

Trabajo Fin de Máster

Stefan Donkov Bogdanov

Asier Marzo

Pamplona, 18/09/2023

E.T.S. de Ingeniería Industrial,

Informática y de Telecomunicación

Máster Universitario en

Ingeniería Informática

GuidingHaptics

Acknowledgements

I want to thank all the members of the UPNALAB research group for making this group

as welcoming and friendly as it is, as well as their assistance in the development and testing

necessary for the completion of this project.

Summary

A user study comparing different guiding devices was conducted to evaluate the mental

workload of their usage. Several devices were evaluated, among them, GuidingHaptics which

vibrates asymmetrically to produce a pulling sensation in the hand, a vibration band on the

user’s wrist whose stimuli must interpreted as a direction, and finally a pair of headphones that

produce beeping sounds as means of guidance.

The guiding devices and their respective drivers were first constructed, and the software

necessary for their operation implemented. Tuning was required to produce sufficiently strong,

perceptible, and interpretable stimuli.

For the user study, a program was implemented to control the guiding devices and collect the

subject’s objective data. The users were required to fill in a NASA Task Load Index (NASA-TLX)

questionnaire. A statistical analysis on the subjective and objective data was later conducted.

Keywords

Haptics, Guidance, Asymmetric Vibration, Mental Workload, Pulling Sensation, Pulling

Illusion, Voice Coil, Linear Resonant Actuator (LRA)

Index

Contents
State of the Art .. 6

Methodology ... 8

 Assembly of the devices .. 8

 GuidingHaptics ... 8

 Discarded assemblies .. 12

 Vibration Band ... 14

 Audio Device .. 14

User Study ... 15

Conditions ... 15

Trials .. 16

Implementation ... 16

Results and Analysis .. 19

Bibliography .. 23

Annex .. 26

 Arduino code for signal generation ... 26

 Questionnaire .. 29

 Jupyter Notebook for the user study .. 33

 Python code for the secondary tasks .. 44

State of the Art

The work done aims to expand the knowledge in asymmetrically vibrating devices,

capable of inducing a pulling illusion for guidance. To do so, an investigation into the mental

workload caused by such devices has been conducted.

The pulling illusion is extensively present in the literature [1], [2], reporting how

different parameters, like phase amplitude and frequency of its signals, affect its perceived

magnitude.

There are different methods to create guiding cues. For example, the use of flywheels

[3] to induce a force towards an arbitrary direction, or the use of vibration motors attached to

the arm or wrist to allow directional or rotational guidance [4]–[7].The sensation produced by

the pulling illusion, has also been explored for the creation of guiding devices in several

previous papers [8], [9].

Fig. 0.3 Device used in [1]
Fig. 0.2 Device used in [2]

Fig. 0.1 Device used in [3]

Fig. 0.4 Device used in [9]
Fig. 0.5 Devices used in [8]

However, there were no conclusions found about if, the use of pulling-illusion-based

devices over traditional methods of guiding, could have any advantages. Methods to compare

these devices, both subjective and objectively, can be used to determine which guiding

method is superior or preferred by users. For instance, NASA-TLX and SWAT questionnaires

[10], [11], subjectively measure the mental workload produced while using guiding devices. On

the other hand, objective measurements such as TCT and accuracy on a secondary task [12],

are used to address the users’ performance.

When testing mental workload, an appropriate secondary task must be selected in

order not to cause unwanted interference with the main task. In this case, for the primary task

of guidance, there are several appropriate secondary task that can be applied, such as

arithmetic operation solving [13], and Stroop effect tests [14].

Fig. 0.8 Device used in [5]

Fig. 0.6 Device used in [4]

Fig. 0.9 Devices used in [7]

Fig. 0.7 Device used in [6]

Methodology

Assembly of the devices

GuidingHaptics

 The guiding cues that this device will employ are

based on the “pulling illusion” produced when a person’s

fingertips are subjected to an asymmetric vibration [15].

Several commercial solutions capable of generating the

pulling sensation exist, among them voice coils and Linear

Resonant Actuators (LRAs).

 The signals that produce the pulling illusion have already

been studied in several different papers [16]–[19]. To generate

these signals a signal generator [20] was first used, however its

output power was not enough to drive the actuators directly.

An attempt to amplify the signal with a digital audio amplifier

was made but its minimum output power was too high for the

actuators. As a final solution, an Arduino Nano [21] was used to

generate the signals programmatically in combination with a

L298N module [22] to allow for an amplification from 5V up to

40V.

The code implemented for the Arduino Nano allows for a

selection between several different signals proposed by

previous literature, as well as the input of a custom waveform

generated by means of WavePainter [23], a web UI that allows

the painting of custom signals.

Several different actuators [24]–[27] were tested in order

to find the one that produces the best illusory sensation of force.

Some of them were rapidly discarded since the vibration was not

tangential to the skin, and others were able to produce a feeling of

directionality when being held but didn’t produce a pulling

sensation. The actuators shown in Fig. 1 are the ones that were

able to produce a perceptible force, being the one from the voice

coil the strongest of the two.

Fig. 3 Arduino Nano [7]

Fig. 2 L298N module [8]

Fig. 1 Voice coil actuator and LRA [12]-[13]

By means of Red Pitaya [28] and an analog

accelerometer module [29], a partial analysis on the frequency

response of the voice coil was conducted. The phase of the

output signal of the actuator was not able to be captured by the

device, therefore, only the amplitude of the vibrations captured

by the accelerometer was used, and the graph in Fig. 6 was

obtained. This graph shows that the peak amplitude produced by

the actuator is when driven between 60Hz to 70Hz, which

coincides with the manufacturer’s specifications for the resonant

frequency.

A measurement of the response of the actuator to the

different waveforms proposed by the related work was also

conducted, obtaining the results shown in Fig. 7. Some of the

signals produce a symmetric vibration of the actuator which does

not produce the desired pulling sensation, and the first signal

shown in the figure produces the most asymmetric vibration, this

being the reason it was chosen for future tests.

Fig. 4 Red Pitaya [14]

Fig. 5 ADXL335 accelerometer [15]

Fig. 6 Frequency response graph

Fig. 7 Input signals (top) and outputs (bottom) of the accelerometer captured with oscilloscope.

According to literature the optimum frequency of vibration to induce the pulling

sensation is between 10Hz and 50Hz [16], as it stimulates the Meissner corpuscles which are

capable of perceiving the direction of the vibrations [4].

This presents a problem since the actuators should have a resonant frequency

between 10 and 50Hz to maximize the amplitude of the vibrations at the frequencies

perceived by the mechanoreceptors responsible for the pulling sensation. However, no such

commercial actuators exist.

A preliminary user study was conducted to decide the optimum holding position of the

device as well as the frequency producing the strongest pulling force according to the subjects.

From the data shown in Fig. 8, the frequency of 38Hz was chosen for future studies and

experiments, as it was the one which was felt as the strongest by the highest number of

participants.

It is to be noted that there are 2 distinct groups of frequencies producing the strongest

pulling sensation. This is believed to be because the actuators resonant frequency is around

70Hz, thus producing the highest amplitude vibrations near this frequency, and, since the

directionality of the vibrations can be perceived at those frequencies, subjects might have

confused the feeling of directionality with the pulling sensation. The subjects should not feel

pulled at frequencies near 70Hz as the mechanoreceptors responsible for the pulling illusion

are not stimulated [16].

Fig. 8 Histogram of frequencies which produce the strongest pulling sensation reported by the participants.

As for the holding position that provides the

strongest pulling sensation, and the one used in following

studies, the depicted in Fig. 9 was chosen, as it maximizes

the contact with the fingertips and produces the vibration

tangentially to the contact surface. And according to

some users the sensation was stronger when holding the

actuator that way, while other users reported it felt

similar if not equal in strength to the other holding

position (Fig. 10) studied.

A modification of the device was necessary to

improve the feedback of the device in one of the

vibrating directions, since as reported by the users, and

objectively measured with an accelerometer, one of the

directions produced a weaker pulling sensation (Fig. 11).

It is observed that for opposite input signals, the outputs

of the actuator are not exactly opposite, we see that the

two peaks of amplitude in the left output have a greater

difference in magnitude than the peaks of the right

output.

Fig. 9 Holding position chosen.

Fig. 10 A different holding position.

Fig. 11 Difference of asymmetry in the outputs of the actuator.

It is suspected that the cause of this could be an

irregularity in the actuator making it not respond as

expected. An attempt to remedy was made, taking

inspiration from the DIY actuator used in WAVES[18], an

emulation of the rubber membranes was made using the

membranes from a pair of earphones depicted in Fig. 12, as

a substitution to the magnets inside the voice coil

responsible for keeping the oscillator centered, see Fig. 13.

Discarded assemblies

There were several other designs tested to

attempt to achive a stronger pulling sensation and a

higher number of degrees of freedom.

