop

end

repeat

repeat

randomly select a worker i ;
randomly select a task j ;
modify Xloop by assigning worker i to task j, resulting in Xloop+1 ;
loop++;

until worker i can do task j;
until Xloop satisfy all the constraints;
run simulation and update s as the output value ;
iteration++;

end

156

Algorithms 2020, 13, 326

7. Numerical Results

Using the simulation-based optimization method, the software tool was developed. The graphical
user interface (GUI) design of the software is shown in Figure 4. The warehouse planner can select
the workload data as an input and run the tool. The output includes the service level, along with
other metrics.

Figure 4. The GUI of the manpower allocation tool.

In a set of experiments, we tested different values of λ for inbound and outbound service levels,
with the input data sampled from different months of years 2018 and 2019. The simulation-based
optimization was run with different values of the coefficient λ.

We used the historical data provided by the warehouse. Specifically, inbound shipment arrival and
outbound shipment order information for the following months were chosen: July 2018, January 2019
and March 2019. For each month, we conducted the assignment optimization week by week,
and calculated the summation over all weeks of the month. The value of coefficient λ ranges from 1.0
to 2.0, with a step of 0.1. Data analyses of historical workload demand suggest that the outbound order
volume generally prevails the inbound one. To diversify our sample pools, the sampling was done in
the following way:

1. In July 2018, the outbound pallet number was nearly 5% less than inbound pallet number;
2. In January 2019, the outbound pallet number was nearly 13% larger than the inbound one;
3. In May 2019, the outbound pallet number was nearly 29% larger than the inbound one.

For the warehouse, outbound service level is considered to be more critical than the inbound
service level. As shown in Figures 5–7, the results suggest that the optimized worker assignment
can always achieve a better performance for the outbound service level, compared to the current
assignment shown in Table 3. Regarding the inbound service level, the performance may be better
when the value of λ is relatively small, that is, when the priority of outbound service level performance
is not considered to be so high. Generally, with a decrease of less than 10% for the inbound service
level, an increase of more than 30% can be obtained in the outbound service level performance.
This indicates that our assignment can achieve a higher utilization of workers and a higher level of
customer satisfaction.

As seen from the reported results, when the value of λ increases, the outbound service level
increases, while the inbound service level decreases. This indicates that the parameter λ can be used to
control the trade-off between inbound and outbound service level performance metrics.

157

Algorithms 2020, 13, 326

1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2
λ

600

650

700

750

800

850

900

950

1000

1050

1100

1150

1200

N
um

be
r o

f c
om

pl
et

ed
 p

al
le

ts

Optimized Inbound
Optimized Outbound
As-Is Inbound
As-Is Outbound

Figure 5. Numerical results for January 2019 data, given the total numbers of inbound/outbound pallets
of 1508/1702, and the numbers of completed pallets with the current worker allocation are 906/606.

1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2
λ

600
650
700
750
800
850
900
950

1000
1050
1100
1150
1200
1250
1300
1350
1400
1450

N
um

be
r o

f c
om

pl
et

ed
 p

al
le

ts

Optimized Inbound
Optimized Outbound
As-Is Inbound
As-Is Outbound

Figure 6. Numerical results for May 2019 data, given the numbers total inbound/outbound pallets of
1541/1981, and the numbers of completed pallets with the current worker allocation are 1085/613.

158

Algorithms 2020, 13, 326

1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2
λ

600
650
700
750
800
850
900
950

1000
1050
1100
1150
1200
1250
1300

N
um

be
r o

f c
om

pl
et

ed
 p

al
le

ts

Optimized Inbound
Optimized Outbound
As-Is Inbound
As-Is Outbound

Figure 7. Numerical results for July 2018 data, given the total numbers of inbound/outbound pallets
of 1656/1529, and the numbers of completed pallets with the current worker allocation are 1231/621.

Table 3. The current assignment used in the warehouse.

Sorting GR Putaway VLM Picking AST Scanning Packing Releasing

6 2 2 1 2 2 2 3 1

To demonstrate the improvements via the simulation-based optimization method, we generated
additional service level outputs for a benchmark worker allocation case under the same workload
scenarios. This benchmark worker allocation refers to the worker allocation matrix previously used
by the warehouse manager prior to the implementation of our simulation-based optimization tool.
In generating the service level statistics for the benchmark worker allocation, we preset the worker
allocation and conducted simulations without any optimization. The comparisons of performance
outputs from the optimized and non-optimized (benchmark) manpower allocations are shown in
Figures 5–7, indicating that with less than 10% decrease for the inbound service level, on average,
the outbound service level can be increased by 30% across all three scenarios considered.

8. Conclusions

As a real-life complex system, the warehouse is characterized by high variability in workload
arrival. Thus, the optimal worker assignment in such a dynamic system is a non-trivial task. Since the
workload may vary on a daily basis, it is important for the warehouse planner to have a decision
support tool that can optimally assign workers to different activities. As the exact method is impossible
for this problem, we proposed the simulation-based optimization method, which combines the O2DES
framework with a random neighborhood search method. Under dynamic daily workload conditions,
the random neighborhood search model was shown to efficiently identify an improved manpower
assignment strategy based on the simulation output. A decision support tool based on the proposed
method was then verified and validated using the real data from a warehouse located in Singapore.
The results show that with a slight decrease of the inbound service level, we can improve the outbound
service level by more than 30%.

159

Algorithms 2020, 13, 326

This study provides a practical contribution to the problem of workforce planning in a warehouse.
Warehouse planners and managers can benefit from the use of such a manpower allocation tool.
The managers or users of the tool will need to provide the upcoming workload forecast as the input,
while the tool automatically generates the optimal manpower allocation to activities.

On the theoretical side, although the literature has advocated the need for implementation of
strategies for manpower planning [20,26], the reported solutions have not been numerous. One of the
few examples is from Ladier et al. [6], who proposed a two-step mixed integer linear programming
model which optimizes worker allocation to activities and different shifts daily. Said optimization
model does not capture the arrival time of the daily workload, and assumes that the human resources
are always sufficient. Hence, such a model is not capable pf effectively accounting for the industry
circumstances. In contrast, our simulation-based optimization model accounts for the workload arrival
and queuing, and allows one to achieve a higher service level with the available manpower.

Future studies may further improve the flexibility of the proposed method by integrating a better
selection of initial solution to accelerate the neighborhood search. This method can also be applied to
other resource allocation problems in supply chains and logistics.

Author Contributions: Conceptualization, H.L. and O.G.; methodology, K.K. and W.Z.; software, H.L. and K.K.;
validation, O.G.; resources, H.L.; data curation, O.G.; writing–original draft preparation, O.G., K.K., and W.Z.;
writing–review and editing, O.G. and K.K.; visualization, W.Z. and O.G. All authors have read and agreed to the
published version of the manuscript.

Funding: This research has been made possible by the funding support from the Centre for Next Generation of
Logistics (C4NGL), Department of Industrial Systems Engineering and Management, Faculty of Engineering,
National University of Singapore. The work has been also supported by Singapore A*STAR IAF-PP fund
(Grant No. A1895a0033) under the project “Digital Twin for Next Generation Warehouse”. The authors appreciate
our researchers for their great contributions to the centre and projects.

Conflicts of Interest: The authors declare no conflict of interest. The funders had no role in the design of the
study; in the collection, analyses, or interpretation of data; in the writing of the manuscript, or in the decision to
publish the results.

References

1. Schmenner, R.W. Looking ahead by looking back: Swift, even flow in the history of manufacturing.
Prod. Oper. Manag. 2001, 10, 87–96. [CrossRef]

2. Fredendall, L.D.; Craig, J.B.; Fowler, P.J.; Damali, U. Barriers to swift, even flow in the internal supply chain
of perioperative surgical services department: A case study. Decis. Sci. 2009, 40, 327–349. [CrossRef]

3. Devaraj, S.; Ow, T.T.; Kohli, R. Examining the impact of information technology and patient flow on
healthcare performance: A Theory of Swift and Even Flow (TSEF) perspective. J. Oper. Manag. 2013, 31,
181–192. [CrossRef]

4. Garn, W.; Aitken, J.; Schmenner, R. Smoothly Pass the Parcel: Implementing the Theory of Swift, Even Flow.
ResearchGate 2020. [CrossRef]

5. Schmenner, R.W. Service businesses and productivity. Decis. Sci. 2004, 35, 333–347. [CrossRef]
6. Ladier, A.L.; Alpan, G.; Penz, B. Barriers to swift, Joint employee weekly timetabling and daily rostering: A

decision-support tool for a logistics platform. Eur. J. Oper. Res. 2014, 234, 278–291. [CrossRef]
7. Nauss, R.M. Solving the generalized assignment problem: An optimizing and heuristic approach. INFORMS

J. Comput. 2003, 15, 249–266. [CrossRef]
8. Becker, C.; Scholl, A. A survey on problems and methods in generalized assembly line balancing. Eur. J.

Oper. Res. 2006, 168, 694–715. [CrossRef]
9. Burinskiene, A.; Lorenc, A.; Lerher, T. A simulation study for the sustainability and reduction of waste in

warehouse logistics. Int. J. Simul. Model. 2018, 17, 485–497. [CrossRef]
10. Kelton, W.D.; Sadowski, R.P.; Sadowski, D.P. Simulation with Arena; McGraw-Hill: New York NY, USA, 1998.
11. Muller, D. Automod™-providing simulation solutions for over 25 years. In Proceedings of the 2011 Winter

Simulation Conference (WSC), Phoenix, AZ, USA, 11–14 December 2011; pp. 39–51.

160

Algorithms 2020, 13, 326

12. Li, H.; Zhu, Y.; Chen, Y.; Pedrielli, G.; Pujowidianto, N.A. The object-oriented discrete event simulation
modeling: A case study on aircraft spare part management. In Proceedings of the 2015 Winter Simulation
Conference (WSC), Huntington Beach, CA, USA, 6–9 December 2015; pp. 3514–3525.

13. Frazelle, E. The title of the cited contribution. In Supply Chain Strategy: The Logistics of Supply Chain
Management; McGraw-Hill: New York, NY, USA, 2002.

14. Abushaikha, I.; Salhieh, L.; Towers, N. Improving distribution and business performance through lean
warehousing. Int. J. Retail. Distrib. Manag. 2018, 46, 780–800. [CrossRef]

15. Guthrie, B.; Parikh, P.J.; Kong, N. Evaluating warehouse strategies for two-product class distribution
planning. Int. J. Prod. Res. 2017, 55, 6470–6484. [CrossRef]

16. Ahmed, D.; Hyder, M. Improving Distribution and Business Performance through Lean Warehousing.
Int. J. Bus. Stud. 2020, 1, 35–37.

17. De Koster, R.; Le-Duc, T.; Roodbergen, K.J. Design and control of warehouse order picking: A literature
review. Eur. J. Oper. Res. 2007, 182, 481–501. [CrossRef]

18. Van Den Berg, J.P. Integral Warehouse Management; Management Outlook Publications: Utrecht,
The Netherlands, 2007.

19. Heragu, S.S.; Du, L.; Mantel, R.J.; Schuur, P.C. Mathematical model for warehouse design and product
allocation. Int. J. Prod. Res. 2005, 43, 327–338. [CrossRef]

20. De Leeuw, S.; Wiers, V.C.S. Warehouse manpower planning strategies in times of financial crisis: Evidence
from logistics service providers and retailers in The Netherlands. Prod. Plan. Control 2015, 26, 328–337.
[CrossRef]

21. Ivanov, D. Predicting the impacts of epidemic outbreaks on global supply chains: A simulation-based
analysis on the coronavirus outbreak (COVID-19/SARS-CoV-2) case. Transp. Res. Part E Logist. Transp. Rev.
2020, 136, 101922. [CrossRef]

22. Nikolopoulos, K.; Punia, S.; Schäfers, A.; Tsinopoulos, C.; Vasilakis, C. Forecasting and planning during
a pandemic: COVID-19 growth rates, supply chain disruptions, and governmental decisions. Eur. J.
Oper. Res. 2020. [CrossRef]

23. Klaus, P. The assessment of competitive intensity in logistics markets. Logist. Res. 2011, 3, 49–65. [CrossRef]
24. Rebitzer, D.W. The European logistics market. In Europe Real Estate Yearbook; Real Estate Publishers BV: VC

Den Haag, The Netherlands, 2007. Available online: www.europe-re.com (accessed on 18 November 2020).
25. Graham Douglas, D. Warehouse of the future. Frontline Solut. 2003, 4, 20–26.
26. Pooya, A.; Pakdaman, M. A new continuous time optimal control model for manpower planning with

promotion from inside the system. Oper. Res. 2018, 1–16. [CrossRef]
27. Edwards, J.S. A survey of manpower planning models and their application. J. Oper. Res. Soc. 1983, 34,

1031–1040. [CrossRef] [PubMed]
28. Parker, S.C.; Malstrom, E.J.; Usmani, T. Computer-assisted warehouse personnel scheduling. Intell. Robot.

Comput. Vis. Algorithms Tech. Int. Soc. Opt. Photonics 1992, 1607, 636–645.
29. Sanders, N.R.; Ritzman, L.P. Using warehouse workforce flexibility to offset forecast errors. J. Bus. Logist.

2004, 25, 251–269. [CrossRef]
30. Dou, J.; Dai, X.; Meng, Z. A GA-based approach for optimizing single-part flow-line configurations of RMS.

J. Intell. Manuf. 2011, 22, 301–317. [CrossRef]
31. Azadivar, F. A simulation optimization approach to optimum storage and retrieval policies in an automated

warehousing system. In Proceedings of the 1984 Winter Simulation Conference (WSC), Dallas, TX, USA,
28–30 November 1984; pp. 207–214.

32. Ding, H.; Benyoucef, L.; Xie, X. A simulation-optimization approach using genetic search for supplier
selection. In Proceedings of the 2003 Winter Simulation Conference (WSC), New Orleans, LA, USA,
7–10 December 2003; pp. 1260–1267.

33. Saif, A.; Elhedhli, S. Cold supply chain design with environmental considerations: A simulation-optimization
approach. Eur. J. Oper. Res. 2016, 252, 274–287. [CrossRef]

34. Ghasemi, P.; Khalili-Damghani, K. A robust simulation-optimization approach for pre-disaster multi-period
location–allocation–inventory planning. Math. Comput. Simul. 2021, 179, 69–95. [CrossRef]

35. De Marco, A.; Mangano, G. Relationship between logistic service and maintenance costs of warehouses.
Facilities 2011, 29, 411–421. [CrossRef]

161

Algorithms 2020, 13, 326

36. Staudt, F.H.; Alpan, G.; Di Mascolo, M.; Rodriguez, C.M.T. Warehouse performance measurement:
A literature review. Int. J. Prod. Res. 2015, 53, 5524–5544. [CrossRef]

37. Amorim-Lopes, M.; Guimarães, L.; Alves, J.; Almada-Lobo, B. Improving picking performance at a large
retailer warehouse by combining probabilistic simulation, optimization, and discrete-event simulation.
Int. Trans. Oper. Res. 2020, 28, 687–715. [CrossRef]

38. Zhang, C.W.; Xie, M.; Liu, J.Y.; Goh, T.N. A control chart for the Gamma distribution as a model of time
between events. Int. J. Prod. Res. 2007, 45, 5649–5666. [CrossRef]

39. Song, D.P. Optimal integrated ordering and production policy in a supply chain with stochastic lead-time,
processing-time, and demand. IEEE Trans. Automat. Contr. 2009, 54, 2027–2041. [CrossRef]

40. Guasch, A.; Piera, M.A.; Figueras, J. Automatic warehouse modelling and simulation. Int. J. Simul.
Process. Model. 2011, 6, 288–296. [CrossRef]

41. Andriansyah, R.; Etman, P.; Rooda, J. Simulation model of a single-server order picking workstation using
aggregate process times. In Proceedings of the First International Conference on Advances in System
Simulation, Porto, Portugal, 20–25 September 2009; pp. 23–31.

42. Polat, O.; Kalayci, C.B.; Mutlu, Ö.; Gupta, S.M. A two-phase variable neighbourhood search algorithm for
assembly line worker assignment and balancing problem type-II: An industrial case study. Int. J. Prod. Res.
2016, 54, 722–741. [CrossRef]

Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional
affiliations.

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

162

algorithms

Article

Combining Optimization and Simulation for
Designing a Robust Short-Sea Feeder Network

Carl Axel Benjamin Medbøen, Magnus Bolstad Holm, Mohamed Kais Msakni *, Kjetil Fagerholt

and Peter Schütz

Department of Industrial Economics and Technology Management,
Norwegian University of Science and Technology, 7491 Trondheim, Norway;
camedboe@stud.ntnu.no (C.A.B.M.); magnusbh@stud.ntnu.no (M.B.H.); kjetil.fagerholt@ntnu.no (K.F.);
peter.schutz@ntnu.no (P.S.)
* Correspondence: kais.msakni@ntnu.no

Received: 5 October 2020; Accepted: 16 November 2020; Published: 20 November 2020
��������	
�������

Abstract: Here we study a short-sea feeder network design problem based on mother and daughter
vessels. The main feature of the studied system is performing transshipment of cargo between mother
and daughter vessels at appropriate locations at sea. This operation requires synchronization between
both types of vessels as they have to meet at the same location at the same time. This paper studies the
problem of designing a synchronized feeder network, explicitly accounting for the effect of uncertain
travel times caused by harsh weather conditions. We propose an optimization-simulation framework
to find robust solutions for the transportation system. The optimization model finds optimal routes
that are then evaluated by a discrete-even simulation model to measure their robustness under
uncertain weather conditions. This process of optimization simulation is repeated until a satisfactory
condition is reached. To find even better solutions, we include different performance-improving
strategies by adding robustness during route generation or exploiting flexibility in sailing speed
to recover from delays. We apply the solution method to a case based on realistic data from a
Norwegian shipping company. The results show that the method finds near-optimal solutions
that offer robustness against schedule perturbations due to harsh weather. They also highlight the
importance of considering uncertainty when designing a short-sea feeder network with transshipment
at sea.

Keywords: maritime transportation; liner network design; synchronization; weather uncertainty;
optimization simulation

1. Introduction

Maritime transportation is one of the most efficient (per cargo ton-mile) transportation
modes to transport large volumes of cargo over long distances [1,2]. Over short distances,
however, competing with road-based transportation is more challenging. Truck-based door-to-door
deliveries are often less expensive compared to other shipping solutions and offer frequent and reliable
departures [3,4].

The demand for cargo transportation in Norway is expected to grow by 40% (in tonne-kilometers)
until 2030 [5]. This predicted increase i is met by the political ambition to shift more goods from
road to sea [6]. Still, new and innovative solutions need to be developed to substantially improve
the competitiveness of short-sea shipping and support the transition of cargo from road-based
to waterborne transportation. The Short Sea Pioneer (SSP) logistics system is a new suggested
solution to improve competitiveness, proposing a new transshipment mode for short-sea feeder
networks [7]. The proposed system is inspired by the ship-to-ship cargo transfer method currently

Algorithms 2020, 13, 304; doi:10.3390/a13110304 www.mdpi.com/journal/algorithms

163

Algorithms 2020, 13, 304

used to transfer petroleum products and bulk cargo between seagoing vessels. In the SSP system,
a mother (large) vessel can be connected to a daughter (small feeder) vessel at a suitable location at sea
to transship containerized cargo using a specialized handling cargo system (see [8] for an illustration).
One advantage of this system is to reduce the number of port calls, which reduces the operational cost
of the shipping system. Indeed, cargo-related port costs can account for up to 30% of the turnover of a
smaller short-sea shipping company [9]. Besides, it becomes possible to serve small ports that large
vessels cannot visit, for example, due to physical limitations.

The SSP logistics system is composed of one main route sailed by mother vessels that transport
cargo between the European continent and large ports located at the Norwegian west coast.
Small daughter vessels operate feeder routes serving smaller Norwegian ports. Due to size or location,
these ports may only be served by the smaller daughter vessels. Potential candidate transshipment
locations will be in sheltered locations (e.g., inside a fjord or inshore) such that harsh weather does not
affect the transshipment operation. An example is illustrated in Figure 1.

Figure 1. An example of the short sea pioneer (SSP) logistics system [10] composed of one main route
and three daughter routes. The main route serves the continental port, Maasvlakte, a large Norwegian
port in Bergen, and three ocean hubs. All daughter routes depart from ocean hubs and serve local
Norwegian ports.

While potentially having considerable economic benefits, transshipment at sea also raises many
technical challenges. Among others, the system requires synchronizing the main route sailed by the
mother vessel with all routes sailed by the daughter vessels. Conversely, Weather conditions are known

164

Algorithms 2020, 13, 304

to impact sailing times and can cause considerable delays [2]. Thus, the synchronization operation
can be subject to disruptions that may cause additional waiting times at the transshipment location
and can propagate through the system for the subsequent periods. To function correctly, the routes for
both mother and daughter vessels need to be robust to potential delays, i.e., they have to account for
uncertainty in weather conditions.

Traditionally, the literature on liner shipping network design problems has been focusing
on deterministic deep-sea (long-haul) shipping networks. These problems usually determine
the optimal set of routes to be served by a heterogeneous fleet of vessels while satisfying
demand, transshipment, and frequency requirements (see, e.g., Brouer et al. [11]). The following
publications are recent examples, discussing different variants of the traditional liner network
design problem. Meng and Wang [12] include the repositioning of empty containers in the
shipping operations when determining the optimal network design. Reinhardt and Pisinger [13]
consider more advanced route structures, such as butterfly routes, because they allow for better
use of vessel resources. Brouer et al. [11] study one of the largest networks operated by a major
liner-shipping company, where cargo can be transshipped several times to take more than one
route to be delivered. Karsten et al. [14] extend this problem to include transit time restrictions.
Balakrishnan and Karsten [15] incorporate limitations on number of transshipments for the cargo.
For the short-sea shipping, Msakni et al. [16] study the impact of different network designs for a local
liner shipping company. Fadda et al. [17] address the problem of a roll-on roll-off liner service that
operates using a hub-and-spoke network design. Akbar et al. [18] provide an economic analysis of
introducing autonomous vessels in short-sea shipping. For a more detailed overview of the literature
on liner shipping network design, please also see the surveys by Meng et al. [19], Brouer et al. [1] and
Christiansen et al. [20].

Synchronization has received relatively little attention in the literature on maritime transportation.
Cargo is usually transshipped in ports, often requiring a sequence of arrivals or specifying a time
window. The work of Agarwal and Özlem Ergun [21] is one of the fewest papers to address
synchronization directly. The problem considers a combined vessel scheduling and cargo routing
problem, where transshipment of cargo is only possible when two routes meet at the same port on
the same day. In another work, Andersson et al. [22] study a problem from project shipping where
different cargoes may require a synchronized delivery. In land-based transportation, synchronization
issues are more common. The reader is referred to Drexl [23] for an overview of the literature on VRPs
with multiple synchronization constraints.

The research on uncertainty in maritime service networks mainly distinguishes between
two types of uncertainty. The first type is uncertainty in service times, usually port times or
sailing times, whereas the second type considers uncertainty in demand. When considering
uncertainty in operations, the research focuses on keeping a designed schedule, i.e., satisfy frequency
requirements or pickup and delivery time windows. As an example of this work line, the problem
examined by Wang and Meng [24] of designing liner vessel routes with uncertainty in port operation
times. The uncertainty is related to sailing times as a consequence of making up for the delays.
In Song et al. [25], a multi-objective liner shipping service problem with uncertain port times is
studied. One of the objectives is to minimize schedule unreliability, which is the probability of
the vessels arriving after the scheduled time windows. Conversely, Li et al. [26] study how vessels
can recover from delays caused by regular uncertainties and unexpected disruptions. In their work,
regular uncertainties may happen both at sea and in port, and their characteristics can be estimated
using historical data. When it comes to demand uncertainty, the research usually focuses on designing
a maritime transportation system such that demand can be served. For example, Ng and Lin [27]
study the problem of fleet deployment under incomplete demand information. Lo et al. [28] present
a model for designing a ferry network given uncertain demand. An and Lo [29] study the design of
more general transit networks under uncertain demand. However, none of these studies consider
uncertainty in service times.

165

Algorithms 2020, 13, 304

One approach to deal with the uncertainty is to combine simulation and optimization models to
provide robust solutions. Fischer et al. [30] use simulation and optimization to evaluate the robustness
of tactical fleet deployment plans for roll-on roll-off liner shipping with respect to random disruptions
at the operational level. Castilla-Rodríguez et al. [31] study the quay crane scheduling problem in
a port terminal and consider the uncertainty from the availability of some delivery vehicles and
disruptions in quay crane operations. The authors use simulation-optimization to produce robust quay
crane schedules. Layeb et al. [32] develop a simulation-optimization method for multimodal freight
transportation systems where the uncertainty is related to demand and travel times. Poeting et al. [33]
combine a metaheuristic with a discrete-event simulation to provide robust solutions at the operational
level in parcel transshipment terminals.

This paper considers the first type of uncertainty, more specifically uncertain sailing times due to
harsh weather conditions. However, in contrast to the papers mentioned above, it studies a short-sea
liner network instead of a deep-sea network. A common assumption in papers on deep-sea liner
network design with uncertain port times is that vessels can make up for delays by increasing their
speed between ports (see, e.g., Wang and Meng [24]). This can be reasonable when legs between ports
are long. However, for short-sea networks, the sailing legs are short, and weather conditions may
prevent the vessel from reducing or even eliminating a delay.

The problem presented in this paper is an extension to the deterministic Short-sea Liner Network
Design Problem with Transshipment at Sea (SLNDP-TS) introduced by Holm et al. [10]. It contributes
to the research literature on liner shipping network design in three ways. Firstly, we take into account
uncertain sailing times due to harsh weather in the network design problem. Secondly, we consider
transshipments at sea, which requires that the synchronization of routes to ensure that mother and
daughter vessels are at the same location at the same time. Thirdly, we apply an iterative solution
approach combining optimization with discrete event simulation to handle both uncertainties in sailing
times and synchronization requirements.

Our solution method is based on the hybrid optimization-simulation method proposed by
Acar et al. [34] with the difference of using a discrete-event model instead of an optimization
model for the simulations. Unlike commonly used probabilistic models, we use wave height
from historical weather data to adequately capture the effect of harsh weather conditions on
sailing speed. The simulation model links wave height to vessel speed and evaluates the impact
on the synchronization operations. The simulation results are returned to the optimization
model to select routes that are less likely to generate delays. Additionally, we develop and test
different performance-improving strategies to enhance the solutions’ robustness to possible delays.
The computational study results show that our approach provides more robust solutions than
deterministic ones without a significant increase in costs.

The remainder of this paper is structured as follows. In Section 2, the problem is described in
more detail. Section 3 outlines the solution approach. The optimization and simulation models are
presented in more detail in Section 4. Results from the computational study are presented in Section 5.
We conclude in Section 6.

2. Problem Description

The problem of designing a short-sea liner network with transshipment at sea has been introduced
by Holm et al. [10]. The authors provide a deterministic problem formulation as well as a solution
method based on a priori route generation. In this section, we first present the problem before
discussing the impact of weather conditions on shipping operations in such a network.

2.1. Network Design Problem

The shipping company serves each port on a weekly basis. The Norwegian ports are classified
according to their size. Small ports are only served by daughter vessels, whereas large ports can be
visited by either a mother or a daughter vessel. All mother vessels start their voyage at a European

166

Algorithms 2020, 13, 304

continental main port. Transshipment of cargo between mother and daughter vessels occurs at the
so-called ocean hubs, which are suitable locations along the Norwegian coast and offer enough stability
for vessels to perform transshipment at sea. For presentation and modeling purposes, each ocean hub is
artificially split into a north-going and a south-going ocean hub. A mother vessel serves a north-going
ocean hub during its northbound journey and a south-going ocean hub on its southbound journey.

The feeder routes taken by daughter vessels are referred to as daughter routes. Each daughter
route is served by one daughter vessel. These routes have a maximum duration of one week to ensure
weekly port visits. The route served by the mother vessel is referred to as main route. Since the
duration of the main route is typically more than one week, the number of deployed mother vessels is
equal to the number of weeks rounded up to the nearest integer, thus ensuring weekly service.

The major activity of the shipping company case is to transport cargo between the main continental
port and Norwegian ports. There is also some local demand between Norwegian ports, but can be
considered as negligible in this study. The aim is to determine the optimal main and daughter routes
and the optimal fleet of mother and daughter vessels to be deployed. This problem is at a tactical level,
where the established routes last for typically four to 12 months, and, therefore, the weekly demand is
assumed to be known and constant.

Transshipment of cargo between mother and daughter vessels is only possible at ocean hubs.
During its northbound journey, mother and daughter vessels meet at a north-going ocean hub where
cargo is delivered to the daughter vessel. The same mother and daughter vessels meet again at the
corresponding south-going ocean hub during the southbound journey of the mother vessel to transship
cargo from the daughter vessel. In the case an ocean hub is the northernmost point of the main route,
there is no artificial distinction between north- and south-going ocean hub, and the ocean hub is
therefore only visited once.

A solution to the problem consists of a set of main and daughter routes serving the ports and an
allocation of vessels to routes (as illustrated in Figure 1). This also includes determining the number of
deployed mother and daughter vessels. The mother vessels are considered to have enough capacity
to transport all cargo. The size of the daughter vessels can be selected from a given set of available
capacities. The problem is separable in the size of the daughter vessel because all daughter vessels
must have the same capacity due to the technical requirements of the SSP design. The objective is
to minimize the weekly operating costs, including weekly time charter costs for each vessel in the
selected fleet, bunker, port, and cargo handling costs.

2.2. Impact of Harsh Weather

A transshipment in an ocean hub requires that both the mother vessel and the daughter vessel
have to be present at the same location at the same time. The meeting point is selected in a sheltered
location, such that harsh weather will not affect the transshipment operation. However, harsh weather
conditions will affect sailing operations as they may force vessels to slow down, causing delays in
the vessels’ schedules. We refer to the situation of a mother vessel waiting for a daughter vessel in
an ocean hub as a synchronization violation. Synchronization violations delay the waiting vessel,
potentially delaying later synchronizations and affecting other vessels in the system.

If a vessel is delayed by too much, it might be unable to complete its route within the maximum
allowed duration. This is called a duration violation. Duration violations prevent a weekly port visit
frequency because the delay is transferred into the next week. For a logistics system with transshipment
at sea to be viable in practice, duration violations must be kept at a minimum.

Figure 2 illustrates synchronization and duration violations. Consider a logistics system consisting
of a mother vessel, M, and two daughter vessels, D1 and D2. Daughter vessel D1 visits the north- and
south-going ocean hubs, 1n and 1s, respectively. The mother vessel and Daughter vessel D2 meet
at ocean hub 2 for picking-up and delivering cargo because ocean hub 2 is the northernmost point.
For simplicity, Norwegian ports and the continental main ports are not shown.

167

Algorithms 2020, 13, 304

Figure 2. An example to show duration and synchronization violations due to harsh weather.
The mother vessel has to wait for 10 h in ocean hub 1s, causing a synchronization violation and
a duration violation of five hours.

In the example, the mother vessel is sailing north from the continental main port. In ocean hub
1n, she meets with daughter vessel D1, and after the transshipment, both vessels depart as scheduled.
Neither of the vessels is delayed at this point. The mother vessel continues north to ocean hub 2
without any delay. Daughter vessel D2 is not delayed either, and thus both vessels can synchronize as
planned in ocean hub 2. In this example, daughter vessel D2 has 10 h of planned idle time before the
arrival of the mother vessel. It could, therefore, be up to 10 h delayed and still synchronize with the
arriving mother vessel as scheduled.

After leaving ocean hub 2, the mother vessel starts its southbound journey and sails towards
ocean hub 1s to synchronize again with daughter vessel D1. However, harsh weather has caused a
delay for daughter vessel D1 after departing from ocean hub 1n. Despite arriving on time in ocean hub
1s, the mother vessel has to wait for daughter vessel D1 and experiences a synchronization violation.

The schedule for daughter vessel D1 has planned idle time of five hours in ocean hub 1s before
the arrival of the mother vessel. As the vessel is delayed by as much as 15 h, the mother vessel has to
wait for 10 h. As the mother vessel only has five hours of planned idle time in its schedule, the next
departure from the continental main port is five hours of delay. The synchronization violation in ocean
hub 1s has caused a duration violation of five hours for the mother vessel.

Note that daughter vessel D1 does not incur a duration violation, even though it is 10 h delayed
when leaving ocean hub 1s. This is because there is enough planned idle time when sailing between
ocean hub to 1s and ocean hub 1n to make up for the delay.

3. Solution Approach

Our iterative solution method is based on the hybrid optimization simulation framework proposed
by Acar et al. [34]. The solution method combines an optimization model (also referred to as the

168

Algorithms 2020, 13, 304

master problem) and a simulation model. The role of the optimization model is to select routes
for mother and daughter vessels from a set of a priori generated routes, while the simulation is a
discrete event simulation model that evaluates the robustness of solutions (a solution is a combination
of routes) with respect to uncertain weather conditions. The simulation model results are used
to update the costs of the simulated solutions and then faded back to the optimization model.
Alternating between optimization and simulation models is repeated until no new improved solution
is found. The proposed solution method is illustrated in Figure 3. According to the classification of
Crainic et al. [35], the proposed approach is within the alternate simulation-optimization category.

Figure 3. An overview of the optimization-simulation framework. From input data, the routes are
generated. The master problem and the simulation model are iteratively solved until no new solution
is found.

A static set of routes for the mother and daughter vessels is generated using the provided input
data. For each of the daughter vessel types, the master problem then selects the cost-minimizing
routes from this set by solving an integer programming model (described in more detail in Section 4.1).
Afterwards, the combination of routes chosen by the master problem is simulated using historical
weather data to estimate the solution’s real-world performance (described in more detail in Section 4.2).

As explained in Section 2.2, a duration violation is caused by harsh weather conditions that lead
to a delay long enough to prevent the vessel from completing its round trip within its scheduled
duration. Synchronization violations can amplify delays as they may transfer the delay of one vessel
to another. A duration violation will automatically lead to an initial disruption when starting the next
round trip. The magnitude of a duration violation is defined as the number of hours by which a vessel
is late compared to the allowed duration of one round trip.

