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Abstract. Object segmentation is a prominent low-level task in image
processing and computer vision. A technique of special relevance within
segmentation algorithms is active contour modeling. An active contour
is a closed contour on an image which can be evolved to progressively fit
the silhouette of certain area or object. Active contours shall be initial-
ized as a closed contour at some position of the image, further evolving
to precisely fit to the silhouette of the object of interest. While the evolu-
tion of the contour has been deeply studied in literature [11, 5], the study
of strategies to define the initial location of the contour is rather absent
from it. Typically, such contour is created as a small closed curve around
an inner position in the object. However, literature contains no general-
purpose algorithms to determine those inner positions, or to quantify
their fitness. In fact, such points are frequently set manually by human
experts, hence turning the segmentation process into a semi-supervised
one. In this work, we present a method to find inner points in relevant ob-
ject using spatial-tonal fuzzy clustering. Our proposal intends to detect
dominant clusters of bright pixels, which are further used to identify can-
didate points or regions around which active contours can be initialized.
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1 Introduction

Hepatic steatosis is a common condition caused by the storage of residual fat
in the liver. In some cases hepatic steatosis can rapidly lead to liver damage,
but early detection and control of the disease can often prevent or even reverse
hepatic steatosis with lifestyle changes. While detection can be done with invasive
procedures, the ideal case is using non-invasive methods, which are safer, faster
and, thanks to the innovations in medical imaging, significantly more accurate.
Among non-invasive methods, medical imaging offers a wide range of alternatives
with application to the task. Liver segmentation can be achieved with a range
of strategies, from thresholding algorithms to neural networks [13, 14]. Within
such range of alternatives, active contours appear as a prominent one. Active
contour models (ACMs), also called snakes, are deformable curves that evolve
according to predefined forces. Such forces are normally designed to pull the
curve in the normal direction, seeking to minimize an energy functional defined
over the space where the curves are defined. Active contour models may be
understood as a special case of the general technique of matching a deformable
model to an image by means of energy minimization in two dimensions. In this
work, ACMs [10] have been chosen over other alternatives for liver segmentation
because they do not require training data, they are unsupervised, they have
fast convergence and, also, they are robust to noise and topological changes.
Interestingly, ACMs allow to control the regularity of objects and their contours
adapting the resulting spline to the expected characteristics of the object.

Active contour models were initially introduced by Kass et al. in 1988 [10],
as part of an effort to apply deformable models in image processing [20]. Among
the different follow-up works, the one by Caselles et al. [4] is of special relevance.
In [4], the authors did not only improve ACMs by giving a more consistent equa-
tion for the energy functional, but also gave some proofs on the convergence and
stability of ACMs considering viscosity solutions [8]. Despite relevant advances
in ACMs, their development has been an ongoing research effort over the past
decades. For example, [12] improved the definition of the energy functional equa-
tion by adding terms that improve the regularity and speed of convergence.

One of the recurrent problems in the practical use of ACMs is the need to
define an initial contour, which is often done manually. In this work, we present
different strategies to find a suitable initial curve for ACMs. Note that this task
does not only restrict to finding any inner position in a generally-defined object.
Also, the selection of the contour shall attempt the point (or the initial contour
around it) to have optimal performance for ACMs in terms of convergence and
accuracy. The problem we aim at can be stated as follows: Given a grayscale
image containing an object of interest, find an initial curve within that object
to be used as initial contour in an ACM. The object to be found verifies a local
fuzzy property, which is key for our algorithm. In our case, the grayscale image
is the MRI visualization of a human torso, the object to be found is the liver
and the local fuzzy property is the amount of water at each position. The use
of MRI is due to the fact that it comprises a direct relationship between the
amount of water and the gray level intensity at each position of the image.
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The remainder of this works is divided as follows. In Section 2 we present a
general framework for ACM initialization, which is instantiated in Section 3. Our
proposal is put to the test in Section 4, while Section 5 lists some conclusions.

2 A framework for Active Contour Model initialization

In this work, images are taken as mappings Ω 7→ T, with Ω representing the set
of positions in the image grid and T represents the tonal palette. The term IT
represents the set of images with a certain tonal palette T. For example, I{0,1}
represents the set of binary images, while I[0,1] is the set of real-valued grayscale
images. More complex instantiations of T could be, for example, hyperspectral
signatures [15].