The solution that was previously proposed only

has 1 DoF of vibration. A logical train of thought would

lead to the use of 2 or more actuators perpendicular to

each other to allow for 2 or 3 DoFs, or for

actuators to be controlled by pairs to create the

sensation of torque enabling haptic feedback up

to 6 DoFs. This however proved to be a very

difficult endeavour, since just coupling actuators

together leads to increases in weight and

changes to their resonant frequencies, which

both have a negative effect in the percieved

strength of the pulling sensation, making it less if

not completely imperceptible. Other problems arise

when using more actuators, like the fact that it is

difficult if not impossible to have a finger contacting

all actuators and the other fingers contacting just

one. The pinching of the actuator seemed to be key in

order to induce a pulling sensation, and a holding

position for 3 actuators was not possible. Despite the

previously exposed hurdles, a device that allows for 2

DoF of vibration was constructed (Fig. 14). Hoewever it

did not produce pulling sensation as strong as just using

a single actuator. It is to be noted that it did produce a

feeling of directionality similar to the one resulting from

driving a single actuator at its resonant frequency.

Fig. 12 Membranes used in WAVES [4] (top),

earphone membranes (left), modification (right)

Fig. 13 Disassembled voice coil. Oscillator (top

left), right casing (top right), left casing with coil

(bottom left), metal casing holding all together

(bottom right)

Magnets

(m
ag

n
et

 in
si

d
e)

Fig. 14 2DoF device on the right, and its holding

position, thumb contacting both actuators, index

and middle fingers on different actuators.

 Efforts in the increase of the percieved

pulling force lead to an attempt in enlarging the

contact area between the actuator and the

subject’s skin. The first solution tried was encasing

the actuator in mouldable plastic [30], see Fig. 15,

this lead to a significant increase in the amount of

skin in contact with the vibrating surface, as the

entire hand could be wrapped around the vibrating

surface. In spite of this, there was no increase in the

strength of the sensation, and in fact it could not be felt

at all. The cause of this could be the increase in weight changing the resonant frequency of the

system and thus making the vibration produced by it no loger assymmetric. It is possible that

encasing the voice coil causes the oscillator inside it to not move as freely as normal. The

oscillator could have to compress the air when moving thus resulting in an atenuated vibration

instead of a sudden “push” to one side and a slower move to the other.

3D printed casings, shown in Fig. 16, were also studied but did not yield a device

capable of inducing the pulling sensation, probably because of the same reasons described

previously.

Another solution proposed the use

of a surface speaker [31], see Fig. 17, in

combination with a DIY handle made from

a threaded rod and mouldable plastic,

check Fig. 18. This configuration does allow

for a perception of the pulling sensation,

and is somewhat stronger than the one

produced by the voice coils. It even allows

for a 2 or 2.5 DoF of vibration, not reaching

3DoF since one of the directions would have

to oppose gravity, which is a much stronger

force than the one induced by the device.

However, it has the disadvantage of being too cumbersome, in the sense that it

weights considerably more than a voice coil, and this weight is offset to one side, causing an

unwanted torque in the hand when being held.

Fig. 17 Surface speaker [17]

Fig. 15 Actuator partially encased in

plastic (left), and fully encased (right)

Fig. 16 Different casings for the actuators. A1, A2 was intended for a 2DoF device, while A3,

A4 was intended to increase the strength of the sensation by using 2 actuators.

Fig. 18 Two different DIY

handles

A1 A2 A3 A4

Vibration Band

 The assembly the device (Fig. 19) is based on one of the designs shown in [7], where

some eccentric mass motors around the user’s wrist inside a streachable fabric. Nonetheless,

there are several changes made to that design in order to adapt it for what, from now on will

be related to as “Vibration Band”.

 Firstly, the actuators were exchanged for LRAs instead of ERM, since they don’t have a

ramp up and ramp down of intensity of vibration, thus allowing for a faster response time. The

number of actutators was reduced to 2 the minimum needed for 1DoF guiding device. The

positions of the actuators were also changed to be at each of the sides of the arm (Fig. 19).

This was a decision made to facillitate the future user study. GuidingHaptics requires the

fingers holding the actuator to be perpendicular to the wrist and parallel to the ground, this

position forces ulna bone to be facing the ground while the radius faces up. If the actuators

where instead placed at each sides of the wrist, the vibration would be felt on the top side or

bottom side when the arm is in the position described previously, and this would not be a

reasonable way of comparing the different devices in the user study, as the vibrations top or

bottom would have to be interpreted as left or right, instead of left or right directly. With the

modified position both the Guiding Haptics device, and the Vibration Band would produce a

sensation to the left or right, without requiring the subject to further interpret the stimuli.

 The driver for both of the LRAs was the

same system used for Guiding Haptics, only the

code running on the Arduino Nano was modified

to generate a sinusoidal signal and allow

individual control of the LRAs.

 The velcro strip was necessary to ensure

good contact between the actuators and the

subject’s skin, as if they were to be hanging loosly

the haptic vibration might not be perceptible.

Audio Device

 This device uses a pair of over-the-ear stereo headphones to provide guiding cues to

the subject. To do so, they make a “beep” sound in subject’s ears. If the user has to be guided

towards the right, the sound cue will only be produced in the right ear. On the other hand, if

the user must go towards the left, then the stimuli will be produced in the left ear.

One of the reasons this method was selected is because it causes less mental workload when

compared to other audio based cues like spoken voice commands [32]. Another justification

for the use of headphones comes from the fact that the user will be moving left or right when

following the guiding cues. The use of headphones ensures that the user will always have the

same reference frame for left and right, since the headphones will always be on the same

LRA

Fig. 18 Vibration band device.

Velcro Elastic Fabric

postion on their head. If instead, a pair of stereo spekears were to be used, the frame of

reference of the user would not remain constant, as the user would move with respect to the

speakers.

 The software implementation was done in Python, making use of the Pynput library

[33]. It was directly integrated with the code used in the implementation of the user study.

User Study

 The goal of this user study is to discover if the use of asymmetrically vibrating guiding

devices brings any benefits regarding to the mental workload experienced by the subjects

during the guiding experiment, when compared to other haptic or audio based guiding

devices.

 To do so the subjects will have to follow the guiding cues of the different devices until

they reach different targets distributed in an alternating manner along a 1 dimensional line.

While paying attention to the guidance, users will also have to perform different secondary

tasks that aim to increase the user’s mental workload.

 The time to complete the different tasks (TCT), all the positions of the users during the

whole study, the accuracy, and the reaction time in the secondary tasks will be tracked in

order to have enough empirical data to identify possibly significant differences.

 The users will also have to fill in a NASA-TLX [34] questionnaire in order to gather

subjective data about their experience with the devices. The users will also have to score the

devices from 1 to 10 and rank them in order of preference. There will also be an open

comments section.

Conditions

 The user study consists of 3 conditions, guidance with GuidingHaptics, the vibration

band and the audio device, referred to as Sound Cues in the following figures. There is no

downtime between changing from one condition to the following, since the subjects will be

required to wear or hold all the devices simultaneously, even though only one of them will be

providing stimuli during each condition. Before starting the experiment, the participants

received instructions detailing the different conditions and tasks that they will have to

perform. The conditions were counterbalanced using a Latin square to avoid order effects.

Trials

 Each of the conditions will have 3 tasks associated with it, the trials will always be in

the same order, it being the following:

1. No secondary task: the subject will just have to follow the guiding cues.

2. Stroop task: while being guided, the user will also have to perform a secondary

task based on the Stroop effect [14]. There will be two options to select

between for the color in which the letter of the word presented is written (Fig.

19)

3. Math task: different simple mathematical operations will be presented

simultaneously with the guiding cues. The subject will attempt to select the

correct answer from the two options presented (Fig. 20).

Implementation

The implementation of this user study required a system to track the positions in 3D

space of the participants. For this, we used an Optitrack V120:Duo [35] which allows a 6DoF

tracking of an IR reflective marker positioned on the actuator used for the Guiding Haptics

device (Fig. 23).

Fig. 19 Stroop task example. Fig. 20 Math task example.

Fig. 21 OptiTrack system.

Fig. 22 Reflective marker.

Fig. 23 GuidingHaptics device with reflective

marker on top of a carboard tube.

The code for the user study was entirely implemented with Python. It makes use of

several different libraries:

• Python-NatNet [36]: allows for the communication between the Python and the

Motive software [37] necessary to operate the OptiTrack system.

• Pygame [38]: used to control the beeping sounds for the Audio device.

• Pynput [33]: handles button presses of the user as well as comunication between

the main program from the user study and the one for the secondary tasks.

• Pyserial [39]: required for the communication between Python and the

microcontrollers responsible for generating the signals for the actuators of the

GuidingHaptics and Vibration Band devices.

• Psychopy [40]: was the library used in the program responsible for the stroop and

math secondary tasks.

The code for the guidance control and data collection for the different conditions was

implememented from scratch. The 3D tracking runs parallel to the main program,on a separate

thread, and updated a global variable with the current position of the user. The main program

controlls different threads that send messages, through serial, to the microcontrollers

responsible for signal generation. This way we can control the guiding cues to allow the user to

advance through the fixed sets of markers. As the user reaches the target with their hand, the

program will automatically change the guiding cue to guide the participant to the next target in

the set.