We add a penalty cost based on the magnitude of duration violations from the simulation to
the costs of the selected combination of routes. This additional penalty cost makes solutions (or
route combinations) prone to duration violations less attractive in subsequent iterations of solving the
master problem. When the master problem is solved again with updated route costs, it might choose
a new solution with lower costs. The iterations between the master problem and the simulation
model continue until all of the selected solutions have been simulated, and no new improving
solutions are found. This feedback approach between the master problem and the simulation model
allows generating good solutions based on the trade-off between operational costs and robustness
(i.e., penalty costs).

Different strategies to provide robustness against disruptions due to harsh weather and/or
synchronization violations can be included in the optimization and/or simulation model (discussed
more in Section 4.3). Thus, the framework can also be used to evaluate the potential benefit of
introducing performance-improving strategies, for example, permitting speed-ups in case of a delay
(see, e.g., Fischer et al. [30], Brouer et al. [36]).

169

Algorithms 2020, 13, 304

4. Optimization and Simulation Model

This section provides a more detailed description of the optimization and the simulation models
used in the proposed solution method. The optimization model is described in Section 4.1, while the
simulation model is presented in Section 4.2. Possible performance-improving strategies that can be
evaluated using our solution methods are described in Section 4.3.

4.1. Optimization Model

The optimization model is based on the approach developed by Holm et al. [10] and consists of a
route generation procedure and a master problem. The difference is that, in this study, the optimization
model incorporates updated costs from the simulation model. For an efficient route generation,
a label-setting algorithm (see, e.g., Irnich [37]) is used to generate a priori the routes for mother and
daughter vessels. After the routes are generated, the daughter routes are grouped in subsets according
to which main route they can be synchronized with.

The label setting algorithm is used to limit the set of routes introduced to the optimization model.
Only non-dominated routes are retained, which means that similar routes composed of the same
ports but in a different order and with higher operational costs are eliminated. The route generation
assumes that vessels sail at their design sailing speed, i.e., no speed-up is allowed. Here, it should be
pointed out that some of the deterministically dominated routes might perform better in our setting
with uncertain travel time, e.g., due to a sequence of port visits that allows avoiding harsh weather
conditions. However, identifying these routes during the route generation procedure is, in general,
too computationally expensive.

Before formulating the optimization model, let us first introduce the following notation:
Sets

POH set of ocean hubs,
PCD set of Norwegian small ports,
PCM set of Norwegian main ports,
RM set of all non-dominated main routes,
RD set of all non-dominated daughter routes,
RM

p subset of main routes, for which port p is served, RM
p ⊆ RM,

RD
p subset of daughter routes, for which port p is served, RD

p ⊆ RD,
RD

pm subset of daughter routes that can be synchronized to a main route m at ocean hub
p, RD

pm ⊆ RD
p ⊆ RD,

S set of simulated solutions. If the set is empty, no solutions have been simulated. The size of
the set increases for every new solution that is simulated.

Parameters

CM
m total operational cost of main route m, which includes the weekly time charter cost of mother

vessels sailing m, bunker costs and port costs,
CD

d operational cost of daughter route d, which includes the weekly time charter cost of daughter
vessel sailing d, bunker costs and port costs,

CS
s penalty cost of simulated solution s,

MOH upper limit on the number of daughter vessels that can perform transshipment at an ocean hub,
MS a value that is marginally larger than ε,
SD

ds is equal to 1 if daughter route d belongs to simulated solution s, and 0 otherwise,
SM

ms is equal to 1 if main route m belongs to simulated solution s, and 0 otherwise,
Ss number of routes which belong to solution s. This can be expressed as follows:

Ss = ∑m∈RM SM
ms + ∑d∈RD SD

ds, for each simulated solution s,
ε auxiliary parameter used to express a less than relation as a less than or equal relation.

The value can be as small as possible as long as ε > 0.

Binary decision variables

170

Algorithms 2020, 13, 304

xm equals to 1 if main route m is selected, and 0 otherwise,
zd equals to 1 if daughter route d is selected, and 0 otherwise,
ys takes value 1 if a simulated solution is included in the optimal solution, and 0 otherwise.

The deterministic optimization problem can be formulated as follows:

min ∑
m∈RM

CM
m xm + ∑

d∈RD

CD
d zd + ∑

s∈S
CS

s ys (1)

subject to

∑
m∈RM

xm = 1, (2)

∑
d∈RD

p

zd − MOH ∑
m∈RM

p

xm ≤ 0, p ∈ POH , (3)

∑
d∈RD

pm

zd − ∑
d∈RD

p

zd ≥ MOH(xm − 1), p ∈ POH , m ∈ RM
p , (4)

∑
d∈RD

pm

zd − xm ≥ 0, p ∈ POH , m ∈ RM
p , (5)

∑
m∈RM

p

xm + ∑
d∈RD

p

zd = 1, p ∈ PCM, (6)

∑
d∈RD

p

zd = 1, p ∈ PCD, (7)

∑
m∈RM

SM
msxm + ∑

d∈RD

SD
dszd − Ss + ε ≤ MSys, s ∈ S , (8)

xm ∈ {0, 1}, m ∈ RM, (9)

ys ∈ {0, 1}, s ∈ S , (10)

zd ∈ {0, 1}, d ∈ RD. (11)

The objective function (1) minimizes the total weekly cost of the shipping system. The first and
second terms of (1) are related to the costs of mother and daughter vessels deployed in the system.
The last term represents the penalty cost of a solution.

Equation (2) forces the optimal solution to select only one main route. Constraints (3) to (5) are
the synchronization constraints, ensuring that selected daughter routes can synchronize with the main
route at an ocean hub visited by both routes. The reader is referred to Holm et al. [10] for a more detailed
description of how synchronization is taken care of through these constraints. Further, Equation (6)
ensure that a main port is visited by either a mother or a daughter vessel. Equations (7) ensure that
each small Norwegian port is served by a daughter route. Constraints (8) set the indicator variable
ys. If the master problem selects a route combination that constitutes a previously simulated solution,
ys = 1 and the penalty cost is added to the objective. Lastly, Constraints (9)–(11) restrict the variables
to take binary values.

4.2. Simulation Model

The optimal solution of the master problem assumes that the shipping system runs under perfect
weather conditions, and both mother and daughter vessels sail at design speed. The simulation model
evaluates the proposed solution under real-world operating conditions. Harsh weather conditions
may force vessels to slow down, affecting the sailing times. In such a situation, synchronization and
duration violations can occur.

171

Algorithms 2020, 13, 304

The simulation model adjusts the sailing speed based on wave height. To this end, we divide a
route into legs connecting two consecutive ports. For a given leg, waypoints are defined and mark a
change in the vessel’s travel direction. The segment between two successive waypoints is defined as a
sub-leg. The simulation model updates the sailing speed of a vessel at specific points of a leg. Such a
point is called an observation point and is defined (i) at a departure port and (ii) after sailing a certain
distance, called step distance.

Figure 4 shows an example of a route between two ports. There are three sub-legs defined by
the ports and waypoints. The observation points are equally separated by the step distance, which is
set to be five nautical miles in this example. The background of Figure 4 shows the gridded weather
data points.

Figure 4. Illustration of a leg. The vessel changes direction at the waypoints and the speed is updated
at every observation point.

To determine the speed of a vessel, we use historical weather data composed of a grid of data
points that contain significant wave height. The parameter ‘significant wave height’ is often used
to describe the weather in maritime navigation and is defined as the average height of the highest
one-third waves [38]. At each observation point, we extract the significant wave height from the closest
data point.

Estimating the vessel speed in open water requires detailed information about the vessel,
e.g., regarding hull design and loading conditions, to carry out accurate hydrodynamic calculations.
Such information is often not available at an early stage of designing feeder networks.
Therefore, we use a simplified approximation of the hydrodynamic relationship between wave height
and vessel speed in our simulation model. We assume that vessels are often designed to be operated at
a particular propulsion power for which the engines run efficiently, and they sail with constant design
power that is maintained throughout the route. Since the vessel speed is a function of propulsion power
and total resistance, and given that the propulsion power is assumed to be constant, higher waves and
winds due to harsh weather cause an increase in total resistance, which results in a decrease of vessel
speed. In our model, resistance from waves is calculated according to the STAwave-1 method [39].

The flow chart in Figure 5 shows the overall simulation process. The input to the simulation
model is one (or more) feasible solution(s) from the master problem. In Step 1, the simulation model
chooses a solution from the master problem. The week to simulate is chosen in Step 2. In Steps 3–5,
all routes in the solution are simulated. Once all routes in the solution are simulated for the given
week, synchronization and duration violations are calculated in Step 6. Note that these violations
are system-specific, i.e., dependent on the set of routes in the given solution and not only on each
route individually. If any violations occur, penalty costs are added to the solution in Step 7. Step 8
checks whether the solution has been simulated for all weeks. Finally, Step 9 ensures that all solutions
provided by the optimization model are simulated.

172

Algorithms 2020, 13, 304

Figure 5. Flow chart of the simulation model. The solutions provided by the master problem are
simulated week-by-week over a long period using historical data. When a violation is detected,
a penalty cost is added to the operational costs of the solution.

An important element of the simulation model is to penalize duration and synchronization
violations. The total penalty cost for a simulated solution is the accumulated penalty costs for all
vessels for each week of the simulation period. Hence, route compositions that often incur duration
or synchronization violations are receiving a high penalty cost and are less likely to be chosen by the
master problem in subsequent iterations.

4.3. Performance-Improving Strategies

Penalizing synchronization and duration violations helps select more robust routes for both
mother and daughter vessels, but does not necessarily reflect real-world operations of a feeder network
service. In our optimization-simulation model, duration violations propagate from one week to another.
In contrast, real-world vessel operators would try to either avoid a delay (e.g., by using more robust
routes) or recover from the delay (e.g., by speeding up) before it causes any violations. To further
improve the quality of the solutions, we propose two types of performance-improving strategies that
mimic real-world operations and are integrated into the solution approach: enhancing the robustness
of the routes and recovery from delays.

4.3.1. Enhancing Route Robustness

The first type of strategy tries to enhance the routes’ robustness during the route generation
procedure, i.e., before starting the optimization-simulation process. Additional slack (or idle time) is
added to some or all of its legs when generating routes. By doing so, a vessel might still be able to
synchronize in an ocean hub, even if it has to slow down due to harsh weather. Conversely, adding too
much slack can cause excessive waiting times and, as such, increase the operational cost for the vessels.
Therefore, determining the amount and place of additional slack while ensuring a sufficient robustness
level is an important trade-off to assess. This strategy is comparable to the current practice of airlines
where delayed routes can recover at night when no flights are scheduled and the network resets [36].

173

Algorithms 2020, 13, 304

Similarly, the robustness of the routes can be enhanced by considering seasonality in the schedules.
Due to the difference in weather conditions between summer and winter, it might be beneficial to
operate dedicated routes for each season. However, the system needs to operate the same fleet of
mother and daughter vessels during the whole year, regardless of the season.

4.3.2. Recovery from Delays

The second type of strategy tries to exploit operational flexibility to recover from delays. If weather
permits, a vessel can increase its speed to reduce or even eliminate a delay. Fischer et al. [30],
for example, show that speed-up can be used as a recovery action when considering disruptions
in planning fleet deployment in roll-on roll-off liner shipping. Though speeding-up allows recovering
from delays in some cases, it requires increased power output, which in turn will increase fuel
consumption and thus bunker costs. The ability to speed-up is limited by the maximum propulsion
power of the vessels.

5. Computational Study

The route generation procedure and the simulation model have been implemented in MATLAB
R2016b. The master problem is formulated and solved using FICO Xpress 7.9. All computations have
been carried out on a PC with a 3.4 GHz Intel Core i7 processor and 32 GB RAM.

5.1. The Short Sea Pioneer Logistics System

The selection of ports is based on the ports currently served by the case shipping company
NorthSea Container Line (NCL), which operates a line for container transportation between the
Norwegian west coast and the European continent port located at Maasvlakte in the Netherlands.
The candidate hub locations are selected close to major local ports and inshore to have stable weather
conditions for the cargo transshipment. The port locations of this case study are illustrated in Figure 6.

The weekly number of containers transported to and from the European continent is based on
the number of containers imported and exported in ports along the Norwegian west coast during the
first quarter 2016 data [40]. The numbers have been corrected according to NCL’s market share to
approximate realistic transportation demand. We refer to Holm et al. [10] for detailed input data.

The possible capacities for the daughter vessels are 100, 200, and 300 twenty-foot-equivalent units
(TEU). The capacity of the mother vessels is 2500 TEU, which is sufficient to transport the cargo of the
whole system. The design speed for all vessels is set to 12 knots.

The relationship between speed and wave height for the mother and three candidate daughter
vessel types considered in this experiment is shown in Figure 7. We can see from Figure 7a that at
design power, the sailing speed significantly decreases as waves become higher, especially for the
daughter vessels. Figure 7b illustrates the same relationship, but for speed-up power that can be used
to recover from delays. The power output for speed-up is set to be 125% of design power.

The legs between ports required to simulate sailing speed have been discretized according to
container vessel AIS data available from the Norwegian Coastal Administration. Historical wave
height data from both the Norwegian Meteorological Institute (MET.no) and the European Centre
for Medium-Range Weather Forecasts (ECMWF) is used in the simulations. These data sets provide
weather data with a time increment of six hours. Figure 8 shows a visualization of the data grid for
both data sources. The data from ECMWF has a resolution of 0.75◦ × 0.75◦, which is sufficient for the
zone between Europe and Norway but not detailed enough for vessels sailing the Norwegian coastline.
The data from Norwegian Meteorological Institute offers a better resolution, i.e., 0.3◦ × 0.15◦ and is
used for latitudes higher than 57.5◦ N. Please note that no wave height data is available inside fjords or
very close to land. If a vessel is within these areas, it is assumed to sail at design speed, i.e., 12 knots.

174

Algorithms 2020, 13, 304

In our simulations, we use data of two successive years (2000 and 2001). To make the simulation
by weeks easier, we assume that the length of each month is exactly four weeks, resulting in a total of
96 weeks to simulate. The winter season is defined as lasting from October to March, and the summer
season lasts from April to September.

Figure 6. A map showing ports considered in the case study. The possible ocean hubs are represented
with yellow squares.

(a) Sailing speed with design power (b) Sailing speed with speed-up power

Figure 7. Impact of significant wave heights on the sailing speed for the fleet of vessels considered in
the experimentation.

175

Algorithms 2020, 13, 304

(a) European Centre for Medium-Range Weather
Forecasts (ECMWF) data used south of a latitude
of 57.5◦N

(b) Data from MET.no used north of 57.5◦N

Figure 8. Data grid with time series observation on each cell used for the weather simulation.

5.2. Runtime Considerations

The runtime of the optimization-simulation framework mainly depends on the number of
iterations needed for the framework to converge to a solution. To speed up this process, we can
reduce the number of times to run the optimization model by returning multiple feasible solutions
for simulation instead of only the optimal solution. This has the advantage of possibly simulating the
solution that performs best under uncertainty at early iterations. On the other hand, extracting too
many solutions implies simulating solutions that may never be needed. Thus, it would be interesting
to study the trade-off between the number of solutions extracted in each iteration and the number of
iterations of the optimization-simulation framework.

We extract the n best solutions found while solving the master problem. The results for the
convergence speed of the solution method for different values of n are presented in Table 1. The first
column indicates the maximum number of extracted solutions n in each iteration. The column Itr.
needed states how many times the master problem has been solved, i.e., the number of iterations.
The third column, Route Gen. Time, is the time needed to generate the routes. Note that this
time is constant, as the routes are only generated once. The total time spent by Xpress to solve
the master problems is given in column Opt. Time, whereas the total time used by MATLAB to
simulate the solutions is given in column Sim. Time. Column Total Time shows the total runtime
spent by the solution approach. The last column, Solutions Simulated, contains the total number of
simulated solutions.

As can be seen from Table 1, the number of iterations of solving the master problem decreases
with higher values of n. In contrast, the time needed to simulate all solutions increases by n. For our
case, we select n = 20 for which the best total time is obtained. Finally, we point out that the approach
is not sensitive to n when considering the solution quality. The same best solution is found for all
different values of n.

176

Algorithms 2020, 13, 304

Table 1. Runtime (in seconds) for the solution approach with different values of n.

n Itr. Route Gen. Opt. Sim. Total Solutions
needed Time Time Time Time Simulated

1 75 94 2855 131 3080 75
5 19 94 771 149 1014 89

10 13 94 510 182 786 113
20 9 94 390 246 730 157
50 7 94 405 473 972 297

100 6 94 393 573 1060 494

5.3. Determining Global Estimated Optimal Routes

In this section, we analyze the route networks obtained using the solution method. We first
describe the different performance-improving strategies, before discussing the solutions produced by
our method.

5.3.1. Performance-Improving Strategies

We combine the optimization-simulation solution method with different performance-improving
strategies to impose additional robustness and exploit operational flexibility. The different strategies
are listed in Table 2 and are explained in more detail below.

Table 2. List of applied performance-improving strategies.

Strategy Category Description

None - No performance-improving strategy is applied.
Slack 10% Route robustness 10% slack is added on each sailing leg.
Realistic Route robustness Simulated sailing times with additional 5% extra slack.
Seasonal Route robustness Tailor-made winter and summer schedules are used.
Speed-up Recovery vessels can speed-up to reduce delays.
Combined Route robustness & recovery Realistic, Speed-Up, and Seasonal strategies are applied.

We test three different performance-enhancing strategies for enhancing the robustness of the
routes and one strategy for recovery from delays. The Slack 10% and the Realistic strategies are
implemented as part of the route generation procedure. The Slack 10% strategy is characterized by
calculating the sailing time along a leg (based on design speed) and then adding 10% additional sailing
to immunize the route against delays. While adding robustness to a route, this strategy may result in
considerable amounts of unnecessary idle time in the schedule. The Realistic strategy tries to account
for the fact that particular sailing legs are more likely to be subject to delays than others. Sailing speeds
along the different legs are first simulated using weather data from 1998 to 2000. To further improve
robustness, the resulting average sailing time on each leg is then increased by an additional 5%.

With the Seasonal strategy, the routes sailed by the vessels are allowed to change for each season.
We distinguish here between the summer season and winter season. The seasonal routes are obtained
by solving the simulation-optimization framework for each season with a set of routes based on design
speed. Note that the same fleet has to be used in all seasons.

The Speed-up strategy is part of the simulation model. This strategy allows delayed vessels
to increase their speed by increasing their power output. Mother and daughter vessels speed-up
independently according to their routes, but the conditions for when they do so are slightly different.
A mother vessel will try to speed-up once it is more than one hour delayed compared to its generated
route. Increased speed will be maintained until the vessel is no longer delayed. Daughter vessels
usually have a certain amount of idle time included in their schedules, e.g., waiting for the mother
vessel to arrive in an ocean hub. The daughter vessel starts to speed-up as soon as the remaining idle
time falls below a given threshold (for the case study, this is set to one hour) and will continue to sail

177

Algorithms 2020, 13, 304

at increased speed until it has up to two hours idle time available. However, a daughter vessel will
never speed-up to get more than its original amount of idle time.

The Combined strategy applies realistic, speed-up, and seasonal strategies simultaneously.
The realistic sailing times used in the combined strategy are calculated separately for each season
during the preliminary simulation of sailing time. This implies that more absolute slack will be added
in the winter season than in the summer season.

5.3.2. Best Routes with and without Weather Uncertainty

We first solve the problem deterministically and use its solution as a benchmark when comparing
the solutions considering weather uncertainty. For the deterministic case, the solution using daughter
vessels with a capacity of 300 TEU has the lowest total weekly cost with an objective function value
of 457,800 USD. Two mother vessels and two daughter vessels are deployed in this optimal solution,
as shown in Figure 9. In particular, the main route visits two ocean hubs at Tananger and Haugesund,
as well as the main port at Tananger. The hub Haugesund is the northernmost port served by the main
route and is therefore visited only once. The mother vessel is more expensive in terms of bunker cost
and port visits, which causes the model to select a short main route.

Figure 9. The optimal routes for the Short Sea Pioneer (SSP) deterministic version. The mother route
visits two hub ports that are connected to two daughter routes.

We then solve the network design problem using our optimization-simulation method,
applying each of the performance-improving strategies separately. In all best solutions,
two mother vessels and two daughter vessels are deployed. However, the solution without the
performance-improving strategy deploys smaller daughter vessels than other solutions. Table 3
summarizes the results for the different performance-improving strategies. The cost of the best
solutions is compared to the cost of the best deterministic solution, where 100% representing the
cost of the deterministic solution. In this comparison, the penalty costs added by the simulation

178

Algorithms 2020, 13, 304

model are excluded as they are fictional and only used to identify low-performing solutions.
However, the increased costs due to speeding up are included. This comparison facilitates evaluating
the solution quality since the deterministic solution is obtained under ideal weather conditions and,
thus, can be considered as a lower bound. Table 3 also shows important performance characteristics
for the different solutions, such as the total number and accumulated time (in hours) of both duration
and synchronization violations. It also reports the total amount of planned idle time included in the
selected routes and how much time this idle time is used to recover from incurred delays. The last
column indicates the daughter vessel size of the solutions.

Table 3. Performance characteristics for the different solutions.

Strategy Cost [%]
Dur. Dur. Sync. Sync. Idle Idle Vessel
Viol. Mag. Viol. Mag. Time Use [%] Size

None 102.1 0 0 200 1958 219 14.8 200
Slack 10% 101.4 4 18.7 61 450 171 3.9 300
Realistic 101.4 4 17.1 52 319 162 2.5 300
Seasonal 101.5 3 4.3 204 1859 180 17.3 300
Speed-up 102.8 2 4.1 125 927 188 8.9 300
Combined 101.2 1 0.7 21 192 160 1.8 300

All obtained solutions result in a slight increase in operational costs compared to the deterministic
solution, where the Combined strategy gives the lowest operational cost with an increase of only 1.2%.
Only one duration violation occurs with a negligible magnitude. The number of synchronization
violations and the related magnitude is also significantly lower than for other strategies. The utilization
of idle time is also low, implying that the vessels usually keep the estimated arrival times set
up in the route generation procedure. As such, the solution obtained when using the combined
performance-improving strategy is quite robust without increasing the cost level by much. Note that
the solution resulting from not using a performance-improving strategy does not incur any duration
violation but is exposed to many synchronization violations. The solution includes a lot of idle time,
a large share of which needs to be used for sailing to recover from delays.

Figure 10 shows the optimal seasonal routes for the Combined strategy. The solid red line is
the main route that continues further south to Maasvlakte port. The blue and pink dashed lines are
daughter routes 1 and 2, respectively. The corresponding ocean hubs are marked as squares.

As seen in Figure 10, the main route extends further north in the winter than during the summer
season. Compared to a daughter vessel, a mother vessel is more expensive in terms of bunker and
port costs. By having a mother vessel sailing further north, the daughter vessels can reduce their
total sailing distance, resulting in planned idle time. This is beneficial during the winter season since
the weather conditions are rougher, and a greater buffer against delays is needed to avoid duration
violations. Conversely, during the summer season, the weather conditions are better, resulting in a
shorter main route with corresponding longer daughter routes to reduce operational cost.

5.3.3. Analyzing the Best Deterministic Solution

The best deterministic solution is slightly cheaper than all solutions found by the solution triggered
feedback approach. However, these cost savings come at the expense of a lack of robustness for harsh
weather conditions. Table 4 provides the performance characteristics for simulating the optimal
deterministic solution under weather conditions without any performance-improving strategy.

179

Algorithms 2020, 13, 304

(a) Routes for the summer season (b) Routes for the winter season.

Figure 10. The difference between the summer and winter solutions when using the combined strategy.
The main route sails further north in the winter season due to rough weather conditions.

Table 4. Performance characteristics for the best deterministic solution.

Cost [%]
Dur. Dur. Sync. Sync. Idle Idle Vessel
Viol. Mag. Viol. Mag. Time Use [%] Size

100 277 45,429 194 14,332 192 82.5 300

In particular, the high number of duration violations renders the best deterministic solution
infeasible in practice. While almost all of the planned idle time is used for sailing to mitigate delays,
the system is still unable to recover. The poor performance of the optimal deterministic solution
clearly shows the importance of taking into account weather uncertainty. All solutions found the using
optimization-simulation approach (see Table 3) perform significantly better, while being less than
3% more expensive. The solution from the Combined strategy for example, reduces the number of
duration violations from 277 to 1 and the duration magnitude from 45,429 h to 0.7 h, while the costs
only increase by 1.2%.

Pushing the analysis further, we simulate the best deterministic solution with the Speed-up
strategy. This combination results in a cost increase of 2.2%, which is due to the higher fuel consumption
from the required speed-ups. However, the number of duration violations is reduced from 277 to
28, and the number of synchronization violation is reduced from 194 to 181. Even though these are
significant improvements, the solution still performs much worse than the solutions found by the
optimization-simulation method.

In another analysis, we consider another criterion of a well-performing solution. It consists of
measuring the stability of arrival times, which translates directly into predicting future arrivals and
maintaining a given schedule. For the Combined-strategy solution, the arrival times for the summer

180

Algorithms 2020, 13, 304

and winter routes are presented in Figures 11 and 12. The mother vessels are scheduled to depart from
the main continental port at time zero. The arrival times for all vessels refer to this departure time.

Figure 11. A box and whisker plot of the arrival times for the summer season of the Combined-
strategy solution.

Figure 12. A box and whisker plot of the arrival times for the winter season of the Combined-
strategy solution.

The small vertical line represents the median arrival time. The width of each box corresponds to
the interquartile range (IQR) defined by the first and third quartile, and accounts for 50% of all port
arrivals in the simulation period. The left and right whiskers capture all arrival times within 1.5 · IQR.
Arrival times outside this range are considered outliers and represented with circles.

For both seasons, arrival times are mostly within relatively small intervals, particularly for the
main route and daughter route 1. The longer daughter route 2 is slightly more prone to variations in
arrival time, especially during the winter season, although this route is considerably shortened during

181

Algorithms 2020, 13, 304

this season (see Figure 10). Still, these varying arrival times do not affect synchronization with the
mother vessel at ocean hubs (except Bergen) because daughter vessel 2 always arrives first anyway
(with one exception).

Figure 13 presents the arrival times for the deterministic solution. Here, we observe much wider
intervals for different arrival times. For example, about 50% of all arrivals at the main continental
port in Maasvlakte happen approximately 48 h around the median arrival time. This median arrival
time of the mother vessel is also about 100 h after the end of the planned two-week route due to a
large number of duration violations. Moreover, Figure 13 shows that the deterministic solution is
very sensitive to weather uncertainty, causing arrival times to vary a lot. Therefore, the deterministic
solution is not applicable in a real-world setting and should be discarded in favor of the solution
from the Combined-strategy. These results highlight once more the need for considering the weather
uncertainty in designing the short-sea feeder network considered in this paper.

Figure 13. A box and whisker plot of the arrival times of deterministic solution.

6. Concluding Remarks

In this paper, we study the problem of designing a short-sea liner network with transshipment
at sea under uncertain weather conditions and propose an iterative solution method that combines
optimization and simulation. In the deterministic optimization step, we select routes for both mother
and daughter vessels that minimize the cost of operating the logistics system. These routes are then
evaluated using a discrete event simulation model. Solutions that are not performing well in the
simulations are penalized in the objective function in subsequent iterations of the optimization model
to reduce their attractiveness. The steps of selecting routes in the optimization model and simulating
them continue until no new (not simulated) solution is selected. The computational study performed
on a case based on real-world data shows that our solution method provides solutions for the system
with a good trade-off between operational cost and robustness.

The results show that weather uncertainty can severely impact the synchronization of
the routes and should be taken into account in the design phase of the logistics system.
The optimization-simulation approach, especially when using different performance-improving
strategies, finds robust solutions at only a small operational cost increase. The solution method has been
applied to a short-sea feeder network design problem in this paper, but it should be straightforward to
apply to other related problems.

182

Algorithms 2020, 13, 304

Author Contributions: Conceptualization, K.F. and P.S.; methodology, C.A.B.M., M.B.H., K.F. and P.S.;
software, C.A.B.M. and M.B.H.; validation, C.A.B.M., M.B.H., K.F. and P.S.; formal analysis, C.A.B.M. and
M.B.H.; investigation, C.A.B.M. and M.B.H.; writing—original draft preparation, C.A.B.M. and M.B.H.;
writing—review and editing, M.K.M., K.F. and P.S.; visualization, C.A.B.M. and M.B.H.; supervision, K.F. and P.S.;
project administration, K.F. and P.S. All authors have read and agreed to the published version of the manuscript.
Authors contributed equally to this work.

Funding: This research received no external funding.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Brouer, B.D.; Karsten, C.V.; Pisinger, D. Optimization in liner shipping. 4OR 2017, 15, 1–35. [CrossRef]
2. Christiansen, M.; Fagerholt, K.; Nygreen, B.; Ronen, D. Maritime Transportation. In Transportation; Elsevier:

Amsterdam, The Netherlands, 2007; pp. 189–284. [CrossRef]
3. Haram, H.K.; Hov, I.B.; Caspersen, E. Potensiale og Virkemidler for Overføring av Gods Fra Veg- Til

Sjøtransport. Available online: https://www.toi.no/getfile.php?mmfileid=41079 (accessed on 27 July 2020).
4. Goel, A. A roadmap for sustainable freight transport. In Methods of Multicriteria Decision Theory and

Applications; Shaker: Maastricht, Germany, 2009; pp. 47–56.
5. Norwegian Ministry of Transport and Communications. Nasjonal Transportplan 2014–2023. Available online:

https://www.regjeringen.no/no/dokumenter/meld-st-26-20122013/id722102/ (accessed on 27 July 2020).
6. Norwegian Ministry of Transport and Communications. Nasjonal Transportplan 2018–2029. Available online:

https://www.regjeringen.no/no/dokumenter/meld.-st.-33-20162017/id2546287/ (accessed on 27 July 2020).
7. NCE Maritime Clean Tech. Short Sea Pioneer the New Way of Transporting Goods at Sea. Available online:

https://maritimecleantech.no/wp-content/uploads/2017/01/SSP-folder.pdf (accessed on 27 July 2020).
8. NCE Maritime Clean Tech. Short Sea Pioneer. Available online: https://maritimecleantech.no/project/

short-sea-pioneer-2 (accessed on 27 July 2020).
9. Stensvold, T. Slik skal ny 2-i-1-løsning Flytte Mer Gods Fra Vei Til Sjø. Available online: http://www.tu.no/

artikler/slik-skal-ny-2-i-1-losning-flytte-mer-gods-fra-vei-til-sjo/223103 (accessed on 27 July 2020).
10. Holm, M.B.; Medbøen, C.A.B.; Fagerholt, K.; Schütz, P. Shortsea liner network design with transhipments at

sea: A case study from Western Norway. Flex. Serv. Manuf. J. 2018, 31, 598–619. [CrossRef]
11. Brouer, B.D.; Alvarez, J.F.; Plum, C.E.M.; Pisinger, D.; Sigurd, M.M. A Base Integer Programming Model and

Benchmark Suite for Liner-Shipping Network Design. Transp. Sci. 2014, 48, 281–312. [CrossRef]
12. Meng, Q.; Wang, S. Liner shipping service network design with empty container repositioning. Transp. Res.

Part E Logist. Transp. Rev. 2011, 47, 695–708. [CrossRef]
13. Reinhardt, L.B.; Pisinger, D. A branch and cut algorithm for the container shipping network design problem.

Flex. Serv. Manuf. J. 2012, 24, 349–374. [CrossRef]
14. Karsten, C.V.; Brouer, B.D.; Pisinger, D. Competitive Liner Shipping Network Design. Comput. Oper. Res.

