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A B S T R A C T

In this paper, we further investigate the problem of selecting a set of design points for universal
kriging, which is a widely used technique for spatial data analysis. Our goal is to select the
design points in order to make simultaneous predictions of the random variable of interest
at a finite number of unsampled locations with maximum precision. Specifically, we consider
as response a correlated random field given by a linear model with an unknown parameter
vector and a spatial error correlation structure. We propose a new design criterion that aims
at simultaneously minimizing the variation of the prediction errors at various points. We also
present various efficient techniques for incrementally building designs for that criterion scaling
well for high dimensions. Thus the method is particularly suitable for big data applications
in areas of spatial data analysis such as mining, hydrogeology, natural resource monitoring,
and environmental sciences or equivalently for any computer simulation experiments. We have
demonstrated the effectiveness of the proposed designs through two illustrative examples: one
by simulation and another based on real data from Upper Austria.

1. Introduction

Given a finite number 𝑘 + 𝑚 of locations 𝑥 we are interested into making simultaneous predictions 𝑌 (⋅) of 𝑌 (⋅) at 𝑚 unsampled
locations using observations 𝑌 (𝑥1),… , 𝑌 (𝑥𝑘) collected at some design points 𝜉 = (𝑥1,… , 𝑥𝑘) ⊂ 𝒳 𝑘. Our objective is to select 𝜉 (of
given size 𝑘) in order to maximize the precision of the predictions 𝑌 (𝑥) over 𝒳 . This setup is used in such diverse areas of spatial
data analysis as mining, hydrogeology, natural resource monitoring and environmental sciences, see, e.g., Cressie (1993), and has
become the standard modeling paradigm in computer simulation experiments (cf. Fang et al. (2005), Kleijnen (2009), Rasmussen
and Williams (2005), Santner et al. (2003)), known under the designations of Gaussian Process (GP) modeling and kriging analysis.
For a general review in the context of spatial statistics see Wang et al. (2012).

Specifically, the model underlying our investigations is the model for universal kriging, i.e. we have a correlated scalar random
field given by

𝑌 (𝑥) = 𝜇(𝑥, 𝜷) + 𝜀(𝑥) (1)

Here, 𝜷 is an unknown vector of parameters in R𝑝, 𝜇(⋅, ⋅) a known function of regressors at some given locations 𝑥 in a compact
subset 𝒳 of R𝑑 and the random term 𝜀 (𝑥) has zero mean, variance 𝜎2 and a parameterized spatial error correlation structure such
that IE

(

𝜀 (𝑥) 𝜀
(

𝑥′
))

= 𝜎2𝑐(𝑥, 𝑥′; 𝜈) with 𝜈 some covariance parameters. We further assume that
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• the deterministic term is linear in the parameters 𝜷, i.e., 𝜇(𝑥, 𝜷) = 𝐟 (𝑥)𝜷, where
𝐟 (𝑥) =

(

𝑓1(𝑥) 𝑓2(𝑥) ⋯ 𝑓𝑝(𝑥)
)

is a vector of known functions,
• the first two moments of the error 𝜀 (𝑥) and hence of 𝑌 (𝑥) exist and
• the variance 𝜎2 and the covariance parameters 𝜈 are known.

t is often assumed that the random field 𝜀 (𝑥) is Gaussian, allowing estimation of 𝛽 and 𝜃 = {𝜎2, 𝜈} by Maximum Likelihood. We do
ot need to assume a stationary nor an isotropic covariance structure.

Traditional optimality criteria for designs for prediction are kriging variance-minimizing, albeit not all authors understand the
ame by the term kriging variance or kriging covariance. Some mean the variance of the prediction Var

(

𝑌 (𝑥)
)

, cf. Müller et al. (2015),
ome the variance of the prediction error Var

(

𝑌 (𝑥) − 𝑌 (𝑥)
)

, cf. Cressie (1993), and some even Var (𝑌 (𝑥)|𝑌 (𝜉)), i.e. the variance of
(⋅) at unsampled locations 𝑥 given the observations on the design points 𝜉, cf. Chevalier and Ginsbourger (2012). We follow the

econd perception because trying to minimize the variation of the prediction errors seems to yield most precise predictions.

efinition 1. Let 𝑥 ∈ 𝒳 be an arbitrary unsampled location and 𝑌 (𝑥) the best linear unbiased predictor (BLUP) at 𝑥. The kriging
ariance at 𝑥 is

𝜎2(𝑥) ∶= Var
(

𝑌 (𝑥) − 𝑌 (𝑥)
)

.e. the variance of the best linear predictor minus the random variable to be predicted.
Let 𝑥′ ≠ 𝑥 be a second unsampled location and 𝑌 (𝑥′) the BLUP at 𝑥′ ∈ 𝒳 . The kriging covariance for 𝑥 and 𝑥′ is

𝜎(𝑥, 𝑥′) ∶= C ov
(

𝑌 (𝑥) − 𝑌 (𝑥); 𝑌 (𝑥′) − 𝑌 (𝑥′)
)