The program also handles the emulation of keypresses necessary for the

communication with the program responsible for handling the secondary tasks. This is

necessary as it was not possible to integrate this program in the main one as psychopy, the

library used in its implementation, does not allow for it to be run on a thread. Also, to select

the correct answer in the secondary tasks, the users have to press a button (Fig. 24), which is

done by using another Arduino Uno to send a serial message to the main program when one of

the buttons of the remote is pressed.

On the other hand, for the secondary tasks, we used the

code from Stroopy [41] as a foundation, and iterated over it to add

the math task, modify the stroop task, and implement automated

control for starting and stopping the different trials for each

condition.

All the data gathered from the users is stored into CSV files

to simplify its future analysis.

The figures below depict the whole setup used to conduct

the user study. Fig. 24 Remote for selecting the

secondary task’s answers.

Fig. 25 Setup for the user study. 1- OptiTrack system. 2- Screen where the secondary task is

shown. 3- Drivers for the guiding devices. 4- Headphones for the sound guiding device

1

2

3

4

Fig. 26 The different devices on the user’s hands and arm. 1- GudingHaptics device. 2-

Remote to select answers. 3- Vibration band device.

1
2

3

2

Results and Analysis

The main and secondary tasks CSV files, for each user, generated during the user study

had to be preprocessed to remove faulty or erroneous data. To do so, the pandas [42] python

library was used to load the CSV files one by one. Once loaded, the timestamps for the ends of

each trial were compared on both the CSV file for the main task, and the one for the secondary

task. For each trial, if the secondary task file has timestamps later than that of the first file,

they are removed.

 Some files, the ones from user 1 and 13, had to be discarded since for user 1 the math

task did not display properly, and for user number 13 the data was not recorded properly and

was rendered unsalvageable.

 Proceeding with the data processing, the corrected CSVs for each user are loaded one

by one. For each device and trial the TCT, the reaction time and inefficiency of the main task,

and the timestamps used for the calculations are stored into a python list to avoid having to

load the files again. The first six targets in all trials are not included in the calculation of the

statistics as they are considered to be learning trials for the user to get used to the device and

readjustment trials between interruptions when changing secondary tasks. An analysis of the

variance was later performed on the data.

 As for the subjective data about the user’s mental workload and experience, the data

of the questionnaires was collected and the users with invalid data, 1 and 13, were also

discarded. The data was later analyzed using analysis of variance.

 Figures with the movements of the users and the reaction times for each target were

also plotted, that way corrections to the reaction times could be manually done if there are

errors in its calculation caused by occlusions in the tracking systems or the user confusing the

guiding cues. See the figures below for some examples.

Fig. 27 Plots of the user’s movement (blue), reaction times (red) and targets (orange). Top

plot shows a tracking with no major occlusions or confusions. Middle shows a plot with

major tracking errors and bottom one depicts a plot with confusions of the user.

Tracking errors

Confusions

The figures below show plots statistics of the empirical measurements as well as the subjective

experiences of the users.

In
ef

fi
ci

en
cy

R
ea

ct
io

n
 T

im
e

P
ri

m
ar

y
(s

)

From this analysis and plots we can draw the several conclusions

The sound based guiding device allows for a significantly faster completion time for

guiding tasks, while the vibration based devices cause an increase in the completion time by a

significant amount, being GuidingHaptics the slowest method. Reasons for this could be the

familiarity the users have with the devices. Nonetheless, when performing a sencondary task,

there are no significant differences in completion time, possibly meaning that, when it comes

to guidance with more realistic conditions, the devices perform similarly. No significant

differences in the math task could also suggest it was inappropriate for the secondary to the

guidance task, because maybe it interfered or caused too much mental workload.

GuidingHaptics and vibration band cause significant inefficiencies in the users

movement when compared to the audio device, resulting in a longer distance traveled by the

user to complete the target course. However there are no significant differences in efficiency

when comparing both of the vibration based devices. This may indicate that the sound based

device produces more accurate cues, or that it's stimuli are processed faster by the user.

The vibration band device allows for a significant increase in the amout of secondary

task trials solved, when compared to the other devices. The cuase of this could be the device

causing less mental workload than the other ones, making the users focus more on the

secondary task.

Finally a list with the most recurrent comments of the open comments section.

GuidingHaptics (14 users commented):

• Hard to know where it’s guiding (4)

• At the beginning it’s hard to know the correct direction (3)

• One direction felt clearer than the other (3)

• Guided by the change of the type of vibration or different sound it made, not

by the change of direction (3)

R
ea

ct
io

n
 T

im
e

Se
co

n
d

ar
y

(s
)

 (
s)

TR
T

Fig. 28 Plots with the different statistics calculated.

• Intuitive (2)

Vibration Band (17 users commented):

• One direction felt clearer than the other (5)

• Hard to know where it’s guiding (3)

• The hardest one [compared to the other conditions] (2)

• Best guidance [compared to the other conditions] (2)

SoundCues (9 users commented):

• The best one to be guided with [compared to the other two conditions] (5)

• Easy to follow [the guiding] (3)

• The least comfortable [of all conditions] (2)

Bibliography

[1] T. Tanabe, H. Endo, and S. Ino, “Effects of Asymmetric Vibration Frequency on Pulling
Illusions,” Sensors, vol. 20, no. 24, p. 7086, Dec. 2020, doi: 10.3390/s20247086.

[2] T. Tanabe, H. Yano, and H. Iwata, “Evaluation of the Perceptual Characteristics of a Force
Induced by Asymmetric Vibrations,” IEEE Trans. Haptics, vol. 11, no. 2, pp. 220–231, Apr.
2018, doi: 10.1109/TOH.2017.2743717.

[3] J.-P. Choiniere and C. Gosselin, “Development and Experimental Validation of a Haptic
Compass Based on Asymmetric Torque Stimuli,” IEEE Trans. Haptics, vol. 10, no. 1, pp. 29–
39, Jan. 2017, doi: 10.1109/TOH.2016.2580144.

[4] K. Bark et al., “Effects of Vibrotactile Feedback on Human Learning of Arm Motions,” IEEE
Trans. Neural Syst. Rehabil. Eng. Publ. IEEE Eng. Med. Biol. Soc., vol. 23, no. 1, pp. 51–63,
Jan. 2015, doi: 10.1109/TNSRE.2014.2327229.

[5] H. Elsayed, M. Weigel, J. Semsch, M. Mühlhäuser, and M. Schmitz, “Tactile Vectors for
Omnidirectional Arm Guidance,” in Augmented Humans Conference, Glasgow United
Kingdom: ACM, Mar. 2023, pp. 35–45. doi: 10.1145/3582700.3582701.

[6] J. V. Salazar Luces, K. Okabe, Y. Murao, and Y. Hirata, “A Phantom-Sensation Based
Paradigm for Continuous Vibrotactile Wrist Guidance in Two-Dimensional Space,” IEEE
Robot. Autom. Lett., vol. 3, no. 1, pp. 163–170, Jan. 2018, doi: 10.1109/LRA.2017.2737480.

[7] A. A. Stanley and K. J. Kuchenbecker, “Evaluation of Tactile Feedback Methods for Wrist
Rotation Guidance,” IEEE Trans. Haptics, vol. 5, no. 3, pp. 240–251, 2012, doi:
10.1109/TOH.2012.33.

[8] T. Amemiya and H. Gomi, “Distinct Pseudo-Attraction Force Sensation by a Thumb-Sized
Vibrator that Oscillates Asymmetrically,” in Haptics: Neuroscience, Devices, Modeling, and
Applications, M. Auvray and C. Duriez, Eds., Berlin, Heidelberg: Springer Berlin Heidelberg,
2014, pp. 88–95. Accessed: Nov. 23, 2022. [Online]. Available:
http://link.springer.com/10.1007/978-3-662-44196-1_12

[9] H. Kim, H. Yi, H. Lee, and W. Lee, “HapCube: A Wearable Tactile Device to Provide
Tangential and Normal Pseudo-Force Feedback on a Fingertip,” in Proceedings of the 2018
CHI Conference on Human Factors in Computing Systems, Montreal QC Canada: ACM, Apr.
2018, pp. 1–13. doi: 10.1145/3173574.3174075.

[10] B. Cain, “A Review of the Mental Workload Literature,” English, p. 35, Jul. 2007.
[11] L. L. Di Stasi, A. Antolí, M. Gea, and J. J. Cañas, “A neuroergonomic approach to evaluating

mental workload in hypermedia interactions,” Int. J. Ind. Ergon., vol. 41, no. 3, pp. 298–
304, May 2011, doi: 10.1016/j.ergon.2011.02.008.

[12] L. Longo, “Experienced mental workload, perception of usability, their interaction and
impact on task performance,” PLOS ONE, vol. 13, no. 8, p. e0199661, Aug. 2018, doi:
10.1371/journal.pone.0199661.

[13] X. Wu and Z. Li, “Secondary Task Method for Workload Measurement in Alarm Monitoring
and Identification Tasks,” Jul. 2013, pp. 346–354. doi: 10.1007/978-3-642-39143-9_39.

[14] “Stroop effect,” Wikipedia. Jun. 27, 2023. Accessed: Sep. 09, 2023. [Online]. Available:
https://en.wikipedia.org/w/index.php?title=Stroop_effect&oldid=1162193994

[15] T. Amemiya, H. Ando, T. Maeda, T. Amemiya, H. Ando, and T. Maeda, “Kinesthetic Illusion
of Being Pulled Sensation Enables Haptic Navigation for Broad Social Applications,” in
Advances in Haptics, IntechOpen, 2010. doi: 10.5772/8701.