2017, 87, 125–136. [CrossRef]
15. Balakrishnan, A.; Karsten, C.V. Container shipping service selection and cargo routing with transshipment

limits. Eur. J. Oper. Res. 2017, 263, 652–663. [CrossRef]
16. Msakni, M.K.; Fagerholt, K.; Meisel, F.; Lindstad, E. Analyzing different designs of liner shipping feeder

networks: A case study. Transp. Res. Part E Logist. Transp. Rev. 2020, 134, 101839. [CrossRef]
17. Fadda, P.; Fancello, G.; Mancini, S.; Pani, C.; Serra, P. Design and optimisation of an innovative

two-hub-and-spoke network for the Mediterranean short-sea-shipping market. Comput. Ind. Eng. 2020,
149, 106847. [CrossRef]

18. Akbar, A.; Aasen, A.K.A.; Msakni, M.K.; Fagerholt, K.; Lindstad, E.; Meisel, F. An economic analysis of
introducing autonomous ships in a short-sea liner shipping network. Int. Trans. Oper. Res. 2020. [CrossRef]

19. Meng, Q.; Wang, S.; Andersson, H.; Thun, K. Containership routing and scheduling in liner shipping:
overview and future research directions. Transp. Sci. 2014, 48, 265–280. [CrossRef]

20. Christiansen, M.; Hellsten, E.; Pisinger, D.; Sacramento, D.; Vilhelmsen, C. Liner shipping network design.
Eur. J. Oper. Res. 2019. [CrossRef]

21. Agarwal, R.; Ergun, Ö. Ship Scheduling and Network Design for Cargo Routing in Liner Shipping. Transp. Sci.
2008, 42, 175–196. [CrossRef]

183

Algorithms 2020, 13, 304

22. Andersson, H.; Duesund, J.M.; Fagerholt, K. Ship routing and scheduling with cargo coupling and
synchronization constraints. Comput. Ind. Eng. 2011, 61, 1107–1116. [CrossRef]

23. Drexl, M. Synchronization in Vehicle Routing—A Survey of VRPs with Multiple Synchronization Constraints.
Transp. Sci. 2012, 46, 297–316. [CrossRef]

24. Wang, S.; Meng, Q. Liner ship route schedule design with sea contingency time and port time uncertainty.
Transp. Res. Part B Methodol. 2012, 46, 615–633. [CrossRef]

25. Song, D.P.; Li, D.; Drake, P. Multi-objective optimization for planning liner shipping service with uncertain
port times. Transp. Res. Part E Logist. Transp. Rev. 2015, 84, 1–22. [CrossRef]

26. Li, C.; Qi, X.; Song, D. Real-time schedule recovery in liner shipping service with regular uncertainties and
disruption events. Transp. Res. Part B Methodol. 2016, 93, 762–788. [CrossRef]

27. Ng, M.; Lin, D.Y. Fleet deployment in liner shipping with incomplete demand information. Transp. Res. Part
E Logist. Transp. Rev. 2018, 116, 184–189. [CrossRef]

28. Lo, H.K.; An, K.; Lin, W. Ferry service network design under demand uncertainty. Transp. Res. Part E Logist.
Transp. Rev. 2013, 59, 48–70. [CrossRef]

29. An, K.; Lo, H.K. Two-phase stochastic program for transit network design under demand uncertainty.
Transp. Res. Part B Methodol. 2016, 84, 157–181. [CrossRef]

30. Fischer, A.; Nokhart, H.; Olsen, H.; Fagerholt, K.; Rakke, J.G.; Stålhane, M. Robust planning and disruption
management in roll-on roll-off liner shipping. Transp. Res. Part E Logist. Transp. Rev. 2016, 91, 51–67.
[CrossRef]

31. Castilla-Rodríguez, I.; Expósito-Izquierdo, C.; Melián-Batista, B.; Aguilar, R.M.; Moreno-Vega, J.M.
Simulation-optimization for the management of the transshipment operations at maritime container
terminals. Expert Syst. Appl. 2020, 139, 112852. [CrossRef]

32. Layeb, S.B.; Jaoua, A.; Jbira, A.; Makhlouf, Y. A simulation-optimization approach for scheduling in stochastic
freight transportation. Comput. Ind. Eng. 2018, 126, 99–110. [CrossRef]

33. Poeting, M.; Rau, J.; Clausen, U.; Schumacher, C. A combined simulation optimization framework to
improve operations in parcel logistics. In Proceedings of the 2017 Winter Simulation Conference (WSC),
Las Vegas, NV, USA, 3–6 December 2017. [CrossRef]

34. Acar, Y.; Kadipasaoglu, S.N.; Day, J.M. Incorporating uncertainty in optimal decision making: Integrating
mixed integer programming and simulation to solve combinatorial problems. Comput. Ind. Eng. 2009,
56, 106–112. [CrossRef]

35. Crainic, T.G.; Perboli, G.; Rosano, M. Simulation of intermodal freight transportation systems: A taxonomy.
Eur. J. Oper. Res. 2018, 270, 401–418. [CrossRef]

36. Brouer, B.D.; Dirksen, J.; Pisinger, D.; Plum, C.E.; Vaaben, B. The Vessel Schedule Recovery Problem
(VSRP)—A MIP model for handling disruptions in liner shipping. Eur. J. Oper. Res. 2013, 224, 362–374.
[CrossRef]

37. Irnich, S. Resource extension functions: Properties, inversion, and generalization to segments. OR Spectr.
2008, 30, 113–148. [CrossRef]

38. DNV GL. Environmental Conditions and Environmental Loads. Recommended Practice DNV-RP-C205.
Available online: https://rules.dnvgl.com/docs/pdf/dnv/codes/docs/2010-10/rp-c205.pdf (accessed on
2 April 2020).

39. Van den Boom, H.; Van der Hout, I.; Flikkema, M. Speed-power performance of ships during trials and in
service. In Proceedings of the SNAME, Athens, Greece, 17–18 September 2008.

40. Statistics Norway. Maritime Transport. Available online: https://www.ssb.no/en/statbank/table/03648/
(accessed on 27 July 2020).

Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional
affiliations.

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

184

algorithms

Article

Scheduling Algorithms for a Hybrid Flow Shop
under Uncertainty

Christin Schumacher * and Peter Buchholz

Informatik 4—Modeling and Simulation, Department of Computer Science, TU Dortmund University,
D-44221 Dortmund, Germany; peter.buchholz@cs.tu-dortmund.de
* Correspondence: christin.schumacher@tu-dortmund.de

Received: 30 September 2020; Accepted: 27 October 2020; Published: 31 October 2020
��������	
�������

Abstract: In modern production systems, scheduling problems have to be solved in consideration
of frequently changing demands and varying production parameters. This paper presents a
approach combining forecasting and classification techniques to predict uncertainty from demands,
and production data with heuristics, metaheuristics, and discrete event simulation for obtaining
machine schedules. The problem is a hybrid flow shop with two stages, machine qualifications,
skipping stages, and uncertainty in demands. The objective is to minimize the makespan.
First, based on the available data of past orders, jobs that are prone to fluctuations just before
or during the production phase are identified by clustering algorithms, and production volumes are
adjusted accordingly. Furthermore, the distribution of scrap rates is estimated, and the quantiles
of the resulting distribution are used to increase corresponding production volumes to prevent
costly rescheduling resulting from unfulfilled demands. Second, Shortest Processing Time (SPT),
tabu search, and local search algorithms are developed and applied. Third, the best performing
schedules are evaluated and selected using a detailed simulation model. The proposed approach is
validated on a real-world production case. The results show that the price for a very robust schedule
that avoids underproduction with a high probability can significantly increase the makespan.

Keywords: scheduling; uncertainty; discrete event simulation; hybrid flow shop; scrap; local search;
tabu search; machine qualifications; clustering; shortest processing time

1. Introduction

In complex production environments in the automotive industry, machine schedules have to be
calculated by taking into account frequently changing customer demands and potential failures or
unanticipated delays. The calculation of high quality schedules in such an environment is a challenge
because the scheduling problem itself usually has significant complexity, tight time restrictions are
given, and uncertainty occurs in various production parameters. Even by neglecting uncertainty,
the resulting optimization problems are NP-hard and can only be solved exactly with acceptable
computation times of some minutes for small and unrealistic configurations. More applicable solution
methods for practical problem instances are heuristics and metaheuristics, because they require less
computation time and allow one to approximate the optimal schedule with deterministic models,
even for larger configurations. However, the parameters of the model have to be set according to
the current situation. This means that data from the running production are used to define the
actual scheduling problem; a statistical evaluation of past data allows for the determination of safety
margins to compensate for scrap or unplanned demands. Before schedules, which were calculated
by deterministic optimization methods, should be applied to a production with its statistical effects,
they should be tested in stochastic simulation models.

Algorithms 2020, 13, 277; doi:10.3390/a13110277 www.mdpi.com/journal/algorithms

185

Algorithms 2020, 13, 277

The objective of this paper is to provide combined solutions to various problems at the
machine scheduling level for a real application example from a supplier in the automotive industry,
which describes a two-stage scheduling problem with parallel machines per stage with uncertainty in
several parameters. The system layout of the application case can be found in Figure 1. The production
includes 11 unrelated parallel machines in the first stage. In the second stage, there are two
identical parallel machines. The restrictions and characteristics of the basic scheduling problem
are machine qualifications, i.e., not every job can be produced on every machine, jobs might skip stages,
and the production data show several uncertainties in demands and different production parameters,
which need to be handled to provide usefully applicable schedules that perform in production with
as few makespans as possible. A composition of forecasting, classification, discrete event simulation,
metaheuristic, and heuristic algorithms is developed to identify demand fluctuations, including
scrap rates, and to approve schedules for their use in a production environment. So, in contrast
to common scheduling approaches, various problems at the machine scheduling level have to be
considered in combination. First, based on the available data of past orders, risky jobs that are prone
to fluctuations just before or during the production phase are identified by clustering algorithms and
corresponding demands are adjusted. Furthermore, the distributions of scrap rates are estimated,
and the quantiles of the resulting distribution are used to increase quantities of produced items to
avoid costly losses due to unfulfilled demands. Second, we show how deterministic methods solving
the described optimization problem are developed from the scheduling problem and how parameters
are derived from the available data. Third, a detailed simulation model of the production has been
built (see Figures 2 and 7) using the software AnyLogic 8.5 [1]. By means of simulation, it is possible
to evaluate and improve schedules before they are applied in a real production environment.

M7

M4

M5

M3

M2

M1

M11

M6

M10

M9

M8

M13

M12

un
lim

ite
d

sto
ra

ge

Figure 1. System layout of the hybrid flow shop in the application case.

186

Algorithms 2020, 13, 277

Figure 2. Production flow of the application case in AnyLogic 8.5.

The structure of the paper is as follows. In the next section, we present a detailed description of
the two-stage hybrid flow shop problem with its restrictions. Related work is summarized afterwards.
Section 4 introduces several metaheuristic and heuristic algorithms to compute schedules for the
hybrid flow shop problem. Afterwards, in Sections 5 and 6, the available data from the production are
described and methods are presented to estimate all parameters of the optimization problem and to
calculate the appropriate production volume from the data. Then in Section 7, a detailed analysis of
the schedules, using simulation and the structure of the simulation model, are introduced. In Section 8,
results of example runs are presented, evaluating makespans and order fulfilment as key indicators.
Our findings are summarized in the conclusions, which also outline some steps for future research.

2. Description of the Basic Model

The problem analyzed in this paper is a two-stage hybrid flow shop (FH2), in which a set of jobs
N = {1, . . . , n} has to be completed. To produce the components, there are two production stages i,
with i ∈ M with M = {1, 2}, through which each job j ∈ N follows the same route. At each stage i a
job is processed by at most one machine l, with l ∈ Mi = {1, . . . , mi}, where mi ≥ 1.

As far as possible, we set the parameters according to Ruiz et al. [2] and de Siqueira et al. [3],
to support a more homogeneous notation for machine scheduling studies. The following assumptions
hold for our model. In brackets, descriptions of the assumptions from the notation in the paper by
Graham et al. [4] are added.

1. In the first stage, all jobs are available at time zero.
2. Jobs that are to be produced in the first and last stage can only start in the second stage, after the

job has been finished completely in the first stage.
3. Each machine can only handle one job at the same time.
4. Processing of a job on a machine is not interrupted, i.e., preemption is not allowed.
5. The problem contains machine qualifications (Mj), i.e., each job can only be processed on certain

machines at each stage, where the set of eligible machines is Eij, with 1 ≤ |Eij| ≤ mi.
6. Some jobs visit only one of the stages (skip). The set of stages to be visited is Fj, where 1 ≤ |Fj| ≤ 2.

187

Algorithms 2020, 13, 277

7. Jobs do not need to be dispatched in the same order in all stages. Thus, no fix permutation is
considered.

8. There are infinite buffers in front, between and at the end of the two stages.
9. Processing times pilj of one product of job j are described by independent stochastic distributions

separated by machine, stage and job, i.e., machines are unrelated. Especially in the first stage,
processing times differ by machine (RM(1)), in the second stage, they are machine-independent
(PM(2)).

10. For setup times si, stochastic distributions over all machines and jobs per stage are available.
11. For scrap rates rij, job- and stage-related stochastic distributions are available for both stages.

Scrap parts are those parts which do not pass the quality check.
12. Available parts on stock stockij are included to fulfill the demand.
13. The objective is to minimize the makespan Cmax, where Cmax is the maximum completion time

and Cij defines the completion time of a job j on stage i, where Cmax = max
i∈M,j∈N

Cij.

14. Order quantities of the job’s demandij underlie uncertainty and may change even during the
week when the job is produced, which results in varying production volumes productionvolumeij.
The needed processing time for one job is the productionvolumeij ∗ pilj.

According to Pinedo [5] and Ruiz and Vázquez-Rodríguez [6], this problem can be formalized
in the Graham et al. [4] notation as FH2, (RM(1), PM(2)) | Mj, skip | Cmax. In addition, several
uncertainties in the model parameters as listed above have to be included, which are not formalized in
Graham et al. [4] notation.

In addition, these other parameters of the Graham et al. [4] notation are needed in the
following sections:

• Ssd: sequence-dependent setup times
• avail: block times for machines
• rm: block times for machines at the start of the production time
• lag: overlapping or gaps between the processing of jobs in successive stages
• prec: priority relationships between jobs, i.e., one jobs needs to begin production before another

job can be started

Following Ruiz et al. [2] and to support a more homogeneous notation for machine scheduling
studies, the variables xiljk and x are introduced. With these variables, the schedules can be described
to their fullest extent with x = (xiljk)i∈M,l∈Mi ,j,k∈N . The binary variable for the precedence relations
xiljk is defined as

xiljk :=

{
1, if job j precedes job k on machine l at stage i,

0, otherwise.

Furthermore, PrioList is a permutation of jobs. Exemplarily, if jobs should be scheduled to
released machines in the order of j2, j3, j1, they are saved as PrioList = (j2, j3, j1).

3. Related Work

A large number of papers on scheduling in hybrid flow shops are available. Overviews can
be found in Ruiz and Vázquez-Rodríguez [6], Ribas et al. [7], and Komaki et al. [8]. In the
following, a selected number of studies that deal with problems related to our problem (see Section 2)
are discussed.

Jabbarizadeh et al. [9] test three constructive heuristics for the problem FHM,
((PM(k))c

k=1) | Mj, Ssd, avail | Cmax. Based on Kurz and Askin [10], they assign the jobs in
the processing stages i > 1 in the order of completion times of the previous stage. They evaluate
that Shortest Processing Time (SPT) provides better results than Longest Processing Time (LPT).

188

Algorithms 2020, 13, 277

A heuristic based on the algorithm of Johnson [11] gave the best results in their study. In the field of
metaheuristics, a version of simulated annealing, which is a local search algorithm with the acceptance
of setbacks, outperforms a genetic algorithm. In each step, the position of a randomly selected job in
the first stage is changed. In the following processing steps, the jobs are dispatched according to the
Earliest Completion Times (ECT) using the completion times of the previous step.

Ruiz et al. [2] present a study dealing with an enormous number of realistic components
in the problem FHM, ((RM(k))c

k=1) | Mj, Ssd, rm, lag, prec, skip | Cmax. Yet the study only
compares constructive heuristics and finds that NEH, a heuristic first published for flow shops by
Nawaz et al. [12], provides the best solutions.

Low et al. [13] compare for FH2, (RM(1), 1(2)) | Mj| Cmax sixteen combinations of heuristics.
They do not consider skipping stages. To form a production sequence for the first stage, Low et al. [13]
use the following methods: random sequence, SPT using processing times of the first stage, LPT using
process times of the second processing stage, and Johnson’s algorithm. Once the queue is created,
for each method, the jobs are assigned to the machines of the second processing stage with four
different rules. They find that the modified Johnson, rule by planning the second stage according to
the Earliest Completion Times (ECT) of the first stage, C1j performs best.

For FHM, ((PM(k))c
k=1) | Ssd, skip | Cmax Naderi et al. [14] conduct job sequencing and machine

assignment in the same step. All stages i are scheduled according to the Earliest Completion Times
(ECT) of the stage i itself and they take the arrival times at the stages into account, if i > 1, which result
from Ci−1j. In comparison to other constructive algorithms for their problem and for their test
data, this constructive algorithm gives the best results. The paper also uses Iterated Local Search,
which outperforms the other tested metaheuristics, like genetic algorithms, up to a number of
80 jobs. Since their problem takes sequence-dependent processing times into account, the problem in
combination with applying these algorithms corresponds to unrelated machine problems.

In Burdett and Kozan [15], several constructive heuristics are compared with simulated annealing
(SA) and a genetic algorithm (GA) for the computation of schedules for flow shops with non-unique
jobs. Again, SA and GA outperform constructive heuristics but GA does not, in general, do better than
SA. Burdett and Kozan [16] analyze flow shops with resource constraints where limited resources have
to be assigned and a schedule has to be computed simultaneously. They show that an evolutionary
algorithm gives good results for this class of scheduling problems. The models in the papers differ from
our models in several aspects, e.g., they do not consider machine qualification, stochastic demands
and scrap.

Dios et al. [17] compare 24 constructive heuristics for FHM, ((PM(k))c
k=1) | skip | Cmax and the

evaluation of their experiments shows that two SPT-based and one LPT-based heuristic generate the
best schedules according to Cmax. They do not take unrelated machines into account.

Logendran et al. [18] use tabu search for FFM, ((PM(k))c
k=1) | batch, skip | Cmax. Since the

study works with batch, the algorithm contains many details that cannot be used for this work.
Kaczmarczyk et al. [19] apply tabu search to FFM, ((PM(k))c

k=1) | block, skip | Cmax. For their
sequence of jobs, they swap two jobs in each iteration. The positions of the two exchanged jobs are
saved in the tabu list. To schedule the created sequence, the earliest available machine on every stage
is chosen for the job and the stages on which the job has to be produced.

De Siqueira et al. [3] modify a variable neighbourhood search of Geiger [20] for the problem
FHM, ((RM(k))c

k=1) | Mj, skip | Cmax. To change the solutions, one of the six neighborhood
strategies is applied randomly:

• swapping two jobs on one machine;
• swapping three jobs on one machine;
• shifting the position of a job on one machine;
• swapping of two jobs in the schedule (jobs can be scheduled on the same or different machines);
• shifting a job within a processing stage;

189

Algorithms 2020, 13, 277

• relocating of a block of three consecutive jobs to a new position in a processing stage.

Thus, no study provides local search and tabu search algorithms for the problem of our paper,
which is specified in Section 2. Furthermore, the above mentioned approaches are all based on a
fully parametrized deterministic model. One way to optimize stochastic models is the use of sample
average approximations, which are used by Almeder and Hartl [21] with variable neighborhood
search to optimize a two-stage flow shop problem describing a real world production process
in the metalworking industry. In contrast to our problem, the number of machines is smaller,
machine qualification and setup times are not required, and the behavior of orders seems to be
more homogeneous. In this case, production data are not used to determine model parameters.
Instead, the sampling averaging of simulation results is used to determine the parameters of the
optimization problem, which are analyzed with similar methods to the ones that we apply, but tabu
lists do not seem to be used.

Burdett and Kozan [22] studied buffering in the area of machine scheduling for a parallel machine
environment with one stage. They add idle times to the schedule, which depend on the variance of the
processing times of the jobs. Uncertainties regarding demand are taken into account by limiting the
number of jobs that can be produced in a given production period or by completely blocking resources
for unexpected demand. Their study differs from our study since the variance of the processing times
in our application case plays a minor role, whereas scrap rates have high influence on the demand.
In addition, we can use significant historical data of demand developments to adjust the demand
according to the articles through clustering.

Our approach is also related to approaches that combine simulation and optimization [23].
Regarding the different possibilities in this area to combine optimization and simulation, our study is
allocated in the category of first computing a schedule for a deterministic model, which is evaluated
afterwards in the detailed simulation model. In a further step, schedules can be enhanced based on the
simulation results. Juan et al. [24] introduced this technique as simheuristics.

In application scenarios, the model has to be built, i.e., parameters have to be estimated and
demands have to be forecasted. For parameter estimation and modeling from available data, standard
methods of input modeling, as summarized, for example, in Law [25], may be applied. Classification
of products according to their future demands is more demanding. Murray et al. [26] have examined
an application case of order classification in production planning, but they use k-means clustering in
order to group customers into segments. The main difference to the problem analyzed in this paper is
in the position in the supply chain. Customers are the first layer in a supply chain because they are
causing the demand for orders. The demand becomes more distorted and volatile when customers’
order quantities are planned through the different stages of the supply chain [27]. We consider a
problem which is more at the end of a supply chain, so the so-called bullwhip effect can be intense.
To forecast demands, regression or time series can be applied. There is no one method with an optimal
parameter set that is best to predict demand in different settings; instead, algorithms are developed to
select good parameters Kück and Scholz-Reiter [28] or to even select the optimal prediction method
together with the parameters, as carried out by Scholz-Reiter et al. [29]. According to our results and
in order to generate a robust schedule, it is sufficient to oversupply the demand for high-risk jobs,
which are identified by clustering algorithms.

Although we do not develop new optimization techniques, the originality of our study is that,
to the best of our knowledge, it combines the statistical analysis of production data with heuristic
and metaheuristic optimization methods to the specific problem of this paper and the subsequent
detailed simulation of a real production problem. The experiments give insights into the behavior of
different local search metaheuristics and indicate as expected that local search metaheuristics are able
to improve the makespan significantly compared to schedules resulting from simple heuristics like
SPT. Moreover, local search and tabu search metaheuristics to the best of our knowledge have not been
adapted to the specific problem of this paper in the literature before.

190

Algorithms 2020, 13, 277

4. Computation of Schedules

Taking the findings of Section 3 into account, we choose to apply SPT, local searches and tabu
searches, and ECT schedules the jobs for the basic model described in Section 2. We also apply
algorithms for the restriction of machine qualifications, skipping stages, and unrelated machines.
At first, the first stage is scheduled with one of the algorithms, which then is combined with ECT in
each case to schedule the second stage. Thus, we obtain Algorithms 1–4, which were already presented
in our conference paper Schumacher et al. [30].

To create an initial solution, we generate feasible schedules with SPT (Algorithm 1), which uses
ECT (Algorithm 2). With Algorithm 1, jobs are ordered according to their increasing average
processing times in stage 1 and after that they are scheduled successively to stage 1 on the machines,
which becomes available. When the scheduling of all jobs to stage 1 is finished, stage 2 is scheduled
with Algorithm 2 according the job completion times of stage 1.

Algorithm 1: Shortest Processing Time, SPT

1. Order jobs j according their increasing average processing times in stage 1
(productionvolume1j · p1j) and save the queue in PrioList.

2. Whenever a machine in stage 1 becomes available, select next unscheduled job
j of PrioList that is qualified for the given machine and schedule j on the
available machine.

3. Execute Algorithm 2 (ECT).
4. return schedule x with Cmax(x).

Algorithm 2: Earliest Completion Time, ECT

1. Order jobs on stage 2 according to their completion times C1j. If a job is not processed
on stage 1, set C1j := 0. Of course, if a job should not be processed on stage 2, the job is
not in the sequence for stage 2. If two jobs have the same completion time C1j, order
these jobs alphanumerically. Save queue in PrioList.

2. Whenever a machine in stage 2 becomes available, select next unscheduled job j
of PrioList that is qualified for the given machine and schedule j on the available machine.

Based on this initial solution, six algorithms of Algorithms 3 and 4 optimize the solution. Both can
be computed with one of the variants “shift” or “swap”. With “shift”, one randomly selected job
in each iteration is positioned elsewhere in the existing schedule. In contrast, “swap” exchanges
the positions of two randomly selected jobs. After one of these moves and the consideration of the
eligibility restrictions for machines and stages, the resulting new schedule is compared with the old
schedule and checked for improvement by computing and comparing makespans. Random Descent
generates a new solution out of the existing one and if this solution performs better, regarding Cmax,
the new solution is the starting point for the new testing of solutions. In contrast, Steepest Descent
first tests for one job j the solutions in the neighborhood of the current solution, which are created
by shifting or swapping that job to all the other machines that are eligible for that job. Furthermore,
Algorithm 4 can be executed with or without tabu list (tabu ∈ {true, f alse}). If tabu list is used,
the algorithms avoid testing a solution x again which has already been tested and is currently part
of the tabu list. So, the tabu list contains elements x, which have been tested before. If there is no
improvement in the makespan within a predefined amount of iterations, Algorithms 3 and 4 terminate.
By choosing all possible combinations of method ∈ {shi f t, swap} and tabu ∈ {true, f alse} in Algorithm
4, we have four variants of that algorithm. By computing the two possibilities method ∈ {shi f t, swap}

191

Algorithms 2020, 13, 277

in Algorithm 3, we have two further algorithms to evaluate. So, in total, with SPT, we get seven
different optimization algorithms for the basic model of Section 2.

Algorithm 3: Local Search—Random Descent

1. Given a feasible initial solution x with makespan Cmax(x).

Choose parameter iterations > 0 and set termination := iterations.

Choose parameter method ∈ {shi f t, swap}.
2. while termination 	= 0

(a) Duplicate xn := x.
(b) Randomly choose a job j on stage i = 1. For this job ∃!xilkj = 1. According

to xilkj = 1 define l and k.
(c) Randomly choose a machine ln ∈ Eij.
(d) if method = shi f t

i. Shift job j to machine ln and choose randomly a position to insert job j
on this machine ln.

(e) if method = swap

i. Choose randomly a job js on selected machine ln. For this job ∃!xilnkn j = 1.
According to xilnkn j = 1 define kn.

ii. Exchange positions of selected jobs j and js with setting xilkj = 0, xilnkn js = 0,
xilkjs = 1, and xiln jkn = 1.

(f) Save solution in xn, execute Algorithm 2 (ECT) and compute makespan Cmax(xn).
(g) if Cmax(xn) < Cmax(x)

x := xn, Cmax(x) := Cmax(xn).
termination := iterations.

else

termination := termination − 1.

3. return x with Cmax(x).

192

Algorithms 2020, 13, 277

Algorithm 4: Tabu and Local Search—Steepest Descent

1. Given a feasible initial solution x with makespan Cmax(x).

Choose parameter iterations and set termination := iterations.

Choose parameter method ∈ {shi f t, swap}.

Choose parameter tabu ∈ {true, f alse}.
2. if tabu = true

Initialize tabu set T := {x}.
Choose parameter t > 0.

else

Initialize tabu set T := {}.

3. repeat termination 	= 0

(a) Duplicate xn := x.
(b) Initialize set S := {}.

for all jobs j on stage 1.

For the selected job ∃!xilkj = 1. According to xilkj = 1 define l and k.
for all ln ∈ Eij

if method = shi f t

Shift job j to machine ln and choose random a position to
insert job j on this machine ln.
Save solution in xn, execute Algorithm 2 (ECT) and compute
makespan Cmax(xn).
if xn /∈ T

S = S ∪ {xn}.

if method = swap

for all js on the selected machine ln
According to xilnkn js = 1 define kn.
Exchange positions of jobs j and js with xilkj = xilnkn js = 0, xilkjs = xilnkn j = 1.
Execute Algorithm 2 (ECT).
Save solution in xn and compute makespan Cmax(xn).
if xn /∈ T

S = S ∪ {xn}.

if tabu = true

T = T ∪ S.
if |T| > t

Delete the |T| − t elements from T, which are
added earliest.

if S = {}

Set termination := 0.

for all schedules xn ∈ S.

if Cmax(xn) < Cmax(x)

x := xn, Cmax(x) := Cmax(xn).
termination := iterations.

else

termination := termination − 1.

4. return x with Cmax(x).

193

Algorithms 2020, 13, 277

In the following, the algorithms of [30] are presented.

5. Parameter Uncertainty

All algorithms presented in the previous section are assumed to have full access to the information
about the problem. However, this is rarely found in practical scenarios. Usually, information about
a system includes uncertainty and some parameters like processing times underlie statistical fluctuation.
Some of the parameters can be described by statistical models like distributions or stochastic processes,
whereas for other parameters like machine breakdowns only very little information is available.

If uncertainty is modeled by stochastic distributions, a stochastic optimization problem can be
formulated; see Van Hentenryck and Bent [31]. The complexity of solving stochastic optimization
problems is higher than the complexity of solving the related deterministic models. For realistic
stochastic hybrid flow shop problems, even the analysis of a single configuration cannot be evaluated
analytically with exact methods. Instead, for optimization of such models, stochastic discrete event
simulation has to be coupled with metaheuristic optimization methods; see Juan et al. [32]. Stochastic
simulation needs a lot of computation time for function evaluation and metaheuristic optimization
methods often need numerous function evaluations. Therefore, the computation of nearly optimal
schedules and the evaluation with simulation in every iteration with a random initial schedule can
exceed available computation time in production planning of mostly only a few minutes. In order
to decrease the computation time, it is more efficient to compare different near-optimal schedules
from deterministic optimization models using a detailed simulation model. Furthermore, any model
approximates the real system, so that the best solution for the simulation model or deterministic model
is not automatically the best schedule for the real-world system. Finding a high-quality schedule
which is robust against small changes in the parameters or the description of the random variables is
more important.

In production systems, a large amount of data from business information systems are often
available. These data can be utilized to model uncertainty. We have to differentiate between internal
parameters of the production system on the one hand, like processing times, setup times, scrap rates,
and the availability of machines and external parameters, which are mainly described by the varying
demand, on the other. We begin with the internal parameters that, to some extent, are under the control
of the company and can be measured in the production system. This, of course, does not imply that
uncertainty can be deleted from the system but it is often possible to apply standard methods from
input modeling to generate a distribution that appropriately models the field data or to use the cleaned
data as an empirical distribution.

The availability and quality of production data vary considerably. In Table 1, we analyzed
scenarios where data are available in different levels of detail, and show how these data can be used
in deterministic and stochastic models. Another issue to consider are effects of outliers. Due to their
high values, it is more realistic for models to use the median instead of the mean for processing
times and setup times to compute more realistic schedules by using the deterministic optimization
model. In contrast, for scrap rates, it is recommended to use the mean value or some quantile to avoid
underproduction. If the needed data are available, the highest category of detail of Table 1 should be
used for the models. It is possible that job-related and machine-related distributions, even for machines
of the same type, like in our application case, differ significantly. Differences result from detailed
machine conditions even if machines are nearly identical. For example, in Figure 3, the processing
times of similar jobs on different machines of one type are presented.

194

Algorithms 2020, 13, 277

Processing time (in seconds)

M
ac

hi
ne

M1

M2

M3

Mean value

Figure 3. Boxplot for processing times for one exemplar of similar jobs j on different machines at stage
1 of the same machine type.

Table 1. Data concept for scheduling parameters in optimization and simulation.

Processing Times pilj and Setup Times si Scrap Rate rij

Scenario Optimization Simulation Optimization Simulation

data on dedicated machine available median per job and
machine

random value from
distribution per job
and machine

mean value or value
from quantile per job
and machine

random value from
distribution per job
over all machines

no data on dedicated machines
available for the job, but job data at
the stage available

median per job over
all machines

random value from
distribution per job
over all machines

mean value or value
from quantile per job
over all machines

random value from
distribution per job
over all machines

no job-related and machine-related
data available, but estimates for
job data are available from external
sources (e.g., expert knowledge)

estimated data for
the job at the stage

estimated data for
the job at the stage - -

no job-related and machine-related
data available, but data for all jobs at
the stage available

median over all
machines for all jobs

random value from
distribution over all
machines for all jobs

mean value or value
from quantile over all
machines for all jobs

random value from
distribution over all
machines for all jobs

External uncertainty, which is part of the problem in this paper, caused by varying demands, is out
of the control of the producer. Future demands can be predicted based on historical data. In particular,
at the first levels of a longer supply chain, uncertainty in demands grow in volatility and amount
throughout the levels [27]. Figure 4 gives an example of demands over twelve weeks of one specific
job and the same production date from a supplier in the automotive industry. The value in the last
week in each time series shows the demand that has to be finally supplied to the customer. The other
observations illustrate the development of the previously mentioned amount from the customer for
the same date.

In the example of Figure 4, the demand grows in the last week considerably. Thus, if a schedule
has been computed with the data of one week in advance, the production will produce less than is
needed. Moreover, during the planned week itself, changes occur for high-risk jobs. Fluctuation in
demands is, of course, job specific and it is not necessary or possible to model every job in detail.
Hence, we first perform a cluster analysis based on historical data to distinguish between low, medium
and high-risk jobs. A high-risk job changes its demand often and significantly in the weeks before and
in the week of production, whereas for low-risk jobs, ordered quantities and final demand are very
similar. For high-risk jobs, we use over-provisioning to avoid situations where the demand cannot be
satisfied. The method is specified in the next section.

195

Algorithms 2020, 13, 277

Figure 4. Time series of demands of a high-risk job.

6. Clustering and Forecasting in the Application Case

In order to allocate the appropriate production volume (productionvolumeij) per job and stage
and to meet the final customer demand volume, scrap and customer ordering behavior have to be
considered. Therefore, the currently known demand per job and stage (demandij) as well as historical
data of scrap and demand are used. The procedure of including these factors is described in the
following and finally results in Equation (1).

The clustering procedure was first mentioned in Schumacher et al. [30]. For clustering demand
data and identifying high-risk jobs (see Figure 4), k-means++ is applied with three parameters and
the result is shown in Figure 5. For k-means++, Arthur and Vassilvitskii [33] theoretically prove and
show in their results the quality of the algorithm against k-means algorithms for clustering. The three
parameters for clustering are namely:

• the probability that the demand of a job grows by 500 or more parts in the last week based on
historical data (emp_prob);

• the average increase in demand per job (only counted if the demands are increased)
(mean_pos_di f f);

• and the variance of the variation coefficient for the demands of the last three observations of the
previously ordered amount. (var_vark_last_3).

Following the elbow method, see Leskovec et al. [34], k-means should be applied for our
application case with four clusters. After analyzing the data, we computed the four clusters as
shown in Figure 5 and defined the jobs of cluster 3 and 4 (marked in light red in Figure 5) as high-risk
jobs. The demand for high-risk jobs is multiplied with job-related safety factors, namely SF2ij, where
1 ≥ SF2ij ≥ 2. The safety factor is used to keep the slot for the higher demand in the schedule

reserved. Instead of only planning with the
demandij−stockij

(1−rij)
for high-risk-articles, the production volume

for risky jobs is extended in this first step to
demandij−stockij

(1−rij)
· SF2ij, where SF2ij ≥ 1 for high-risk jobs j.

196

Algorithms 2020, 13, 277

The demands of non high-risk jobs are multiplied with SF2ij = 1. These considerations are also finally
included in Figure 6.

Figure 5. Clusters for identification of high-risk jobs (calculated with the method of [30]).

The same procedure of reserving slots for required higher amounts in the schedules can also
be applied to other non high-risk job demands, e.g., if products are sensitive about producing less
than the required demand. So, for these jobs, this method for overproduction compared to demandij
can be applied. The demands can be multiplied with another safety factor, namely SF1. This bears
the possibility to include the knowledge of experienced production planners, e.g., about sensitive
demands. A production planner may decide which value to use for the safety factor. At this point, it is
important to note that an earlier completion, which can be the cause of slots being reserved for too
long in the schedule, is easy to handle with our algorithms presented in Section 2. Such a schedule
causes, at most, only a slightly extended storage cost. In contrast, an unexpected longer slot for jobs
would result in drastic delays in the schedule and elaborate rescheduling. With this method, changes
in the demand and production quantities can be considered in optimization and simulation models
for scheduling.