With the above definition G-optimal designs (cf. Dasgupta et al. (2022-03-12)) try to minimize the maximum kriging variance,
i.e.

min
𝜉

max
𝑥∈𝒳

Var
(

𝑌 (𝑥) − 𝑌 (𝑥)
)

. (2)

Another popular optimality criterion tries to minimize the average prediction variance over a set of 𝑚 specific points (V-optimality),
i.e.

min
𝜉

1
𝑚

∑

𝑥𝑖∈𝒳
Var

(

𝑌 (𝑥𝑖) − 𝑌 (𝑥𝑖)
)

. (3)

Note that the latter if not supported on a grid but rather covering the whole 𝒳 , expressed as an integral is often called I-optimality,
see Dasgupta et al. (2022) for a recent example of the terminology.

None of these and other criteria for designs for prediction considers the kriging covariances or the kriging covariance matrix at the
unsampled locations (𝑥𝑘+1,… , 𝑥𝑘+𝑚)

𝜮 = 𝜮(𝑥𝑘+1,… , 𝑥𝑘+𝑚) =

⎛

⎜

⎜

⎜

⎜

⎜

⎝

𝜎2(𝑥𝑘+1) 𝜎(𝑥𝑘+1, 𝑥𝑘+2) ⋯ 𝜎(𝑥𝑘+1, 𝑥𝑘+𝑚)

𝜎(𝑥𝑘+1, 𝑥𝑘+2) 𝜎2(𝑥𝑘+2) ⋯ 𝜎(𝑥𝑘+2, 𝑥𝑘+𝑚)

⋮ ⋮ ⋱ ⋮

𝜎(𝑥𝑘+1, 𝑥𝑘+𝑚) 𝜎(𝑥𝑘+2, 𝑥𝑘+𝑚) ⋯ 𝜎2(𝑥𝑘+𝑚)

⎞

⎟

⎟

⎟

⎟

⎟

⎠

he popular design criteria just use the diagonal of 𝜮 which means to voluntarily dispense of valuable information given by the
riging covariances.

The design criterion considered in this paper, is the generalized variance of the kriging covariance matrix:

𝐺𝑉 (𝜉) = det𝜮(𝑥𝑘+1,… , 𝑥𝑘+𝑚) = |𝜮| . (4)

efinition 2. The design 𝜉 that minimizes criterion (4) or equivalently any root of |𝜮| is defined as the GV-optimal design, GV
tands for Generalized (kriging) Variance.

As designs that simply minimize the kriging variance, GV-optimal designs are often space-filling but typically position more
esign points at the edge of the design region. GV-optimal designs depend more on the special covariance structure which is in
ontrast to G- and V-optimal designs in particular for small numbers of observations 𝑘 (see Fig. 1 for an exemplary comparison).
nfortunately the minimization of the GV-criterion is computationally demanding, since the evaluation of (4) requires the evaluation
f the determinant of an (𝑚×𝑚)-matrix, being unfeasible for large 𝑚 which is especially necessary in high dimensional design spaces
s it is often the case for computer experiments. A remedy for this problem is provided by the use of incrementally assembled
esigns proposed here which turn out to be GV-optimal. This reduces the computational effort for the evaluation of (4) for arbitrary
to the evaluation of the determinant of a (𝑘 × 𝑘)-matrix, where 𝑘 is just the design size.
The paper is organized as follows. In Section 2 we motivate our approach, exploiting the fact that the volume of the simultaneous

onfidence region for the prediction errors is proportional to
√

|𝜮|. Section 3 presents the basis of the main contribution of the
aper, giving an update formula for the determinant of the kriging covariance matrix which should be used if we are constructing
ur designs incrementally. These update formulas are also necessary to speed up the computation of the design criterion (4) and
ay as well be used for a more efficient computation of the design criterion V-optimal designs. Finally, Section 4 considers the

fficiency of incremental GV-optimal designs and also the efficiency of GV-optimal designs with respect to G- and V-optimal designs
hich is demonstrated by means of a representative simulation study in Section 5, followed by a real world example in Section 6,
2

nd Section 7 draws conclusions on the efficiency and limitations of the approach and suggests topics for future work.
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Fig. 1. Map of kriging variances of GV-optimal (left), G-optimal (middle) and V-optimal (right) 12-point design for the ordinary kriging setup on the unit square
and Matern covariance function with 𝜅 = 2.5 and 𝜙 = 3. The black dots are the design points. Note that in some zones of the design region the GV-optimal
design has considerable larger kriging variances than the G- and V-optimal designs. This is a natural consequence of the GV-criterion, which does not aim at
minimizing the point-wise kriging variances while the G- and V-criterion do.