[16] J. Rekimoto, “Traxion: a tactile interaction device with virtual force sensation,” in
Proceedings of the 26th annual ACM symposium on User interface software and

technology, St. Andrews Scotland, United Kingdom: ACM, Oct. 2013, pp. 427–432. doi:
10.1145/2501988.2502044.

[17] T. Tanabe, H. Yano, and H. Iwata, “Properties of proprioceptive sensation with a vibration
speaker-type non-grounded haptic interface,” in 2016 IEEE Haptics Symposium (HAPTICS),
Apr. 2016, pp. 21–26. doi: 10.1109/HAPTICS.2016.7463150.

[18] H. Culbertson, Julie M. Walker, J. Walker, M. Raitor, and A. M. Okamura, “WAVES: A
Wearable Asymmetric Vibration Excitation System for Presenting Three-Dimensional
Translation and Rotation Cues,” pp. 4972–4982, May 2017, doi:
10.1145/3025453.3025741.

[19] N. Sabnis, “Pseudo forces from asymmetric vibrations can provide movement guidance,”
2021, Accessed: Sep. 05, 2023. [Online]. Available:
https://repository.tudelft.nl/islandora/object/uuid%3A88e0f900-1682-4ac8-8583-
0a9c013a6380

[20] “Arbitrary Function Generators.” https://www.tek.com/en/datasheet/afg310-afg320
(accessed Sep. 05, 2023).

[21] “Arduino Nano,” Arduino Official Store. https://store.arduino.cc/products/arduino-nano
(accessed Sep. 05, 2023).

[22] “OcioDual Controlador L298N Motores DC PAP Driver Stepper Doble puente H para
Electrónica Robótica Proyectos Raspberry PIC AVR : Amazon.es: Industria, empresas y
ciencia.” https://www.amazon.es/OcioDual-Controlador-Motores-Driver-
Stepper/dp/B07YNR5KWP/ref=asc_df_B07YNR5KWP/?tag=googshopes-
21&linkCode=df0&hvadid=628580889748&hvpos=&hvnetw=g&hvrand=67530733584226
71351&hvpone=&hvptwo=&hvqmt=&hvdev=c&hvdvcmdl=&hvlocint=&hvlocphy=1005503
&hvtargid=pla-1875528526707&psc=1 (accessed Sep. 05, 2023).

[23] “InigoEzcurdia/WavePainter,” GitHub. https://github.com/InigoEzcurdia/WavePainter
(accessed Sep. 05, 2023).

[24] “VLV200634A - 160hz Rectagular LRA Linear Vibration Motor,” Vybronics, Jun. 27, 2022.
https://www.vybronics.com/linear-lra-vibration-motors/v-lv200634a (accessed Sep. 05,
2023).

[25] “VL32158H-L25 - Generates 5G @ 100hz LRA Linear Vibration,” Vybronics, Dec. 10, 2021.
https://www.vybronics.com/linear-lra-vibration-motors/v-l32158h-l25 (accessed Sep. 05,
2023).

[26] “Solenoid Motor Vibration VG2230001H,” Vybronics, Feb. 24, 2022.
https://www.vybronics.com/coin-vibration-motors/lra/v-g2230001h (accessed Sep. 05,
2023).

[27] “LRA Coin Vibration Motor - VG1040003D,” Vybronics, May 06, 2019.
https://www.vybronics.com/coin-vibration-motors/lra/v-g1040003d (accessed Sep. 05,
2023).

[28] “Red Pitaya - Swiss Army Knife For Engineers,” May 03, 2021. https://redpitaya.com/
(accessed Sep. 05, 2023).

[29] “HiLetgo 2pcs ADXL335 3-Axis Accelerometer Angular Transducer Sensor GY-61
Accelerometer Sensor Angular Transducer Sensor Analog Output 3-5V for Arduino :
Amazon.es: Industria, empresas y ciencia.” https://www.amazon.es/HiLetgo-ADXL335-
Accelerometer-Angular-
Transducer/dp/B081YTDWXS/ref=sr_1_1?crid=2ORKWJO7ZZQ1B&keywords=acceleromet
er+analog+output&qid=1673614029&sprefix=accelerometer+analog+output%2Caps%2C8
60&sr=8-1 (accessed Sep. 05, 2023).

[30] “Polydoh plástico moldeable + 6 libre paquetes de colorear gránulos, plástico, 500g
(también conocido como polimorph, plastimake o instamorph) : Amazon.es: Hogar y
cocina.” https://www.amazon.es/pl%C3%A1stico-moldeable-polimorph-plastimake-
instamorph/dp/B01MZE4LYK?th=1 (accessed Sep. 06, 2023).

[31] A. Industries, “Large Surface Transducer with Wires - 4 Ohm 5 Watt.”
https://www.adafruit.com/product/1784 (accessed Sep. 06, 2023).

[32] S. Holland, D. Morse, and H. Gedenryd, “AudioGPS: Spatial Audio Navigation with a
Minimal Attention Interface,” Pers. Ubiquitous Comput., vol. 6, Sep. 2002, doi:
10.1007/s007790200025.

[33] “pynput Package Documentation — pynput 1.7.6 documentation.”
https://pynput.readthedocs.io/en/latest/ (accessed Sep. 08, 2023).

[34] “NASA-TLX,” Wikipedia. Jul. 22, 2023. Accessed: Sep. 09, 2023. [Online]. Available:
https://en.wikipedia.org/w/index.php?title=NASA-TLX&oldid=1166550915

[35] “V120:Duo - An optical tracking system in a single, plug-and-play package,” OptiTrack.
http://optitrack.com/cameras/v120-duo/index.html (accessed Sep. 09, 2023).

[36] M. Edwards, “Overview.” Jun. 22, 2023. Accessed: Sep. 09, 2023. [Online]. Available:
https://github.com/mje-nz/python_natnet

[37] “Motive - In Depth,” OptiTrack. http://optitrack.com/software/motive/index.html
(accessed Sep. 09, 2023).

[38] “GettingStarted - pygame wiki.” https://www.pygame.org/wiki/GettingStarted (accessed
Sep. 10, 2023).

[39] “pyserial: Python Serial Port Extension.” Accessed: Sep. 10, 2023. [MacOS :: MacOS X,
Microsoft :: Windows, POSIX]. Available: https://github.com/pyserial/pyserial

[40] “Home — PsychoPy®.” https://www.psychopy.org/ (accessed Sep. 10, 2023).
[41] Erik, “Stroopy.” Jul. 19, 2023. Accessed: Sep. 10, 2023. [Online]. Available:

https://github.com/marsja/stroopy
[42] “pandas - Python Data Analysis Library.” https://pandas.pydata.org/ (accessed Sep. 12,

2023).

Annex
Arduino code for signal generation
#include <avr/sleep.h>

#include <avr/power.h>

#define N_SAMPLES 256

#define HALF_SAMPLES (N_SAMPLES/2)

#define MAX_VAL 80 //this is in uS, it is the period of the PWM freq minus some time for calculations

#define HALF_VAL (MAX_VAL/2)

#define PWM_FR 20000

#define N_SIGNALS 6

//square, sin, triang, sawRise, sawFall, custom

uint8_t signals[N_SIGNALS][N_SAMPLES]; //each sample is: 2 bits port masks | 6 bits microswait (0 to 63 at most)

inline uint8_t packSample(uint8_t val) {

 if (val >= HALF_VAL){

 return 0b01000000 | (val-HALF_VAL);

 }else{

 return 0b10000000 | (HALF_VAL-val);

 }

}

//wave vlues obtained with wavepainter (the wave looks like this --> ‾\)

const uint8_t cappedSawtooth[] =

{98,98

,98

,98,98,98,98,98,98,98,98,98,98,98,98,98,98,98,99,99,98,96,95,94,94,93,92,91,91,91,90,90,88,87,86,86,86,85,83,84,83,82,81,81,80

,80,79,78,78,78,77,76,76,75,75,74,73,73,71,72,71,70,69,69,68,67,67,67,66,66,65,64,64,63,62,63,61,61,60,60,60,58,57,56,57,55,54

,54,53,53,51,51,50,50,50,49,48,48,47,47,46,45,45,44,44,43,42,42,42,41,40,39,39,38,38,37,38,37,36,36,35,35,34,34,33,32,32,31,31