To choose the appropriate scrap rate per job and stage for our application case, different quantile
values of the available empirical probability distribution per job and stage are considered. Figure 6
shows a histogram for the scrap rate of an exemplary job. For every job, we use the same quantile
value. Afterwards, per job, the scrap rates rij are computed as a function of the quantile value and the
probability distribution.

In practice, it is not realistic that the production volume productionvolumeij is completely
produced without failure. So, for every job, we have to increase the production volume to finally get
the demand that is to be produced. All analyzed factors influencing the demand in the production
process in our application case result in the following formula to calculate the appropriate production
quantity productionvolumeij:

productionvolumeij =
demandij − stockij

(1 − rij)
· SF1ij · SF2ij (1)

197

Algorithms 2020, 13, 277

Scrap rate (in %)

Am
ou

nt
of

ob
se

rv
at

io
ns

Figure 6. Scrap rate histogram for an exemplary product.

7. Scheduling under Uncertainty

Figure 7 shows the simulation architecture for our application case, which is built in Anylogic 8.5.
In contrast to the deterministic optimization model, the discrete event simulation model uses random
values, as mentioned in Table 1, for every produced part. Beyond that and the aspects that have already
been considered in the optimization model, the following specific characteristics of production are
included in the simulation model:

• In the first stage, there are two cranes and one crane needs to be used for every setup process
of a machine. The first crane can only reach a defined group of machines in the first stage and
the second crane can only reach the other machines. Therefore, the machines in the first stage
in the model are divided into two different groups and only two machines can be set up at the
same time if they do not belong to the same group, i.e., if they do not need the same crane for the
setup process.

• Produced products, which are transported by conveyors to a quality check station in the first
stage, can cumber each other. This can cause time losses in the production process.

• If there are not enough parts available from the first stage for producing the amount of the second
stage, the production volume of the second stage has to be reduced.

• To transport the products, which were produced at the first stage, to the second stage, they are
carried on small load carriers, where a certain number of produced parts fit in one small load
carrier and a certain number of small load carriers fits on one trolley, which transports the
products to the second stage. Both the packing and the logistics process flow between the two
stages are considered.

• Detailed modeling of the connection of logistics and production between the first and second
stages.

• Shift times: One of the two machines at the second stage does not produce at night and both
machines at stage two do not produce on weekends.

• There are four quality checking stations, where scrap parts are identified. All stations are modeled
in the simulation model with separate job-related distributions for scrap parts.

198

Algorithms 2020, 13, 277

F
ig

u
re

7
.

St
ru

ct
ur

e
of

si
m

ul
at

io
n

m
od

el
fo

r
th

e
ap

pl
ic

at
io

n
ca

se
of

th
e

pa
pe

r
in

A
ny

Lo
gi

c
8.

5.

199

Algorithms 2020, 13, 277

Since the machine qualifications are already considered in the algorithms of Section 4,
an additional validation in the simulation model is not needed.

For an almost realistic analysis of a schedule, simulation has to be used. However, a simulation
run under realistic conditions is costly and should not be applied to evaluate clearly sub-optimal
schedules that appear during optimization. Thus, schedules are first generated by the algorithms
of Section 4 from the deterministic model and the best solutions from the deterministic model are
subsequently analyzed with simulation. In a simulative analysis, several replications are performed to
achieve confidence intervals of a predefined width for Cmax. The variance of the estimator for Cmax is
also an indicator of the robustness of the schedule; a small variance indicates a predictable behavior,
which is important in an industrial environment. Uncertainties resulting from scrap (see Section 5)
are analyzed by counting the number of runs where the required demand is produced and the runs
that fail to produce enough. The latter situation has to be avoided whenever possible in the given
case study.

8. Results

To select one of the schedules created by the seven algorithms, described in Section 4, that should
be applied in the application case and to select the most preferable algorithm for the application case
over a defined time horizon, we derive all the algorithms with the historical demands and process data
of the production. On the one hand, we evaluate the Cmax values for the algorithms. On the other hand,
we test different values for the quantile to reduce and evaluate the risk of producing less demands than
the customer order (Sections 5 and 6) and simulate the calculated schedules with our simulation model,
described in Section 7. For the evaluation of different security factor levels, e.g., for SFij, we refer to
Schumacher et al. [30].

The specific characteristics of the evaluation data for the application case are as follows:

1. Every week, around 60 jobs are processed in the two-stage system.
2. In the first stage, there are 11 unrelated parallel machines. In the second stage, there are two

identical parallel machines.
3. In both stages, stochastic distributions for pilj are available. The median at stage 1 is about 80 s

per job and at stage 2 it is 4 s per job.
4. In stage 1, for setup times si, the stochastic distribution is available for all machines and products.

The median at stage 1 is about 100 min. The median at stage 2 is about 4 min and the given data
are deterministic because the second stage is a conveyor belt production stage with a constant
flow rate.

5. For the scrap rate rij, job-related stochastic distributions are available for both stages.

We have applied the optimization algorithms on a computer with an Intel® Core™ i7-6920 2.9 GHz
and 32 GB RAM and we have run the simulation on a Intel® Xeon™ E5-2699 v4 2.2 GHz and 64 GB
RAM and an Intel® Core™ i5-4670 3.4 GHz and 16 GB RAM.

The first step for scheduling is to run the seven optimization algorithms that include deterministic
processing times and setup times. Therefore, we compare the makespan resulting from the algorithms
for six selected calendar weeks in the past. We run the six metaheuristics with the parameter value
iterations = 1000 and their initial solution is given by SPT. After running the optimizations, for each
week and each quantile value, each algorithm provides an objective value so that, for each algorithm,
we get six data points per quantile. The analysis is illustrated in Figures 8–13.

In Schumacher et al. [30], we also analyzed the variation in objective function values caused
by stochastic components in the metaheuristics for an exemplary week. Steepest Descent and tabu
search algorithms provide the same objective value without variation over different runs. In contrast,
the random descent algorithms provide more varying schedules. The majority of their values differ
within about a quarter of a day, which means that the influence of the stochastic is relatively small in
all of the developed metaheuristics of this paper.

200

Algorithms 2020, 13, 277

Figure 8. Optimization results for quantile 60%.

Figure 9. Optimization results for quantile 90%.

201

Algorithms 2020, 13, 277

Figure 10. Optimization results for quantile 92%.

Figure 11. Optimization results for quantile 80%.

202

Algorithms 2020, 13, 277

Figure 12. Optimization results for quantile 91%.

Figure 13. Optimization results for quantile 93%.

The largest computation time over all algorithms and weeks in optimization was about 4 min 45 s
for a tabu search (swap) run and the minimum was less than 1 s for the calculation of SPT.

The results of Cmax are visualized in Figures 8–13. Since the initial solution for the local search
and tabu search algorithms is given by SPT, it is not surprising that, over all selected values for the

203

Algorithms 2020, 13, 277

quantile, the six metaheuristics provide better results than SPT. However, the difference between the
Cmax values and SPT is respectable. To show how the degree of usage for the machines increases in the
production period by using metaheuristics rather than a static approach like SPT, Figure 14 compares
one schedule of SPT and one schedule of a metaheuristic, namely the random descent (swap) exemplar
for week 12. In contrast, the difference in makespan when comparing only the six metaheuristics for
each week is minor. Hence, with this evaluation, we cannot determine which of the metaheuristics
will perform best in the application case and which schedule should be applied in practice. Instead,
we need simulation to see which solution of the metaheuristics is the most convenient and robust.

Figure 14. Comparison of schedules in MS Project for Shortest Processing Time (SPT) (above) and
Random Descent swap (below) in calendar week 12 for quantile 91%.

Due to the high importance in our application case of fulfilling weekly demands as completely as
possible, we also evaluate which quantile value for scrap performs best in optimization with regard to
the makespan Cmax. The results are also shown in Figures 8–13. It was found that the quantiles 60%,
80%, 90% and 91% provide similar good results for makespan. In contrast, comparing the Cmax values
of the 60%, 80%, 90% and 91% group of quantiles, and the 92% and 93% group shows large differences.
The differences between 91% and 92% are also illustrated in an exemplary comparison of schedules in
Figure 15. By increasing the value of the quantile by one percent in this exemplary week, the production
volume productionvolumeij of one specific product increases from around 13 thousand parts to about
60 thousand parts and causes the extreme extension of the makespan shown in Figure 15. Considering
the results of Figures 8–13, a production with a quantile higher than 91% seems uneconomical in
this application case. To guarantee a sufficiently high degree of fulfilled orders and avoid extreme
overproduction, we recommend the 91% quantile for the selected period of the application case.

12
days

…

Figure 15. Comparison of schedules in MS Project for quantile 91% (above) and quantile 92% (below)
in calendar week 13 with tabu search swap.

204

Algorithms 2020, 13, 277

For comparing the fulfillment of orders and evaluating the makespan under near-realistic
conditions for the different quantile values, we use simulation. Figures 16–19 show the variation
in four different key indicators of the simulation results per quantile. For each algorithm and each
calendar week, we run the simulation 40 times so that, per data point, we take the average of up to
280 simulation runs. Accordingly, for every figure, 280 key indicators are extracted from the simulation
per data point. Only for Figure 17 are the SPT results excluded, mainly in order to highlight the
possible achievable Cmax values.

Figure 16. Average percentage of unfulfilled orders per quantile over all simulation runs.

Figure 17. Average makespan of simulation runs over the six metaheuristics per quantile.

205

Algorithms 2020, 13, 277

Figure 18. Average percentage of underproduction in orders producing too few items due to scrap.

Figure 19. Average percentage of overproduction in orders producing too many items due to
quantile method.

Figure 16 shows the ratio of orders that produce at least one less than the weekly demand.
So, jobs are identified for that the weekly demand did not fulfil. This figure also validates our method
to use scrap quantiles to avoid as many unfulfilled orders as possible. This demonstrates that the
probability of unfulfilled orders decreases with increasing values for the different quantile values in
the expected rates. The effects on the makespan show that the quantile value of 91% is preferable and

206

Algorithms 2020, 13, 277

can already be found in the optimization results of Figures 8–13 and are also validated by simulation
with Figure 17.

Figures 16 and 19, when analyzed together, show that it is not realistic to reduce the probability of
unfulfilled orders below 10 % without an extreme overproduction of orders. Furthermore, Figure 19
also confirms what could be expected from Figures 8–13, and Figure 17: the makespan increases,
starting with the 92% quantile, because of significantly more overproduced parts in orders
with overproduction.

In contrast, the results in Figure 18 do not indicate a clear correlation. For quantiles 60–91%,
the rate of produced jobs decreases by increasing the quantile value, but quantiles 92% and 93% do not
validate this assumption. Considering only this figure, quantiles 92% and 93% provide more preferable
results. Although Figure 18 indicates that another quantile value should be chosen instead of the 91%
quantile, the analyses of Figures 16, 17 and 19 confirm that the 91% quantile should be preferred for
production planning in the application case. Because the most important indicators in our application
case are the unfulfilled orders, in the following, we use the 91% quantile for our analysis.

To summarize the results under almost real conditions and to indicate which method returns
the schedules with the best makespan and which schedule is most robust against uncertainties,
e.g., in processing times or setup times, Figure 20 shows the makespans for week 12 of different
schedules resulting from the seven algorithms analyzed by simulation. The box plots also indicate
how the makespan varies in simulation runs of the same schedule. The borders of the boxes describe
the first and third quartiles. Upper and lower limits show the minimum and maximum makespan of
the simulation runs. Outliers are not included in Figure 20. For each schedule, 40 parallel replications
are performed, requiring about 9 min. A good schedule should result in a small value for makespan
and a small box, indicating robustness. The most robust solution in this week is provided by random
descent (swap), but the average makespan is higher than the one provided by Steepest Descent (swap).
Since the schedule resulting from Steepest Descent (swap) shows only small differences between the
results of the different simulation runs and has a small average makespan for the production program
of week 12, it should be selected for this week.

Figure 20. Comparison of simulation results per optimization method for calendar week 12 with
quantile 91%.

207

Algorithms 2020, 13, 277

9. Conclusions

In this paper, we solve a hybrid flow shop scheduling problem under uncertainties derived from a
real industrial use case. It is shown that the combination of data analysis to estimate model parameters,
heuristic and metaheuristic optimization and detailed stochastic simulation results in robust schedules
that can be used in real systems. In addition, we have shown that, depending on the application,
quantile analysis for scrap is an adequate method to reduce unfulfilled orders. Above a certain value
of the quantile, their effect on preventing incompletely fulfilled demand positions is adversely affected
by extreme overproduction and increased makespans. Thus, it is of high importance to analyze the
quantiles and makespans depending on the application case.

Our approach can be developed further by using more efficient forecasting techniques to predict
model parameters, by developing an upper bound for scrap rates, by additional heuristics and
metaheuristics to generate schedules for the optimization model, and by combining the simulation
model with additional techniques to optimize schedules. With the mentioned extensions, more efficient
schedules are possible with regard to limiting overproduction, and achieving optimum production is
possible. However, it is not expected that we will obtain significantly closer results to the simulation
with modifications to the optimization methods because the simulation results are already very near to
the results of the deterministic optimization.

Author Contributions: Conceptualization, C.S.; methodology, C.S.; software, C.S.; validation, C.S.; formal
analysis, C.S.; investigation, C.S.; resources, P.B.; data curation, C.S.; writing—original draft preparation, C.S. and
P.B.; writing—review and editing, C.S. and P.B.; visualization, C.S.; supervision, P.B.; project administration, C.S.;
funding acquisition, P.B. All authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by Deutsche Forschungsgemeinschaft (DFG, German Research Foundation),
grant number 276879186/GRK2193, within the Research Training Group GRK 2193 “Adaption Intelligence of
Factories in a Dynamic and Complex Environment”.

Acknowledgments: Special thanks goes to the company that generously provided us with the data for the use
case and, in particular, to the production planer for their excellent cooperation. We want to express our great
gratitude to our (former) student assistants– Kevin Fiedler, Nico Gorecki, Dominik Mäckel, Alina Esfahani and
Emily Veuhoff—for their engagement and support with the project. In addition, we wish to thank the other
members of the GRK 2193 for their productive collaboration.

Conflicts of Interest: The authors declare no conflicts of interest. The funders had no role in the design of the
study; in the collection, analyses, or interpretation of data; in the writing of the manuscript, or in the decision to
publish the results.

Abbreviations

The following abbreviations are used in this manuscript:

SPT Shortest Processing Time
ECT Earliest Completion Time

References

1. Borshchev, A.; Grigoryev, I. The Big Book of Simulation Modeling; AnyLogic: Chicago, IL, USA, 2014.
2. Ruiz, R.; Şerifoğlu, F.S.; Urlings, T. Modeling realistic hybrid flexible flowshop scheduling problems.

Comput. Oper. Res. 2008, 35, 1151–1175. [CrossRef]
3. De Siqueira, E.C.; Souza, M.; de Souza, S.R. A Multi-objective Variable Neighborhood Search algorithm for

solving the Hybrid Flow Shop Problem. Electron. Notes Discret. Math. 2018, 66, 87–94. [CrossRef]
4. Graham, R.L.; Lawler, E.L.; Lenstra, J.K.; Kan, A. Optimization and approximation in deterministic

sequencing and scheduling: A survey. In Annals of Discrete Mathematics, Proceedings of the Advanced Research
Institute on Discrete Optimization and Systems Applications of the Systems Science Panel of NATO and of the
Discrete Optimization Symposium Co-Sponsored by IBM Canada and SIAM Banff, Aha, Vancouver, BC, Canada,
1–31 August 1977; Hammer, P.L., Johnson, E.L., Korte, B.H., Eds.; Elsevier: Amsterdam, The Netherlands,
1979; Volume 5, pp. 287–326. [CrossRef]

208

Algorithms 2020, 13, 277

5. Pinedo, M. Scheduling: Theory, Algorithms, and Systems, 5th ed.; Springer: Cham, Switzerland; Heidelberg,
Germany; New York, NY, USA; Dordrecht, The Nertherland; London, UK, 2016. [CrossRef]

6. Ruiz, R.; Vázquez-Rodríguez, J.A. The hybrid flow shop scheduling problem. Eur. J. Oper. Res. 2010, 205, 1–18.
[CrossRef]

7. Ribas, I.; Leisten, R.; Framiñan, J.M. Review and classification of hybrid flow shop scheduling problems
from a production system and a solutions procedure perspective. Comput. Oper. Res. 2010, 37, 1439–1454.
[CrossRef]

8. Komaki, G.M.; Sheikh, S.; Malakooti, B. Flow shop scheduling problems with assembly operations: A review
and new trends. Int. J. Prod. Res. 2019, 57, 2926–2955. [CrossRef]

9. Jabbarizadeh, F.; Zandieh, M.; Talebi, D. Hybrid flexible flowshops with sequence-dependent setup times
and machine availability constraints. Comput. Ind. Eng. 2009, 57, 949–957. [CrossRef]

10. Kurz, M.E.; Askin, R.G. Comparing scheduling rules for flexible flow lines. Int. J. Prod. Econ.
2003, 85, 371–388. [CrossRef]

11. Johnson, S.M. Optimal two- and three-stage production schedules with setup times included. Nav. Res.
Logist. Q. 1954, 1, 61–68. [CrossRef]

12. Nawaz, M.; Enscore, E.E.; Ham, I. A heuristic algorithm for the m-machine, n-job flow-shop sequencing
problem. Omega 1983, 11, 91–95. [CrossRef]

13. Low, C.; Hsu, C.J.; Su, C.T. A two-stage hybrid flowshop scheduling problem with a function constraint and
unrelated alternative machines. Comput. Oper. Res. 2008, 35, 845–853. [CrossRef]

14. Naderi, B.; Ruiz, R.; Zandieh, M. Algorithms for a realistic variant of flowshop scheduling. Comput. Oper. Res.
2010, 37, 236–246. [CrossRef]

15. Burdett, R.L.; Kozan, E. Evolutionary algorithms for flow shop sequencing with non-unique jobs. Int. Trans.
Oper. Res. 2000, 7, 401–418. [CrossRef]

16. Burdett, R.L.; Kozan, E. Evolutionary Algorithms For Resource Constrained Non-Serial Mixed Flow Shops.
Int. J. Comput. Intell. Appl. 2003, 3, 411–435. [CrossRef]

17. Dios, M.; Fernandez-Viagas, V.; Framinan, J.M. Efficient heuristics for the hybrid flow shop scheduling
problem with missing operations. Comput. Ind. Eng. 2018, 115, 88–99. [CrossRef]

18. Logendran, R.; deSzoeke, P.; Barnard, F. Sequence-dependent group scheduling problems in flexible flow
shops. Int. J. Prod. Econ. 2006, 102, 66–86. [CrossRef]

19. Kaczmarczyk, W.; Sawik, T.; Schaller, A.; Tirpak, T.M. Optimal versus heuristic scheduling of surface mount
technology lines. Int. J. Prod. Res. 2004, 42, 2083–2110. [CrossRef]

20. Geiger, M.J. Randomised Variable Neighbourhood Search for Multi Objective Optimisation. In Proceedings
of the 4th EU/ME Workshop: Design and Evaluation of Advanced Hybrid Meta-Heuristics, Nottingham,
UK, 4–5 November 2008; pp. 34–42.

21. Almeder, C.; Hartl, R.F. A Metaheuristic Optimization Approach for a Real-world Stochastic Flexible
Flowshop Problem with Limited Buffer. Int. J. Prod. Econ. 2013, 145, 88–95. [CrossRef]

22. Burdett, R.L.; Kozan, E. Techniques to effectively buffer schedules in the face of uncertainties.
Comput. Ind. Eng. 2015, 87, 16–29. [CrossRef]

23. Figueira, G.; Almada-Lobo, B. Hybrid simulation–optimization methods: A taxonomy and discussion.
Simul. Model. Pract. Theory 2014, 46, 118–134. [CrossRef]

24. Juan, A.A.; Faulin, J.; Grasman, S.E.; Rabe, M.; Figueira, G. A review of simheuristics: Extending
metaheuristics to deal with stochastic combinatorial optimization problems. Oper. Res. Perspect.
2015, 2, 62–72. [CrossRef]

25. Law, A.M. Simulation Modeling and Analysis, 5th ed.; Series in Industrial Engineering and Management;
McGraw Hill: New York, NY, USA, 2015.

26. Murray, P.W.; Agard, B.; Barajas, M.A. Forecasting Supply Chain Demand by Clustering Customers.
IFAC-PapersOnLine 2015, 48, 1834–1839. [CrossRef]

27. Lee, H.L.; Padmanabhan, V.; Whang, S. The bullwhip effect in supply chains. Sloan Manag. Rev.
1997, 38, 93–102. [CrossRef]

28. Kück, M.; Scholz-Reiter, B. A Genetic Algorithm to Optimize Lazy Learning Parameters for the Prediction
of Customer Demands. In Proceedings of the 12th International Conference on Machine Learning and
Applications (ICMLA), Miami, FL, USA, 4–7 December 2013; Sayed-Mouchaweh, M., Wani, M.A., Eds.;
IEEE Computer Society; IEEE: Piscataway, NJ, USA, 2013; pp. 160–165. [CrossRef]

209

Algorithms 2020, 13, 277

29. Scholz-Reiter, B.; Kück, M.; Lappe, D. Prediction of Customer Demands for Production
Planning—Automated Seelction and Configuration of Suitable Prediction Methods. CIRP Ann.
2014, 63, 417–420. [CrossRef]

30. Schumacher, C.; Buchholz, P.; Fiedler, K.; Gorecki, N. Local Search and Tabu Search Algorithms for Machine
Scheduling of a Hybrid Flow Shop Under Uncertainty. In Proceedings of the 2020 Winter Simulation
Conference, Orlando, FL, USA, 13–16 December 2020.

31. Van Hentenryck, P.; Bent, R. Online Stochastic Combinatorial Optimization; MIT Press: Cambridge, MA,
USA, 2006.

32. Juan, A.A.; Panadero, J.; Reyes-Rubiano, L.S.; Faulin, J.; de la Torre, R.; Latorre, J.I. Simulation-Based
Optimization in Transportation and Logistics: Comparing Sample Average Approximation with
Simheuristics. In Proceedings of the 2019 Winter Simulation Conference, WSC 2019, National Harbor,
MD, USA, 8–11 December 2019; pp. 1906–1917. [CrossRef]

33. Arthur, D.; Vassilvitskii, S. k-means++: The Advantages of Careful Seeding; Stanford University: Stanford, CA,
USA, 2007.

34. Leskovec, J.; Rajaraman, A.; Ullman, J.D. Mining of Massive Datasets, 2nd ed.; Cambridge University Press:
Cambridge, UK, 2014. [CrossRef]

Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional
affiliations.

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

210

algorithms

Article

A Simheuristic Algorithm for Solving the Stochastic
Omnichannel Vehicle Routing Problem with
Pick-Up and Delivery

Leandro do C. Martins *, Christopher Bayliss, Pedro J. Copado-Méndez, Javier Panadero and

Angel A. Juan

Internet Interdisciplinary Institute (IN3)–Computer Science Department, Universitat Oberta de Catalunya,
08018 Barcelona, Spain; cbayliss@uoc.edu (C.B.); pcopadom@uoc.edu (P.J.C.-M.); jpanaderom@uoc.edu (J.P.);
ajuanp@uoc.edu (A.A.J.)
* Correspondence: leandrocm@uoc.edu

Received: 24 August 2020; Accepted: 15 September 2020; Published: 19 September 2020
��������	
�������

Abstract: Advances in information and communication technologies have made possible the
emergence of new shopping channels. The so-called ‘omnichannel’ retailing mode allows customers
to shop for products online and receive them at home. This paper focuses on the omnichannel delivery
concept for the retailing industry, which addresses the replenishment of a set of retail stores and the
direct shipment of the products to customers within an integrated vehicle routing formulation. Due to
its NP-Hardness, a constructive heuristic, which is extended into a biased-randomized heuristic and
which is embedded into a multi-start procedure, is introduced for solving the large-sized instances
of the problem. Next, the problem is enriched by considering a more realistic scenario in which
travel times are modeled as random variables. For dealing with the stochastic version of the problem,
a simheuristic algorithm is proposed. A series of computational experiments contribute to illustrate
how our simheuristic can provide reliable and low-cost solutions under uncertain conditions.

Keywords: omnichannel retail stores; vehicle routing problem; pick-up and delivery; biased-randomized
heuristics; simheuristics

1. Introduction

Today, people are changing their shopping behavior. Recent advances in information and
communication technologies have introduced new shopping channels and models, which make
possible the expansion of e-commerce and, consequently, the emergence of new challenges in
operational research, transportation, and logistics areas. Specifically, regarding modern e-commerce
business models, new decision variables and constraints have been incorporated in them, leading to
emerging variants of distribution problems in supply chain management.

Unlike brick-and-mortar stores, where salespeople are available to support and help customers to
make their purchases, the popularization of mobile devices with access to the Internet has promoted the
use of different shopping channels. The online channel is an example that has emerged as a competitive
marketing channel to that of traditional retail centers, transforming e-commerce into a global trend
and an important tool for every business worldwide [1]. With e-commerce, customers are immersed in
an environment of a plethora of information, opinions, and access to a vast combined supply of stock,
which together allows them to browse through different stores in an online environment. According
to some experts, the online shopping channels were predicted to kill off the physical ones. However,
they co-exist and have completely transformed the way customers shop nowadays [2]. The use of a
variety of shopping channels is referred to as ’omnichannel retailing,‘ where, instead of having only
the single option of physically visiting a store to buy products, consumers can also buy them via online

Algorithms 2020, 13, 237; doi:10.3390/a13090237 www.mdpi.com/journal/algorithms

211

Algorithms 2020, 13, 237

shopping to be delivered at their homes. Hence, the company also becomes responsible for delivering
goods ordered online to consumers. Therefore, this new retailing environment has introduced the
need to design integrated distribution systems for both serving online customers and for replenishing
the stocks of retailer stores [3].

This paper focuses on the emerging omnichannel vehicle routing problem (OM-VRP) concept,
which is an extension of the classical vehicle routing problem (VRP) in which a two-echelon
distribution network is considered. The VRP aims to design cargo vehicle routes with minimum
transportation costs, and sometimes the problem also considers facility location costs [4]. The generated
routes are designed to distribute goods between depots and a set of final customers during a
planning period [5]. Since the OM-VRP tackles simultaneously the replenishment of a set of
retailer stores and the direct shipment of the products from those retailer stores to customers in
an omnichannel retailing environment, the OM-VRP can be seen as an integrated problem that
combines both the VRP and the pick-up and delivery problem (PDP). In the OM-VRP, which was first
introduced by Abdulkader et al. [1], a single distribution center supplies a group of retailer stores–i.e.,
the first-echelon. In turn, this set of retail centers serve a set of online customers–the second-echelon–by
using a single fleet of vehicles in both delivery levels in order to reduce transportation costs. Apart
from reducing operating costs and improving supply chain competitiveness, the optimization of
this two-echelon problem holds the potential to improve customer service levels and to enhance the
on-time delivery of customer orders [6]. VRPs and PDPs are frequently considered in the literature as
deterministic problems, where customers’ demands and travel times are constant values. In real-life,
however, it is frequent that both demands and travel times are exposed to some degree of uncertainty.
In these scenarios, it is more accurate to model these constant variables as random variables. In this
paper, we extend the previous OM-VRP formulation by replacing the deterministic travel times by
stochastic ones. To the best of our knowledge, it is the first time that a stochastic version of the OM-VRP
has been considered.

Since the VRP and the PDP are both NP-hard problems [7,8], the OM-VRP is, consequently,
NP-hard as well. Therefore, we propose a multi-start procedure, which employs a savings-based [9]
biased-randomization heuristic technique [10]. The multi-start approach is able to generate a variety
of good and feasible solutions in short computing times. Finally, in order to deal with the stochastic
OM-VRP, the multi-start approach is combined with Monte Carlo simulation and extended into a
simheuristic algorithm [11]. Simulation-optimization methods, and simheuristics in particular, allow us
to properly deal with stochastic versions of combinatorial optimization problems [12,13], such as the
one proposed in this work, where travel times are modeled as random variables. The simheuristic
approach is also employed to measure the ‘reliability’ level of the proposed distribution plan,
i.e., to measure the probability that the plan can be deployed, without any route failure, in a realistic
scenario under uncertain travel times. To the best of our knowledge, this is the first time that a
stochastic version of the OM-VRP has been considered in the scientific literature.

The remainder of the paper is arranged as follows: Section 2 presents a brief literature review
on related topics; Section 3 describes, in more detail, the addressed problem; Section 4 introduces
the proposed solving methodologies; Section 5 presents an analysis of the results and a comparison
between the proposed heuristic and another solution methodology; finally, Section 6 highlights the
main conclusions of this work and proposes some future lines of research.

2. Literature Review

With recent advances in information and communication technologies, different shopping
channels have emerged which have attracted the attention of customers. Nowadays, customers use
different channels to shop, giving them a multichannel shopping environment [14]. The transition from
multichannel to omnichannel retailing has been discussed by Verhoef et al. [15] and Hübner et al. [16].
On the one hand, in multichannel retailing, the online and offline channels are treated as separate
businesses. On the other hand, the use of both channels in an omnichannel environment is completely

212

Algorithms 2020, 13, 237

integrated, providing consumers with a seamless experience [17]. Therefore, the customer experience
is different although multichannel and omnichannel retailing environments are often considered the
same. Beck and Rygl [18] presented a complete categorization and definition of retailer channels:
multi, cross, and omnichannel are clearly defined. According to Hübner et al. [3], there are several
operations within the omnichannel distribution system which are responsible for its excellence, such as
expanding delivery modes, increasing delivery speed, and service levels.

As mentioned, the OM-VRP combines the VRP and a PDP. The classical VRP, originally proposed
by Dantzig and Ramser [19], has been extensively studied by practitioners and academics due to its
wide applications in several areas. The VRP belongs to a set of NP-hard combinatorial optimization
problems (COPs) [7]. Therefore, the use of exact algorithms is efficient only for solving small-sized VRP
instances. Mostly, these exact approaches are based on the combination of column and cut generation
algorithms [20,21]. On the other hand, approximate algorithms, such as metaheuristics, are frequently
very efficient for solving large-sized instances of COPs. Several metaheuristics have been proposed
to solve the VRP, which include tabu search (TS), genetic algorithms (GA), ant colony optimization
(ACO), and some hybrid methodologies [22–25]. Pick-up and delivery problems have also been
studied for more than 30 years. These problems incorporate some route order dependencies in which
some nodes should be visited before others in order to transfer inventory between them. Similar to the
VRP, the PDP is also an NP-hard problem [8], and some exact methodologies, based on branch-and-cut
and branch-and-cut-and-price algorithms, have been developed to optimally solve small-sized PDP
instances [26,27]. Moreover, several heuristics and metaheuristics algorithms have been developed to
solve the PDP and some of its variants. We highlight the use of TS [28], GA [29], large neighborhood
search heuristics (LNS) [30], adaptive LNS (ALNS) [31,32], particle swarm optimization (PSO) [33],
and greedy clustering methods (GCM) [34]. A literature review and classification of PDPs is presented
by Berbeglia et al. [35].

To the best of our knowledge, Abdulkader et al. [1] were the first authors to address the
omnichannel VRP as a combination of the VRP and the PDP in an omnichannel retailing context.
For solving this novel integrated problem, the authors proposed a two-phase heuristic, based on:
(i) inserting consumers into retailers routes and on correcting infeasible solutions, and (ii) on joining the
routes through the maximum-savings criterion, i.e., the Clarke & Write Savings heuristic (CWS) [36].
Apart from this two-phase heuristic, a multi-ant colony algorithm (MAC) was proposed. A complete
set of instances have been generated to test their methodologies, and the MAC outperformed the
heuristic’s performance. Martins et al. [9] proposed a simple and deterministic heuristic for solving
the OM-VRP. Although no best-known solutions were found, the heuristic showed to be promising
since feasible solutions were provided in short computational time and no repair operations were
needed. Recently, the same problem have been also solved by Bayliss et al. [37] and Martins et al. [38].
In contrast to Bayliss et al. [37], Martins et al. [38] have framed the problem in the humanitarian logistics
field, providing an agile optimization solving methodology–which combines parallel computing with
biased-randomized heuristics–which was proposed for solving it in real-time. Competitive results were
found in milliseconds, enabling the agile optimization technique able to outperform other heuristics
from the literature. On the other hand, Bayliss et al. [37] formulated the OM-VRP as a mixed-integer
program (MIP) and proposed a two-phase local search with a discrete-event heuristic for solving the
problem. In contrast to Abdulkader et al. [1]’s model, their formulation avoids the need to directly
assign retailers to vehicles, since the pick-up and delivery constraints are modeled through routing
variables. The first phase of the approach employs a discrete-event constructive heuristic, while the
second phase aims to refine the most promising solutions obtained in stage one, by applying a sequence
of local search neighborhoods. The authors have found new best-known solutions for the vast majority
of problem instances, and improved lower bounds for a set of small instances were obtained.

Constructive heuristics are simple deterministic procedures that follow a logical sequence
of decisions and which always generate the same solution when starting from the same point.
Biased-randomized algorithms incorporate non-symmetric random sampling in order to diversify the

213

Algorithms 2020, 13, 237

behavior of a base constructive heuristic [39]. At each stage of the base constructive heuristic, a list
of candidate decisions is considered. The list is sorted in decreasing order of the benefit concerning
an objective function, and a candidate is then randomly selected. In this random selection process,
the higher-ranked candidates receive a higher probability of being selected. Biased-randomized
algorithms have been employed for solving different COPs in transportation [40–42], scheduling [43,44],
and facility location problems [39,45].

Simheuristic algorithms combine the use of approximate methods, such as heuristics or
metaheuristics, with simulation techniques, in order to cope with stochastic combinatorial optimization
problems. They have proven to be an efficient approach to solve stochastic problems [46]. The extension
of traditional metaheuristics into simheuristics is gaining popularity, and they have already been
applied to solve a wide set of stochastic optimization problems, in different fields such as permutation
flow-shop [47], facility location problems [48], inventory routing problems [48–50], telecommunication
networks [51] and finances [52].