2. The generalized variance and optimal designs for prediction

Wilks (1932) remarked that there were ‘‘. . . statistical coefficients which have not been adequately generalized for samples from
a multivariate population including the variance . . . ’’ and introduced the generalized variance which is simply the determinant of the
covariance matrix of a multivariate population. Wald (1943) used the idea of minimizing the generalized variance in his criterion
for optimal designs for parameter estimation (D-optimality), i.e.

max
𝜉

|𝑀𝜃(𝜉)| ,

where 𝑀𝜃 is the information matrix of the parameter estimates 𝜃̂. A combination of these two ideas naturally leads to criterion (4).
Shewry and Wynn (1987) introduced maximum entropy sampling (MES) where the Shannon entropy is used as a measure of

information to get optimal designs for prediction. Here the design criterion is similar to (4): in the case of Gaussian response 𝑌 ,
MES tries to maximize the determinant of the covariance matrix of 𝑌 (𝜉) which is equivalent to minimizing the determinant of the
covariance matrix of

(

𝑌 (𝑥𝑘+1),… , 𝑌 (𝑥𝑘+𝑚)|𝑌 (𝑥1),… , 𝑌 (𝑥𝑘)
)

, i.e. the determinant of the covariance matrix of 𝑌 (⋅) at the unsampled
locations (𝑥𝑘+1,… , 𝑥𝑘+𝑚) conditioned on 𝑌 (⋅) at sampled locations (𝑥1,… , 𝑥𝑘). Though this criterion does not aim at minimizing the
variation of the prediction errors, it is not even directly connected with a prediction method. MES it is rather a sampling method
trying to absorb the maximum amount of variability into the sample, such that conditional on the sample the unsampled points
have minimum variability. The method is suitable for observations on a finite closed system which is the main connection to the
present work. Beyond that we connect the sampling method directly with the BLUP for the response 𝑌 as presented hereinafter.

Interestingly MES yields designs that are exactly GV-optimal in the simple kriging setup and also seem to be GV-optimal in the
ordinary kriging setup. For universal kriging GV-optimal designs approach MES designs with increasing effective range, i.e. more
strongly correlated response.

2.1. The best linear unbiased predictor and the corresponding kriging covariance matrix

As with MES we assume that the allowable choice of the designs 𝜉 is from a fixed finite set of 𝑁 = 𝑘+𝑚 points 𝑋 =
{

𝑥1,… , 𝑥𝑘+𝑚
}

.
Given a 𝑘-point design 𝜉 = (𝑥1,… , 𝑥𝑘), 0 < 𝑘 < 𝑁 , the complementary design 𝜉0 is the set 𝑋 ⧵ 𝜉 and we get the corresponding
partitioning of the response vector 𝐘 =

(

𝐘𝑇
𝜉 𝐘𝑇

0

)𝑇
. We now want to simultaneously predict the response from the complementary

design on the basis of the response from the design 𝜉.
As mentioned above we are using the model of universal kriging, i.e. our linear predictor is the linear combination of a vector

of deterministic functions of the locations 𝑥 ∈ 𝜉: 𝐟 (𝑥) =
(

𝑓1(𝑥) 𝑓2(𝑥) ⋯ 𝑓𝑝(𝑥)
)

with the first component usually being 𝑓1(𝑥) = 1. The
design matrix and corresponding vector of errors then are

𝐅𝜉 =

⎛

⎜

⎜

⎜

⎜

⎜

⎝

𝑓1(𝑥1) 𝑓2(𝑥1) … 𝑓𝑝(𝑥1)

𝑓1(𝑥2) 𝑓2(𝑥2) … 𝑓𝑝(𝑥2)

⋮ ⋮ ⋮ ⋮

𝑓1(𝑥𝑘) 𝑓2(𝑥𝑘) … 𝑓𝑝(𝑥𝑘)

⎞

⎟

⎟

⎟

⎟

⎟

⎠

𝜺𝜉 =

⎛

⎜

⎜

⎜

⎜

⎜

⎝

𝜀(𝑥1)

𝜀(𝑥2)

⋮

𝜀(𝑥𝑘)

⎞

⎟

⎟

⎟

⎟

⎟

⎠

We denote the covariance matrix of 𝜺𝜉 with 𝐂𝜉 and use analogous nomenclature for the complementary design to get

IE
(

𝐘𝜉
𝐘0

)

=
(

𝐅𝜉
𝐅0

)

𝜷 C ov
(

𝐘𝜉
𝐘0

)

=

(

𝐂𝜉 𝐂𝜉0

𝐂𝑇
𝜉0 𝐂0

)

⇒

⇒ IE
(

𝐘 |𝐘
)

= 𝐅 𝜷 + 𝐂𝑇 𝐂−1 (𝐘 − 𝐅 𝜷
)

C ov
(

𝐘 |𝐘
)

= 𝐂 − 𝐂𝑇 𝐂−1𝐂
3

0 𝜉 0 𝜉0 𝜉 𝜉 𝜉 0 𝜉 0 𝜉0 𝜉 𝜉0
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The generalized least squares (GLS) estimate of the parameter vector then is 𝜷̂ =
(