,31,29,29,28,29,27,27,26,26,24,24,23,22,22,22,20,20,18,18,18,16,15,15,14,14,13,12,11,12,10,10,9,8,8,7,6,6,5,5,4,3,3,3,2,2,2,2};

void fillInSignals() {

 for (int i = 0; i < N_SAMPLES; ++i) {

 signals[0][i] = packSample(i < HALF_SAMPLES ? MAX_VAL : 0); //square wave

 const double v = cos(i * 2.0 * PI / N_SAMPLES); //sinusoidal

 signals[1][i] = packSample((byte) ((v + 1.0) / 2.0 * MAX_VAL)); //map from -1,1 to 0,MAX

 signals[2][i] = packSample(abs(i*MAX_VAL/N_SAMPLES*2 - MAX_VAL)); //triangular

 //signals[3][i] = packSample(i * MAX_VAL / N_SAMPLES); //saw-tooth rise

 //signals[4][i] = packSample((N_SAMPLES-i) * MAX_VAL / N_SAMPLES); //saw-tooth fall

 signals[3][i] = packSample(cappedSawtooth[i] * MAX_VAL / 100); // ‾\ wave

 signals[4][i] = packSample((100-cappedSawtooth[i]) * MAX_VAL / 100); // /‾ wave

 signals[5][i] = packSample(0); //custom starts empty

 }

}

void setup() {

 fillInSignals();

 DDRC = 0b00000011; //set pins A0 to A1 as outputs

 PORTC = 0b00000000; //output low in all of them

 // initialize timer1 to interrupt at PWM_FR (usually 20kHz)

 noInterrupts(); // disable all interrupts

 TCCR1A = TCCR1B = 0;

 TCNT1 = 0;

 OCR1A = (F_CPU / PWM_FR);

 TCCR1B |= (1 << WGM12); // CTC mode

 TCCR1B |= (1 << CS10); // 1 prescaler, no prescaling

 TIMSK1 |= (1 << OCIE1A); // enable timer compare interrupt

 interrupts(); // enable all interrupts

 // disable ADC

 ADCSRA = 0;

 // turn off everything we can

 power_adc_disable ();

 power_spi_disable();

 power_twi_disable();

 power_timer0_disable();

 //power_usart0_disable();

 Serial.begin(57600);

 //buttons

 pinMode(2, INPUT_PULLUP);

 pinMode(3, INPUT_PULLUP);

 pinMode(4, INPUT_PULLUP);

 pinMode(5, INPUT_PULLUP);

 /*for(int i = 0; i < N_SAMPLES; i++){

 Serial.print(signals[0][i]); Serial.print(',');

 Serial.print(signals[1][i]); Serial.print(',');

 Serial.print(signals[2][i]); Serial.print(',');

 Serial.print(signals[3][i]); Serial.print(',');

 Serial.print(signals[4][i]); Serial.println();

 }*/

}

uint32_t indexShift24 = 0;

uint32_t indexIncShift24 = 4294967;

int currentSignal = 1;

ISR(TIMER1_COMPA_vect) { // timer compare interrupt service routine

 static uint8_t portMask = 0b00000001;

 static uint8_t microsHigh = HALF_VAL;

 PORTC = portMask; //switch on the corresponding pins

 delayMicroseconds(microsHigh);

 PORTC = 0b00000000; //all off

 //increase the index. overflow makes it cycle

 indexShift24 += indexIncShift24;

 //get sample

 const uint8_t sample = signals[currentSignal][indexShift24 >> 24];

 //extract pin mask

 portMask = sample >> 6;

 //extract wait micros

 microsHigh = sample & 0b00111111;

}

inline void stopSignalGen(){

 TIMSK1 &= ~(1 << OCIE1A); //disable the timer interrupt

}

inline void signalGen(int signalType, float fr){

 currentSignal = signalType % N_SIGNALS;

 TIMSK1 |= (1 << OCIE1A); //enable timer interrupt

 indexIncShift24 = (uint32_t) ((float)((uint32_t)1<<24) * (float)N_SAMPLES * fr / (float)PWM_FR);

}

bool prevButtonPressed = false;

void loop() {

 //0 -> off

 //1 SIGNAL_TYPE FR -> start emitting SIGNAL_TYPE[0,1,2,3,4,5] with FR

 //2 val1 val2 ... val256 -> send a custom signal. 256 numbers from 0 to 100 are expected after the number 2

 if (Serial.available()) {

 const int command = Serial.parseInt();

 Serial.println(command);

 if (command == 0){

 stopSignalGen();

 }else if (command == 1){

 const int signalType = Serial.parseInt();

 const float fr = Serial.parseFloat();

 signalGen(signalType, fr);

 }else if (command == 2){

 stopSignalGen();

 for(int i = 0; i < N_SAMPLES; i++){

 const int val = Serial.parseInt();

 signals[5][i] = packSample(val * MAX_VAL / 100);

 }

 }else if (command == 3){

 stopSignalGen();

 Serial.read();

 for(int i = 0; i < N_SAMPLES; i++){

 const int val = Serial.read();

 signals[5][i] = packSample(val);

 }

 }

 while (Serial.read() != '\n'); //skipt until finding the new line character

 Serial.println("9");

 }

 if (digitalRead(2) == LOW && prevButtonPressed == false){

 signalGen(3, 36.4);

 prevButtonPressed = true;

 }else if (digitalRead(3) == LOW && prevButtonPressed == false){

 signalGen(4, 36.4);

 prevButtonPressed = true;

 }else if (digitalRead(4) == LOW && prevButtonPressed == false){

 if (random(2) == 0){

 signalGen(3, 36.4);

 }else{

 signalGen(4, 36.4);

 }

 prevButtonPressed = true;

 }else if (digitalRead(5) == LOW && prevButtonPressed == false){

 stopSignalGen();

 prevButtonPressed = true;

 }else{

 prevButtonPressed = false;

 }

}

Questionnaire

Jupyter Notebook for the user study

See pages below.

In []: #!pip install jupyter_contrib_nbextensions
#!pip install jupyter_nbextensions_configurator
#!jupyter nbextensions_configurator enable --user
#!jupyter contrib nbextension install --user
#!jupyter nbextension enable codefolding/main

In []: # !pip install pygame
!pip install pynput
!pip install pyserial
!pip install psychopy

In []: ##### imports

from __future__ import print_function
import time
import attr
import numpy as np
import natnet

import threading

import asyncio

import serial

import csv
from datetime import datetime

from pynput.keyboard import Key, Controller
from pynput import keyboard

import pygame
from pygame.locals import *

import time
import random

from psychopy import event, core, data, gui, visual

from fileHandling import *

In []: #global vars

global prev
prev = None
global stop
stop = False

In []: #optitrack client
@attr.s
class ClientApp(threading.Thread):

 _client = attr.ib()
 _quiet = attr.ib()

 _last_printed = attr.ib(0)

 @classmethod
 def connect(cls, server_name, rate, quiet):
 if server_name == 'fake':
 client = natnet.fakes.SingleFrameFakeClient.fake_connect(rate=rate)
 else:
 client = natnet.Client.connect(server_name,logger=SilentLogger())
 if client is None:
 return None
 return cls(client, quiet)

 def run(self):
 if self._quiet:
 self._client.set_callback(self.callback_quiet)
 else:
 self._client.set_callback(self.callback)
 self._client.spin()

 def callback(self, rigid_bodies, markers, timing):

 """
 :type rigid_bodies: list[RigidBody]
 :type markers: list[LabelledMarker]
 :type timing: TimestampAndLatency
 """
 global prev

 if markers:
 if prev == None:
 print('Markers')
 for m in markers:
 prev = m.position

 else:
 for m in markers:
 prev = m.position

 def callback_quiet(self, *_):
 if time.time() - self._last_printed > 1:
 print('.')
 self._last_printed = time.time()

def main():

 global prev
 try:
 app = ClientApp.connect(None,10,False)
 app.run()

 except natnet.DiscoveryError as e:
 print('Error:', e)

In []: #silent logger
class SilentLogger(object):

 """Dummy logger implementation that just calls print."""

 def _log_impl(self, msg, *args):
 """Implementation function to make subclassing work."""
 print(msg % args)

 def _log(self, msg, *args):
 """Print msg % args."""
 self._log_impl(msg, *args)

 def _silence(self, msg, *args):
 return

 debug = _silence
 info = _log
 warning = _log
 error = _log
 fatal = _log

In []: def distance3D(a,b): #it's 1D actually
 return np.abs(a[2]-b[2])#np.sqrt((a[0]-b[0])**2+(a[1]-b[1])**2+(a[2]-b[2])**2)

In []: #Emulate key presses with 2 button controller

emul = 1
def emulate():
 controller = serial.Serial('COM7', timeout = 0, baudrate=115200)
 keybr = Controller()
 while True:
 key = controller.readline().decode()
 #print("jeje:"+key)
 if key != "":
 key = key[0]
 if(key == "1"):
 #print("x")
 keybr.press('x')
 keybr.release('x')
 else:
 #print("y")
 keybr.press('m')
 keybr.release('m')
 if emul == 0:
 break
 controller.close()
 controller.__del__()

In []: #function for printing the position of an optitrack marker
def fun2():
 global prev
 prev = None
 while not stop:
 time.sleep(0.5)
 print(prev)

In []: #to stop the emulator of key presses uncomment below and run
#emul = 0

In []: #run threads for optitrack client and key emulator
x = threading.Thread(target=main)
y = threading.Thread(target=emulate)

x.start()
y.start()
time.sleep(3)

In []: ### ID of the user, change for a new user
subId = 25

orders = [[0,1,2],[0,2,1],[1,0,2],[1,2,0],[2,0,1],[2,1,0]]
print(orders[(subId-1) % len(orders)])