Definition 1 (Inclusion of binary images). Given two binary images I and
J , image I is included in image J , I ⊆ J , when I(x, y) ≤ J(x, y), ∀(x, y) ∈ Ω.

Definition 2 (Inclusion of binary and grayscale images). Given t ∈ (0, 1)
a threshold, I a binary image and J a grayscale image, image I is included in
image J using threshold t, I ⊆t J , when I(x, y) ≤ Jt(x, y), ∀(x, y) ∈ Ω, where

Jt is the “binarized” J image defined as: Jt(x, y) =

{
1, if J(x, y) ≥ t,

0, otherwise.

We propose a novel framework to find the most appropriate center (pixel)
around which the initial curve of an ACM can be located. Inspired by the de-
velopments of Bezdek et al. on edge detection [2], our proposal is based on a
four-step procedure in which each phase takes an interpretable goal. The four
phases in our proposal are:

– Object detection: This is the phase in which visual information is processed
to produce an initial estimation of the presence of the object of interest. It
is expressed as a mapping fOD : IT 7→ I[0,1] which intends to locate the areas
of the image in which the object is present. There is no constraints in the
tonal palette of the input image (which might be dependent upon specific
scenarios), but the output needs to be a value in [0, 1]. This value is not
interpreted as a probability, but as a fuzzy membership degree representing
the certainty on the membership of the pixel to the object of interest.

– Object Selection: This phase consists of selecting the contiguous area con-
taining the object of interest, out of the information produced at the object
detection phase. It can be modeled as a mapping fOS : I[0,1] 7→ I{0,1}, so that
(a) the set of 1-labeled pixels in fOS(I) form a connected component and
(b) fOS(I) ⊆t I, where t is the threshold from which the pixels belong to the
region where the object can be. This represents the fact that (a) one singular
object is selected and (b) the object selection phase aims at selecting one
the areas identified at the previous phase, not modifying the representation
of such area.
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– Object Isolation: This is the phase in which the morphological priors of the
object of interest need to be enforced. Object detection and segmentation in
real applications is heavily affected by a list of accepted priors, which can
impose restrictions on the object, including shape, regularity, position, etc.
The object isolation phase is expressed as a mapping fOI : I{0,1} 7→ I{0,1}
in which the only restrictions to the output are driven by the context of
application.
Note that this phase does not intend to produce a faithfull (or reliable) seg-
mentation of the object. It rather intends to make an approximate detection,
in which exactitude shall not be requested. However, regardless of how good
the approximation is, we understand that some priors can and should be en-
forced. For example, an approximate segmentation of a liver might contain
lack of precision in the boundaries, but should not contain holes or 1-pixel
width linear structures, which are biologically non-viable.

– Center selection: This is the phase in which the approximate segmentation is
analyzed in order to look for a center around which an initial contour can be
set. This can be done on the basis of different inspirations, and is represented
as a mapping fCS : I{0,1} 7→ Ω, with I(fCS(I)) = 1 for any binary image I.

Our proposal is divided in four phases which can be combined by function
composition. Otherwise said, center detection can be expressed as a function
fCD : IT 7→ Ω, which can be broken down as

fCD(I) = fCS(fOI(fOS(fOD(I)))) . (1)

The following section includes a specific implementation of the proposed
framework with application to liver segmentation in MRI imagery.

3 Active Contour Model initialization for liver
segmentation in MRI imagery

In this section we present a specific implementation of the framework in Sec-
tion 2. Specifically, we present an implementation aimed at initializing ACM
models for liver segmentation in MRI imagery. This application is relatively fre-
quent in public health and nutrition studies, in which non-invasive liver analysis
is a recurrent diagnosis procedure. In this context, layered images from the MRI
are analyzed to both (a) quantify the topological characteristics of the liver and
(b) measure visual evidence from its state. The workflow for ACM initialization
in such context is as presented in Figure 1.

3.1 Spatial fuzzy c-means for Object Detection

Object detection is the phase in which the relevant object has to be discrimi-
nated from the remainder of the image. This discrimination need not be precise
in any aspect, rather presenting a rough discrimination of the object. Starting
a segmentation (ACM) algorithm with a rough approximation to the solution
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Fig. 1. Schematic representation of the framework presented in Section 2, applied to the
problem of ACM initialization for liver segmentation. The original image is presented
as a colorized image to improve visibility.

might seem noticeable but is rather common in literature. For example, any
context-aware smoothing algorithm (as Anisotropic Diffusion [18, 21]) perform
an estimation of the presence and strength of object boundaries before mod-
elling tonal diffusion at each iteration. In this case, the estimation shall be good
enough to extract the object from the background.