𝐅𝑇
𝜉 𝐂

−1
𝜉 𝐅𝜉

)−1
𝐅𝑇
𝜉 𝐂

−1
𝜉 𝐘𝜉 yielding the simultaneous

kriging prediction for all complementary design points as the BLUP

𝐘̂0 = 𝐅0𝜷̂ + 𝐂𝑇
𝜉0𝐂

−1
𝜉

(

𝐘𝜉 − 𝐅𝜉 𝜷̂
)

=
(

𝐅0𝐁 + 𝐂𝑇
𝜉0𝐀

)

𝐘𝜉 = 𝐖𝐘𝜉

where 𝐁 =
(

𝐅𝑇
𝜉 𝐂

−1
𝜉 𝐅𝜉

)−1
𝐅𝑇
𝜉 𝐂

−1
𝜉 and 𝐀 = 𝐂−1

𝜉
(

𝐈𝑘 − 𝐅𝜉𝐁
)

. The components of the (𝑚 × 𝑘)−weight matrix 𝐖 =
(

𝜔𝑖𝑗
)

give the kriging
weights of 𝑌 (𝑥𝑗 ) for the prediction 𝑌 (𝑥𝑘+𝑖). Combining the results from above the kriging prediction errors have expectation zero
and the kriging covariance matrix

C ov
(

𝐘̂0 − 𝐘0

)

= 𝜮 = 𝐖𝐂𝜉𝐖𝑇 −𝐖𝐂𝜉0 − 𝐂𝑇
𝜉0𝐖

𝑇 + 𝐂0 (5)

2.2. Geometrical interpretation of the GV criterion

In the case of Gaussian kriging prediction errors,
(

𝐘̂0 − 𝐘0

)

∼ IN ( 𝟎 ; 𝜮 ) ⇒
(

𝐘̂0 − 𝐘0

)𝑇
𝜮−1

(

𝐘̂0 − 𝐘0

)

∼ 𝝌2
𝑚

we get a simultaneous confidence region for the prediction errors with
{

𝐘̂0 − 𝐘0 ∶
(

𝐘̂0 − 𝐘0

)𝑇
𝜮−1

(

𝐘̂0 − 𝐘0

)

≤ 𝝌2
𝑚;1−𝛼

}

here 𝝌2
𝑚;1−𝛼 is the (1 − 𝛼)-quantile of the 𝝌2

𝑚 distribution.
This region is a 𝑘-dimensional ellipsoid who’s volume is proportional to

√

|𝜮|, i.e. GV-optimal designs minimize the area of the
rediction errors. It is evident that the usually used design criteria like G-optimality or V-optimality do not have this highly desirable
roperty.

.3. Comparison of MES and the GV-criterion

The criterion for a GV-optimal design or a GV-optimal increment (13) looks similar to the criterion of MES with multivariate
ormal distributed 𝐘, which in our notation would be to maximize |

|

|

C ov
(

𝐘𝜉
)

|

|

|

= |

|

|

𝐂𝜉
|

|

|

, which is equivalent to minimizing

C ov
(

𝐘0|𝐘𝜉
)

|

|

|

= |

|

|

𝐂0 − 𝐂𝑇
𝜉0𝐂

−1
𝜉 𝐂𝜉0

|

|

|

. The reason for the equivalence lies in the determinant identity
|

|

|

|

|

|

(

𝐂𝜉 𝐂𝜉0

𝐂𝑇
𝜉0 𝐂0

)

|

|

|

|

|

|

= |

|

|

𝐂𝜉
|

|

|

⋅

𝐂0 − 𝐂𝑇
𝜉0𝐂

−1
𝜉 𝐂𝜉0

|

|

|

and the fact that the left hand side is fixed and finite (see Shewry and Wynn (1987)).
However, there are considerable differences between the GV-criterion and the MES-criterion:

• The above MES-criterion just holds in the case of Gaussian 𝐘. We do not assume multivariate normal distributed 𝐘 for our
GV-criterion, i.e. the two criteria are different in the case of non-Gaussian 𝐘.

• With GV-optimal designs we minimize C ov
(

𝐘̂0 − 𝐘0

)

in contrast to C ov
(

𝐘0|𝐘𝜉
)

which is minimized with MES-optimal
designs. This difference just vanishes in the case of simple kriging which is shown later.

• The implementation of MES for a linear model (1) uses a Bayesian model which needs some prior distribution for the parameter
vector 𝜷 and particularly some prior covariance matrix C ov (𝜷) = 𝐑−1. The MES criterion for a linear model then turns out
to be: maximize |

|

|

𝐂𝜉 + 𝐅𝜉𝐑−1𝐅𝑇
𝜉
|

|

|

. We have

|

|

|

𝐂𝜉 + 𝐅𝜉𝐑−1𝐅𝑇
𝜉
|

|

|

= |

|

|

𝐂𝜉
|

|

|

|

|

|

|

𝐈𝑝 + 𝐑− 1
2 𝐅𝑇

𝜉 𝐂
−1
𝜉 𝐅𝜉𝐑

− 1
2
|

|

|

|

= |

|

|

𝐂𝜉
|

|

|

|

|

|

𝐑−1|
|

|

|

|

|

𝐑 + 𝐅𝑇
𝜉 𝐂

−1
𝜉 𝐅𝜉

|

|

|

and since 𝐑 does not depend on the design 𝜉 the MES criterion for a linear model can also be formulated as: Select 𝜉 such that
|