In []: ####User study implementation RUN HERE
serBand = serial.Serial('COM9', timeout = 0, baudrate=4800)
serGH = serial.Serial('COM8', timeout = 0, baudrate=4800)
pygame.init()
pygame.mixer.set_num_channels(1)
left = pygame.mixer.Sound("./left-short.mp3")
right = pygame.mixer.Sound("./right-short2.mp3")
finished = pygame.mixer.Sound("./finished.mp3")
ready = pygame.mixer.Sound("./ready.mp3")
beep = pygame.mixer.Sound("./beep.mp3")
channel = None

keyb = Controller()

xLine = 0 #x-axis line along which the user will be guided

minDistance = 0.01 #threshold of hitting target

targets = [-0.4,0.3,0,0.6,-0.3,0.5,-0.7,-0.5,-0.6,0.1,-0.4,0.0,-0.3,0.2,-0.1,0.4,-0.1,0.
 0.4,-0.2,0.7,-0.5,0.5,-0.3,-0.0,-0.5,0.3,-0.7,0.6,0.4,0.6]# -0.4,0.3,0 + seed

targets1 = [-0.2,0.1,-0.3,0.5,0.4,0.7,0.0,0.2,-0.7,0.0,-0.5,0.2,-0.3,0.3,-0.2,0.5,0.1,0.
 -0.3,0.7,0.3,0.7,-0.4,-0.2,-0.3,-0.1,-0.7,0.1,-0.6,0.0,-0.3]# -0.2,0.1,-0.3

targets2 = [0.2,-0.5,0,-0.1,0.7,0.3,0.5,-0.5, 0.4,-0.5,0.0,-0.3,0.2,-0.7,0.5,0.3,0.5,-0.
 -0.4,0.1,-0.4,-0.0,-0.2,0.0,-0.7,0.6,0.1,0.4,0.3,0.5,-0.6]# 0.2,-0.5,0 + see

targs = [targets,targets,targets2]
targs2 = [targets1,targets2,targets1]
targs3 = [targets2,targets1,targets]

soundMode = 1 #0 for words, 1 for beeps

mode = 0 #sound = 0, vibration band = 1, guiding haptics = 2

def auxWrite():
 global first
 if direction == "l":
 if first:
 serGH.write(str.encode('1 2 37\n'))
 time.sleep(0.3)
 serGH.write(str.encode('1 1 37\n'))
 first = False
 else:
 serGH.write(str.encode('1 1 37\n'))
 elif direction == "r":
 if first:
 serGH.write(str.encode('1 1 37\n'))
 time.sleep(0.3)
 serGH.write(str.encode('1 2 37\n'))
 first = False
 else:
 serGH.write(str.encode('1 2 37\n'))

def auxWrite2():
 global first
 if direction == "l":
 if first:
 serBand.write(str.encode('3\n'))
 time.sleep(0.3)

 serBand.write(str.encode('2\n'))
 first = False
 else:
 serBand.write(str.encode('2\n'))
 elif direction == "r":
 if first:
 serBand.write(str.encode('2\n'))
 time.sleep(0.3)
 serBand.write(str.encode('3\n'))
 first = False
 else:
 serBand.write(str.encode('3\n'))

def guide(first):
 if direction == "l":
 if mode == 0:
 #pygame.mixer.find_channel(True).play(left,-1)
 if soundMode == 0:
 channel.play(left,-1)
 else:
 channel.play(beep,-1)
 channel.set_volume(1.0, 0.0)
 elif mode == 1:
 #if first:
 #serBand.write(str.encode('2\n'))
 serialWriteThread2 = threading.Thread(target=auxWrite2)
 serialWriteThread2.start()
 elif mode == 2:
 serialWriteThread = threading.Thread(target=auxWrite)
 serialWriteThread.start()
 elif direction == "r":
 if mode == 0:
 #pygame.mixer.find_channel(True).play(right,-1)
 if soundMode == 0:
 channel.play(right,-1)
 else:
 channel.play(beep,-1)
 channel.set_volume(0.0, 1.0)
 elif mode == 1:
 if first:
 #serBand.write(str.encode('3\n'))
 serialWriteThread2 = threading.Thread(target=auxWrite2)
 serialWriteThread2.start()
 elif mode == 2:
 if first:
 serialWriteThread = threading.Thread(target=auxWrite)
 serialWriteThread.start()
 #serGH.write(str.encode('1 2 37\n'))

def endFinal():
 pygame.mixer.stop()
 if mode == 0:
 pygame.mixer.Sound.play(finished)
 keyb.press('q')
 keyb.release('q')
 serGH.write(str.encode('0\n'))
 serBand.write(str.encode('0\n'))
 serGH.close()
 serGH.__del__()
 serBand.close()
 serBand.__del__()

def end():
 pygame.mixer.stop()
 if mode == 0:

 pygame.mixer.Sound.play(finished)
 keyb.press('q')
 keyb.release('q')
 serGH.write(str.encode('0\n'))
 serBand.write(str.encode('0\n'))

def spam_q2():
 for i in range(8):
 keyb.press('q')
 keyb.release('q')
 time.sleep(0.05)

def spam_q():
 for i in range(8):
 keyb.press('q')
 time.sleep(0.002)
 keyb.release('q')
 time.sleep(0.05)
 time.sleep(0.3)
 keyb.press('w')
 keyb.release('w')

def waitSpace():
 with keyboard.Events() as events:
 for event in events:
 if event.key == keyboard.Key.space:
 break

def loop(condition,targets,final=False):
 global currentTarget
 global target
 global prevTarget
 global currentDirection
 global direction
 global counter

 change = True

 while True:#for x in range(1,len(targets)):
 guide(change)
 change = False
 direction = ""
 dist = distance3D(prev,(xLine,0,currentTarget))
 if dist < minDistance and target < len(targets):
 prevTarget = currentTarget
 target += 1
 if target >= len(targets):
 counter += 1
 file_write.writerow([counter,str(subId)+condition,datetime.now(),dist,cu
 if final:
 endFinal()
 else:
 end()
 break
 change = True
 currentTarget = targets[target]
 if prevTarget > currentTarget :
 direction = "l"
 currentDirection = "left"
 if prevTarget < currentTarget :
 direction = "r"
 currentDirection = "right"
 #print(distance3D(prev,(xLine,0,currentTarget)))
 file_write.writerow([counter,str(subId)+condition,mode,datetime.now(),dist,curre

 counter += 1
 time.sleep(0.0005)

 keyb.press('q')
 keyb.release('q')
 time.sleep(0.05)
 keyb.press('q')
 keyb.release('q')
 spam_qThread = threading.Thread(target=spam_q)
 spam_qThread.start()
 spam_qThread2 = threading.Thread(target=spam_q2)
 spam_qThread2.start()

orders = [[0,1,2],[0,2,1],[1,0,2],[1,2,0],[2,0,1],[2,1,0]]

order = orders[(subId-1) % len(orders)] #minus 1 beacuse they start at 1

currentTarget = targs[order[0]][0]#targets[0]
target = 0
prevTarget = 0
currentDirection = ""
direction = ""
first = True
modes = ["sound","vibration","guiding"]

counter = 1

if prevTarget > currentTarget :
 direction = "l"
 currentDirection = "left"
if prevTarget < currentTarget :
 direction = "r"
 currentDirection = "right"
with open('Data\\user'+str(subId)+'.csv', 'w+', newline='') as file:
 file_write = csv.writer(file)
 file_write.writerow(["counter","subId","mode","timestamp","distance","currentDirecti

 mode = order[0]
 channel = ready.play()
 #waitSpace()
 print("prepare condition: "+ modes[mode])
 time.sleep(2)
 waitSpace()

 ######First trial############
 print("Starting condition 1 trial 1")
 loop("_1_1",targs[order[0]])
 spam_q2()
 waitSpace()
 time.sleep(3)
 waitSpace()
 #waitSpace_spam()
 #######Second Trial###########
 currentTarget = targs2[order[0]][0]#targets[0]
 target = 0
 prevTarget = 0
 currentDirection = ""
 direction = ""
 first = True
 if prevTarget > currentTarget :
 direction = "l"
 currentDirection = "left"
 if prevTarget < currentTarget :
 direction = "r"

 currentDirection = "right"

 print("Starting condition 1 trial 2")
 loop("_1_2",targs2[order[0]])
 spam_q2()
 waitSpace()
 time.sleep(3)
 waitSpace()
 ########THIRD TRIAL########
 currentTarget = targs3[order[0]][0]#targets[0]
 target = 0
 prevTarget = 0
 currentDirection = ""
 direction = ""
 first = True
 if prevTarget > currentTarget :
 direction = "l"
 currentDirection = "left"
 if prevTarget < currentTarget :
 direction = "r"
 currentDirection = "right"

 print("Starting condition 1 trial 3")
 loop("_1_3",targs3[order[0]])
 spam_q2()
 waitSpace()
 ## END OF FIRST CONDITION ##########
 ### START OF SECOND CONDITION ##########