There is little technical requisites to the object detection phase. In fact, sim-
plistic approaches to the task can be made using fuzzy thresholding, which would
discriminate bright areas from dark ones according to their tone. The selection
of the thresholding algorithm is dependent upon the characteristics of the image.
Classical binary thresholding algorithms would provide binary representations
of the object. For example, the Otsu method [17] is designed for images with
bimodal histograms, while the Rosin method [19] would rather discriminate out-
liers in a monomodal histogram. However, this approach is not recommended,
since it collides with the spirit of the Object Detection phase. Using fuzzy thresh-
olding algorithms [3] does provide a solution to this, since these algorithms typ-
ically produce membership information each pixel other than 0 or 1 values for
each class. Otherwise said, fuzzy thresholding does not only lead to the discrim-
ination of the pixels in the image, but also to the gradual quantification of such
discrimination. A better suited alternative for object detection is, in this regard,
clustering algorithms.

The use of clustering algorithms in image binarization lies on a simplistic in-
terpretation: each pixel in the image can be taken as an instance in a dataset [6,
16]. Such instance would be composed of the spatial information (pixel loca-
tion) the tonal information and, potentially, other derived information (texture
indicators, etc.). The separation of the instances in such dataset, by means of a
clustering algorithm, would be able to group together pixels which are both spa-
tially and tonally close. We believe this ability is crucial in selecting clustering
algorithms over thresholding algorithms for object detection.

A clustering algorithm able to account for accounting for spatio-tonal infor-
mation is the Spatial Fuzzy c-Means algorithm (SFCM), which accommodates
the use of different metrics within the framework of the well-studied FCM [1].
The SFCM has been selected over other clustering algorithms because it com-
bines the flexibility of the metric adjustment with two important characteristics:



6 A. Mir-Fuentes et al.

(a) ability to represent the centroids and (b) fuzzy representation of the mem-
bership to the classes.

LetX = {x1,x2, . . . ,xn} be a set of points over a k+1-dimensional Euclidean
space E and U = {µ1, . . . , µc} a set of membership functions defined over E. That
is, each µj is a function:

µj : E −→ [0, 1] ,

such that:
c∑

j=1

µj(x) = 1

where, given x ∈ E, µj(x) represents the membership degree of point x to cluster
Cj .

The goal of the FCM [1] is to minimize the goal function given by:

c∑
j=1

n∑
i=1

µj(xi)
m ∥xi − vj∥2 , (2)

where m > 1 is a parameter of the algorithm that controls the importance
between the distance and the membership function, ∥ · ∥ is the Manhattan,
Euclidean or Chebyschev norm. vj , j ∈ {1, . . . , c} are the centers of the c clusters,
considering the membership function. Such centers are computed as

vj =

∑
xi∈Cj

µj(xi)xi∑
xi∈Cj

µj(xi)
, (3)

where Cj represents the cluster j,
Given m and the set X, the schema of the algorithm is as follows:

(1) Initialization: choose the membership of all the points of set X randomly.
For every xi ∈ X, i = 1, . . . , n, compute j = maxk=1,...,c µk(xi). Next, add
the point xi to the cluster Cj . In this way, we have calculated the clusters
C1, . . . , Cc. Set the number of iterations n to 1: n = 1.

(2) Computation of the centers: compute the centers of the algorithm using
expression (3). Compute the objective function using expression (2). Let Oi

be this value.
(3) Update of the membership function: Update the membership function of each

point xi ∈ X using this expression:

µj(xi) =
1(∑c

k=1
∥xi−vj∥
∥xi−vk∥

) 2
m−1

, (4)

for i ∈ {1, . . . , n} and j ∈ {1, . . . , c}. Compute the new clusters using the
procedure of the first step. Compute the new value of the objective function
using expression (2). Let Oi+1 be this value. Increase the number of iterations
n.
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(4) Stopping criterion: If |Oi − Oi+1| < ϵ, where ϵ is the allowed tolerance or
if n ≥ nmax, where nmax is the maximum number of iterations, we stop the
process. Otherwise, we go to the step (2) and continue.