|

|

𝐂𝜉
|

|

|

|

|

|

𝐑 + 𝐅𝑇
𝜉 𝐂

−1
𝜉 𝐅𝜉

|

|

|

is maximized. Interestingly maximizing |

|

|

𝐑 + 𝐅𝑇
𝜉 𝐂

−1
𝜉 𝐅𝜉

|

|

|

alone is known as Bayesian D-optimality (Chaloner
and Verdinelli, 1995).
We are not working in a Bayesian framework and do not assume a prior distribution or a prior covariance matrix for 𝜷, so the
GV-criterion is clearly different from MES for a linear model.

espite these differences it might be interesting to compare GV-optimal designs with MES for Gaussian response just using a
onstant model. Here the MES-criterion is simply: choose 𝜉 such that |

|

|

𝐂𝜉
|

|

|

is maximized. For simple kriging this criterion is
equivalent to the GV-criterion because here the kriging covariance matrix is C ov

(

𝐘̂0 − 𝐘0

)

= 𝐂0 − 𝐂𝑇
𝜉0𝐂

−1
𝜉 𝐂𝜉0 and minimizing

𝜮SK|| =
|

|

|

𝐂0 − 𝐂𝑇
𝜉0𝐂

−1
𝜉 𝐂𝜉0

|

|

|

is equivalent to maximizing |

|

|

𝐂𝜉
|

|

|

(see above).
With ordinary kriging the above equivalence is not clear: The kriging weights for ordinary kriging are

𝐖 = 1
𝑏
1𝑚1

𝑇
𝑘𝐂

−1
𝜉 + 𝐂𝑇

𝜉0𝐂
−1
𝜉

(

𝐈𝑘 −
1
𝑏
1𝑚1

𝑇
𝑘𝐂

−1
𝜉

)

where 𝑏 = 1𝑘𝐂−1
𝜉 1

𝑇
𝑘 and 1𝑛 is a vector of ones with length 𝑛. The kriging covariance matrix for ordinary kriging then is

𝜮 = 𝐂 − 𝐂𝑇 𝐂−1𝐂 + 1 (

1 − 𝐂𝑇 𝐂−1
)(

1 − 𝐂𝑇 𝐂−1
)𝑇
4

OK 0 𝜉0 𝜉 𝜉0 𝑏 𝑚 𝜉0 𝜉 𝑚 𝜉0 𝜉
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Fig. 2. GV-criterion function for simple kriging |

|

𝜮SK
|

|

against GV-criterion function for ordinary kriging |

|

𝜮OK
|

|

for different designs. The minima of both criteria
seem to be the same.

and the GV-criterion in this case requires the minimizing of

|

|

𝜮OK|| =
|

|

|

𝐂0 − 𝐂𝑇
𝜉0𝐂

−1
𝜉 𝐂𝜉0

|

|

|

abs
(

1 + 1
𝑏

(

1𝑚 − 𝐂𝑇
𝜉0𝐂

−1
𝜉

)𝑇 (

𝐂0 − 𝐂𝑇
𝜉0𝐂

−1
𝜉 𝐂𝜉0

)−1 (
1𝑚 − 𝐂𝑇

𝜉0𝐂
−1
𝜉

)

)

The above criterion function is clearly different from the simple kriging setup and the following conjecture was verified by countless
computations of |

|

𝜮SK|| and |

|

𝜮OK|| for the same randomly generated designs respectively with different covariance models, different
functions 𝐟 (𝑥) and designs of different sizes. A formal proof eludes us.

Conjecture 1. Let |

|

|

𝜮1
SK
|

|

|

be the GV-criterion function for design 𝜉1 in the simple kriging setup and |

|

|

𝜮1
OK

|

|

|

the criterion function in the
ordinary kriging setup for the same design 𝜉1.

|

|

|

𝜮2
SK
|

|

|

and |

|

|

𝜮2
OK

|

|

|

are defined analogously for another design 𝜉2. Then
|

|

|

𝜮1
SK
|

|

|

⋚ |

|

|

𝜮2
SK
|

|

|

⇎ |

|

|

𝜮1
OK

|

|

|

⋚ |

|

|

𝜮2
OK

|

|

|

,

but the arguments of the minima are the same in both cases as can be seen in Fig. 2.

argmin
𝜉

|

|

𝜮SK|| = argmin
𝜉

|

|

𝜮OK||

In the case of universal kriging the design criterium and the optimal design is clearly different from MES even though it can be
observed that with increasing effective range i.e. with higher correlated response GV-optimal designs approach MES-designs also for
universal kriging.