 mode = order[1]
 print("prepare condition: "+ modes[mode])
 waitSpace()
 ######First trial############
 currentTarget = targs[order[1]][0]#targets[0]
 target = 0
 prevTarget = 0
 currentDirection = ""
 direction = ""
 first = True
 if prevTarget > currentTarget :
 direction = "l"
 currentDirection = "left"
 if prevTarget < currentTarget :
 direction = "r"
 currentDirection = "right"
 print("Starting condition 2 trial 1")
 loop("_2_1",targs[order[1]])
 spam_q2()
 waitSpace()
 #######Second Trial###########
 currentTarget = targs2[order[1]][0]#targets[0]
 target = 0
 prevTarget = 0
 currentDirection = ""
 direction = ""
 first = True
 if prevTarget > currentTarget :
 direction = "l"
 currentDirection = "left"
 if prevTarget < currentTarget :
 direction = "r"
 currentDirection = "right"

 print("Starting condition 2 trial 2")

 loop("_2_2",targs2[order[1]])
 spam_q2()
 waitSpace()
 ########THIRD TRIAL########
 currentTarget = targs3[order[1]][0]#targets[0]
 target = 0
 prevTarget = 0
 currentDirection = ""
 direction = ""
 first = True
 if prevTarget > currentTarget :
 direction = "l"
 currentDirection = "left"
 if prevTarget < currentTarget :
 direction = "r"
 currentDirection = "right"

 print("Starting condition 2 trial 3")
 loop("_2_3",targs3[order[1]])
 spam_q2()
 waitSpace()
 ## END OF SECOND CONDITION #########
 ### START OF THIRD CONDITION ###########

 mode = order[2]
 print("prepare condition: "+ modes[mode])
 waitSpace()
 ######First trial############
 currentTarget = targs[order[2]][0]#targets[0]
 target = 0
 prevTarget = 0
 currentDirection = ""
 direction = ""
 first = True
 if prevTarget > currentTarget :
 direction = "l"
 currentDirection = "left"
 if prevTarget < currentTarget :
 direction = "r"
 currentDirection = "right"
 print("Starting condition 3 trial 1")
 loop("_3_1",targs[order[2]])
 spam_q2()
 waitSpace()
 #######Second Trial###########
 currentTarget = targs2[order[2]][0]#targets[0]
 target = 0
 prevTarget = 0
 currentDirection = ""
 direction = ""
 first = True
 if prevTarget > currentTarget :
 direction = "l"
 currentDirection = "left"
 if prevTarget < currentTarget :
 direction = "r"
 currentDirection = "right"

 print("Starting condition 3 trial 2")
 loop("_3_2",targs2[order[2]])
 spam_q2()
 waitSpace()
 ########THIRD TRIAL########
 currentTarget = targs3[order[2]][0]#targets[0]

 target = 0
 prevTarget = 0
 currentDirection = ""
 direction = ""
 first = True
 if prevTarget > currentTarget :
 direction = "l"
 currentDirection = "left"
 if prevTarget < currentTarget :
 direction = "r"
 currentDirection = "right"

 print("Starting condition 3 trial 3")
 loop("_3_3",targs3[order[2]],True)
 spam_q2()
 waitSpace()
 ## END OF THIRD CONDITION ##########

Python code for the secondary tasks

See pages below.

In []: # -*- coding: utf-8 -*-
from psychopy import event, core, data, gui, visual
from fileHandling import *
from datetime import datetime
from pynput import mouse as pynputMouse
class Experiment:
 def __init__(self, win_color, txt_color):
 self.stimuli_positions = [[-.2, 0], [.2, 0], [0, 0]]
 self.win_color = win_color
 self.txt_color = txt_color

 def create_window(self, color=(1, 1, 1)):
 # type: (object, object) -> object
 color = self.win_color
 win = visual.Window(monitor="testMonitor",
 color=color, fullscr=False,screen = 1)
 return win

 def settings(self):
 experiment_info = {'Subid': '', 'Age': '', 'Experiment Version': 0.1,
 'Sex': ['Male', 'Female', 'Other'],
 'Language': ['English', 'Swedish', 'Spanish'], u'date':
 data.getDateStr(format="%Y-%m-%d_%H:%M")}

 info_dialog = gui.DlgFromDict(title='Stroop task', dictionary=experiment_info,
 fixed=['Experiment Version'])
 experiment_info[u'DataFile'] = u'Data' + os.path.sep + u'stroop.csv'
 experiment_info[u'DataFile2'] = u'Data' + os.path.sep + u'' + experiment_info["S
 if info_dialog.OK:
 return experiment_info
 else:
 core.quit()
 return 'Cancelled'

 def create_text_stimuli(self, text=None, pos=[0.0, 0.0], name='', color=None):
 '''Creates a text stimulus,
 '''
 if color is None:
 color = self.txt_color
 text_stimuli = visual.TextStim(win=window, ori=0, name=name,
 text=text, font=u'Arial',
 pos=pos,
 color=color, colorSpace=u'rgb')
 return text_stimuli

 def create_math_stimuli(self, text=None, pos=[0.0, 0.0], name='', color=None):
 '''Creates a text stimulus,
 '''
 if color is None:
 color = "White"
 text_stimuli = visual.TextStim(win=window, ori=0, name=name,
 text=text, font=u'Arial',
 pos=pos,
 color=color, colorSpace=u'rgb')
 return text_stimuli

 def create_trials(self, trial_file, randomization='random'):
 '''Doc string'''
 data_types = ['Response', 'Accuracy', 'RT', 'Sub_id', 'Sex','Time_stamp']
 with open(trial_file, 'r') as stimfile:
 _stims = csv.DictReader(stimfile)
 trials = data.TrialHandler(list(_stims), 1,
 method="random")
 [trials.data.addDataType(data_type) for data_type in data_types]

 return trials

 def present_stimuli(self, color, text, position, stim):
 _stimulus = stim
 color = color
 position = position
 if settings['Language'] == "Swedish":
 text = swedish_task(text)
 elif settings['Language'] == "Spanish":
 text = spanish_task(text)
 else:
 text = text
 #print(position)
 _stimulus.pos = [position[1],-position[0]]
 _stimulus.setColor(color)
 _stimulus.setText(text)
 return _stimulus

 def running_experiment(self, trials, testtype,mode="stroop"):
 _trials = trials
 testtype = testtype

 timer = core.Clock()
 #stimuli = [self.create_text_stimuli(window) for _ in range(4)]
 stimuli = [self.create_math_stimuli(window) for _ in range(4)]

 for trial in _trials:
 # Fixation cross
 fixation = self.present_stimuli(self.txt_color, '+', self.stimuli_positions[
 stimuli[3])
 fixation.draw()
 window.flip()
 core.wait(.6)
 timer.reset()
 print(trial)
 # Target word
 if mode == "stroop":
 target = self.present_stimuli(trial['colour'], trial['stimulus'],
 self.stimuli_positions[2], stimuli[2])
 elif mode == "math":
 target = self.present_stimuli(self.txt_color, trial['stimulus'],
 self.stimuli_positions[2], stimuli[2])
 target.draw()
 # alt1
 alt1 = self.present_stimuli(self.txt_color, trial['alt1'],
 self.stimuli_positions[0], stimuli[0])
 alt1.draw()
 # alt2
 alt2 = self.present_stimuli(self.txt_color, trial['alt2'],
 self.stimuli_positions[1], stimuli[1])
 alt2.draw()
 window.flip()
mouse1.clickReset()
 keys = []
while True:
keys = event.getKeys(keyList=['q'])##keyList=['x', 'm', 'q']
if len(keys) > 0:
print(keys)
print("we")
break
buttons, times = mouse1.getPressed(True)
if buttons[0] == 1:
if mouse1.getPos()[0] < 0:
keys.append('x');
print(keys)

break
elif mouse1.getPos()[0] > 0:
keys.append('m');
print(keys)
break
 # keys = []
 # while True:
 # with pynputMouse.Events() as events:
 # # Block at most one second
 # keys = event.getKeys(keyList=['x','m','q'])##keyList=['x', 'm', 'q
 # if 'q' in keys:
 # #print(keys)
 # #print("we")
 # break
 # #print(events)
 # #print(type(events))
 # #print(type(events[0]))
 # event1 = events.get(1.0)

