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Next-generation proteomics has allowed the implementation of biomedical proteome
research to uncover disease-affected protein expression profiles. It has also enabled the
determination of protein localization, protein interactomes, posttranslational modifications
and protein dysfunction in human diseases. Many pillars in personalized medicine, such
as diagnostic improvements, drug screening, systems biology or bioinformatics, require the
generation of quantitatively consistent proteomics data from translational animal models
to human biospecimens to fill the information gap, making omics analysis actionable from
a clinical perspective [1–3]. This Special Issue received multiple submissions, of which
five original articles were accepted for publication. These contributions cover different
phases of precision medicine in the context of proteomics: (i) discovery and quantitation of
potential biomarker candidates (three articles), (ii) the proteostatic modulation and mecha-
nisms of action of pharmacological compounds (one article) and (iii) the characterization of
posttranslational modifications (one article).

Proteomics has emerged as a powerful approach with which to characterize the molec-
ular composition of different biofluids, with the aim of discovering potential biomarkers.
Yohannes E. et al. performed a label-free LC-MS/MS workflow to detect changes in the ma-
ternal blood proteome across pregnancy, using plasma across the three trimesters. Beyond
the identification of proteins relevant for placentation, they observed protein signatures
that highly correlate with gestational age. Orthogonal validation in an independent co-
hort revealed that plasma levels of Disintegrin and metalloproteinase domain-containing
protein 12 (ADAM12), independently or in combination with Pregnancy-specific beta-1-
glycoprotein 1 (PSG1) and Chorionic somatomammotropin hormone 1/2 (CSH1/2), can
determine gestational age at any trimester with a period of +/−8 days, in contrast with
the +/−14 days obtained using an ultrasound technique [4]. In oncology, the sputum
is an enriched protein source that is highly useful in achieving early diagnosis of lung
cancer [5]. In this context, Arenas-De Larriva MDS et al. optimized a diaPASEF mass-
spectrometry acquisition mode to detect and identify lung cancer protein biomarkers to
discriminate different cancer subtypes and controls. From a functional point of view, differ-
ential sputum proteome maps were clearly linked to activation of inflammation, detecting
acute-phase and complement cascade protein intermediates. Interestingly, although the
proposed biomarker panel is in need of further validation, feature selection through a sparse
partial least squares discriminant analysis (sPLS-DA) revealed a coherent separation be-
tween cases and controls with high sensitivity and specificity [6]. This type of workflow
implemented with low-invasiveness samples may be an ideal option to be applied in
screening and diagnostic programs with the aim of identifying new pharmacological tar-
gets and potential biomarkers, as well as improving the tumor clinical management. In the
field of cardiovascular biomedicine, the deployment of proteomic approaches is mainly
focused on the discovery of circulating protein biomarkers of heart diseases and the elucida-
tion of disease-associated mechanisms and potential therapeutic targets in cardiovascular
tissues [7,8]. Nav1.5 protein corresponds to the sodium channel protein type 5 subunit
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alpha (SCN5A) of the human cardiac voltage-gated sodium channel. This protein medi-
ates the voltage-dependent sodium ion permeability of excitable membranes in cardiac
muscle, participating in the excitation–contraction coupling cascade in cardiac cells. Its
alteration has been observed in multiple cardiovascular pathologies, and only relative
quantities have been reported using different techniques such as Western-blot, immunoflu-
orescence and patch-clamp. Moreover, the Nav1.5 protein measurement presents technical
challenges associated with its high molecular weight (220 KDa), presence of 24 transmem-
brane domains and multiple posttranslational modifications. Adams SL et al. established
a method for performing an absolute quantitation of Nav1.5 copy numbers in a biological
matrix [9]. This method is based on targeted mass-spectrometry quantitation (parallel
reaction monitoring—PRM) using four peptide sequences derived from Nav1.5 in CHO
cells. Due to this workflow’s capacity to be simultaneously multiplexed for measure mul-
tiple proteins, authors propose the absolute quantitation of different ion channels and
associated proteins by PRM as a further step towards an implementation of computer
modeling to push both predictive and preventative cardiac health at a population scale.
Martínez-Martínez E et al. applied a quantitative proteomic approach to explore the obesity
induced in a rat model at the cardiac level and the beneficial effects induced by a mitochon-
drial antioxidant (MitoQ). In the absence of functional cardiac alterations, transthyretin
(TTR) was increased at cardiac and plasma levels in obese animals. Moreover, TTR induced
profibrotic events and ER stress activation through mitochondrial oxidative stress in cardiac
cells, suggesting a possible novel approach to TTR-related diseases [10].

Post-translational modifications (PTMs) are critical molecular mechanisms that dy-
namically regulate protein functions in a temporal and spatial manner. The localization of
PTMs on specific drivers of neurodegeneration is a valuable step towards the elucidation
of biochemical and structural derangements that accompany the progression of neurolog-
ical disorders [11]. Through a palmitoyl-proteomic approach, Cervilla-Martínez JF et al.
detected a differential palmitome in the cortex from Parkinson’s disease (PD) subjects, rein-
forcing the alteration of lipid metabolism in this disease. Part of this altered palmitoylated
proteome pointed not only to protein interactors of relevant PD-related proteins. but also to
fibrinogen and cytoskeletal proteins as new targets linked to the neurodegenerative process
that accompany the progression of PD [12].

Although no papers proposed for this Special Issue primarily addressed the proteomic
consideration of sex-/gender-specific pathophysiology as an essential part of precision
prognostication and personalized therapeutics [13], these original works demonstrate
the capacity of different proteomic methodologies to generate novel pieces of biomed-
ical knowledge at fluid, cellular and tisular level, which are needed to fill the gaps in
the definitive consideration and implementation of precision proteomics in the era of
personalized medicine.
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