Other examples of simheuristics include Lam et al. [53], Lopes et al. [54], and Santos et al. [55].
Lam et al. [53] employs a simheuristic approach for evolving agent behavior in the exploration of novel
combat tactics. They use a genetic algorithm to find the states, during a flight maneuver, at which an
aircraft should transit into the next phase of the maneuver. Lopes et al. [54] tackles a stochastic assembly
line problem using a simheuristic approach. Demands for different product types are stochastic and
occur in real-time. The optimization task lies in assigning tasks to stations in such a way that task
precedence constraints are respected and the expected throughput is maximized. Santos et al. [55]
develops a simheuristic based decision support tool for an iron ore crusher circuit. They propose and
validate a simulation model of throughput efficiency depending on the amount of equipment active in
each phase of the crusher circuit. The simheuristic integrates the simulation model with an iterated
local search (ILS) metaheuristic. Their solutions improve throughput and reduce energy consumption
compared to the all active equipment solution.

Despite the fact that travel times are stochastic in most real-life transportation activities, in the
past only deterministic versions of the OM-VRP have been considered. Hence, our work goes one
step further by considering random travel times and proposing a simheuristic algorithm to solve the
stochastic version of the OM-VRP.

3. Details on the Stochastic OM-VRP

Usually, retail stores must be supplied from the depot with a large number of products, which are
packed and frequently measured in terms of the number of pallets. In turn, and in contrast to retail
stores’ demand, online customer orders are of negligible size but require processing at a physical
retail store before their delivery. Since orders must be processed at retail stores before delivery,
products ordered online cannot be shipped directly from the central warehouse to online customers.

In the OM-VRP, a single fleet of vehicles is employed to simultaneously perform three different
operations: (i) bulk deliveries to retail stores from a main central depot; (ii) the pick-up of online
customer orders from these retail stores; and finally, (iii) the deliver of online customers’ orders.
Different product types are available at each retail store. Likewise, each retail store has a limited
inventory of processed products that can be delivered to online customers. Therefore, the vehicle
responsible for a particular online order must first visit a retail store with that product in stock.
The available processed inventory and bulk demand for each retail store are known in advance.
It is assumed that bulk inventory does not contribute to a retailer’s available inventory since bulk
deliveries cannot be processed within the drop time of delivery. As a simplifying assumption, each
online customer orders a single product. When more than one item is ordered, the consumer is
replicated in the same location as a ‘virtual’ consumer, and each product is delivered separately.
According to Abdulkader et al. [1], this strategy of considering single-item orders by consumers
guarantees the solution feasibility and also minimizes the distribution cost.

214

Algorithms 2020, 13, 237

Figure 1 depicts how the processes of visiting retail centers and online customers are performed by
the same fleet of vehicles. A route starts from the single and central depot, and the same cargo vehicle
visits a set of retail centers and customers. Deliveries to customers cannot be directly performed from
the depot. Hence, drivers must meet precedence constraints in order to pick-up customer orders from
the retail centers before they can be delivered. Since retailers are supplied by the depot, these nodes are
both delivery and pick-up points. On the other hand, customers require only the delivery of items from
these retail centers, making them, delivery nodes. Apart from precedence and inventory constraints,
the service of each route is limited by a maximum tour length and vehicle capacity limit.

Figure 1. A general schema of the OM-VRP.

We can define the distribution network of the OM-VRP as directed graph G = (V, A). The set of
vertices V = {0, 1, 2, . . . , r+ c} is composed of a single depot (0), r retail centers, and c online customers.
In other words, the problem is represented by a set R of retail stores, which are supplied by the depot 0,
and a set C of online customers, which are posteriorly supplied by the retail centers. The set N = R ∪ C
comprises both sets R and C, in which R = {1, 2, . . . , r} and C = {r + 1, r + 2, . . . , r + c}. The same
fleet of capacitated vehicles, initially stationed at the central depot at the start time t0, is employed
for serving both the retail centers and consumers. For the complete mathematical formulation of this
problem, readers are referred to Abdulkader et al. [1]. In this work, we extend previous work on
this topic by considering the case in which edge-traversal times are stochastic. We define the time to
traverse edge (i, j) as Tij = tij + Dij where tij is the deterministic edge-traversal time (which represents
the edge-traversal time under ‘ideal’ traffic conditions), Dij is a log-normally distributed delay term,
and Tij denotes the distribution of edge-traversal times. The objective of this extended problem is
to minimize the total travel cost of the vehicle routes such that: (i) every route starts and ends at the
depot; (ii) the routes do not violate the maximum tour length; (iii) every node i ∈ N is visited by only
one vehicle and only once; (iv) the total load of the vehicle does not exceed the vehicle capacity; (v) the
total consumer demand to be fulfilled by a vehicle for a specific product does not exceed the inventory
picked up by the vehicle; (vi) the retail store determined to satisfy the consumer’s demand must
be visited before the consumer and by the same vehicle; and (vii) the routes must have a reliability
level greater than a user-set parameter, Rmin. The reliability level of a set of routes is defined as the
probability that all routes are completed within the maximum time limit of Tmax.

Two alternative mathematical formulations of the deterministic OM-VRP can be found
in Abdulkader et al. [1], Bayliss et al. [37]. The differences in this case are a stochastic objective

215

Algorithms 2020, 13, 237

function and probabilistic constraint regarding route completion reliability. Let x f kij be a binary
decision variable indicating whether or not vehicle f in the fleet F traverses edge ij in the kth node
visit in its route. The stochastic objective function is given in Equation (1), where Dij is the stochastic
delay associated with traversing edge ij.

min E

(
∑
f∈F

∑
k∈K

∑
i∈V

∑
j∈V

x f kij
(
tij + Dij

))
. (1)

The probabilistic route completion reliability constraint is given in Equation (2).

Rmin ≤ P

(
∑
i∈V

∑
j∈N

∑
k∈K

(
tij + τ + Dij

)
x f kij + ∑

i∈V
∑
k∈K

(ti0 + Di0) x f ki0 ≤ Tmax, ∀ f ∈ F

)
. (2)

Equation (2) also accounts for the drop times (τ) that are required when performing deliveries
and pickups. In this work we employ a simheuristic approach for addressing the stochastic aspects
of the OM-VRP. The main novelty of the OM-VRP, in comparison to other VRPs, is the precedence
constraints regarding the collection of customer orders from retailers and subsequent delivery to
customers. The vehicle capacity constraint regarding the retailer demands that can be satisfied are
expressed by Equation (3), where OPj denotes the number of ordered product units of node j (which is
zero for customer nodes) and H denotes the vehicle capacity.

∑
i∈N

∑
j∈V

k

∑
l=1

x f lijOPj ≤ H, ∀ f ∈ F, ∀k ∈ K. (3)

The customer order precedence constraints are expressed by Equation (4), where ODjq denotes
the number of items of type q ∈ Q ordered by node j (which is zero for retailer nodes) and Pjq denotes
the number of items picked up of type q ∈ Q at node j (which is zero for customer nodes).

∑
i∈V

∑
j∈V

k

∑
l=1

x f lij
(

Pjq − ODjq
) ≥ 0, ∀ f ∈ F, ∀k ∈ K, ∀q ∈ Q. (4)

Table 1 provides the details for a small-sized instance, which is composed of one central warehouse,
four retail stores, and nine online customers. For this instance, Table 1 provides: the geographic
coordinates (X and Y) of each node, the demand required from the depot by each retail center i ∈ R,
the demands for each customer j for each product type q (ODjq), and the inventory of each available
product Piq, q ∈ {1, 2, 3} at the retail centers. Since the products are negligible in terms of capacity,
they do not affect the vehicle load capacity. Accordingly, Figure 2 presents the optimal solution for
the provided example. The routes are performed with a total cost of 455.91 distance units, and a fleet
of vehicles each with a capacity of 100 weight units is employed for performing the routes. In the
first route, customers 8, 5, and 9 are served by retail center 1, while customers 12 and 13 are served
by retail 3. The route requires 272.37 distance units, and the vehicle starts with 93 loaded demand
units. Note that the retail centers are first visited by the vehicle in order to deliver the required demand
from the depot and to pick-up the products ordered by the customers. Similarly, in the second route,
customers 11 and 10 are supplied by retail center 4 while customers 6 and 7 are served by retail store 2.
The route requires 183.53 distance units, starting with 79 loaded demand units.

216

Algorithms 2020, 13, 237

Table 1. Problem instance data.

Node X Y OPi OD1 OD2 OD3

Inventory

P1 P2 P3

0 48 23 0 0 0 0 0 0 0
1 91 20 44 0 0 0 1 0 2
2 25 9 36 0 0 0 1 0 1
3 56 68 49 0 0 0 1 2 0
4 71 1 43 0 0 0 1 2 1
5 26 94 0 0 0 1 0 0 0
6 30 15 0 1 0 0 0 0 0
7 4 51 0 0 0 1 0 0 0
8 35 78 0 1 0 0 0 0 0
9 79 72 0 0 0 1 0 0 0

10 16 33 0 0 1 0 0 0 0
11 61 6 0 1 0 0 0 0 0
12 78 89 0 0 1 0 0 0 0
13 77 61 0 0 1 0 0 0 0

0

4
11

2
6

10

7

0

1

3

8

5
12

9

13

0

10

20

30

40

50

60

70

80

90

100

0 20 40 60 80 100

Y

X

Optimal Solution

Route 1
Route 2

Depot
Retail Center
Customer

Figure 2. The optimal solution routes for Table 1.

4. Methodology

The multi-start framework belongs to a family of metaheuristics algorithms [56] which includes
approaches such as Evolutionary Algorithms [57,58] and Swarm Intelligence Algorithms [59–62],
among others. Metaheuristics were introduced in order to provide high-quality solutions using a
reasonable amount of computation time and memory. Typically, they require a time-consuming
parameter tuning process. Although, there are approaches that provide self-adaptive parameter
control [58], our methodology has been devised to work with a reduced number of parameters,
providing an excellent trade-off between simplicity, computational time, and solution quality.

In order to solve the stochastic OM-VRP, a simheuristic approach is proposed. Our methodology
combines a biased-randomized savings-based heuristic with simulation techniques to deal with the
stochastic aspects of the problem. Biased-randomized heuristics can be extended into simheuristics in
a natural way. Starting from a savings-based heuristic, which is completely deterministic, this solution
method is then extended into a biased-randomized multi-start algorithm. Also, a local search procedure
is applied to search for locally optimal solutions. Finally, the multi-start framework is extended into a
simheuristic approach in order to deal with stochastic travel times.

217

Algorithms 2020, 13, 237

4.1. Savings-Based Heuristic

As introduced, the savings-based heuristic (LH) [9] is based on greedy decisions and designed to
solve the deterministic OM-VRP. The LH is composed of the following three stages:

1. In the first stage, a dummy solution is created, where each route in this dummy solution serves
one node i ∈ N, which can be either a consumer or a retail store. Routes depart from the depot,
travel to the node, and then return to the depot.

2. The second stage of LH, named as CWS1, is presented in the Figure 3, where the dummy routes
from stage 1 are merged using a maximum-savings criterion [36]. Each box from Figure 3 is
numbered to aid the following explanations.

Initially, a savings list (SL) is constructed (step 1). This list considers all possible pairs of
nodes–i.e., edges–from the problem. For each edge {i, j}, the corresponding savings value
is calculated as sij = t0i + tj0 − tij, where tij represents the deterministic travel time between
nodes i and j. That is, candidate solutions are generated using ‘ideal’ traffic conditions for the
edge-traversal times.

Initially, all edges from SL are eligible. The list is sorted in descending order of the savings value
(step 2), and the edge with the highest saving is selected (step 3). At this stage, the selection of
edges is restricted to guarantee the assignment of a retail center to each consumer in the problem
(step 5). In other words: a route containing one single customer can only be merged with a route
containing a retail center, i.e., the selection is restricted to eligible edges {i, j}, where node j is a
consumer in a dummy route and i is a node in a route with a retailer that can supply consumer
j. According to Martins et al. [9], these attempts at only merging routes containing at least one
retail center, which can supply a single consumer, are made first in order to avoid infeasible
solutions–i.e., solutions in which some customers are not assigned to any retailer. This approach
of addressing solution feasibility first is based on the observation that the availability of feasibility
restoring merges will only decrease as the algorithm progresses.

Based on CWS route-merging conditions (step 6), the two corresponding routes, i and j, of an
edge {i, j} (obtained in steps 4.1 and 4.2) can be merged only if: (i) nodes i and j are exterior
in their respective routes (a node is exterior if it is adjacent to the depot); (ii) i and j belong to
different routes; (iii) the maximum tour length is not violated; and (iv) the vehicle capacity is
not violated.

The selected edge is deleted from SL (step 9) only if: (a) the corresponding merge is performed
(step 7); or (b) at least one of the CWS constraints ((i)–(iv)) are violated (in step 6). Otherwise,
the edge becomes temporarily ineligible (step 10), but it is not removed from the list since
subsequent merges might restore eligibility. This can occur when a different retail center is
merged into a route, increasing the available processed inventory for subsequent consumers.
For example, when selecting an edge (i, j), the evolving route of i may have insufficient processed
inventory for customer j at this time. However, if in subsequent iterations route i is merged with
another route containing retailers, the evolving route of i may then be able to serve customer j.

When a merge is successfully performed (step 7), the entire SL becomes eligible (step 8), since a
new inventory scenario is generated.

At the end of this stage, all the consumers are supplied by the retail centers, guaranteeing a
feasible final solution. Notice that this is achieved without solving separate assignment and
routing problems, as done in Abdulkader et al. [1].

218

Algorithms 2020, 13, 237

3. Finally, the third stage (CWS2) tries to improve the solution generated in the previous step.
To do that, the algorithm cycles through the SL list, which includes the remaining saving edges
that were discarded in the previous step, with the aim of identifying more beneficial merges.
Unlike the procedure used in the CWS1 stage, in this phase all the customers are already assigned
to a retail center, so step 5 of Figure 3 is not required. Hence, all edges are eligible. The process
attempts all the available merging possibilities which may improve the solution. Each time a
new edge is selected from the SL list, it is removed from the list, whether the corresponding
merge is performed or not–due to it violating any of the constraints (i)–(iv). In each new iteration,
the highest saving edge is selected to restart the merge process. This process is repeated until SL
is empty. At the end of the procedure, a feasible solution is generated, without the necessity of
repair operations.

START

END

Create SL from the
dummy solution solSort SL

Select the 1st
eligible edge from SL

as e

Return sol

Are there any
eligible nodes in SL?

Get origin and
end nodes from e as

iNode and jNode,
respectively

Is jNode a non-served
customer AND has

iRoute a retailer that
can serve jNode?

Are all the CWS route-
merging conditions

are satisfied?

Edge e becomes
not eligible

Merge iRoute with
jRoute using edge e

as sol

Get evolving routes
of iNode and jNode as

iRoute and jRoute,
respectively

SL becomes entirely
eligibleDelete e from SL

Y

N

Y

N

Y

N

2

3

1

G
of

4.2G
end

4.1

56

7

89

11 10

12

4

Figure 3. The flowchart of CWS1.

4.2. Introducing a Local Search

Once an initial and feasible solution is constructed, a fast local search is applied to improve its
quality. This local search mechanism is based on a 2-opt movement. Since this problem has some
precedence particularities, the 2-opt movement, which consists of the reversal of sub-sequence of nodes,
is restricted to movements that do not violate the precedence order between customers and their
suppliers–hence, the feasibility of the solution is preserved.

219

Algorithms 2020, 13, 237

4.3. Extending to a Biased-Randomized Algorithm

To modify the original greedy and deterministic behavior of our heuristic, the selection of
candidates from the SL is randomized by introducing a skewed probability distribution into the
selection process. For the biased-randomized component, we employ a geometric distribution,
which is controlled by a single parameter, β ∈ (0, 1). β values closer to 1 increase the probability
that the highest saving merges are selected. On the contrary, as β approaches 0, a near-uniform
randomization is obtained. In this way, β controls the level at which the selection probabilities decrease
along the sorted SL. Hence, unlike deterministic heuristics, which always generate the same solution
when starting from the same initial solution, different decisions are taken at each selection iteration,
consequently generating different solutions. Algorithm 1 represents the selection process of LH with
biased-randomization, which replaces the greedy selection of edges from the SL.

Algorithm 1: brSelection.
Data: savings list SL, parameter β ∈ [0, 1]

1 l ← getNumberOfEligibleEdgesFromList (SL);
2 Randomly select position x ∈ {1, ..., l} according to distribution Geom (β);
3 e ← selectTheXthEligibleEdgeFromList (x, SL);
4 return e;

Considering all of the stages which have been introduced, Algorithm 2 represents the overall
structure of our biased-randomized algorithm with local search (BRLH). This algorithm is then
embedded into a multi-start procedure in order to obtain a variety of solutions (MSBRLH).

Algorithm 2: BRLH.
Data: set of nodes V, geometric distribution parameter β

1 sol ← createDummySolution (V);
2 sol ← CWS1 (sol, β);
3 sol ← CWS2 (sol, β);
4 sol ← localSearch (sol);
5 return sol

4.4. Extending to a Simheuristic Approach

Deterministic travel times are widely assumed in transportation problems. However,
when dealing with real-life problems, which are often fraught with uncertainty, travel times are
usually stochastic in nature. As introduced in Section 3, the deterministic travel time employed to
traverse edge (i, j), tij, can be seen as the travel time required under ideal traffic conditions. In the
proposed extension, the stochastic time to traverse (i, j) is computed as Tij = tij + Dij, where Dij
follows a logNormal(μ, σ) probability distribution, and represents a random delay resulting from
uncertain conditions. Since the logNormal probability distribution can only take positive values,
it follows that Tij > tij, ∀(i, j) in the set of connecting edges.

Algorithm 3 describes our simheuristic approach (SimBRLH). Initially, a solution is generated by
our BRLH in line 1 (Algorithm 2), by employing the greedy approach (i.e., β ≈ 1). A short simulation is
then performed on this initial solution (line 2), in order to estimate its average stochastic cost. This initial
solution is set as the best-found stochastic solution cost (line 4). While the termination criterion is not
met (line 6), different solutions are generated by BRLH (line 7). The deterministic cost of the initial
solution is considered for guiding the search. Therefore, a solution is accepted for being submitted to
the simulation module (line 10) only if its deterministic cost is smaller than the best-found deterministic
solution cost plus m% of its value (line 9). This solution filtering approach reduces the amount of
time spent on testing unpromising solutions in computationally expensive simulations. Moreover,
by allowing the acceptance of moderately worse solutions, controlled by the parameter m, a better

220

Algorithms 2020, 13, 237

exploration of the solution space can be achieved [63]. At this stage, qshort Monte Carlo simulation runs
are used to test the accepted solution. Each simulation run replaces the deterministic travel times of a
solution with randomly sampled ones–according to the assumed probability distribution. From this
complete simulation process, the average stochastic cost of each solution is computed. Every time a
new best stochastic cost is found (line 15), this solution is introduced into a pool of ‘elite’ solutions E
(line 17). This process is repeated while the termination criterion is not met. On this reduced set of
solutions, qlong Monte Carlo simulation runs are performed (line 23) in order to generate more accurate
results for solutions in stochastic environments. During the simulation process we also obtain an
estimate of the reliability rate of a solution [64]. This estimate is computed as the rate at which all
routes show completion times lower than the maximum allowed travel time. At the end, the set of elite
solutions is sorted in descending order of their expected cost (line 25), and the best-found stochastic
solution is provided to the manager.

Algorithm 3: SimBRLH.
Data: set of nodes V, geometric distribution parameter β, acceptance margin m, number of short

simulations qshort, number of long simulations qlong, log normal distribution parameters μ and σ,
maximum number of iterations maxiter

1 baseSol ← BRLH (V, 1.0);
2 simulation (baseSol, qshort, μ, σ);
3 bestCostd ← baseSol.getDeterministicCost();
4 bestCosts ← baseSol.getStochasticCost();
5 niter ← 0;
6 while niter < maxiter do

7 sol ← BRLH (V, β);
8 costd ← sol.getDeterministicCost();
9 if costd < bestCostd + bestCostd × m then

10 simulation (sol, qshort, μ, σ);
11 costs ← sol.getStochasticCost();
12 if costd < bestCostd then

13 bestCostd ← costd;
14 end

15 if costs < bestCosts then

16 bestCosts ← costs;
17 E ← E ∪ {sol};

18 end

19 end

20 niter ← niter + 1;

21 end

22 foreach sol ∈ E do

23 simulation (sol, qlong, μ, σ);
24 end

25 E ← sort (E);
26 bestStochSol ← E.get(0);
27 return bestStochSol

221

Algorithms 2020, 13, 237

5. Results and Discussion

To test the proposed methodologies, we have used the 60 problem instances introduced
in Abdulkader et al. [1]. These instances differ in the number of retail centers (r ∈ {10, 15, 20, 25}),
online customers (c ∈ {20, 50, 75, 100, 150}), and also in the inventory scenarios of the retail centers
(tight, relaxed, and abundant). Therefore, for each inventory scenario, 20 different problem
combinations are generated. The maximum tour length of the routes and the vehicle capacity are
set to 8 h and 100 weight units, respectively. While the BRLH is guided by a single parameter,
β, the simheuristic approach is also controlled by the maximum running time timemax, the acceptance
margin of worst solutions m, and the number, qshort and qlong, of simulation repeats in short and long
simulation runs, respectively. The stochastic travel times for each edge are set by the log-normal
distribution parameters, μ and σ.

Table 2 summarizes the setup of the parameters employed during the computational experiments.
For calibrating these parameters, we have used the methodology proposed in Calvet et al. [65], which is
based on a general and automated statistical learning procedure. Regarding the maximum run time
timemax, the value was set depending on the size of the instance (c + r) × 0.342, which leads to a
maximum execution time of 60 s in the case of the largest instance. This stopping criterion is employed
in both the multi-start and simheuristic strategies.

The algorithms were coded in Java and all tests were performed on an Intel Core i7-8550U
processor with 16 GB of RAM.

Table 2. Parameter setup.

β m μ σ qshort qlong timemax

[0.45, 0.75] 20% 0 {1.55, 1.9, 2.5} 100 1000 (r + c)× 0.342

Note that three different values have been considered for the σ parameter, which is used to modify
the deterministic travel times. Since the maximum tour length is fixed independently of the size
of the instances, small-sized instances are more likely to generate short routes. Therefore, a larger
value for σ introduces more variability in the travel times, which increases route failure rates. On the
other hand, large-sized instances are often composed of larger routes, then a small value for σ is
introduced. In particular we have, σ = 2.5 for small instances (composed of 25 customers), σ = 1.55
for large instances (composed of 150 customers), and σ = 1.9 for the remaining medium-sized ones.
This approach ensures that small, medium, and large instances each have similar levels of difficulty
with respect to the risk of route failure.

The initial analysis aims to compare the solutions generated by our greedy heuristic (LH) and by
our MSBRLH–in which β is (uniformly) randomly selected in the interval [0.45, 0.75]–with the solutions
obtained by the two-phase heuristic (AH) and multi-ant colony metaheuristic (MAC) proposed
by Abdulkader et al. [1]. Their methodologies were performed on four 2.1 GHz processors with 16-cores
each and a total of 256 GB RAM. That is, we initially focus on comparing each algorithm in terms
of deterministic travel cost. Tables 3–5 present the results obtained for tight, relaxed, and abundant
inventory scenarios, respectively. For each problem instance (I), we present results for: the cost of the
best-found solution obtained by the different methodologies; the average cost of our MSBRLH; the CPU
time (in seconds) required by each methodology; and their percentage gaps. The best results returned
by the solution methodologies are highlighted in bold. Figures 4 and 5 present how both the gap and
the cost of the solutions, i.e., the objective function (OF) value, behave according to the employed
solution approach and inventory scenario, respectively.

222

Algorithms 2020, 13, 237

Table 3. Comparison of the results obtained by our methodologies (LH and MSBRLH) with those
obtained by Abdulkader et al. [1]’s methods (AH and MAC) in the tight inventory scenario.

I |R| |C| 1 2 3 4 Avg. Cost Time (sec.) Gap

LH MSBRLH AH MAC (2) (1) (2) (3) (4) (1)–(2) (3)–(2) (4)–(2)

b1 10 25 1277.5 1110.9 1631.6 1002.5 1119.6 0 7 0 7 −13% −32% 11%
b2 10 50 1641.1 1378.2 2057.5 1192.0 1392.0 0 8 0 47 −16% −33% 16%
b3 10 75 2663.7 2437.2 3006.2 1815.4 2450.7 0 25 0 79 −9% −19% 34%
b4 10 100 2415.1 1930.3 2830.2 1529.0 1980.7 0 15 0 286 −20% −32% 26%
b5 10 150 2678.2 2395.3 3478.7 1905.2 2408.9 0 38 0 576 −11% −31% 26%
b6 15 25 1540.5 1389.4 1774.4 1313.7 1400.6 0 4 0 7 −10% −22% 6%
b7 15 50 2059.0 1769.3 2461.8 1522.3 1803.7 0 0 0 44 −14% −28% 16%
b8 15 75 3105.3 2620.5 3545.1 2101.8 2630.3 0 6 0 131 −16% −26% 25%
b9 15 100 3121.5 2836.9 3529.0 2329.5 2860.5 0 1 0 209 −9% −20% 22%

b10 15 150 4292.4 3787.2 4916.8 3012.2 3797.4 0 45 0 430 −12% −23% 26%
b11 20 25 2035.2 1817.1 2432.6 1611.3 1838.4 0 10 0 11 −11% −25% 13%
b12 20 50 2335.4 2109.1 2695.3 1800.9 2112.8 0 1 0 50 −10% −22% 17%
b13 20 75 3212.7 2765.1 3936.7 2406.0 2796.2 0 12 0 127 −14% −30% 15%
b14 20 100 3025.2 2842.7 3826.1 2483.8 2881.4 0 20 0 327 −6% −26% 14%
b15 20 150 3934.3 3308.0 4496.1 2679.2 3332.1 0 50 0 708 −16% −26% 23%
b16 25 25 2019.4 1847.2 2254.9 1669.6 1858.0 0 8 0 13 −9% −18% 11%
b17 25 50 2665.9 2434.8 3020.8 1965.6 2442.8 0 17 0 46 −9% −19% 24%
b18 25 75 3207.6 2853.4 3963.5 2449.8 2885.8 0 18 0 136 −11% −28% 16%
b19 25 100 4064.0 3551.0 4933.9 2788.5 3588.7 0 42 0 257 −13% −28% 27%
b20 25 150 3782.7 3512.8 4721.3 2890.3 3525.5 0 17 0 712 −7% −26% 22%

Average 0 17 0 210 −12% −26% 19%

Table 4. Comparison of the results obtained by our methodologies (LH and MSBRLH) with those
obtained by Abdulkader et al. [1]’s methods (AH and MAC) in the relaxed inventory scenario.

I |R| |C| 1 2 3 4 Avg. Cost Time (sec.) Gap

LH MSBRLH AH MAC (2) (1) (2) (3) (4) (1)–(2) (3)–(2) (4)–(2)

b21 10 25 1233.0 1030.0 1571.6 879.2 1048.9 0 5 0 10 −16% −34% 17%
b22 10 50 1490.8 1275.7 1920.6 1083.7 1293.9 0 4 0 85 −14% −34% 18%
b23 10 75 2468.0 2021.9 2699.2 1591.5 2049.5 0 18 0 167 −18% −25% 27%
b24 10 100 1885.0 1632.2 2305.1 1437.7 1645.3 0 7 0 528 −13% −29% 14%
b25 10 150 1998.6 1980.4 2700.4 1520.5 1981.8 0 39 0 1836 −1% −27% 30%
b26 15 25 1591.4 1268.0 1665.2 1180.8 1308.9 0 4 0 11 −20% −24% 7%
b27 15 50 1940.7 1652.1 2320.7 1329.3 1660.9 0 9 0 73 −15% −29% 24%
b28 15 75 2436.3 2101.7 3016.5 1692.4 2160.4 0 3 0 279 −14% −30% 24%
b29 15 100 2648.3 2395.4 3302.4 2016.4 2412.5 0 25 0 567 −10% −27% 19%
b30 15 150 3373.2 2819.0 3919.0 2399.6 2847.6 0 18 0 1407 −16% −28% 17%
b31 20 25 1835.5 1679.1 1993.5 1495.8 1682.7 0 11 0 16 −9% −16% 12%
b32 20 50 2320.5 1960.7 2713.0 1656.9 1965.7 0 6 0 76 −16% −28% 18%
b33 20 75 2404.6 2267.2 3393.3 1799.6 2269.8 0 28 0 262 −6% −33% 26%
b34 20 100 2751.9 2469.3 3127.5 2018.5 2490.6 0 34 0 740 −10% −21% 22%
b35 20 150 3157.4 2818.0 3742.2 2291.0 2824.5 0 32 0 2141 −11% −25% 23%
b36 25 25 1844.0 1683.7 2032.1 1550.0 1700.9 0 13 0 15 −9% −17% 9%
b37 25 50 2663.9 2322.3 3130.5 1939.5 2357.5 0 22 0 73 −13% −26% 20%
b38 25 75 2790.7 2559.7 3433.2 2088.6 2569.7 0 30 0 283 −8% −25% 23%
b39 25 100 3352.9 3038.1 3824.5 2244.1 3053.6 0 27 0 656 −9% −21% 35%
b40 25 150 2971.1 2830.6 3447.9 2229.4 2837.7 0 37 0 2077 −5% −18% 27%

Average 0 19 0 565 −12% −26% 21%

223

Algorithms 2020, 13, 237

Table 5. Comparison of the results obtained by our methodologies (LH and MSBRLH) with those
obtained by Abdulkader et al. [1]’s methods (AH and MAC) in the abundant inventory scenario.

I |R| |C| 1 2 3 4 Avg. Cost Time (sec.) Gap

LH MSBRLH AH MAC (2) (1) (2) (3) (4) (1)–(2) (3)–(2) (4)–(2)

b41 10 25 805.4 760.5 897.6 711.3 760.5 0 1 0 16 −6% −15% 7%
b42 10 50 1014.2 870.4 1287.8 875.2 871.2 0 8 0 143 −14% −32% −1%
b43 10 75 1463.5 1259.6 1531.1 1132.1 1266.4 0 9 0 358 −14% −18% 11%
b44 10 100 1379.4 1284.9 1636.5 1224.1 1294.1 0 30 0 978 −7% −21% 5%
b45 10 150 1499.3 1364.3 1551.8 1273.9 1385.3 0 43 0 2085 −9% −12% 7%
b46 15 25 1137.5 1024.3 1264.3 996.9 1028.8 0 6 0 22 −10% −19% 3%
b47 15 50 1247.6 1135.1 1488.1 1080.3 1141.0 0 17 0 159 −9% −24% 5%
b48 15 75 1595.3 1355.2 1815.2 1252.4 1361.2 0 17 0 559 −15% −25% 8%
b49 15 100 2021.3 1777.8 2242.4 1594.0 1798.9 0 24 0 1167 −12% −21% 12%
b50 15 150 2059.6 1869.2 2459.5 1691.4 1873.6 0 26 0 4126 −9% −24% 11%
b51 20 25 1507.2 1414.7 1660.9 1302.9 1418.2 0 11 0 33 −6% −15% 9%
b52 20 50 1464.7 1366.8 1740.7 1301.0 1368.4 0 7 0 156 −7% −21% 5%
b53 20 75 1797.7 1591.5 2096.8 1421.8 1599.7 0 18 0 605 −11% −24% 12%
b54 20 100 2066.2 1881.8 2226.4 1640.6 1883.9 0 23 0 1370 −9% −15% 15%
b55 20 150 2214.0 2025.1 2518.2 1763.3 2030.0 0 52 0 5321 −9% −20% 15%
b56 25 25 1423.2 1368.1 1550.7 1311.6 1372.3 0 7 0 36 −4% −12% 4%
b57 25 50 1670.8 1559.7 1835.4 1468.1 1570.2 0 11 0 203 −7% −15% 6%
b58 25 75 2047.5 1845.3 2276.9 1654.9 1847.5 0 7 0 791 −10% −19% 12%
b59 25 100 1856.4 1797.8 2061.9 1575.7 1801.0 0 15 0 1262 −3% −13% 14%
b60 25 150 1968.1 1837.3 2347.8 1653.3 1849.1 0 60 0 4549 −7% −22% 11%

Average 0 19 0 1197 −9% −19% 9%

Figure 4. Gap between our best-found solutions (from MSBRLH) and the MAC’s results, for each
inventory scenario.

224

Algorithms 2020, 13, 237

LH AH MS-BRLH MAC

1
0

0
0

2
0

0
0

3
0

0
0

4
0

0
0

5
0

0
0

Solving Approach

O
F

 V
a

lu
e

(a) Tight inventory. (b) Relaxed inventory.

(c) Abundant inventory.

Figure 5. Comparison of the solutions cost (OF value) from each solving approach, for each
inventory scenario.

By analyzing Tables 3–5, we can observe that our MSBRLH algorithm is able to improve previous
results (from LH) by 9–12%, on average (column gap (2)–(1)). When comparing the MSBRLH with
the AH heuristic (column gap (3)–(2)), our approach is able to reduce solution costs by up to 26%
in short computational times (about 18 s on average). On the other hand, when comparing our
results with those generated by the MAC approach (column gap (4)–(2)), our solutions are between
9% and 21% worse, on average. Particularly, in the abundant inventory scenario, MSBRLH’s results are
only 9% worse than MAC. Notice, however, that the processing time required by MAC is substantially
larger in all inventory scenarios. By analyzing Figure 4, it is evident that MSBRLH performs better
in the abundant inventory scenario, being able to find one better solution and several others with
a maximum gap of 8%. Moreover, we can observe a variability of around 10% in the gap between
MSBRLH and MAC on average. This variability is reduced to around 8% for the relaxed and abundant
scenarios. These results demonstrate the robustness of our solution approach for the deterministic case.
When analyzing Figure 5, which presents the overall performance of each solution approach for each
inventory scenario, we can observe that our multi-start strategy is more efficient than both LH and AH

225

Algorithms 2020, 13, 237

heuristics, by generating solutions with a lower cost. To complement these box-plots, an ANOVA test
was run for each inventory scenario. The p-values associated with the tight, relaxed, and abundant
inventory scenarios were, respectively, of 0.001, 0.000, and 0.000. Also, the Fisher’s LSD test suggests
significant differences in all tree scenarios between MAC and AH, between MS-BRLH and AH, as well
as between MAC and LH. However, cost differences between MAC and MS-BRLH were not significant
in any scenario, despite the fact that MAC employed a noticeably higher amount of computing time
than MS-BRLH.