3. Incrementally and decrementally constructed GV-optimal designs

In many practical situations the experiment is not stopped after a fixed number of runs but say after a certain time or when a
certain budget for the runs has expired. Thus at the start of the experiment the sample size is unknown and it is not clear which
optimal designs of which size to use. In these situation incremental designs should be used, starting with a first design of (small)
size 𝑘 and supplementing it step by step with increments of size 𝑙𝑖 ≥ 1 until experimenting has to be stopped. Here the question
arises how to find optimal increments in an efficient way which will be answered in this section. The efficiency of incrementally
built designs compared to GV-optimal designs will be examined in Section 4.

The use of decrementally constructed designs is not directly motivable, it arises from the attempt of detecting GV-optimal designs
of size 𝑘+ 𝑙 in an incremental way. This may be done very efficiently with the help of Corollary 1 as will be shown below. The idea
is to start with a design of minimal size 𝑘 and compute an increment of size 𝑙 which may be done with small computational effort.
The only problem can be caused by the starting design which may contain design points which are not elements of the GV-optimal
design of size 𝑘+ 𝑙 leading to highly efficient but still suboptimal designs. In these situations an improvement can be achieved using
a decrement, i.e. omitting 𝑘1 design points followed by another incremental step. The hope in the decremental step is to get rid
of inappropriate design points which in the following incremental step are substituted by design points yielding designs closer to
GV-optimality.
5
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3.1. Update formulae for kriging weights and the kriging covariance matrix of incremental designs

For this subsection we assume that we already have a 𝑘-point design and want to add 𝑙 extra design points to simultaneously
predict the remaining 𝑚 ≫ 𝑙 non-design points. As the calculation of the design criterion is computationally demanding, we will show
hat the use of update formulae for the kriging weights and consequently for the kriging covariance matrix is of great computational
enefit.

Furthermore these update formulae may also be used for updating C ov
(

𝑌 (𝑥)
)

and C ov (𝑌 (𝑥)|𝑌 (𝜉)) and also for incrementally
uilt G- and V-optimal designs.

The allowable choice of the designs 𝜉1 and 𝜉2 with 𝜉1∩𝜉2 = ∅ are from a fixed finite set of 𝑁 = 𝑘+𝑙+𝑚 points 𝑋 = {𝑥1,… , 𝑥𝑘+𝑙+𝑚}.
𝜉1 = {𝑥1,… , 𝑥𝑘} is the 𝑘-point first or starting design, 𝜉2 = {𝑥𝑘+1,… , 𝑥𝑘+𝑙} is the 𝑙-point second design (the increment), and 𝑋⧵{𝜉1∪𝜉2}
is the remaining sets of non-design points with cardinality 𝑚. Thus we get the corresponding partitioning of the response vector
𝐘 =

(

𝐘𝑇
𝜉1

𝐘𝑇
𝜉2

𝐘𝑇
0

)𝑇
or simpler 𝐘 =

(

𝐘𝑇
1 𝐘𝑇

2 𝐘𝑇
0
)𝑇 with expectation and covariance matrix

IE

⎛

⎜

⎜

⎜

⎝

𝐘1

𝐘2

𝐘0

⎞

⎟

⎟

⎟

⎠

=

⎛

⎜

⎜

⎜

⎝

𝐅1

𝐅2

𝐅0

⎞

⎟

⎟

⎟

⎠

𝜷 C ov
⎛

⎜

⎜

⎜

⎝

𝐘1

𝐘2

𝐘0

⎞

⎟

⎟

⎟

⎠

=

⎛

⎜

⎜

⎜

⎝

𝐂1 𝐂1 2 𝐂1 0

𝐂𝑇
1 2 𝐂2 𝐂2 0

𝐂𝑇
1 0 𝐂𝑇

2 0 𝐂0

⎞

⎟

⎟

⎟

⎠

. (6)

In the first stage the design is 𝜉1 and we have to predict
(

𝐘𝑇
2 𝐘𝑇

0
)𝑇 from 𝐘1:

(

𝐘2
𝐘0

)

=
(

𝐖12
𝐖10

)

𝐘1, (7)

where 𝐖12 are the weights of 𝐘1 for the prediction of 𝐘2 and analogously 𝐖10 the weights of 𝐘1 for the prediction of 𝐘0.
In the second stage we add the increment and the design is now 𝜉1 ∪ 𝜉2 and we have to predict 𝐘0 from

(

𝐘𝑇
1 𝐘𝑇

2
)𝑇 as

𝐘0 =
(

𝐖1 𝐖2
)

(

𝐘1
𝐘2

)

(8)

where 𝐖1 are the new weights of 𝐘1 for the prediction of 𝐘0 and analogously 𝐖2 the weights of 𝐘2 for the prediction of 𝐘0.
Emery (2009) showed that the kriging weights of the first stage (in our notation the components of 𝐖12 and 𝐖10) can be updated

such that in our compact matrix notation

𝐖1 = 𝐖10 −𝐖2𝐖12 . (9)

The only problem with (9) is that 𝐖2 is unknown if we add an increment to a smaller design. So, an ‘‘update’’ formula for the
computation of the weights 𝐖2 (in fact this is not an update because weights of 𝐘2 do not exist in the first stage) is essential for
an efficient prediction of 𝐘0 in the second stage.