While the FCM algorithm has proven valid in a list of applications, we in-
troduce the spatial fuzzy c-means (SFCM) algorithm, which is a generalization
of the former. This generalization allows for a better modelling of the distance
between elements in the set.

The SFCM is an extension of FCM in which step (3) has two substeps:

(3.1) Update the membership function of each point xi ∈ X using expres-
sion (4).

(3.2) Re-update the membership function of each point xi ∈ X using this ex-
pression:

µ′
j(xi) =

µj(xi)
phq

i,j∑c
k=1 µj(xi)ph

q
i,j

,

where p and q are parameters that controls the relative importance of the
neighbor pixels and hi,j is computed as:

hi,j =
∑

xj∈NB(xj)

µi(xj),

where NB(x) is the set of pixels that belong to the 9× 9 square centered at
point x. Notice that for p = 1 and q = 0 the algorithm is exactly the fuzzy
c-means algorithm. That is why the spatial fuzzy c-means algorithm are a
generalization of the fuzzy c-means algorithm.

It is hence evident why the spatial fuzzy c-means algorithm takes into account
the spatial information of the pixels in the substep (3.2).

3.2 Object selection

Object detection is meant to identify the areas of the image which fit to the
expected characteristics of the object of interest. However, it might be the case
where more than one region or object is selected. The Object Selection phase
shall analyze the image and select the isolated region which is more prone to
be the object of interest. The selection of the object might also involve certain
restrictions in the size of the object, its shape or proportions, its location or even
the roughness of its boundaries.

In the case of liver segmentation, our constraints stem from the basics of MRI
technology. In MRI visualization, the regions of a body with greater water indices
appear brighter than those with lower water indices. We intend to capitalize on
this information to produce an object selection procedure. In this application, we
opt out by selecting the largest cluster as region of interest. This idea is based on
the fact that the cluster representing the background is larger than the cluster
representing the object.

For the experimental results, we restricted to the last strategy. This decision
is, still, dependent upon the specific imagery.
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3.3 Object isolation

Once the image has been discriminated into the object region and the back-
ground region, the next step is to find best fitting area among those labeled as
object region. In our case, we have opted out by selecting the largest connected
component of the cluster that contains the object.

To find the largest connected component, we visualize the binary image or
the grid as a graph where each pixel represents a separate node of the graph
and each node is 8-connected to its neighbors. Next, we apply the Breadth First
Search algorithm [7] search for every node of the graph, and find all the nodes
connected to the current node with same color value as the current node.

The isolation of the object does not restrict to labeling the object itself.
There are semantic constraints that might need to be applied in this phase. For
example, since we know that the liver cannot contain holes, any background area
within the object needs to be relabeled as object.

3.4 Center detection

This phase takes as input a best-possible identification of the object in order to
produce an estimation of a center around which an ACM can be initialized. Let
S ⊂ Ω be the set of positions labeled as object in the Object Isolation phase.
Let (xi, yi) be the positions in S. In order to estimate the center of the object of
interest, we take into account different geometric properties of that set, giving
rise to the following alternatives to find an object center (xc, yc) ∈ Ω:

– Centroid : The center of gravity of the object is taken as the center of gravity.
This strategy is problematic in scenarios with non-convex objects, since the
center of gravity might in fact fall outside the object itself. The formulation
to compute the centroid is:

xc =

∑
(xi,yi)∈S xi

|S|
, yc =

∑
(xi,yi)∈S yi

|S|
.

Note that the centroid can be interpreted as the center of mass of the object
S or the arithmetic mean position of all points in S.

– Maximum distance to the closest point to the boundary: By analyzing the
contour of the region S, we can attempt to find a center which is as far as
possible from its boundary. Let Sb ⊆ S be the set of pixels in the contour of
S. For every pi ∈ S, pi = (xi, yi) we first we compute the distance of to Sb,

dSb
(pi) = min

pj∈Sb

m((xi, yi), (xj , yj)),

for some metric m on Ω. Then, the center of the object will be the pixel that
maximizes the previous expression:

pc = argmaxpi∈S dSb
(pi).

Topologically, finding this center is equivalent to find the center of the largest
ball contained in S, where the ball is defined by the metricm. Hence, it might
be of interest in scenarios with round-like objects.
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– Minimum distance to the farthest point to the boundary : The center expres-
sion is similar to the previous expression by changing min to max. First, we
need to redefine dSb

as follows:

dSb
(pi) = max

pi∈Sb

m((xi, yi), (x̃i, ỹi)),

where m is again some metric on Ω, and the center will be the value that
minimizes the previous expression:

pc = argminpi∈S dSb
(pi).