Next, in Figure 6, we present the convergence of three problem instances’ solutions, including one
from each different inventory scenario (instances b6, b26, and b46), by comparing the MSBRLH with the
best-known solutions, in terms of gap. As introduced, these instances require approximately 15 s of
processing time, given their magnitude.

Figure 6. Comparison between MSBRLH and MAC on solving large-sized instances.

As we can see in Figure 6, the instances demonstrate the same convergence behavior as solution
time increases. It is noticeable that the convergence rate is abrupt during the first few seconds. However,
contrary to the tight and relaxed inventory scenarios, where the solutions continue improving over
time, the search demonstrates more stable convergence during the remaining execution time in the
abundant scenario. Being more efficient in the more flexible inventory case, our multi-start approach
quickly achieves its best solutions.

Next, we want to compare the quality of the solutions generated for the deterministic scenario
(MSBRLH) against the solutions generated for the stochastic scenario (SimBRLH). Since the only
difference between the deterministic and stochastic scenarios is that stochastic delays are added
to edge traversal times, we can consider the deterministic cost of the best solutions generated by
MSBRLH as a lower bound (LB) of the stochastic travel times of the best SimBRLH solution. Moreover,
since MSBRLH does not account for stochastic travel times, we can consider the stochastic travel time of
the best MSBRLH solution as an upper bound (UB) for the stochastic travel time of the best SimBRLH

solutions. Table 6 provides both LBs and UBs values and the best-found stochastic travel times
obtained by our SimBRLH. The solutions reported in the SimBRLH column are the best-found stochastic
travel times.

226

Algorithms 2020, 13, 237

Table 6. Analysis of the results obtained by our SimBRLH on scenarios of tight, relaxed and
abundant inventory.

I Tight Inventory I Relaxed Inventory I Abundant Inventory

LB SimBRLH UB LB SimBRLH UB LB SimBRLH UB

b1 1110.9 2164.5 2167.0 b21 1030.0 2096.3 2154.6 b41 760.5 1731.0 1858.7
b2 1378.2 2084.7 2084.7 b22 1275.7 1996.6 1996.6 b42 870.4 1574.1 1636.8
b3 2437.2 3465.3 3465.3 b23 2021.9 3043.9 3043.9 b43 1259.6 2239.4 2239.4
b4 1930.3 3184.3 3184.3 b24 1632.2 2891.1 2989.5 b44 1284.9 2553.4 2553.4
b5 2395.3 3790.2 3790.2 b25 1980.4 3363.6 3363.6 b45 1364.3 2753.9 2753.9
b6 1389.4 2628.3 2775.6 b26 1268.0 2487.9 2487.9 b46 1024.3 2269.2 2269.2
b7 1769.3 2544.9 2544.9 b27 1652.1 2446.5 2446.5 b47 1135.1 1919.3 1944.4
b8 2620.5 3715.6 3715.6 b28 2101.7 3178.6 3178.6 b48 1355.2 2420.6 2442.4
b9 2836.9 4209.9 4209.9 b29 2395.4 3725.6 3725.6 b49 1777.8 3138.7 3146.9
b10 3787.2 5258.7 5258.7 b30 2819.0 4269.7 4269.7 b50 1869.2 3308.8 3312.6
b11 1817.1 3261.5 3401.5 b31 1679.1 3099.3 3099.3 b51 1414.7 2814.0 3095.4
b12 2109.1 2978.8 2983.5 b32 1960.7 2819.4 2832.9 b52 1366.8 2233.4 2250.7
b13 2765.1 3917.1 3917.1 b33 2267.2 3412.4 3412.4 b53 1591.5 2732.9 2732.9
b14 2842.7 4312.3 4312.3 b34 2469.3 3891.5 3914.8 b54 1881.8 3289.1 3304.1
b15 3308.0 4813.7 4813.7 b35 2818.0 4311.4 4311.4 b55 2025.1 3510.5 3510.5
b16 1847.2 3460.4 3591.2 b36 1683.7 3267.0 3273.6 b56 1368.1 2944.6 3180.0
b17 2434.8 3377.2 3393.7 b37 2322.3 3266.1 3268.6 b57 1559.7 2497.4 2497.4
b18 2853.4 4082.6 4082.6 b38 2559.7 3782.0 3788.0 b58 1845.3 3065.6 3065.6
b19 3551.0 5039.2 5039.2 b39 3038.1 4548.9 4548.9 b59 1797.8 3287.3 3287.3
b20 3512.8 5088.2 5088.2 b40 2830.6 4384.5 4385.9 b60 1837.3 3380.0 3380.0

As we can see in Table 6, all the SimBRLH solution costs are between the LB and the UB, as expected.
For 24 problem instances, the solution returned by our simheuristic is better than the best deterministic
solution when it is tested in the stochastic scenario (the UB column). From this, we can assert that
our SimBRLH is able to generate competitive results for the stochastic scenario. The reliability value is
calculated by simulation for each solution and represents the probability that all routes are completed
within maximum tour duration. For visualizing this trade-off between the deterministic cost of the
solutions and their reliability rate, which are conflicting objectives, a Pareto frontier of non-dominated
is presented. Accordingly, Figure 7a–c present the non-dominated solutions for three different instances
(b17, b37, and b57), each one belonging to a different inventory scenario. A solution is non-dominated
if, no other solution has a greater reliability and a lower or equal travel cost, or if no other solution
has a lower travel cost and a greater or equal reliability level. The b17 solution was randomly chosen,
while the b37 and b57 solutions are for the same problem but set in the two other inventory scenarios.
The square orange dot represents the best deterministic solution found by our MSBRLH, while the
remaining ones, round and blue, represent different solutions with a higher reliability rate, but with
higher operating costs.

As we can see in Figure 7, despite being the solutions with the lowest cost, the best deterministic
solutions (square dots) are the least reliable ones for stochastic scenarios. Particularly in Figure 7a,
the best deterministic solution is approximately only 21% reliable under stochasticity. By selecting
higher-cost solutions, the reliability rate reaches more than 70%. The same behavior is noticed in
Figure 7b,c, however, the deterministic b57 solution is reasonably reliable. Usually, low-cost solutions
are made up of a small number of large vehicle routes, in terms of travel distance and time. Therefore,
when increasing the travel time variability in those scenarios, the risk of exceeding the time constraint
is higher. On the other hand, higher cost solutions are built from a larger number of smaller routes,
and smaller routes exhibit a lower risk of violating the maximum tour duration constraint in stochastic
scenarios. In this way, decision-makers should consider that low-cost solutions under deterministic
scenarios might not necessarily be the best option when stochasticity is taken into account.

227

Algorithms 2020, 13, 237

Reliability (%)

(a)

Reliability (%)

(b)

Reliability (%)

(c)

Figure 7. Set of non-dominated solutions of problem instances b17 (a), b37 (b) and b57 (c).
(a) Non-dominated solutions for problem instance b17 (tight inventory). (b) Non-dominated solutions
for problem instance b37 (relaxed inventory). (c) Non-dominated solutions for problem instance b57
(abundant inventory).

6. Conclusions and Future Work

With the emergence of online retail channels and the popularization of mobile devices,
new retailing modes have become popular. Some of these retailing practices allow customers to
browse through different online stores and, then, to get the items bought directly delivered to their
homes. Hence, new versions of the vehicle routing problem (VRP) considering additional decision
variables and constraints have emerged. Omnichannel retailing leads to an integrated problem
combining the VRP and the pick-up and delivery problem. In omnichannel distribution systems, a set
of retail stores need to be replenished and, at the same time, products have to be sent from these stores
to final customers. The resulting omnichannel VRP consists in two stages: (i) a group of retail stores
that must be served from a distribution center; and (ii) a set of online consumers who must be served,
by the same fleet of cargo vehicles, from these retail stores.

For solving the deterministic OM-VRP, a simple heuristic was initially introduced. This heuristic
was then extended into a multi-start biased-randomized algorithm, which is tested against the
state-of-the-art methodologies. Our biased-randomized algorithm performs reasonably well in a
set of 60 instances of the deterministic OM-VRP, which allows us to extend it into a full simheuristic
for solving the stochastic version of the problem. This is a more realistic version of the OM-VRP where
travel times are modeled as random variables following a log-normal distribution. Our simheuristic
approach is also capable of measuring the reliability of any proposed solution when it is employed in a

228

Algorithms 2020, 13, 237

stochastic scenario. To the best of our knowledge, this is the first time that such a stochastic variant of
the problem has been solved in the literature. Regarding the simheuristic results, we conclude that the
best deterministic solutions may perform badly when used in a stochastic scenario. Those solutions
are often not reliable in terms of completing all routes within a time limit. On the other hand,
our simheuristic approach was able to generate reliable and competitive results for these stochastic
scenarios. Therefore, our methodology enables decision makers to choose the solution that better fits
his or her utility function in terms of cost and reliability level.

Two-echelon distribution systems, as the one considered here, are typically characterized by the
use of different fleets of vehicles at each distribution level. Apart from considering a single fleet of
vehicles for serving both delivery levels, the products ordered by customers were assumed to not
affect the vehicles’ capacity. Therefore, future directions of research include the consideration of
non-negligible sized online customer orders, heterogeneous vehicle fleets, and the incorporation of
positive demands for multiple product types for each customer. Regarding the solution approach,
different perturbation stages and local search operators could be tested in order to speed up the
convergence process towards near-optimal solutions. This might be particularly relevant when
considering large-sized instances.

Author Contributions: Conceptualization, L.d.C.M., C.B. and A.A.J.; methodology, L.d.C.M., C.B., P.J.C.-M., J.P.
and A.A.J.; software, L.d.C.M. and P.J.C.-M.; writing, L.d.C.M., C.B., P.J.C.-M., J.P. and A.A.J.; validation, L.d.C.M.,
P.J.C.-M., J.P. and A.A.J. All authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Acknowledgments: This work has been partially supported by Rhenus Freight Logistics GmbH & Co. KG and
by the Spanish Ministry of Science, Innovation, and Universities (PID2019-111100RB-C21, RED2018-102642-T).
We also acknowledge the support of the Erasmus+ Program (2019-I-ES01-KA103-062602).

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Abdulkader, M.M.S.; Gajpal, Y.; ElMekkawy, T.Y. Vehicle routing problem in omni-channel retailing
distribution systems. Int. J. Prod. Econ. 2018, 196, 43–55. [CrossRef]

2. Gallino, S.; Moreno, A. Integration of online and offline channels in retail: The impact of sharing reliable
inventory availability information. Manag. Sci. 2014, 60, 1434–1451. [CrossRef]

3. Hübner, A.; Holzapfel, A.; Kuhn, H. Distribution systems in omni-channel retailing. Bus. Res. 2016, 9, 255–296.
[CrossRef]

4. Quintero-Araujo, C.L.; Gruler, A.; Juan, A.A.; Faulin, J. Using horizontal cooperation concepts in integrated
routing and facility-location decisions. Int. Trans. Oper. Res. 2019, 26, 551–576. [CrossRef]

5. Crainic, T.G.; Laporte, G. Fleet Management and Logistics; Springer Science & Business Media:
Berlin/Heidelberg, Germany, 2012.

6. Cheng, B.Y.; Leung, J.Y.T.; Li, K. Integrated scheduling of production and distribution to minimize total cost
using an improved ant colony optimization method. Comput. Ind. Eng. 2015, 83, 217–225. [CrossRef]

7. Lenstra, J.K.; Kan, A. Complexity of vehicle routing and scheduling problems. Networks 1981, 11, 221–227.
[CrossRef]

8. Savelsbergh, M.W.; Sol, M. The general pickup and delivery problem. Transp. Sci. 1995, 29, 17–29. [CrossRef]
9. Martins, L.D.C.; Bayliss, C.; Juan, A.A.; Panadero, J.; Marmol, M. A savings-based heuristic for solving

the omnichannel vehicle routing problem with pick-up and delivery. Transp. Res. Procedia 2020, 47, 83–90.
[CrossRef]

10. Quintero-Araujo, C.L.; Caballero-Villalobos, J.P.; Juan, A.A.; Montoya-Torres, J.R. A biased-randomized
metaheuristic for the capacitated location routing problem. Int. Trans. Oper. Res. 2017, 24, 1079–1098.
[CrossRef]

11. Juan, A.A.; Kelton, W.D.; Currie, C.S.; Faulin, J. Simheuristics applications: dealing with uncertainty in
logistics, transportation, and other supply chain areas. In Proceedings of the 2018 Winter Simulation
Conference, Gothenburg, Sweden, 9–12 December 2018; pp. 3048–3059.

229

Algorithms 2020, 13, 237

12. Gonzalez-Martin, S.; Juan, A.A.; Riera, D.; Elizondo, M.G.; Ramos, J.J. A simheuristic algorithm for solving
the arc routing problem with stochastic demands. J. Simul. 2018, 12, 53–66. [CrossRef]

13. Gruler, A.; Fikar, C.; Juan, A.A.; Hirsch, P.; Contreras-Bolton, C. Supporting multi-depot and stochastic
waste collection management in clustered urban areas via simulation–optimization. J. Simul. 2017, 11, 11–19.
[CrossRef]

14. Mosquera, A.; Pascual, C.O.; Ayensa, E.J. Understanding the customer experience in the age of omni-channel
shopping. Icono14 2017, 15, 5. [CrossRef]

15. Verhoef, P.C.; Kannan, P.K.; Inman, J.J. From multi-channel retailing to omni-channel retailing: introduction
to the special issue on multi-channel retailing. J. Retail. 2015, 91, 174–181. [CrossRef]

16. Hübner, A.; Wollenburg, J.; Holzapfel, A. Retail logistics in the transition from multi-channel to omni-channel.
Int. J. Phys. Distrib. Logist. Manag. 2016, 46, 562–583. [CrossRef]

17. Heitz-Spahn, S. Cross-channel free-riding consumer behavior in a multichannel environment:
An investigation of shopping motives, sociodemographics and product categories. J. Retail. Consum. Serv.
2013, 20, 570–578. [CrossRef]

18. Beck, N.; Rygl, D. Categorization of multiple channel retailing in Multi-, Cross-, and Omni-Channel Retailing
for retailers and retailing. J. Retail. Consum. Serv. 2015, 27, 170–178. [CrossRef]

19. Dantzig, G.B.; Ramser, J.H. The truck dispatching problem. Manag. Sci. 1959, 6, 80–91. [CrossRef]
20. Laporte, G.; Mercure, H.; Nobert, Y. An exact algorithm for the asymmetrical capacitated vehicle routing

problem. Networks 1986, 16, 33–46. [CrossRef]
21. Fukasawa, R.; Longo, H.; Lysgaard, J.; de Aragão, M.P.; Reis, M.; Uchoa, E.; Werneck, R.F. Robust

branch-and-cut-and-price for the capacitated vehicle routing problem. Math. Program. 2006, 106, 491–511.
22. Barbarosoglu, G.; Ozgur, D. A tabu search algorithm for the vehicle routing problem. Comput. Oper. Res.

1999, 26, 255–270.
23. Nazif, H.; Lee, L.S. Optimised crossover genetic algorithm for capacitated vehicle routing problem.

Appl. Math. Model. 2012, 36, 2110–2117. [CrossRef]
24. Ezzatneshan, A. A algorithm for the Vehicle Problem. Int. J. Adv. Robot. Syst. 2010, 7, 14. [CrossRef]
25. Lin, S.W.; Lee, Z.J.; Ying, K.C.; Lee, C.Y. Applying hybrid meta-heuristics for capacitated vehicle routing

problem. Expert Syst. Appl. 2009, 36, 1505–1512. [CrossRef]
26. Lu, Q.; Dessouky, M. An exact algorithm for the multiple vehicle pickup and delivery problem. Transp. Sci.

2004, 38, 503–514. [CrossRef]
27. Ropke, S.; Cordeau, J.F. Branch and cut and price for the pickup and delivery problem with time windows.

Transp. Sci. 2009, 43, 267–286. [CrossRef]
28. Nanry, W.P.; Barnes, J.W. Solving the pickup and delivery problem with time windows using reactive tabu

search. Transp. Res. Part B Methodol. 2000, 34, 107–121. [CrossRef]
29. Pankratz, G. A grouping genetic algorithm for the pickup and delivery problem with time windows.

OR Spectr. 2005, 27, 21–41. [CrossRef]
30. Ropke, S.; Pisinger, D. An adaptive large neighborhood search heuristic for the pickup and delivery problem

with time windows. Transp. Sci. 2006, 40, 455–472. [CrossRef]
31. Li, Y.; Chen, H.; Prins, C. Adaptive large neighborhood search for the pickup and delivery problem with

time windows, profits, and reserved requests. Eur. J. Oper. Res. 2016, 252, 27–38. [CrossRef]
32. Ghilas, V.; Demir, E.; Van Woensel, T. An adaptive large neighborhood search heuristic for the pickup and

delivery problem with time windows and scheduled lines. Comput. Oper. Res. 2016, 72, 12–30. [CrossRef]
33. Ai, T.J.; Kachitvichyanukul, V. A particle swarm optimization for the vehicle routing problem with

simultaneous pickup and delivery. Comput. Oper. Res. 2009, 36, 1693–1702. [CrossRef]
34. Nadizadeh, A.; Kafash, B. Fuzzy capacitated location-routing problem with simultaneous pickup and

delivery demands. Transp. Lett. 2019, 11, 1–19. [CrossRef]
35. Berbeglia, G.; Cordeau, J.F.; Gribkovskaia, I.; Laporte, G. Static pickup and delivery problems: A classification

scheme and survey. Top 2007, 15, 1–31. [CrossRef]
36. Clarke, G.; Wright, J.W. Scheduling of vehicles from a central depot to a number of delivery points. Oper. Res.

1964, 12, 568–581. [CrossRef]
37. Bayliss, C.; Martins, L.D.C.; Juan, A.A. A Two-phase Local Search with a Discrete-event Heuristic for the

Omnichannel Vehicle Routing Problem. Comput. Ind. Eng. 2020, 148, 106695. [CrossRef]

230

Algorithms 2020, 13, 237

38. Martins, L.D.C.; Hirsch, P.; Juan, A.A. Agile optimization of a two-echelon vehicle routing problem with
pickup and delivery. Int. Trans. Oper. Res. 2020, 28, 201–221. [CrossRef]

39. Estrada-Moreno, A.; Ferrer, A.; Juan, A.A.; Bagirov, A.; Panadero, J. A biased-randomised algorithm for the
capacitated facility location problem with soft constraints. J. Oper. Res. Soc. 2019, 0, 1–17. [CrossRef]

40. Dominguez, O.; Guimarans, D.; Juan, A.A.; de la Nuez, I. A biased-randomised large neighbourhood search
for the two-dimensional vehicle routing problem with backhauls. Eur. J. Oper. Res. 2016, 255, 442–462.
[CrossRef]

41. Belloso, J.; Juan, A.A.; Faulin, J. An iterative biased-randomized heuristic for the fleet size and mix
vehicle-routing problem with backhauls. Int. Trans. Oper. Res. 2019, 26, 289–301. [CrossRef]

42. Dominguez, O.; Juan, A.A.; de La Nuez, I.; Ouelhadj, D. An ILS-biased randomization algorithm for the
two-dimensional loading HFVRP with sequential loading and items rotation. J. Oper. Res. Soc. 2016, 67, 37–53.
[CrossRef]

43. Al-Behadili, M.; Ouelhadj, D.; Jones, D. Multi-objective biased randomised iterated greedy for robust
permutation flow shop scheduling problem under disturbances. J. Oper. Res. Soc. 2019, 1–13. [CrossRef]

44. Ferone, D.; Hatami, S.; González-Neira, E.M.; Juan, A.A.; Festa, P. A biased-randomized iterated local search
for the distributed assembly permutation flow-shop problem. Int. Trans. Oper. Res. 2020, 27, 1368–1391.

45. Pages-Bernaus, A.; Ramalhinho, H.; Juan, A.A.; Calvet, L. Designing e-commerce supply chains: A stochastic
facility–location approach. Int. Trans. Oper. Res. 2019, 26, 507–528.

46. Rabe, M.; Deininger, M.; Juan, A.A. Speeding up computational times in simheuristics combining genetic
algorithms with discrete-Event simulation. Simul. Model. Pract. Theory 2020, 103, 102089.

47. Hatami, S.; Calvet, L.; Fernández-Viagas, V.; Framiñán, J.M.; Juan, A.A. A simheuristic algorithm to set up
starting times in the stochastic parallel flowshop problem. Simul. Model. Pract. Theory 2018, 86, 55–71.

48. Gruler, A.; Panadero, J.; de Armas, J.; Moreno, J.A.; Juan, A.A. A variable neighborhood search
simheuristic for the multiperiod inventory routing problem with stochastic demands. Int. Trans. Oper. Res.
2020, 27, 314–335.

49. Gruler, A.; Panadero, J.; de Armas, J.; Moreno, J.A.; Juan, A.A. Combining variable neighborhood search
with simulation for the inventory routing problem with stochastic demands and stock-outs. Comput. Ind. Eng.
2018, 123, 278–288.

50. Onggo, B.S.; Panadero, J.; Corlu, C.G.; Juan, A.A. Agri-food supply chains with stochastic demands:
A multi-period inventory routing problem with perishable products. Simul. Model. Pract. Theory
2019, 97, 101970.

51. Cabrera, G.; Juan, A.A.; Lázaro, D.; Marquès, J.M.; Proskurnia, I. A simulation-optimization approach to
deploy Internet services in large-scale systems with user-provided resources. Simulation 2014, 90, 644–659.

52. Panadero, J.; Doering, J.; Kizys, R.; Juan, A.A.; Fito, A. A variable neighborhood search simheuristic for
project portfolio selection under uncertainty. J. Heuristics 2020, 26, 353–375.

53. Lam, C.P.; Masek, M.; Kelly, L.; Papasimeon, M.; Benke, L. A simheuristic approach for evolving agent
behaviour in the exploration for novel combat tactics. Oper. Res. Perspect. 2019, 6, 100123. [CrossRef]

54. Lopes, T.C.; Michels, A.S.; Lüders, R.; Magatão, L. A simheuristic approach for throughput maximization
of asynchronous buffered stochastic mixed-model assembly lines. Comput. Oper. Res. 2020, 115, 104863.
[CrossRef]

55. Santos, M.S.; Pinto, T.V.; Júnior, Ê.L.; Cota, L.P.; Souza, M.J.; Euzébio, T.A. Simheuristic-based decision
support system for efficiency improvement of an iron ore crusher circuit. Eng. Appl. Artif. Intell.
2020, 94, 103789. [CrossRef]

56. Glover, F.W.; Kochenberger, G.A. Handbook of Metaheuristics; Springer Science & Business Media:
Berlin/Heidelberg, Germany, 2006; Volume 57.

57. Dulebenets, M.A.; Moses, R.; Ozguven, E.E.; Vanli, A. Minimizing carbon dioxide emissions due to container
handling at marine container terminals via hybrid evolutionary algorithms. IEEE Access 2017, 5, 8131–8147.
[CrossRef]

58. Dulebenets, M.A.; Kavoosi, M.; Abioye, O.; Pasha, J. A self-adaptive evolutionary algorithm for the berth
scheduling problem: towards efficient parameter control. Algorithms 2018, 11, 100. [CrossRef]

59. Anandakumar, H.; Umamaheswari, K. A bio-inspired swarm intelligence technique for social aware
cognitive radio handovers. Comput. Electr. Eng. 2018, 71, 925–937. [CrossRef]

231

Algorithms 2020, 13, 237

60. Brezočnik, L.; Fister, I.; Podgorelec, V. Swarm intelligence algorithms for feature selection: A review. Appl. Sci.
2018, 8, 1521. [CrossRef]

61. Slowik, A.; Kwasnicka, H. Nature inspired methods and their industry applications—Swarm intelligence
algorithms. IEEE Trans. Ind. Inform. 2017, 14, 1004–1015. [CrossRef]

62. Zhao, X.; Wang, C.; Su, J.; Wang, J. Research and application based on the swarm intelligence algorithm and
artificial intelligence for wind farm decision system. Renew. Energy 2019, 134, 681–697. [CrossRef]

63. Talbi, E.G. Metaheuristics: From Design to Implementation; John Wiley & Sons: Hoboken, NJ, USA, 2009;
Volume 74.

64. Faulin, J.; Juan, A.A.; Serrat, C.; Bargueno, V. Predicting availability functions in time-dependent complex
systems with SAEDES simulation algorithms. Reliab. Eng. Syst. Saf. 2008, 93, 1761–1771. [CrossRef]

65. Calvet, L.; Juan, A.A.; Serrat, C.; Ries, J. A statistical learning based approach for parameter fine-tuning of
metaheuristics. SORT-Stat. Oper. Res. Trans. 2016, 1, 201–224.

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

232

algorithms

Article

Simheuristics Approaches for Efficient Decision-Making
Support in Materials Trading Networks

Markus Rabe *, Majsa Ammouriova, Dominik Schmitt and Felix Dross

��������	
�������

Citation: Rabe, M.; Ammouriova, M.;

Schmitt, D.; Dross, F. Simheuristics

Approaches for Efficient

Decision-Making Support in

Materials Trading Networks.

Algorithms 2021, 14, 23. https://

doi.org/10.3390/a14010023

Received: 14 December 2020

Accepted: 8 January 2021

Published: 14 January 2021

Publisher’s Note: MDPI stays neu-

tral with regard to jurisdictional clai-

ms in published maps and institutio-

nal affiliations.

Copyright: © 2021 by the authors. Li-

censee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and con-

ditions of the Creative Commons At-

tribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

IT in Production and Logistics, Faculty of Mechanical Engineering, TU Dortmund, 44227 Dortmund, Germany;
majsa.ammouriova@tu-dortmund.de (M.A.); dominik.schmitt@tu-dortmund.de (D.S.);
felix.dross@tu-dortmund.de (F.D.)
* Correspondence: markus.rabe@tu-dortmund.de

Abstract: The distribution process in business-to-business materials trading is among the most
complex and in transparent ones within logistics. The highly volatile environment requires contin-
uous adaptations by the responsible decision-makers, who face a substantial number of potential
improvement actions with conflicting goals, such as simultaneously maintaining a high service level
and low costs. Simulation-optimisation approaches have been proposed in this context, for example
based on evolutionary algorithms. But, on real-world system dimensions, they face impractically
long computation times. This paper addresses this challenge in two principal streams. On the one
hand, reinforcement learning is investigated to reduce the response time of the system in a concrete
decision situation. On the other hand, domain-specific information and defining equivalent solutions
are exploited to support a metaheuristic algorithm. For these approaches, we have developed suitable
implementations and evaluated them with subsets of real-world data. The results demonstrate that
reinforcement learning exploits the idle time between decision situations to learn which decisions
might be most promising, thus adding computation time but significantly reducing the response
time. Using domain-specific information reduces the number of required simulation runs and guides
the search for promising actions. In our experimentation, defining equivalent solutions decreased the
number of required simulation runs up to 15%.

Keywords: simulation; optimization; machine learning; logistics; distribution networks

1. Introduction

Managing distribution networks is a challenging task for decision-makers. The specific
challenge in this field is the complex structure of a typical network, which is a multi-echelon
system with horizontal and vertical shortcuts in combination with huge numbers of nodes
as well as transported parts, each kind of which is defined as a stock keeping unit (SKU). In
addition, this kind of logistics operates in a highly volatile environment, requiring continu-
ous adaptations by the responsible managers who need to conduct frequent maintenance
and improvement decisions, especially on tactical horizons. In practice, decision-makers
face a substantial number of potential improvement actions, spanned by the huge number
of objects that can and have to be combined for suitable maintenance of the network [1,2].
Furthermore, conflicting goals, such as simultaneously maintaining a high service level
and low costs, characterized by specifically defined key performance indicators (KPIs) [3],
add to the complexity of the problem. Short delivery times versus low costs as well as a
large number of delivered SKUs by their due date versus a large number of fully completed
orders are other examples of conflicting goals in the network.

The first challenge is the specific shape of the problem. Traditional parameter optimi-
sation tasks—easily found in the broad literature—are described by a given (finite) number
of parameters, each with a given number of possible values. The size of the solution space,
in this case, is defined as the product of the number of all parameters. However, in the
network covered in this paper, there is an (in principle) unlimited number of actions to

Algorithms 2021, 14, 23. https://doi.org/10.3390/a14010023 https://www.mdpi.com/journal/algorithms233

Algorithms 2021, 14, 23

change the network, each of which could be any of a given limited set of actions, applied
to any of the object combinations. Therefore, traditional algorithms are not applicable
because of the daunting combinatorics. Just as an example, traditionally a parameter
entry of the algorithm stands for a specific characteristic of the underlying system. Here,
however, it only stands for any kind of action. Therefore, it is also the case that the sequence
of the elements is clearly relevant, in contrast to the cases that are usually found in the
state-of-the-art literature.

Due to their complexity, real-world networks cannot obtain a closed mathematical
formulation of the goal functions [4]. Therefore, an application might resort to a three-stage
solution procedure. In the first stage, changes to the system are defined that are expected
to keep or even improve the KPIs. In the second stage, a discrete event simulation (DES)
model [5] is run to determine basic logistical data, such as throughput times, in-time
delivery, or utilisation of resources. In the last stage, these data are used as in the real world
to calculate the KPIs, which then serve to judge the quality of the changes that have been
set up in the first stage.

This three-stage process can, of course, be conducted manually by human experts, but
there have been a number of trials to automate the optimisation of distribution networks.
Unfortunately, due to the huge solution space, there is again no closed mathematical for-
mulation to find a minimum or maximum of the desired KPIs, leading to the necessity
of applying heuristic algorithms, which do not deliver the optimum, but—hopefully—a
“suitably good” solution in finite time [6,7]. Specific heuristics would raise extremely
high development and implementation effort for such complex applications. Therefore,
reported implementations exploit metaheuristics, often biology-inspired, such as evolu-
tionary algorithms [8]. Metaheuristics are optimisation algorithms that are—at least up
to a point—independent of the specific application problem, with the great advantage
that new developments can be exploited for a multitude of applications, and, thus, very
sophisticated and efficient algorithms are available.

The scientific solution approach applied in this paper is consequently the method of
simheuristics [9], which combines DES used as an evaluation function with metaheuristics
for the optimisation. The major drawback of this approach is the time to produce promising
action proposals. The tremendous time requirements originate from the huge solution space
described before in combination with the significant runtimes of the complex simulation
models [10], the latter being in the range of minutes to even hours per single run.

There have been very different approaches proposed to face this problem. Optimisa-
tion of the metaheuristics performance itself is hardly promising, as the processing of these
algorithms covers only a very minor part of the total run time—by far the major part is
covered by the DES. An obvious idea is to develop advanced simulation models that can
evaluate the distribution system faster. Alternatives address the effort to obtain statistical
relevance, for example, find better controls for the number of required replications or adapt
such numbers to the degree that a specific solution seems to be promising [11–13]. This
article explores two different innovative ways.

Actually, the real performance challenge is not to minimise the effective computation
time TC of the computer resource, but to reduce the time required to present a decision
proposal TD, defined as the time span between the availability of data and the provision
of acceptable solution proposals. With metaheuristics, such as an evolutionary algorithm
(EA) [7], TD can only be reduced with respect to TC when additional resources are applied.
For example, using four computer processors instead of one will cut TD to about 25% of TC.
With ten computers, it will reduce to about 10% (assuming that the distribution overhead
is negligible). However, the tactical decisions are performed, for example, once per month
with a decision request three days after availability of field data in the data warehouse.
Thus, ten computers might idle 27 days waiting for the next decision request. The solution
approach is to apply machine learning, where a learning algorithm is operating for 90% of
the time, and in the concrete decision situation the acquired knowledge is used to quickly
find promising solutions. We consider deep reinforcement learning for this purpose, as

234

Algorithms 2021, 14, 23

it allows us to estimate the impact of specific changes, even if these have never been
simulated in the past, by using the “fuzzier” knowledge within the deep learning’s neural
network [14,15].

The second innovative idea is to get domain-specific information (DSI) back into our
metaheuristic algorithm [16]. We analyse three different approaches to use contextual
information for the acceleration of the heuristics machine. One approach exploits experi-
ence from previous (actual or simulated) applications of actions, following the idea that
actions that have shown to be helpful in the past might lead to good results in the future as
well. This method also allows us to exploit the idle time between the decision periods to
collect experience about the actions’ success and, thus, to improve the forecast power of the
success indicators. A second approach uses the classification of actions that either change
the network’s structure or else just its parameters, assuming that structural changes would
be more targeted if applied among the first actions of the action plan. The last idea assumes
that the actions are not independent, and one action being performed will influence the
impact of further actions. In this approach, the correlation among actions is computed for
data from the past and projected into future action plans. Again, idle time can be used to
calculate and continuously improve the correlation indicators.

Finally, the number of simulation runs could be reduced, and we discuss two ways
towards this goal. On the one hand, different action plans are analysed to determine
whether they can be predicted to gain identical results without the need to simulate both
of them. This would lead to performance improvement without reducing the result quality
(or, from a different point of view, to achieve better results within the same time frame).
On the other hand, the reduction of the solution space itself by grouping actions into
fewer selectable items is considered [17]. It can be assumed that this approach, quite
usual in real-world decision making, will lead to a significant reduction of simulation runs.
However, the reduction of the research space might exclude some even better solutions,
which in fact could be acceptable if the method leads to better solutions within a limited
given time frame.