Emery (2009) also presented update formulae for the kriging variances and covariances which unfortunately are wrong in the
case of 𝑙 > 1, which was shown with a simple counter example by Chevalier and Ginsbourger (2012). The presented ‘‘corrected’’
update formulae just have not been for the kriging covariance but for C ov

(

𝐘0|𝐘𝜉
)

. Eventually Chevalier et al. (2014) introduced
correct update formulae for kriging variances and kriging covariances and also formulae for the new kriging weights of the second
stage 𝐖2. In our notation these formulae may be summarized as follows.

3.1.1. (Updated) kriging weights for the second stage
Let the weights 𝐖12, 𝐖10, 𝐖1 and 𝐖2 be as defined in (7) and (8). Let further the kriging covariance matrix of the first stage

in obvious notation be
(

𝜮2 𝜮20

𝜮𝑇
20 𝜮0

)

(10)

Then the new weights 𝐖1 and 𝐖2 can simply be computed with

𝐖1 = 𝐖10 −𝜮𝑇
20𝜮

−1
2 𝐖12

𝐖2 = 𝜮𝑇
20𝜮

−1
2 (11)

An algebraic proof for the simultaneous computation of the (𝑚× 𝑙)-weight matrix 𝐖2 which is fundamentally different from the one
given in Chevalier et al. (2014) can be found in Appendix.

3.1.2. Update formula for the kriging covariance matrix
Let the kriging covariance matrix of the first stage be as in (10), and the kriging covariance matrix of the second stage be 𝜮+

0 .
Using the weights of (11) we can then update the kriging covariance matrix from the first stage to get

𝜮+
0 = 𝜮0 −𝜮𝑇

20𝜮
−1
2 𝜮20 (12)

An algebraic proof for this simultaneous update formula for the kriging covariance matrix which uses again another reasoning
than Chevalier et al. (2014) can be found in Appendix.
6
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3.2. Efficient computation of increments for GV-optimal designs

The following theorem is of fundamental importance as it allows the efficient incremental construction of 𝐺𝑉 -optimal designs.

heorem 2. The GV-optimal increment for the second stage given a design at the first stage then is

𝜉𝑖𝑛𝑐GV = argmax
𝜉2

|

|

𝜮2
|

|

. (13)

roof of Theorem 2. For a given design at the first stage the determinant of the corresponding kriging covariance matrix is fixed
nd finite and the determinant may be factored as:

|

|

|

|

|

|

(

𝜮2 𝜮20

𝜮𝑇
20 𝜮0

)

|

|

|

|

|

|

= |

|

𝜮2
|

|

|

|

|

𝜮0 −𝜮𝑇
20𝜮

−1
2 𝜮20

|

|

|

The GV-optimal increment is the design 𝜉2 that minimizes the determinant of the kriging covariance matrix of the second stage
|

|

|

𝜮+
0
|

|

|

= |

|

|

𝜮0 −𝜮𝑇
20𝜮

−1
2 𝜮20

|

|

|

, which is exactly the second factor of the determinant factorization above. Obviously for a fixed kriging
covariance matrix of the first stage minimizing |

|

|

𝜮0 −𝜮𝑇
20𝜮

−1
2 𝜮20

|

|

|

is equivalent to maximizing |

|

𝜮2
|

|

what completes the proof. ■

Remark 1. Theorem 2 is the reason for the great computational benefit of using incremental designs. It reduces the computation of
the usual criterion function, which beside some matrix inversions demands the computation of the determinant of a (𝑚×𝑚)-matrix, to
the computation of the determinant of a (𝑙×𝑙)-matrix with 𝑙 ≪ 𝑚. This fact enables an increase of the set of points 𝑋 = {𝑥1,… , 𝑥𝑘+𝑙+𝑚}
to an arbitrary size 𝑁 = 𝑘 + 𝑙 + 𝑚 without raising the computational demands. Actually, the problem of finding argmax𝜉2

|

|

𝜮2
|

|

is
known to be NP-hard, see Ko et al. (1995), the additional demand of computing the determinant of a (𝑚 × 𝑚)-matrix would make
it intractable already for moderate 𝑚 > 1000.

Remark 2. Theorem 2 can even be used for an efficient computation of GV-optimal designs of a given size 𝑘 + 𝑙: We start with
some minimal preliminary design, i.e. a design of minimal necessary size 𝑘 = 𝑝 where 𝑝 is the number of deterministic functions of
the locations 𝑥 ∈ 𝜉: 𝐟 (𝑥) =

(

𝑓1(𝑥) 𝑓2(𝑥) ⋯ 𝑓𝑝(𝑥)
)

used in the linear predictor. The design points can even be chosen randomly and
its kriging covariance matrix is the basis for the computation of the increment 𝜉2 as above. After this incremental step the design
is reduced to size 𝑘1 ≥ 𝑘. Also the 𝑘1 design points are chosen randomly out of the incremental design of size 𝑘 + 𝑙. On the basis
of these 𝑘1 points we again compute the GV-optimal increment to end up with a design of size 𝑘 + 𝑙. As the computational effort
is small, these decremental and incremental steps may be repeated many times. If 𝑘 and 𝑙 are of moderate size we may even loop
systematically through all 𝑘1-combinations of the 𝑘 + 𝑙 design points.