Topologically, finding this center is equivalent to find the center of the small-
est ball that contains S, where the ball is defined by the metric m.

In terms of vector comparison, a large number of different metrics are avail-
able for point-to-point distance measurement. However, as we are modelling solid
objects in R2, we can also consider object-related metrics, such as the geodesic
distance [9].

4 Case of study

In this section, we illustrate some examples of application of our proposal to
liver segmentation. Specifically, the images has been taken from a project on
non-alcoholic hepatic steatosis, gathered in collaboration with the Clinica Uni-
versitaria de Navarra (Pamplona, Spain). Figure 2 shows the visually repre-
sentable MRI images that we have used in the experimental results. Our goal
with this case of study is to illustrate how the different alternatives in the con-
figuration of the workflow have an impact in the final results of both the center
detection procedure and the ulterior ACM.

Fig. 2. Original images used in the experimental results in Section 4.

In the definition of the algorithm, we have used the proposal in Section 3. At
the Object Selection phase, we have chosen 0.5 as a threshold, and the parameters
in the spatial 2-fuzzy means are m = 5 and p = q = 1. At the center detection
phase, we apply the following three alternatives: (a) The minimum distance
to the closest point in the object using the geodesic distance; (b) the minimum
distance to the farthest point using the Euclidean distance ; and (c) the centroid.



10 A. Mir-Fuentes et al.

Object Detection Object Selection Object Isolation Center Detection

Fig. 3. In the object detection phase, the Manhattan (upper row), Euclidean (middle
row), and Chebyshev (lower row) distances are used for fuzzy clustering. In the center
detection phase, we have applied the maximum distance to the closest point using the
geodesic distance (red), the minimum distance to the farthest point using the Euclidean
distance to the second image (purple) and the centroid (blue).

Figures 3 and 4 show the results of each of the four phases of the algorithm
for the images in Figure 2. Figure 3 shows the results of the image on the left and
Figure 4, of the image on the right. The last column of these figures shows the
center obtained using the three alternatives described above. First, we observe
how the distance applied on the clustering does have an effect on the profiling
of the object, although such differences are relatively erased after the object
selection and object isolation phase. The center detection phase does produce
severe differences on the final result of the procedure, which can be directly
related to the characteristics of the metric (or centroid) used at such phase.

Overall, ee see that the best strategies for the image of Figure 3 are the
centroid and the minimum distance to the farthest point using the Euclidean
distance and the best strategies for the image of Figure 4 are the centroid and
the maximum distance to the closest point using the geodesic distance. Therefore,
from this case of study, we can state that there is no optimal strategy for all
image, and the paremeterization of the workflow needs to adapted to the specific
characteristics of the image or image dataset. In order to quantitatively select
one parameterization for a whole dataset, a quality measure should be defined
for the problem, which is currently absent from literature.
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Object Detection Object Selection Object Isolation Center Detection

Fig. 4. In the object detection phase, the Manhattan (upper row), Euclidean (middle
row), and Chebyshev (lower row) distances are used for fuzzy clustering. In the center
detection phase, we have applied the maximum distance to the closest point using the
geodesic distance (red), the minimum distance to the farthest point using the Euclidean
distance to the second image (purple) and the centroid (blue).

5 Conclusions

In this paper we propose a strategy to find initial contours for ACMs, with the
final aim of image segmentation in grayscale images. Our proposal is presented
as a sequence of four phases represented as functions, so that the workflow
materializes as function composition. The four phases in the strategy are:

Object detection. Usage of a spatial 2-fuzzy means algorithm to detect the
membership degree of the pixels of the grayscale image.

Object selection. Transformation of the image representing the membership
degree of the pixels into a binary image which contains the relevant object.

Object isolation. Application of the restrictions of the relevant object to refine
the binary image obtained in the previous phase.

Center selection. Implementation of some strategies to calculate the center of
the relevant object around which we will find the initial curve to apply the
ACM.

As future work, we intend to extend the worflow to 3D images created as
stacked MRI visualizations, so as to perform volumetric segmentations of the
liver. While the mathematical tools used in our workflow are robust to dimen-
sionality increase, the specific techniques at each phase might be adapted to cope
with increasing complexity.
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