For all these approaches, we have developed suitable implementations and evaluated
them with subsets of real-world data. In this paper, we give an overview of the imple-
mentation, present exemplary results, and make conclusions about the suitability of the
investigated approaches. The paper is organised as follows—Section 2 presents the related
work and Section 3 the considered optimisation approaches. Section 4 introduces the
general ideas and architecture of the developed logistics assistance system, and it clarifies
the relationship to real-world data. Sections 5–7 discuss the above-mentioned approaches
one by one, followed by an evaluation of the novel concepts in an evaluation based on
real-world data in Section 8. The discussion relates the major findings to the previous state
of the art and derives future research paths, followed by a summary of the achievements in
Section 9.

2. Related Work

2.1. Simulation of Distribution Systems

Management of logistics distribution systems is a complex task; hence, decision-
makers use models to represent and study these systems. A model is a “simplified re-
production of a planned or existing system with its processes in a different conceptual
or concrete system” [18] (p. 3). In the models, decision variables are under the control
of decision-makers and present the input to the models [19]. Decision-makers change
the values of decision variables and use the output of models to study the relationships
between the variables and the performance of the modelled system.

Distribution systems have a high degree of interaction between their entities and
are characterised as having time-dependent variables [18]; thus, mathematical models [5]
reach their limits in modelling distribution systems and, instead, simulation is used to
model them.

235

Algorithms 2021, 14, 23

Simulation studies are conducted in several phases that are, for example, illustrated
in the procedure model presented by Rabe et al. [20]. This model shows the phases
targeted to guarantee the building of a representative model of the system under study. It
highlights the importance of verification and validation of the model as well as the data in
the simulation study [21].

A variety of model representation techniques using simulation modelling have been
developed, such as DES [22]. The discrete event simulation is characterised as modelling
a system by focusing on its discrete states. Fanti et al. [23] claimed that DES is the
most preferred simulation approach for logistics systems. Pujawan et al. [24] modelled a
cement distribution system using DES to estimate costs and service level. In another study,
Fang and Li [25] evaluated various inventory scenarios using DES. Ivanov [26] studied
the effect of disruption at one point in a network using DES; he used DES to perform a
sensitivity analysis.

2.2. Optimisation of Distribution Systems

In optimisation problems, decision variables are optimised. These variables might
have continuous values or countable values [7]. Optimisation problems with countable
decision variables are integer programming problems, sometimes called combinatorial
optimisation problems [27]. Such problems are based on combinatorics [28], in which a
solution is formed from a finite space of elements to optimise an objective function [29].
Optimisation of distribution systems could be formulated as a combinatorial optimisation
problem [30], such as the travelling salesman problem, in which the task is to arrange a
tour through a number of cities to minimise the total travelled distance.

Greedy algorithms have been used to find the approximately optimal solutions of
simple combinatorial optimisation problems [31]. Adding constraints to these problems
or increasing their size increases the difficulties to solve them, and the problems might
become NP-hard [4]. The travelling salesman problem is an example of an NP-hard
problem that is solved by approximate methods (such as metaheuristics) to find promising
feasible solutions [31]. “A metaheuristic is a high-level problem-independent algorithmic
framework that provides a set of guidelines or strategies to develop heuristic optimisation
algorithms” [32] (p. 960).

Researchers used metaheuristics to solve a variety of combinatorial optimisation
problems, such as Osaba et al. [33]. Cybulski [34] found that evolutionary algorithms exhib-
ited promising performance in different benchmark combinatorial optimisation problems.
Other researchers combined metaheuristics and other methods in a hybrid approach [7],
such as the simheuristics approach [35].

2.3. Simheuristics

For the optimisation of complex systems, simulation and optimisation methods are
combined in simulation-optimisation methods [36], which depend on the optimisation algo-
rithm that is used and the simulation purpose. The VDI-Guideline 3633.12 [37] classifies the
relation between simulation and optimisation algorithms into four categories: “Category
A” in which simulation follows optimisation, “Category B” with optimisation following
the simulation, “Category C” integrating an optimisation algorithm in the simulation, and
“Category D” in which simulation is integrated in an optimisation algorithm.

A variety of optimisation algorithms could be combined with simulation, for example,
metaheuristics. The integration of simulation in metaheuristics is called simheuristics [35]
and is classified as “Category D” by VDI-Guideline 3633.12 [37]. Simheuristics combines
the power of metaheuristics and simulation. The metaheuristic algorithm forms solutions
that are evaluated by simulation with respect to the objective function in the optimisa-
tion problem.

Researchers have used simheuristics to solve a variety of combinatorial optimisation
problems. For example, Juan and Rabe [35] proposed an approach that outperformed a
traditional method to solve an inventory routing problem. They combined Monte Carlo

236

Algorithms 2021, 14, 23

simulation and the best-known heuristic that solves the problem. Juan et al. [9] proposed
a framework to handle a stochastic type of combinatorial optimisation problems with
moderate volatility. Jackson et al. [38] combined DES and a genetic algorithm to handle the
stochasticity in an inventory management problem. Discrete event simulation and a genetic
algorithm were used to design a supply network by Gutenschwager et al. [39]. Pages-
Bernaus et al. [40] investigated a facility location problem. They found that a simheuristic
approach outperformed other stochastic programming methods to solve the problem.

2.4. Literature Summary and Contributions

Distribution networks are complex networks with a large number of possible actions
that might be used to improve them. These networks are difficult to model adequately in
a mathematical formulation, and, thus, simulation is often used for their study. In order
to optimise such networks with their conflicting goals, metaheuristic algorithms could be
used to provide a “good solution”. Because these networks are complex, researchers have
found it beneficial to combine simulation and metaheuristics in a simheuristic approach to
optimise them. This approach forms the basis for a logistics assistance system (LAS) that is
described in Section 4. In the LAS, actions are selected to construct action plans in which
the order of the actions is significant. However, the LAS has a long decision proposal time,
because simulation forms the major part of the optimisation run time.

Researchers have suggested approaches to reduce the number of evaluations in an
optimisation algorithm, such as screening solutions [41]. Other researchers proposed
random biased selection of the solution’s elements to improve the optimisation [42]. None
of these strategies addressed the presented action plan problem that is a combinatorial
optimisation problem in which actions are selected.

Since decision-makers look for a “good solution” in a reasonable time for the decision
proposal even in large and complex networks, our paper proposes innovative approaches
to reduce this time. In the first approach, reinforcement learning is proposed to reduce
the decision proposal time. Sections 3.2 and 5 describe reinforcement learning and its
innovative implementation in the LAS. Another innovative approach defines a network’s
domain-specific information and utilises it to recommend actions (Section 6). The last pro-
posed approaches reduce the number of simulation runs by defining equivalent solutions
and reducing the actions’ search space (Section 7).

3. Optimisation Approaches

3.1. Evolutionary Algorithms

Evolutionary algorithms are metaheuristic algorithms developed to solve optimisation
problems. In evolutionary algorithms (EAs), solutions are represented as individuals in a
population. The individual’s definition and encoding depend on the optimisation problem
to be solved [43]. The individual might be presented as a string of binary numbers or real
numbers. A fitness value assigned to each individual represents the objective function
value associated with it. These individuals evolve in each generation and form a new
population. The fittest individuals evolve inspired by the theory of evolution defined by
Darwin. The selection of the individuals to evolve is facilitated by a biased selection, such
as roulette-wheel or tournaments [44,45].

In addition to “individual”, “population”, and “fitness” terms used in the EA, other
terms are used, such as “offsprings”, “crossover”, and “mutation” [7,43,45]. Offsprings
are individuals from the population that are reproduced using crossover and mutation.
In a crossover, parts of the individuals’ genes are exchanged between two individuals.
The crossover form depends on the number of exchange points along the individual’s
length, for example, one-point crossover, two-point crossover, and uniform crossover.
In uniform crossover, multiple crossing points are defined along the individual’s length.
Mutation modifies one individual to reproduce an offspring. One or more parts of the
individual are changed. Both crossover and mutation can be customised based on the
optimisation problem.

237

Algorithms 2021, 14, 23

The evolution of the individuals continues until a termination criterion is met, such
as reaching a specified number of generations or stagnation [7,45]. Stagnation is defined
when the best-found solution is not changed by the algorithm over a specific number
of generations.

Evolutionary algorithms can handle optimisation problems in different domains. For
example, an EA was used to minimise the service costs in marine container terminal
operations [46]. Pasha et al. [47] compared an EA and other algorithms for solving the
vehicle routing problem with a “factory-in-a-box” concept. The EA found the nearest
solution to the optimum in small-scale problem instances and better solutions than other
algorithms in large-scale problem instances. Evolutionary algorithms can detect promising
regions in the search space and be utilised in the learning process while solving optimisation
problems [48,49]. In online optimisation, the problems’ features change over time and are
unknown in advance. A learning-based EA was proposed to handle this problem [49].
Additionally, EAs were used to solve combinatorial optimisation problems, such as the
vehicle routing problem and the travelling salesman problem [7,48].

Evolutionary algorithms can handle multi-objective optimisation problems [50]. In
these problems, the non-dominated solutions, which outperform other solutions at least
in one of the objective functions, are stored, and the algorithm looks for solutions along
the Pareto front. Moradi [48] used a multi-objective evolutionary algorithm to minimise
the number of vehicles and the total travelled distance in the vehicle routing problem.
Researchers have utilised EAs in optimisation problems, including minimisation of energy
consumption. For example, Ji et al. [51] solved a multi-objective green express cabinet
assignment problem in urban last-mile logistics using probability-guided EA. They min-
imised total costs and energy consumption. The total makespan and total energy consump-
tion were minimised in the flow shop scheduling problem with sequence-dependent setup
times [52]. Petrowski and Ben-Hamida [43] stated that EAs for multi-objective problems
provide promising solutions in problems with less than four objective functions. Other
approaches proposed combining an EA and DES to solve optimisation problems, such as
optimising lead time and total inventory holding costs in job sequencing and buffer size
optimisation problems [53].

3.2. Deep Reinforcement Learning

In the field of reinforcement learning, the primary goal is to produce autonomous
agents that interact with their environments to learn optimal behaviours, improving over
time through trial and error. Although considerable successes in this field have been
reported in the past [14,54,55], previous approaches often lacked scalability and were
inherently limited to fairly low-dimensional problems [56]. In order to apply reinforcement
learning to problems approaching real-world complexity, agents need to be able to derive
efficient representations of the environment from high-dimensional inputs, and use these
representations to generalize past experiences to new situations [15]. In recent years,
improvements in the ability to process large amounts of data have led to considerable
progress in this field [57]. A major reason for the development in this regard is the
rise of deep learning, a class of representation learning with multi-layer artificial neural
networks [58–60]. The neural networks are called deep, because they have numerous
hidden layers between the input layer and the output layer and have, thus, an extensive
internal structure [61–63]. Combining several layers, a deep neural network can be used to
find compact low-dimensional representations in high-dimensional data, for example, in
audio, text, and images. Hence, deep neural networks can, hence, be used to progressively
build up abstract representations of data, and, thus, enable abstract learning. A particularly
successful type of deep neural network is the Convolutional Neural Network (CNN) [15,64].
CNNs leverage the fact that the analyzed data are composed of smaller details—referred
to as features—and trigger a decision about the entire data set by analyzing each feature
in isolation. By using the mathematical concept of convolution, CNNs are able to learn
patterns, for example, to associate object categories to raw image data. Applied in the

238

Algorithms 2021, 14, 23

context of reinforcement learning, a CNN can be used to approximate the internal value
function of the agent, and, thus, to map actions to constellations of data in a particular
state [65]. In this regard, effective progress has been made in addressing the curse of
dimensionality in the field of reinforcement learning [15,56]. Deep reinforcement learning is
supposed to be able to scale to decision-making problems that were previously unsolvable,
for example, settings with high-dimensional state and action spaces. Recent work in this
field has shown outstanding progress, which started with an algorithm that could learn
to play a range of Atari 2600 video games at super-human level, directly from screen
pixels [65]. A comprehensive survey of efforts in deep reinforcement learning can be found
in Reference [66].

4. Solution Architecture

4.1. A Logistics Assistance System

A logistics assistance system has been developed to assist decision-makers in distri-
bution networks using the Python programming language [16]. This LAS utilises basic
components related to a transactional system in a distribution network, such as Enterprise
Resource Planning. Figure 1 shows the architecture of the LAS. The data are extracted from
the transactional system and loaded into a data warehouse. KPIs are calculated, and any
deterioration of the value of a KPI beyond the previously assigned limit triggers an alert
in a corresponding key performance indicator management system (KPIMS) [67]. These
systems recommend potential actions that are designed to improve the value of the KPI. A
recommended action by the KPIMS is expected to increase the intrinsic value of the KPI
that triggers the alert, but it could reduce the intrinsic value of other KPIs. Since each of
the KPIMS recommends actions independently from the others, the LAS aims to consider
the impact of the actions on the entire network and improve the network’s performance as
a whole.

Figure 1. The architecture of the developed Logistics Assistance System (LAS) [68].

239

Algorithms 2021, 14, 23

In addition, the data are extracted from the transactional system by the model builder
into a data model to form the database of a data-driven simulation tool (Figure 1). Rabe and
Dross (2015) proposed the use of data-driven simulation tools to apply actions using SQL
statements, such as SimChain, which is a generic supply chain simulation model based
on the Siemens Plant Simulation tool [69]. The developers of the LAS used SimChain to
model a similar distribution network previously [70].

In the LAS, actions are derived from action types [71], which are defined by simulation
experts. An action type represents a generic description of an action, for example, centralis-
ing an SKU in a site without specifying the SKU and the site. To derive actions from the
action types, input parameters are specified, for example, SKU 1 in site A. Action types are
defined in the action type designer by decision-makers of the LAS using a domain-specific
modelling language. The action types are stored in an action type directory that can be
accessed by the KPIMS and the heuristic unit in the simheuristic framework (cf. Figure 1).
The actions recommended by the KPIMS and the actions derived from action types form
the search space of actions for the heuristic unit.

In the heuristic unit, the simheuristic approach is represented by simulation and
a metaheuristic algorithm. The metaheuristic algorithm explores the search space and
constructs action plans to be evaluated. The changes applied by actions are executed as
SQL statements in the database. These data are then transferred to a “shadowed data
warehouse”, which mimics the calculation of the operational KPI, but for simulated data.
The shadowed data warehouse is introduced in order to avoid any potential mix-up of the
simulated (experimental) data with the real operational data sets. The (simulated) KPIs
calculated from the shadowed data warehouse form the objective values to be optimised by
the metaheuristic. The construction and evaluation continue until a termination condition
is met. Then, suggested actions as an action plan are recommended to decision-makers,
who are the main users of the LAS.

4.2. Semantic Model for Action Types in Wholesale Logistics Networks

To increase the LAS’s flexibility and usability,decision-makers can model and integrate
user-generated action types. For this purpose, decision-makers can utilize a specifically
developed domain-specific modelling language, which is tailored to the model of action
types in wholesale logistics networks. Accessing the developed domain-specific modelling
language can be performed via the Action Type Designer, an integrated development
interface (IDE), providing all benefits of common IDEs such as code completion or syntax
highlighting.

All action types are based on the same semantic model. Therefore, the semantic model
of an action type must be capable of representing all required information for all possible
action types in a logistics network. Action types can be instantiated by adding type-specific
parameters to the semantic model’s attributes [72].

The attributes of the semantic model serve different purposes and are, thus, divided
into different categories. The first category of attributes has informative purposes, such as
the action type’s name , description, id, the owner’s id, and a list of ids for representing the
involved modellers.

Action types represent changes to the underlying simulation model. For the spec-
ification of these changes, functional attributes are used. The attribute input is used to
define the affected entities of the logistics network. To specify the effects on those entities,
statements of the domain-specific modelling language are used.

Meta information of action types is stored in meta-attributes of the semantic model.
For example, it may take some time to fully execute a set of actions in the real logistics
network. Therefore, the required time for executing actions is stored in the attribute time till
effect. Additionally, executing an action may entail costs. The costs of an action are stored
in the attribute total costs.

The semantic model additionally includes domain-specific information [68,73,74], for
example, the frequency or the impact of an action type on the logistics network, which can be

240

Algorithms 2021, 14, 23

stored in corresponding attributes of the model. Changes to the network can be categorised
into two different groups, structural and parametrical changes. A structural change alters the
structure of the network, for instance, adding new routes, sites, or SKUs to a site. Actions
that affect attributes of the logistics network’s entities are categorised as parametrical, for
example, increasing the safety stock or changing the frequency of a route. In addition,
correlations between different action types and their actions’ impact on the network can be
modelled. For example, when “centralising an assortment”, “increasing the safety stock”
of any centralised SKU might be a promising candidate for further actions. Thus, a positive
relation is defined between “centralise” and “increase the safety stock”.

After the parameterisation of an action type, the corresponding derived actions can
be stored in the semantic model’s attribute actions. An overview of the semantic model is
given in Table 1.

Table 1. The semantic model for action types in wholesale logistics networks, based on Reference [72].

Attribute Description Category

Actions List with all derived actions, depending on the logistics network’s state. Functional

Correlation Domain-specific information that specifies possible correlations and their
correlation factors with other action types. Domain-specific

Description Free description of the action type. Informative

Frequency Domain-specific information that specifies the frequency of the
implementation of derived actions. Domain-specific

Id Id of the action type. Informative

Impact Domain-specific information that specifies the impact of derived actions to the
underlying logistics network’s performance. Domain-specific

Input List of input parameters. Functional

Modelers List with ids of the involved modelers. Informative

Name Name of the action type. Informative

Owner Owner of the action type. Informative

Parametrical Domain-specific information that specifies, for an action type, whether the
corresponding changes are parametrical. Domain-specific

Statements List of statements, representing changes to the underlying logistics network. Functional

Structural Domain-specific information that specifies whether the corresponding changes
of the action type are structural. Domain-specific

Time till effect Required time for a corresponding action to take effect. Meta

Total costs The costs associated with the implementation of derived actions. Meta

4.3. Abstracting the Modelling of Action Types from the Underlying Simulation’s Data Base

Actions are closely related to the underlying simulation’s data model, resulting in
multiple issues. Modelling action types requires in-depth knowledge of the database’s
structure, for example, for specifying the areas of the database that are affected by applying
corresponding actions. Another issue arises when the database’s structure changes, for
example, when the simulation software is updated or a new simulation tool is introduced.
To address these problems, the authors propose to decouple the modelling of action types
from the underlying simulation data model [75].

When applying an action, a set of corresponding entities of the logistics network
needs to be adapted, accordingly. In a data-driven simulation, an entity can be described
by entries in a database’s table. To identify the correct entities, the table’s name and the
entities’ attributes are defined as part of statements in the modelling process of an action
type (Section 4.2). Thus, when applying an action, multiple entries in the database might
be changed (Figure 2).

241

Algorithms 2021, 14, 23

However, the simulation’s database and, therefore, the data model, are typically
predefined by the simulation tool that is being used. Thus, the data model is not easily
adjustable. When decoupling the modelling of action types from the data model of the
underlying simulation, an additional data model is required: an enterprise-specific data
model. This enterprise-specific data model can be structured in the way that best suits the
decision-makers’ knowledge and needs.

Using an enterprise-specific data model, action types can be specified against this
model and not against the simulation data model. To correctly convert actions into changes
to the simulation data model, each attribute of the simulation data model must be distinctly
linked to the corresponding attribute of the enterprise-specific data model (Figure 3). Such a
mapping can be defined, for example, in the form of a JSON-file. In the process of executing
an action, the information for the mapping between the two models is read from the
JSON-file, so that changes can be applied to the simulation data model, accordingly [75].

Figure 2. Applying an action directly to the simulation’s database.

Figure 3. Applying an action to the enterprise-specific data model and mapping the resulting changes
to the simulation data model.

By utilizing this approach, action types can be modelled against an enterprise-specific
data model, which can be adapted to the modellers’ knowledge and needs. This approach

242

Algorithms 2021, 14, 23

allows decision-makers to become modellers and to specify action types against a common
data structure and with known names of the entities and their attributes. Another advan-
tage of this approach is that when the simulation data model changes, only the mapping
must be adjusted and not all the definitions of the action types. This saves resources,
reduces the risk of faults, and improves the acceptance of the method in general.

5. Addressing the Performance Challenge: Deep Reinforcement Learning

As mentioned above, creating an algorithm that is able to master a varied range of
challenging tasks by teaching itself in a trial-and-error procedure is one of the major goals
of reinforcement learning. Reinforcement learning in general considers tasks in which
an agent interacts with an environment through a sequence of observations, actions, and
rewards. To use reinforcement learning successfully in situations approaching real-world
complexity, however, agents are confronted with a challenge: they have to derive efficient
representations of the environment from high-dimensional sensory inputs and use these to
generalize past experiences to new situations (cf. Section 3.2). The authors of Reference [15]
approached this challenge by creating an algorithm that used a Deep Q-Network (DQN) as
the central value function approximation.

Almost all reinforcement learning algorithms are based on estimating value functions.
The algorithm used for the DQN agent, Q-learning, is based on the Q-function, a function of
state-action pairs that expresses how beneficial it is for the agent to perform a given action
in a given state with respect to the expected return [76]. More formally, the Q-function
expresses the value of taking an action a in a state s under a policy π with respect to the
expected return starting from s, taking the action a, and thereafter following policy π. For
small problems, the Q-function can be stored as a table, but for larger problems, this table
quickly gets too large to be stored in memory. Moreover, the time and data required to fill
the table accurately would be too high. In many tasks to which one would like to apply
reinforcement learning, most states encountered will never have been experienced exactly
in the same way before. The only way to learn anything at all in these cases is to generalize
from previously experienced states to ones that have never been seen before. Hence, for
larger problems, the key issue is that some sort of function approximation is included. In
this regard, advances in deep neural networks have made it possible to approximate the
Q-function, for example, with a CNN.

Mnih et al. [15] tested an agent with a DQN on the Arcade Learning Environment
(ALE), which is a software framework designed to simplify the development of agents that
play arbitrary Atari 2600 games and, therefore, offers a method to evaluate the development
of general, domain-independent reinforcement learning agents [77]. Its source code is
publicly available on the Internet [78]. Through the ALE, researchers have access to several
dozen games through a single common interface. Eighteen actions can be input to the
game via a digital joystick: three positions of the joystick for each axis, plus a single
button. The DQN approach of Reference [15] outperformed the best existing reinforcement
learning methods on 43 of the 49 games without incorporating any of the additional prior
knowledge about the Atari 2006 games used by other approaches. In conclusion, the DQN
algorithm trained itself and reached super-human performance just by using the game
pixels as the observation and the game score as the reward signal from the environment.

The work by Mnih et al. [15] inspired the authors to test the DQN agent as a reinforce-
ment learning approach to the performance challenge, as discussed earlier in this article (cf.
Section 1). For the experiments, the general working principles of the DQN agent have been
retained, but the parameters of this agent have been slightly adjusted. The implementation
of the DQN has been built with the Python API for TensorFlow, an open-source software
library for numerical computations using data flow graphs [79]. After the reinforcement
learning agent applies an action to the database, the simulation model is instantiated and
the simulation is run as described above. A reward calculation function generates the
reward signal from the simulation output data by computing a scalar reward signal, using
the changes in costs and performance. The reward signal is then routed back to the DQN

243

Algorithms 2021, 14, 23

for training [80]. In order to express the state s of the logistics system configuration as
an image, a feature extraction function selects the different features from the tables in the
MySQL database and composes them into an image (Figure 4).

Figure 4. Graphical state representation (small image) and details of two exemplary image segments
(large images) [80].

The image has been designed to look similar to an Atari game screen in order to
make the problem accessible for the DQN agent. The general idea behind the design
of the state representation as an image is to profit from the research regarding further
domain-independent agents in the future.

Since the agent needs to learn a mapping from states to actions, the state representation
also needs to encode information that enables for concluding from states to actions. For
instance, if the agent is intended for learning to make a decision regarding the inventory,
useful information to make such a decision, for example, inventory levels and customer
demands, needs to be included in the state representation. For actions regarding, for
example, machines, other information is needed in the state representation. Thus, the
information needed in the state representation heavily depends on the action types available
in the system (see Section 4.2). Consequently, the features that have to be selected from the
MySQL database for the state s are derived from the action types used. In order to address
the requirements regarding the scalability of the state representation, the state image is
built from different image segments. Each segment corresponds to a segment type, similar
to the previously explained relationship between actions and action types. The size of each
segment is fixed. The actual segment size is derived from the size of the largest segment
type. The overall design was chosen to enable the CNN to more easily identify patterns
within the state data.

In order to generate a scalar reward signal for the reinforcement learning agent,
a decrease in the total costs after taking an action is translated into a positive reward.
An increase in the total costs, on the other hand, is translated into a negative reward.
Furthermore, besides the bare costs, the difference in the logistics performance before and
after applying the action is also incorporated into the reward. The authors have decided to
define a penalty cost that is multiplied with the percentage change in the service level. If
the service level decreases, a penalty is generated. If the service level increases, a bonus
payment is generated. The service level costs are meant to express the loss of customer
orders in the future due to unsatisfied customers, or the increase of customer orders from
satisfied customers. The difference in the logistics costs and the service level costs are
summed up and interpreted as the total costs caused by an action. Finally, these total costs
are scaled down to generate the final reward signal, which is sent back to the agent. The
scaling is done to get as close as possible to the architecture used in the original DQN
implementation.

6. Addressing the Performance Challenge: Exploiting Domain-Specific Information

The performance of the LAS can be evaluated based on the impact of the recommended
action plans on the distribution network and on the number of simulation runs. This section

244

Algorithms 2021, 14, 23

focuses on guiding the metaheuristic algorithm in the heuristic unit to find promising
actions to be added to the action plan. The approach investigates the potential actions
and explores information to guide the search. This information is called domain-specific
information and is added to the action type definitions, such as the type of changes, success,
and correlation (Section 4.2) [68,73,74].

6.1. Utilizing the Characteristics of Action Type Classes

The first illustrated DSI concerns the type of changes applied by an action. An action
can change a parametrical value of an entity in a distribution network, for example, the
stock level of an SKU at a site. Actions of this kind are called parametrical actions. For
example, an action that increases the stock level of SKU 1 at site A is a parametrical action.

Other actions might add an entity to the network or delete an entity. These actions
cause structural changes in the network, such as centralising SKU 1 at site A. These actions
cause structural and parametrical changes. Centralising SKU 1 at site A is realised by
several changes, for example, adding SKU 1 to site A if it is not at site A, removing SKU 1
from the other sites, establishing transport relations between site A and the other sites if
not currently existing, and specifying the parametrical values of SKU 1 at site A. This action
should define the parametrical values for the newly added entities, for example, SKU 1 at
site A, and the transport relations between site A and the other sites.

Accordingly, actions are classified as structural or parametrical based on their type
of changes. Structural actions cause significant changes in the network. Their changes
delete the impact of previously applied parametrical actions if they affect the same entity
in the network. For example, action a1 increases the stock level of SKU 1 at site B, and a2
centralises SKU 1 at site A. Action a2 removes SKU 1 at site B from the network when it is
applied. If a2 follows a1, the change in the stock level caused by a1 is removed by removing
the entity by a2.

In order to consider the structural and parametrical changes in the selection of actions,
the selection probability of an action is biased according to its type of changes and its
position in an action plan. Structural actions are preferred at the beginning of an action
plan and parametrical actions at its end. Figure 5 shows a proposed probability distribution
of actions’ types of changes that changes linearly along the length of an action plan, l. In
Equations (1) and (2), probS

i is the selection probability of structural actions at position i of
an action plan. If structural changes are selected, a structural action is selected from the
potential structural actions.

probS
i = probS

1 − probP
1 − probS

1
l − 1

(i − 1), i = 1, 2, ..., l (1)

probP
i = 1 − probS

i . (2)

Figure 5. Probability distribution of actions’ types of changes along the length of an action plan.

6.2. Building on Success Experience

Another DSI is the success of actions in improving the performance of a distribution
network. The term success is defined with respect to an action. The impact of an action on
a network is investigated to determine whether it increases or decreases the performance
measures. For example, Figure 6 shows actions, a1 and a2, that increase the service level

245

Algorithms 2021, 14, 23

and an action, a4, that reduces the service level. Actions that increase the service level get a
higher success value than the actions that decrease the service level. Within the actions that
increase the service level, their impact of the actions varies, and accordingly, their success
value varies, such as a1 and a2 in Figure 6.

Figure 6. Impact of actions on the service level.

Actions with a high success value tend to increase the performance of the network,
and hence, increasing their selection probability might guide the metaheuristic algorithm to
construct promising action plans. Actions with a high success value get a higher selection
probability than actions with a lower success value. For example, the selection probabilities
of the actions in Figure 6 might be assigned as 0.32, 0.28, 0.24, and 0.16 to actions a1, a2, a3,
and a4, respectively.

While the success values of concrete actions can only be measured for the single and
parametrized actions themselves, these values cannot be expected to contribute to the
performance improvement, directly, because there is a low probability that the specific
current action has already been evaluated before and, thus, owns a success attribute.
Therefore, success may have to be regarded only indirectly: Measured success values of
actions are summarized for the respective action types, and this success attribute of the
action types is then used to steer the construction of action plans. With this procedure,
action types are preferred if the associated actions have often led to improvements in
the past.

6.3. Defining Relations between Actions

The last DSI that we propose is the correlation between two actions and their impact
on the performance of the network. In this context, the joint impact of a sequence of two
actions on the performance of a network is compared to their expected impact if they are
applied individually. In Figure 7, the expected impact of applying actions a1 and a2 is an
increase of 0.19% in the service level, given by the summation of the impact of the single
actions a1 (0.12%) and a2 (0.07%). Actually, the sequence a1 followed by a2 increases the
service level by only 0.15%. Thus, applying these two actions as [a1, a2] has a negative
influence (“−”). The sequence [a2, a1] causes an increase in the service level by 0.28%.
Thus, it has a positive impact (“+”) compared to the expected impact of the single actions.
Another example of the positive impact is the sequence [a1, a3]. If the expected impact of a
sequence does not differ from the actual impact, the relation is a weak relation (“∼”), for
example, sequence [a2, a3] in Figure 7.

246

Algorithms 2021, 14, 23

Figure 7. Impact of sequence of actions on the service level.

The correlation between actions could be tabulated in a correlation matrix. Rows
represent the first applied action in the sequence, and columns represent the second applied
action. The cells show the relation between the impact of a sequence of actions and their
expected impact on the network as “+”, “∼”, and “−” for positive, weak, and negative
relations, respectively. The relations extracted from Figure 7 are tabulated in Table 2. The
rest of the correlation matrix shows relations between other actions in the search space.

Table 2. Correlation matrix example.

a1 a2 a3 a4 a5 a6 ...

a1 ∼ − + ∼ − −
a2 + − ∼ − ∼ ∼
...

The cell between a1 and a1 is a duplication of an action. An action can be duplicated
by applying it twice. If an action increases the stock level of an SKU at a site by 10 units,
its duplication increases the stock level by 20 units. Accordingly, the performance of the
network is affected and might vary from the expected impact.

Similar to the previous section, applying actions affects the performance of the net-
work, and their impact might be used to guide the selection of actions to construct promis-
ing action plans. The selection probability of actions is increased if the actions are in a
positive relation with already selected actions. For example, if action a2 is selected, then
the recommended action is a1 to increase the service level (Table 2). Selecting a2 does not
increase the service level as expected, and selecting a3 does not influence the expected
increase in the value. Thus, the selection probability of a1 becomes higher than a3.

7. Addressing the Performance Challenge: Reducing the Number of Evaluations

Another performance measure of the LAS is the number of simulation runs, which we
define to be the number of objective function evaluations. In order to reduce the number
of evaluations of the objective function, a selective evaluation might be performed, or
evaluations might be skipped. In this research, the evaluation of the impact of an action
plan is skipped if the action plan has previously been evaluated [81].

Previously evaluated action plans might be identical to newly formed action plans, or
they can be equivalent to them. Equivalent action plans have an identical impact on the
performance of the distribution network, but are not identical action plans. Figure 8 shows
an example of equivalent action plans. These action plans cause the same changes in the
network and, hence, result in the same impact on the performance. The performance of an
equivalent action plan can directly be used, without again evaluating the performance of
the newly formed plan.

247

Algorithms 2021, 14, 23

Figure 8. Equivalent action plans: (a) action plans with interchangeable actions and (b) action plans with redundant actions.

In order to identify equivalent action plans we define interchangeable and redundant
actions. Interchangeable actions can be reordered in an action plan without affecting the
impact of the action plan on the performance of the network (Figure 8a). Actions a1 and a2
in Figure 8a have been reordered without affecting the applied changes and the impact
of the action plan on the service level; a1 and a2 are interchangeable actions. Actions that
affect different entities in the network can be reordered without affecting the impact of
the action plan. These actions are interchangeable if they do not interfere with an overall
parameter of the network, such as the capacity of a site. For example, a1 increases the stock
level of SKU 1 at site A, and a2 increases the stock level of SKU 2 at site A. Both actions
affect different entities in the network, SKU 1 at site A and SKU 2 at site A. Applying
the changes by any of the actions does not affect the changes applied by the other action.
However, if the total capacity of site A reaches its limit after applying any of these actions,
the resulting applied changes differ when the actions are swapped.

Redundant actions can be removed from the action plan without affecting the impact
of the action plan on the distribution network (Figure 8b). Action a5 has been removed
from the action plan in Figure 8b. The resulting action plan applies the same changes as
the original action plan, without removing a5, and the service remains unchanged. Action
a5 is a redundant action, because its removal has no effect on the changes applied in the
network. These actions can be duplicated structural actions. A structural action adds
or removes entities from the network, and its duplication repeats these changes without
causing additional changes in the network. A duplicated parametrical action that causes
incremental changes is not redundant, because it causes an incremental increase or decrease
in the value of the affected parameter.

Defining the equivalent action plans based on interchangeable and redundant actions
enables skipping the evaluation of an action plan. An action plan is rated as its equivalent
action plan that was evaluated previously.

Another approach reduces the number of actions to reduce the number of evaluations.
In this approach, actions are grouped. The grouped actions replace actions and form a
smaller search space of actions to be explored. For example, if two actions are grouped, the
search space of actions can be reduced from 100 actions to 50 actions. Exploring the search
space of 50 actions obviously requires a smaller number of evaluations.