 # if event1 != None:
 # #print(event1)
 # #print(type(event1))
 # # print(event.x)
 # #print("----------")
 # if isinstance(event1, pynputMouse.Events.Click):
 # print("jejjeej")
 # print(event1.button)
 # print(type(event1.button))
 # if event1.button is pynputMouse.Button.left:
 # print("jejjeej")
 # print(event1.x)
 # if event1.x < 3500 and event1.x >2580:
 # keys.append('x');
 # print(keys)
 # elif event1.x > 3500:
 # keys.append('m');
 # print(keys)
 # break

 keys = event.waitKeys(keyList=['x', 'm', 'q'])

 resp_time = timer.getTime()
 if testtype == 'practice':
 if keys[0] != trial['correctresponse']:
 instruction_stimuli['incorrect'].draw()

 else:
 instruction_stimuli['right'].draw()

 window.flip()
 core.wait(2)

 if testtype == 'test':
 if keys[0] == trial['correctresponse']:
 trial['Accuracy'] = 1
 else:
 trial['Accuracy'] = 0

 trial['RT'] = resp_time
 trial['Response'] = keys[0]
 trial['Sub_id'] = settings['Subid']
 trial['Sex'] = settings['Sex']
 trial['Time_stamp'] = datetime.now()
 write_csv(settings[u'DataFile'], trial)
 write_csv(settings[u'DataFile2'], trial)
 event.clearEvents()

 print(f"keys: {keys}")
 if 'q' in keys:
 print(f"breaking because keys: {keys}")
 break

def create_instructions_dict(instr):
 start_n_end = [w for w in instr.split() if w.endswith('START') or w.endswith('END')]
 keys = {}

 for word in start_n_end:
 key = re.split("[END, START]", word)[0]

 if key not in keys.keys():
 keys[key] = []

 if word.startswith(key):
 keys[key].append(word)
 return keys

def create_instructions(input, START, END, color="Black"):
 instruction_text = parse_instructions(input, START, END)
 print(instruction_text)
 text_stimuli = visual.TextStim(window, text=instruction_text, wrapWidth=1.2,
 alignHoriz='center', color=color,
 alignVert='center', height=0.06)

 return text_stimuli

def display_instructions(start_instruction=''):
 # Display instructions

 if start_instruction == 'Practice':
 instruction_stimuli['instructions'].pos = (0.0, 0.5)
 instruction_stimuli['instructions'].draw()

 positions = [[0,.1], [0,-.3], [0, -.1]]#-.2, 0], [.2, 0], [0, 0]]
 examples = [experiment.create_text_stimuli() for pos in positions]
 example_words = ['green', 'blue', 'red']
 if settings['Language'] == 'Swedish':
 example_words = [swedish_task(word) for word in example_words]

 if settings['Language'] == 'Spanish':
 example_words = [spanish_task(word) for word in example_words]

 for i, pos in enumerate(positions):
 examples[i].pos = pos
 if i == 0:
 examples[0].setText(example_words[i])
 elif i == 1:
 examples[1].setText(example_words[i])
 elif i == 2:
 examples[2].setColor('Green')
 examples[2].setText(example_words[i])

 [example.draw() for example in examples]

 instruction_stimuli['practice'].pos = (0.0, -0.5)
 instruction_stimuli['practice'].draw()

 elif start_instruction == 'PracticeMath':
 instruction_stimuli['instructions_math'].pos = (0.0, 0.5)
 instruction_stimuli['instructions_math'].draw()

 positions = [[0,.1], [0,-.3], [0, -.1]]#-.2, 0], [.2, 0], [0, 0]]
 examples = [experiment.create_text_stimuli() for pos in positions]
 example_words = ['2', '3', '1 + 1']
 if settings['Language'] == 'Swedish':
 example_words = [swedish_task(word) for word in example_words]

 if settings['Language'] == 'Spanish':
 example_words = [spanish_task(word) for word in example_words]

 for i, pos in enumerate(positions):
 examples[i].pos = pos
 if i == 0:
 examples[0].setText(example_words[i])
 elif i == 1:
 examples[1].setText(example_words[i])
 elif i == 2:
 examples[2].setColor('White')
 examples[2].setText(example_words[i])

 [example.draw() for example in examples]

 instruction_stimuli['practice'].pos = (0.0, -0.5)
 instruction_stimuli['practice'].draw()

 elif start_instruction == 'Wait':
 instruction_stimuli['wait'].draw()

 elif start_instruction == 'Test':
 instruction_stimuli['test'].draw()

 elif start_instruction == 'Test2':
 instruction_stimuli['test_a'].draw()

 elif start_instruction == 'Test3':
 instruction_stimuli['test_b'].draw()

 elif start_instruction == 'End':
 instruction_stimuli['done'].draw()

 window.flip()
 event.waitKeys(keyList=['space','w'])
 event.clearEvents()

def swedish_task(word):
 swedish = '+'
 if word == "blue":
 swedish = u"blå"
 elif word == "red":
 swedish = u"röd"
 elif word == "green":
 swedish = u"grön"
 elif word == "yellow":
 swedish = "gul"
 return swedish

def spanish_task(word):
 swedish = '+'
 if word == "blue":
 swedish = "azul"
 elif word == "red":
 swedish = "rojo"
 elif word == "green":
 swedish = "verde"
 elif word == "yellow":
 swedish = "amarillo"

 return swedish

if __name__ == "__main__":
 background = "Black"
 back_color = (0, 0, 0)
 textColor = "White"
 # text_color = (1, 1, 1)
 experiment = Experiment(win_color=background , txt_color=textColor)
 settings = experiment.settings()
 language = "English"#settings['Language']
 instructions = read_instructions_file("INSTRUCTIONS", language, language + "End")
 instructions_dict = create_instructions_dict(instructions)
 instruction_stimuli = {}

 window = experiment.create_window(color=back_color)

 for inst in instructions_dict.keys():
 instruction, START, END = inst, instructions_dict[inst][0], instructions_dict[in
 instruction_stimuli[instruction] = create_instructions(instructions, START, END,

 # We don't want the mouse to show:
 mouse1 = event.Mouse(visible=True)

 ################################First Condition################################
 #wait for the no secondary task trial to finish
 display_instructions(start_instruction='Wait')
 display_instructions(start_instruction='Wait')
 # Stroop Practice Trials
 display_instructions(start_instruction='Practice')
 practice = experiment.create_trials('practice_list.csv')
 experiment.running_experiment(practice, testtype='practice',mode="stroop")

 #Stroop Test trials
 settings["Subid"] = settings["Subid"]+"_1_2"
 display_instructions(start_instruction='Test')
 trials = experiment.create_trials('stimuli_list.csv')
 experiment.running_experiment(trials, testtype='test',mode="stroop")
 display_instructions(start_instruction='End')

 #Math Practice trials
 display_instructions(start_instruction='PracticeMath')
 practice = experiment.create_trials('practice_list2.csv')
 experiment.running_experiment(practice, testtype='practice',mode="math")

 #Math Test trials
 settings["Subid"] = settings["Subid"][:-3]+"1_3"
 display_instructions(start_instruction='Test')
 trials = experiment.create_trials('stimuli_list2.csv')
 experiment.running_experiment(trials, testtype='test',mode="math")
 display_instructions(start_instruction='End')

 ################################Second Condition################################
 #wait for the no secondary task trial to finish
 display_instructions(start_instruction='Wait')
 display_instructions(start_instruction='Wait')

 # Stroop Practice Trials
 #display_instructions(start_instruction='Practice')
 #practice = experiment.create_trials('practice_list.csv')
 #experiment.running_experiment(practice, testtype='practice')

 #Stroop Test trials
 settings["Subid"] = settings["Subid"][:-3]+"2_2"
 display_instructions(start_instruction='Test2')
 trials = experiment.create_trials('stimuli_list.csv')
 experiment.running_experiment(trials, testtype='test',mode="stroop")

 display_instructions(start_instruction='End')

 #display_instructions(start_instruction='Wait')

 #Math Practice trials
 #display_instructions(start_instruction='PracticeMath')
 #practice = experiment.create_trials('practice_list2.csv')
 #experiment.running_experiment(practice, testtype='practice')

 #Math Test trials
 settings["Subid"] = settings["Subid"][:-3]+"2_3"
 display_instructions(start_instruction='Test3')
 trials = experiment.create_trials('stimuli_list2.csv')
 experiment.running_experiment(trials, testtype='test',mode="math")
 display_instructions(start_instruction='End')

 ################################Third Condition################################
 #wait for the no secondary task trial to finish
 display_instructions(start_instruction='Wait')
 display_instructions(start_instruction='Wait')

 # Stroop Practice Trials
 #display_instructions(start_instruction='Practice')
 #practice = experiment.create_trials('practice_list.csv')
 #experiment.running_experiment(practice, testtype='practice')

 #Stroop Test trials
 settings["Subid"] = settings["Subid"][:-3]+"3_2"
 display_instructions(start_instruction='Test2')
 trials = experiment.create_trials('stimuli_list.csv')
 experiment.running_experiment(trials, testtype='test',mode="stroop")
 display_instructions(start_instruction='End')

 #Math Practice trials
 #display_instructions(start_instruction='PracticeMath')
 #practice = experiment.create_trials('practice_list2.csv')
 #experiment.running_experiment(practice, testtype='practice')

 #display_instructions(start_instruction='Wait')

 #Math Test trials
 settings["Subid"] = settings["Subid"][:-3]+"3_3"
 display_instructions(start_instruction='Test3')
 trials = experiment.create_trials('stimuli_list2.csv')
 experiment.running_experiment(trials, testtype='test',mode="math")
 display_instructions(start_instruction='End')

 # End experiment but first we display some instructions
 #display_instructions(start_instruction='End')
 display_instructions(start_instruction='Wait')
 window.close()

	72bfc327d6fb30f2a9148057603d28d2451f3225ab07e1390c175529b2d8725c.pdf
	634dc78e5babcd18a98571970aaef3c81c597d184481938c80956436a54acb05.pdf
	72bfc327d6fb30f2a9148057603d28d2451f3225ab07e1390c175529b2d8725c.pdf
	20b928b6c45da88062146ce986b4119da61426768b0ce14ded6af77d0d0a602d.pdf