The grouping criteria might be defined by the decision-maker, for example, grouping
actions that affect SKUs based on an SKU assortment at a site [17]. For example, a distribu-
tion network has two sites, site A and site B. Assortment 1 includes SKU 1 and SKU 2, and
assortment 2 includes SKU 3 and SKU 4. Then, action a1 that increases the stock level of
SKU 1 at site A and action a2 that increases the stock level of SKU 2 at site A are grouped
to form a new action a∗1 that increases the stock level of SKUs in assortment 1 at site A.
Similarly, action a3 that increases the stock level of SKU 1 at site B and a4 that increases the

248

Algorithms 2021, 14, 23

stock level of SKU 2 at site B are grouped to form the new action a∗2 that increases the stock
level of SKUs in assortment 2 at site B. The reduction in the number of actions depends on
the number of actions assigned to an assortment. As a result, the optimisation algorithm
explores a smaller number of actions.

In order to construct an action plan from the grouped actions, the number of selected
grouped actions is almost certainly lower than the length of the action plan. Four actions
are selected to form an action plan of length four. If two actions are grouped, they form
an action plan of length four. Therefore, this reduction in the number of selected actions
further reduces the number of potential action plans and the number of evaluations.

8. Evaluation and Results

In order to test the proposed approaches, we used a database from a distribution
network of an international material trading company. The database was extracted from
their enterprise resource planning system and was verified and validated according to a
procedure model presented by Rabe et al. [82]. In this research, we filtered this database
down to a subset of five sites and 30 SKUs. This database represents the database in
Figure 1. Then, we adapted the evolutionary algorithm to utilise the actions’ DSI. This
information is assigned to the action types, and from there then it is inherited to the derived
actions from the action types. The selection probability of actions is changed based on their
DSI. For example, considering the actions’ type of changes, the actions are classified as
structural and parametrical actions. The selection probability of these classes is changed
according to Equations (1) and (2). An action is selected randomly from the respective
selected class. Thus, the selection probability of actions is biased based on their type
of changes.

We compared a completely random selection of actions with a biased selection of
actions in the construction of action plans in the EA’s initial generation. The number of
generations that were required to stagnate and the quality of the corresponding recom-
mended action plans were recorded for the comparison. The quality of the action plans has
been evaluated based on the costs and the service level. Fifty individuals form a generation
in the EA. The crossover and mutation probabilities were set to 0.8 and 0.3, respectively.
The crossover forms, CR, were the one-point crossover, the two-point crossover, and the
uniform crossover. In mutation, MU, one randomly selected action was replaced, or multi-
ple actions were selected to be replaced. Each experiment setup was run ten times. Table 3
records the average performance and demonstrates the gap analysis of the difference
between random selection and the biased selection of actions.

Table 3. Comparison between random selection of actions and biased selection in an evolutionary
algorithm (EA) experiment using the gap analysis (CR = crossover form, MU = mutation form).

Random Selection Biased Selection Gap (Biased − Random)
CR MU c (e) sl (%) Ns c (e) sl (%) Ns c (e) sl (%) Ns

1-point 1-action 90,420 84.58 76 90,309 84.74 31 −111 0.2 −45
1-point multi 91,414 84.65 41 90,045 84.79 41 −1369 0.1 0
2-point 1-action 90,630 84.72 73 90,806 84.81 34 176 0.1 −39
2-point multi 90,673 84.69 65 91,340 84.83 43 667 0.1 −22
uniform 1-action 90,086 84.75 89 88,039 85.11 37 −2047 0.4 −52
uniform multi 91,699 84.72 63 92,292 85.03 32 593 0.3 −31

Next, we have tested the approach that exploits the definition of equivalent action
plans. In this experiment, the EA selected actions randomly, and the evaluation of an action
plan was skipped if an equivalent action plan was previously evaluated. Figure 9 shows
the time distribution during an experiment run when the crossover and the mutation
probabilities were set to 0.8 and 0.3, respectively. The number of simulation runs decreased
by more than 15%.

249

Algorithms 2021, 14, 23

Figure 9. The time distribution in (a) a reference EA experiment and (b) an EA experiment utilising
the equivalent action plans approach.

For the experimentation with the DQN agent, the authors assumed that one training
episode for the reinforcement learning agent consists of taking three actions. Hence, once
the three actions have been taken, the simulation is reset to its initial state and the agent
can start a new training episode. The hyper-parameters of the architecture have been kept
mostly the same for all the experiments. However, further architectures for the internal
DQN were tested. For each architecture, the reinforcement learning agent was trained
with at least 1000 episodes, each consisting of taking three actions, which resulted in
at least 3000 evaluative simulation runs for each architecture. In most of the cases, the
agent was able to gradually learn to take the best three actions possible for the initial state
of the logistics network after about half of the training episodes. By conducting these
experiments, the authors could demonstrate that a general reinforcement learning agent
was able to generate action plans just from its trained internal value function approximation.
Hence, in general, the presented approach can be used to reduce the response time TD
(cp. Section 1). However, as a drawback, the total runtime of each experiment took
several days. As expected, the bottleneck in terms of computing performance was not the
back-propagation through the CNN, but the simulation time needed for each evaluative
simulation run. Although the experiments have been performed on relatively small test
models of a logistics network, the results of the experiments with the DQN implementation
were promising, since they showed that a general purpose reinforcement learning agent can
in fact be trained to optimize a logistics network model solely from a state representation,
a reward signal, and the available actions types.

9. Discussion

The approaches explained in Sections 4 and 5 aim to improve the performance of
the LAS. This performance is evaluated based on the performance of the simheuristic’s
components – metaheuristics and simulation. The quality of found solutions is a major
performance measure to evaluate the metaheuristics used to solve an optimisation prob-
lem [7]. Additionally, the run time of the algorithm is used to evaluate it [83]. In this
research, we used the objective values of the found solutions and the number of simulation
runs to evaluate the recommended approaches. The number of simulation runs represents
the number of objective function evaluations, which is an indicator of the run time of an
algorithm to recommend a solution [27].

Researchers proposed approaches to improve the performance of the metaheuristics by
focusing on the analysis of the search space. For example, Bode et al. [41] screened solutions
before their evaluation. Karimi et al. [84] clustered the problem’s search space before
exploring it, and Ku and Arthanari [85] replaced the search space with a smaller space.
Furthermore, researchers have filtered the solutions to reduce the number of objective
function evaluations, such as Cai et al. [86] and Alsheddy et al. [13].

Other approaches have examined the search algorithms. They investigated improve-
ments to the local search, such as Alsheddy et al. [13], who aimed to escape from a local
optimum by introducing penalties. Other researchers have investigated machine learning

250

Algorithms 2021, 14, 23

and data mining to learn from the patterns [87,88]. Amaran et al. [89] stated that problem
information could be used to construct initial promising solutions as an input to the op-
timisation algorithm. Forming these solutions by selecting its parts randomly based on
problem information is called randomly biased selection [42].

In Section 6, we introduced an approach to guide the search of a metaheuristic algo-
rithm. In this approach, DSI is used to prioritise which actions to select while constructing
action plans. The experiments utilising the type of changes to construct action plans
showed promising results for identifying initial solutions for the algorithm. We used the
Mann-Whitney U test [90] to compare our approach to random selection of actions. The
null hypothesis in comparing the random selection and the biased selection is rejected
concerning decreasing costs, increasing the service level, and reducing the number of
generations to stagnate at p-values of 0.0961, 0.0000, and 0.0000, respectively. These results
suggest a significant impact of DSI on the performance of the metaheuristics of the LAS,
and our claims of recommending better solutions’ quality and decreasing the number of
generations to stagnate are accepted.

The domain-specific information can be used to alter the variation operators of the
found action plans in the subsequent iterations in a metaheuristic algorithm. In our research,
these operators are represented as modified crossover and mutation. Because initial
solutions based on the type of changes helped the algorithm to recommend better solutions
than the random selection of actions, we expect to get a similar effect in implementing them
in crossover and mutation. Combining different DSI is a field for further investigation.

In addition, we propose an approach to reduce the number of simulation runs by
defining equivalent solutions. This approach keeps a list of evaluated solutions and
increases the EA’s computational time a bit; but this is compensated by a reduction in
the number of simulation runs (Figure 9). The memory usage might be overcome if the
algorithm can have access to a table where this list of evaluated solutions is stored.

In conclusion, simulation runs consume a large portion of the computational time of
the algorithm run in a simheuristic approach. Our approach reduced this percentage and
enabled the algorithm to recommend solutions in shorter time.

10. Summary and Outlook

In this research, we have developed a logistics assistance system to support decision-
making in material trading networks. Decision-makers face a challenging task in selecting
actions to improve the performance of the networks. The developed LAS is based on a
simheuristics framework that combines simulation and metaheuristics. For the metaheuris-
tics, we have studied reinforcement learning and evolutionary algorithms. Additionally,
we have proposed approaches to address performance challenges of the LAS that are
represented as the quality of recommended actions and the number of simulation runs.
Our approaches are based on utilising domain-specific information, reducing the number
of actions, and defining equivalent solutions.

We have developed a suitable implementation and used a subset of real-world data
to evaluate our LAS. Our results show that reinforcement learning requires a significant
training time. However, after learning, it recommends promising actions upon request.
The domain-specific information approach guides the search of an optimisation algorithm
to select promising actions, and hence, improves the performance of the LAS. Defining
equivalent action plans has reduced the number of simulation runs by up to 15%.

Our approaches are limited to distribution networks. We defined and tested them
on a distribution network of an international trading company. In other networks or
applications, the specific definition of the domain-specific information as well as of the
equivalency of action plans should be studied.

For further research, we investigate other domain-specific information to guide the
selection of actions in the LAS. Taking advantage of combining reinforcement learning and
the evolutionary algorithm is another approach to be investigated. This combination re-

251

Algorithms 2021, 14, 23

quires the study of the schema to integrate both approaches. Furthermore, new parameters
might become necessary to be defined and initialised.

Author Contributions: Conceptualization and research supervision, M.R.; General methodology
of LAS and implementation of decision support system, F.D.; Development of domain-specific
description language, D.S.; Development and evaluation of reinforcement learning approach, F.D.;
Development and evaluation of domain-specific biasing methods, M.A.; Design of paper M.R. and
M.A.; Original draft preparation, M.A.; Editing, M.R. and M.A.; Supervision, M.R. All authors have
read and agreed to the published version of the manuscript.

Funding: This research was partially funded by the German University of Jordan, the Graduate
School of Logistics in Dortmund (Germany) and by thyssenkrupp Materials International GmbH.

Data Availability Statement: This research has been based on real enterprise data taken from the IT
systems of a German company. These data have been handed out under strict NDA and experience
specific procedures to ensure their classification, which unfortunately hinders their free release.

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations

The following abbreviations are used in this manuscript:

SKU stock keeping unit
KPI key performance indicator
EA evolutionary algorithm
DES discrete event simulation
LAS logistics assistance system
CNN Convolutional Neural Network
KPIMS key performance indicator management system
IDE integrated development interface
DGN Deep Q-Network
ALE Arcade Learning Environment
DSI domain-specific information
CR crossover form
MU mutation form

References

1. Stadtler, H. Supply Chain Management—An Overview. In Supply Chain Management and Advanced Planning: Concepts, Models,
Software, and Case Studies; Stadtler, H., Kilger, C., Eds.; Springer: Berlin/Heidelberg, Germany, 2008; pp. 9–36.

2. Ravindran, A.R. Managing Supply Chains: An Introduction. In Multiple Criteria Decision Making in Supply Chain Management;
Ravindran, A.R., Ed.; CRC Press, Taylor and Francis Group: Boca Raton, FL, USA, 2016; pp. 1–14.

3. Sürie, C.; Wagner, M. Supply Chain Analysis. In Supply Chain Management and Advanced Planning: Concepts, Models, Software, and
Case Studies; Stadtler, H., Kilger, C., Eds.; Springer: Berlin/Heidelberg, Germany, 2008; pp. 37–64.

4. Buriol, L.S. Network Optimization. In Handbook of Heuristics; Martí, R., Pardalos, P.M., Resende, M.G.C., Eds.; Springer: Cham,
Switzerland, 2018; pp. 1123–1140.

5. Law, A.M. Simulation Modeling and Analysis, 5th ed.; McGraw-Hill: New York, NY, USA, 2015.
6. Bianchi, L.; Dorigo, M.; Gambardella, L.M.; Gutjahr, W.J. A Survey on Metaheuristics for Stochastic Combinatorial Optimization.

Nat. Comput. 2009, 8, 239–287. [CrossRef]
7. Talbi, E.G. Metaheuristics: From Design to Implementation; John Wiley and Sons: Hoboken, NJ, USA, 2009.
8. Datta, S.; Roy, S.; Davim, J.P. Optimization Techniques: An Overview. In Optimization in Industry: Present Practices and Future

Scopes; Datta, S., Davim, J.P., Eds.; Management and Industrial Engineering; Springer International Publishing: Cham, Switzerland,
2019; pp. 1–11.

9. Juan, A.A.; Faulin, J.; Grasman, S.E.; Rabe, M.; Figueira, G. A Review of Simheuristics: Extending Metaheuristics to Deal with
Stochastic Combinatorial Optimization Problems. Oper. Res. Perspect. 2015, 2, 62–72. [CrossRef]

10. Banks, J.; Carson, J.S., II; Nelson, B.L.; Nicol, D.M. Discrete-Event System Simulation, 5th ed.; Pearson: Upper Saddle River, NJ,
USA, 2010.

11. Ding, H.; Benyoucef, L.; Xie, X. Stochastic Multi-objective Production-distribution Network Design Using Simulation-based
Optimization. Int. J. Prod. Res. 2009, 47, 479–505. [CrossRef]

12. Deininger, M. Modellierungsmethode für die Simulationsbasierte Optimierung Rekonfigurierbarer Produktionssysteme; Fortschritte in der
IT in Produktion und Logistik, Cuvillier: Göttingen, Germany, 2019.

252

Algorithms 2021, 14, 23

13. Alsheddy, A.; Voudouris, C.; Tsang, E.P.K.; Alhindi, A. Guided Local Search. In Handbook of Heuristics; Martí, R., Pardalos, P.M.,
Resende, M.G.C., Eds.; Springer: Cham, Switzerland, 2018; pp. 261–297.

14. Singh, S.; Litman, D.; Kearns, M.; Walker, M. Optimizing Dialogue Management with Reinforcement Learning: Experiments with
the NJFun System. J. Artif. Intell. Res. 2002, 16, 105–133. [CrossRef]

15. Mnih, V.; Kavukcuoglu, K.; Silver, D.; Rusu, A.A.; Veness, J.; Bellemare, M.G.; Graves, A.; Riedmiller, M.; Fidjeland, A.K.;
Ostrovski, G.; et al. Human-level Control through Deep Reinforcement Learning. Nature 2015, 518, 529–533. [CrossRef]

16. Rabe, M.; Dross, F.; Schmitt, D.; Ammouriova, M.; Ipsen, C. Decision Support for Logistics Networks in Materials Trading Using
a Simheuristic Framework and User-generated Action Types. In Simulation in Production and Logistics 2017; Wenzel, S., Peter, T.,
Eds.; Kassel University Press: Kassel, Germany, 2017; pp. 109–118.

17. Rabe, M.; Schmitt, D.; Ammouriova, M. Improving the Performance of a Logistics Assistance System for Materials Trading
Networks by Grouping Similar Actions. In Proceedings of the 2018 Winter Simulation Conference, Gothenburg, Sweden, 9–12
December 2018; pp. 2861–2872.

18. VDI-Guideline 3633.1. In Simulation of Systems in Materials Handling, Logistics, and Production: Fundamentals; Beuth: Berlin,
Germany, 2014.

19. Schmidt, J.W.; Taylor, R.E. Simulation and Analysis of Industrial Systems; Irwin Series in Quantitative Analysis for Business; Irwin:
Homewood, IL, USA, 1970.

20. Rabe, M.; Spieckermann, S.; Wenzel, S. Verifikation und Validierung für die Simulation in Produktion und Logistik: Vorgehensmodelle
und Techniken; Springer: Berlin/Heidelberg, Germany, 2008.

21. Gutenschwager, K.; Rabe, M.; Spieckermann, S.; Wenzel, S. Simulation in Produktion und Logistik: Grundlagen und Anwendungen;
Springer Vieweg: Berlin/Heidelberg, Germany, 2017. [CrossRef]

22. Balci, O.; Fujimoto, R.M.; Goldsman, D.; Nance, R.E.; Zeigler, B.P. The State of Innovation in Modeling and Simulation: The Last
50 Years. In Proceedings of the 2017 Winter Simulation Conference, Las Vegas, NV, USA, 3–6 December 2017; pp. 821–836.

23. Fanti, M.P.; Iacobellis, G.; Ukovich, W.; Boschian, V.; Georgoulas, G.; Stylios, C. A Simulation Based Decision Support System for
Logistics Management. J. Comput. Sci. 2015, 10, 86–96. [CrossRef]

24. Pujawan, N.; Arief, M.M.; Tjahjono, B.; Kritchanchai, D. An Integrated Shipment Planning and Storage Capacity Decision Under
Uncertainty: A Simulation Study. Int. J. Phys. Distr. Log. 2015, 45, 913–937. [CrossRef]

25. Fang, D.J.; Li, C. Simulation-based Hybrid Approach to Robust Multi-echelon Inventory Policies for Complex Distribution
Networks. Int. J. Simul. Model. 2014, 13, 377–387. [CrossRef]

26. Ivanov, D. Simulation-based Ripple Effect Modelling in the Supply Chain. Int. J. Prod. Res. 2017, 55, 2083–2101. [CrossRef]
27. Spall, J.C. Introduction to Stochastic Search and Optimization: Estimation, Simulation and Control; Wiley-Interscience: Hoboken, NJ,

USA, 2003.
28. Lawler, E.L. Combinatorics. In Encyclopedia of Operations Research and Management Science; Gass, S.I., Fu, M.C., Eds.; Springer:

Boston, MA, USA, 2013; pp. 192–194. [CrossRef]
29. Schrijver, A. Polyhedral Combinatorics and Combinatorial Optimization. J. Ann.-Rech. Oper. 2004, 15, 59–74.
30. Taylor, B.W. Introduction to Management Science, 11th ed.; Pearson: Boston, MA, USA, 2013.
31. Korte, B.; Vygen, J. Combinatorial Optimization: Theory and Algorithms, 6th ed.; Algorithms and Combinatorics; Springer:

Berlin/Heidelberg, Germany, 2018; Volume 21. [CrossRef]
32. Sörensen, K.; Glover, F. Metaheuristics. In Encyclopedia of Operations Research and Management Science; Gass, S.I., Fu, M.C., Eds.;

Springer: Boston, MA, USA, 2013; Volume 1, pp. 960–970. [CrossRef]
33. Osaba, E.; Carballedo, R.; Diaz, F.; Onieva, E.; de La Iglesia, I.; Perallos, A. Crossover Versus Mutation: A Comparative Analysis

of the Evolutionary Strategy of Genetic Algorithms Applied to Combinatorial Optimization Problems. Sci. World J. 2014.
[CrossRef]

34. Cybulski, R. Vergleich zwischen Algorithmen zur Optimierung Logistischer Netzwerke. Bachelor’s Thesis, TU Dortmund
University, Dortmund, Germany, 2018.

35. Juan, A.A.; Rabe, M. Combining Simulation with Heuristics to Solve Stochastic Routing and Scheduling Problems. In Simulation
in Production andLogistics—Entscheidungsunterstützung von der Planung bis zur Steuerung; Dangelmaier, W., Laroque, C., Klaas, A.,
Eds.; HNI-Verlagsschriftenreihe: Paderborn, Germany, 2013; pp. 641–649.

36. Figueira, G.; Almada-Lobo, B. Hybrid Simulation—Optimization Methods: A Taxonomy and Discussion. Simul. Model. Pract.
Theory 2014, 46, 118–134. [CrossRef]

37. VDI-Guideline 3633.12. Simulation of Systems in Materials Handling, Logistics, and Production: Simulation and Optimisation; Beuth:
Berlin, Germany, 2016.

38. Jackson, I.; Tolujevs, J.; Reggelin, T. The Combination of Discrete-event Simulation and Genetic Algorithm for Solving the
Stochastic Multi-product Inventory Optimization Problem. Transp. Telecommun. J. 2018, 19, 233–243. [CrossRef]

39. Gutenschwager, K.; Wilhelm, B.; Völker, S. Speeding up Simulation-based Optimization of Supply Networks by Means of a
Multi-population Genetic Algorithm and Reuse of Partial Solutions. In Proceedings of the 2018 Winter Simulation Conference; Rabe,
M., Juan, A.A., Mustafee, N., Skoogh, A., Jain, S., Johansson, B., Eds.; IEEE: Piscataway, PA, USA, 2018; pp. 3036–3047. [CrossRef]

40. Pagès-Bernaus, A.; Ramalhinho, H.; Juan, A.A.; Calvet, L. Designing e-Commerce Supply Chains: A Stochastic Facility—Location
Approach. Int. Trans. Oper. Res. 2019, 26, 507–528. [CrossRef]

253

Algorithms 2021, 14, 23

41. Bode, F.; Reed, P.; Reuschen, S.; Nowak, W. Search Space Representation and Reduction Methods to Enhance Multiobjective
Water Supply Monitoring Design. Water Resour. Res. 2019, 55, 2257–2278. [CrossRef]

42. Grasas, A.; Juan, A.A.; Faulin, J.; de Armas, J.; Ramalhinho, H. Biased Randomization of Heuristics Using Skewed Probability
Distributions: A Survey and some Applications. Comput. Ind. Eng. 2017, 110, 216–228. [CrossRef]

43. Pétrowski, A.; Ben-Hamida, S. Evolutionary Algorithms; Metaheuristics Set; Wiley-Iste: London, UK, 2017; Volume 9.
44. Ahn, C.W. Advances in Evolutionary Algorithms: Theory, Design and Practice; Studies in Computational Intelligence; Springer:

Berlin/Heidelberg, Germany, 2006; Volume 18. [CrossRef]
45. Chong, E.K.P.; Żak, S.H. An Introduction to Optimization, 4th ed.; Wiley: Hoboken, NJ, USA, 2013.
46. Dulebenets, M.A. An Adaptive Island Evolutionary Algorithm for the Berth Scheduling Problem. Memetic Comput. 2020,

12, 51–72. [CrossRef]
47. Pasha, J.; Dulebenets, M.A.; Kavoosi, M.; Abioye, O.; Wang, H.; Guo, W. An Optimization Model and Solution Algorithms for the

Vehicle Routing Problem With a “Factory-in-a-Box”. IEEE Access 2020, 8, 134743–134763. [CrossRef]
48. Moradi, B. The New Optimization Algorithm for the Vehicle Routing Problem with Time Windows using Multi-objective Discrete

Learnable Evolution Model. Soft Comput. 2020, 24, 6741–6769. [CrossRef]
49. Zhao, H.; Zhang, C. An Online-learning-based Evolutionary Many-objective Algorithm. Inf. Sci. 2020, 509, 1–21. [CrossRef]
50. Coello Coello, C.A. Multi-objective Optimization. In Handbook of Heuristics; Martí, R., Pardalos, P.M., Resende, M.G.C., Eds.;

Springer: Cham, Switzerland, 2018; pp. 177–204.
51. Ji, S.F.; Luo, R.j.; Peng, X.S. A Probability Guided Evolutionary Algorithm for Multi-objective Green Express Cabinet Assignment

in Urban Last-mile Logistics. Int. J. Prod. Res. 2019, 57, 3382–3404. [CrossRef]
52. Jiang, E.d.; Wang, L. An Improved Multi-objective Evolutionary Algorithm based on Decomposition for Energy-efficient

Permutation Flow Shop Scheduling Problem with Sequence-dependent Setup Time. Int. J. Prod. Res. 2019, 57, 1756–1771.
[CrossRef]

53. Kang, P.S.; Bhatti, R.S. Continuous Process Improvement Implementation Framework using Multi-objective Genetic Algorithms
and Discrete Event Simulation. Bus. Process. Manag. J. 2019, 25, 1020–1039. [CrossRef]

54. Kohl, N.; Stone, P. Policy Gradient Reinforcement Learning for Fast Quadrupedal Locomotion. In Proceedings of the IEEE
International Conference on Robotics and Automation, 2004. ICRA ’04. 2004, New Orleans, LA, USA, 26 April–1 May 2004; pp.
2619–2624.

55. Ng, A.Y.; Coates, A.; Diel, M.; Ganapathi, V.; Schulte, J.; Tse, B.; Berger, E.; Liang, E. Autonomous Inverted Helicopter
Flight via Reinforcement Learning. In Experimental Robotics IX; Siciliano, B., Khatib, O., Groen, F., Ang, M.H., Eds.; Springer:
Berlin/Heidelberg, Germany, 2006; Volume 21, pp. 363–372.

56. Arulkumaran, K.; Deisenroth, M.P.; Brundage, M.; Bharath, A.A. Deep Reinforcement Learning: A Brief Survey. IEEE Signal
Process. Mag. 2017, 34, 26–38. [CrossRef]

57. Scholkopf, B. Artificial Intelligence: Learning to See and Act. Nature 2015, 518, 486–487. [CrossRef] [PubMed]
58. Hinton, G.E.; Salakhutdinov, R.R. Reducing the Dimensionality of Data with Neural Networks. Science 2006, 313, 504–507.

[CrossRef]
59. Bengio, Y. Learning Deep Architectures for AI. Found. Trends Mach. Learn. 2009, 2, 1–127. [CrossRef]
60. Krizhevsky, A.; Sutskever, I.; Hinton, G.E. ImageNet Classification with Deep Convolutional Neural Networks. In Proceedings of

the Advances in Neural Information Processing Systems 25 (NIPS 2012), Lake Tahoe, NV, USA, 3–6 December 2012.
61. McClelland, J.L.; Rumelhart, D.E. Parallel Distributed Processing: Explorations in the Microstructure of Cognition, 1st ed.; A Bradford

Book; MIT Press: Cambridge, MA, USA, 1986.
62. LeCun, Y.; Bengio, Y.; Hinton, G. Deep Learning. Nature 2015, 521, 436–444. [CrossRef]
63. Goodfellow, I.; Bengio, Y.; Courville, A. Deep Learning; MIT Press: Cambridge, MA, USA, 2016.
64. Lecun, Y.; Bottou, L.; Bengio, Y.; Haffner, P. Gradient-based Learning Applied to Document Recognition. Proc. IEEE 1998,

86, 2278–2324. [CrossRef]
65. Mnih, V.; Kavukcuoglu, K.; Silver, D.; Graves, A.; Antonoglou, I.; Wierstra, D.; Riedmiller, M. Playing Atari with Deep

Reinforcement Learning. 2013. Available online: arxiv.org/abs/1312.5602 (accessed on 14 December 2020).
66. Li, Y. Deep Reinforcement Learning: An Overview. 2017. Available online: arxiv.org/abs/1701.07274 (accessed on 14 December

2020).
67. Dross, F.; Rabe, M. A SimHeuristic Framework as a Decision Support System for Large Logistics Networks with Complex KPIs.

In Proceedings of the 22nd Symposium Simulationstechnik, Berlin, Germany, 3–5 September 2014; pp. 247–254.
68. Rabe, M.; Ammouriova, M.; Schmitt, D. Utilizing Domain-specific Information for the Optimization of Logistics Networks. In

Proceedings of the 2018 Winter Simulation Conference, Gothenburg, Sweden, 9–12 December 2018; pp. 2873–2884.
69. SimPlan AG. SimChain. 2018. Available online: www.simchain.net (accessed on 14 December 2020).
70. Rabe, M.; Gutenschwager, K.; Fechteler, T.; Sari, M.U. A Data Model for Carbon Footprint Simulation in Consumer Goods Supply

Chain. In Proceedings of the 2013 Winter Simulation Conference, Washington, DC, USA, 8–11 December 2013; pp. 2677–2688.
71. Rabe, M.; Schmitt, D.; Dross, F. Method to Model Actions for Discrete-event Simulation of Logistics Networks. In Proceedings of

the 2017 Winter Simulation Conference, Las Vegas, NV, USA, 3–6 December 2017; pp. 3370–3381.
72. Rabe, M.; Schmitt, D. Domain-specific Language for Modeling and Simulating Actions in Logistics Networks. In Proceedings of

the 2019 Winter Simulation Conference, National Harbor, MD, USA, 8–11 December 2019; pp. 1579–1590.

254

Algorithms 2021, 14, 23

73. Rabe, M.; Schmitt, D.; Ammouriova, M. Utilizing Domain-specific Information in Decision Support for Logistics Networks. In
Dynamics in Logistics: Proceedings of the 6th International Conference LDIC 2018, Bremen, Germany; Freitag, M., Kotzab, H., Pannek, J.,
Eds.; Lecture Notes in Logistics; Springer International Publishing: Cham, Switzerland, 2018; pp. 413–417.

74. Rabe, M.; Ammouriova, M. Constructing Action Plans Based on Correlation between Sequential Actions and their Performance
in Logistics Distribution Networks. In Proceedings of the 13th International Conference of Research in Logistics and Supply
Chain Management, Le Havre, France, 7–9 October 2020.

75. Rabe, M.; Schmitt, D.; Klueter, A.; Hunker, J. Decoupling the Modeling of Actions in Logistics Networks from the Underlying
Simulation Data Model. In Advances in Production, Logistics and Traffic: Proceedings of the 4th Interdisciplinary Conference on
Production Logistics and Traffic (ICPLT); Clausen, U., Langkau, S., Kreuz, F., Eds.; Springer: Cham, Switzerland, 2019; pp. 32–44.

76. Watkins, C. Learning from Delayed Rewards. Ph.D. Thesis, Kings College, Cambridge, UK, 1989.
77. Bellemare, M.G.; Naddaf, Y.; Veness, J.; Bowling, M. The Arcade Learning Environment: An Evaluation Platform for General

Agents. J. Artif. Intell. Res. 2013, 47, 253–279. [CrossRef]
78. ALE. The Arcade Learning Environment. 2020. Available online: https://github.com/mgbellemare/Arcade-Learning-

Environment (accessed on 14 December 2020).
79. TensorFlow. 2020. Available online: https://www.tensorflow.org/ (accessed on 14 December 2020).
80. Rabe, M.; Dross, F.; Wuttke, A. Combining a Discrete-event Simulation Model of a Logistics Network with Deep Reinforcement

Learning. In Proceedings of the 12th Metaheuristics International Conference (MIC), Barcelona , Spain, 4–7 July 2017; pp. 438–447.
81. Rabe, M.; Ammouriova, M.; Schmitt, D.; Chicaiza-Vaca. An Approach for Reducing the Search Space for Simheuristics

Applications in Logistics Network in Trading. In Simulation in Production and Logistics; Putz, M., Schlegel, A., Eds.; Verlag
Wissenschaftliche Skripten: Auerbach, Germany, 2019; pp. 335–344.

82. Rabe, M.; Dross, F.; Vennemann, A. A Procedure Model for the Credible Measurability of Data Warehouse Metrics on Discrete-
event Simulation Models of Logistics Systems. In Simulation in Production and Logistics 2015; Rabe, M., Clausen, U., Eds.;
Fraunhofer Verlag: Stuttgart, Germany, 2015; pp. 168–176.

83. Silberholz, J.; Golden, B.; Gupta, S.; Wang, X. Computational Comparison of Metaheuristics. In Handbook of Metaheuristics;
Gendreau, M., Potvin, J.Y., Eds.; International Series in Operation Research and Management Science; Springer International
Publishing: Cham, Switzerland, 2019; pp. 581–604.

84. Karimi, M.B.; Isazadeh, A.; Rahmani, A.M. QoS-aware Service Composition in Cloud Computing Using Data Mining Techniques
and Genetic Algorithm. J. Supercomput. 2017, 73, 1387–1415. [CrossRef]

85. Ku, D.; Arthanari, T.S. On the Abstraction Method for the Container Relocation Problem. Comput. Oper. Res. 2016, 68, 110–122.
[CrossRef]

86. Cai, K.Q.; Zhang, J.; Xiao, M.M.; Tang, K.; Du, W.B. Simultaneous Optimization of Airspace Congestion and Flight Delay in Air
Traffic Network Flow Management. IEEE Trans. Intell. Transp. Syst. 2017, 18, 3072–3082. [CrossRef]

87. Blenk, A.; Kalmbach, P.; Kellerer, W.; Schmid, S. O’zapft is: Tap Your Network Algorithm’s Big Data! In Proceedings of the Workshop
on Big Data Analytics and Machine Learning for Data Communication Networks (Big-DAM’17); Association for Computing Machinery:
New York, NY, USA, 2017; pp. 19–24. [CrossRef]

88. Umetani, S. Exploiting Variable Associations to Configure Efficient Local Search Algorithms in Large-scale Binary Integer
Programs. Eur. J. Oper. Res. 2017, 263, 72–81. [CrossRef]

89. Amaran, S.; Sahinidis, N.V.; Sharda, B.; Bury, S.J. Simulation Optimization: A Review of Algorithms and Applications. Ann. Oper.
Res. 2016, 240, 351–380. [CrossRef]

90. Sheskin, D. Handbook of Parametric and Nonparametric Statistical Procedures, 5th ed.; CRC Press: Boca Raton, FL, USA, 2011.

255

MDPI
St. Alban-Anlage 66

4052 Basel
Switzerland

Tel. +41 61 683 77 34
Fax +41 61 302 89 18

www.mdpi.com

Algorithms Editorial Office
E-mail: algorithms@mdpi.com

www.mdpi.com/journal/algorithms

MDPI
St. Alban-Anlage 66
4052 Basel
Switzerland

Tel: +41 61 683 77 34
Fax: +41 61 302 89 18

www.mdpi.com ISBN 978-3-0365-1261-7

	Simulation-Optimization in Logistics, Transportation, and SCM web-2
	Algorithms Simulation-Optimization in Logistics, Transportation, and SCM.pdf
	Simulation-Optimization in Logistics, Transportation, and SCM web-2.pdf