Remark 3. By applying the above incremental step several times we may also construct highly efficient sequential designs which
accounts for active learning.

We can now formulate a similar procedure for efficient computation of increments for V-optimal designs.

Corollary 3. The V-optimal increment for the second stage given a design at the first stage is

𝜉𝑖𝑛𝑐V = argmax
𝜉2

tr
(

𝜮2
)

+ tr
(

𝜮−1
2 𝜮20𝜮𝑇

20
)

(14)

Proof of Corollary 3. For a given design at the first stage the trace of the corresponding kriging covariance matrix is fixed and

tr
(

𝜮2 𝜮20

𝜮𝑇
20 𝜮0

)

= tr
(

𝜮2
)

+ tr
(

𝜮0
)

The V-optimal increment is the design 𝜉2 that minimizes the trace of the kriging covariance matrix of the second stage tr
(

𝜮+
0
)

=
tr
(

𝜮0
)

− tr
(

𝜮𝑇
20𝜮

−1
2 𝜮20

)

. Obviously for a fixed kriging covariance matrix of the first stage minimizing tr
(

𝜮0
)

− tr
(

𝜮𝑇
20𝜮

−1
2 𝜮20

)

is
equivalent to maximizing tr

(

𝜮2
)

+ tr
(

𝜮𝑇
20𝜮

−1
2 𝜮20

)

= tr
(

𝜮2
)

+ tr
(

𝜮−1
2 𝜮20𝜮𝑇

20
)

which completes the proof. ■

Remark 4. Corollary 3 is the reason for the computational benefit of using incremental designs. It reduces the computation of the
usual criterion function which demands the matrix inversions of one (𝑘+𝑙)×(𝑘+𝑙)- and one (𝑝×𝑝)-matrix and the computation of the
new kriging covariance matrix (10 matrix multiplications of which 5 involve matrices with 𝑚 as one dimension) to the computation
of the inverse of a (𝑙 × 𝑙)-matrix and 2 matrix multiplications of which only 1 involves a (𝑙 × 𝑚)-matrix. As 𝑙 ≪ 𝑚 this reduces the
computational effort to roughly one third.

Just as Theorem 2, Corollary 3 can be used for an efficient computation of designs close to V-optimality of a given size 𝑘 + 𝑙.
The computational benefit of Corollary 3 cannot be compared to the improvement of Theorem 2, as we have to limit the number
of incremental and decremental steps here and we thus have no guarantee to end up with the V-optimal design.
7
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3.3. GV-optimal designs in design spaces dense in R𝑑

In Section 2.1 we state that the allowable choice of the designs 𝜉 is from a fixed finite set of 𝑁 = 𝑘+𝑚 points 𝑋 =
{

𝑥1,… , 𝑥𝑘+𝑚
}

.
Usually 𝑘 ≪ 𝑚 and going into details of Corollary 1, Remark 2 we may even extend the number of non-design-points 𝑚 to any
(integer) size.

The reason for this remarkable possibility is that for the computation of the GV-optimal increment 𝜉2 of a given design 𝜉1 we do
ot even need the kriging covariance matrix of the first stage which would be of enormous dimension (𝑙+𝑚) × (𝑙+𝑚), we just need
he (𝑙 × 𝑙)-block 𝜮2 which is

𝜮2 = 𝐖12𝐂1𝐖𝑇
12 −𝐖12𝐂12 − 𝐂𝑇

12𝐖
𝑇
12 + 𝐂2

he dimensions of all of the above matrices are just 𝑘 or 𝑙. 𝐖12 are the weights of 𝐘1 for the prediction of 𝐘2 in the first stage:

𝐖12 = 𝐅2𝐁 + 𝐂𝑇
12𝐀

ith 𝐁 =
(

𝐅𝑇
1 𝐂

−1
1 𝐅1

)−1 𝐅𝑇
1 𝐂

−1
1 and 𝐀 = 𝐂−1

1
(

𝐈𝑘 − 𝐅1𝐁
)

. The dimensions of all these matrices are only 𝑘, 𝑙 and 𝑝, i.e. for the
omputation of 𝜮2 we just need small matrices independent of the number 𝑚.

The GV-criterion function is the determinant of the kriging covariance matrix, if in the first stage this determinant is 𝐷, then
he criterion function of the incremental design is 𝐷

|𝜮2|
.

In the decremental step we remove 𝑙1 = 𝑘+ 𝑙 − 𝑘1 design points from the incremental design, the according (𝑙1 × 𝑙1)-block of the
riging covariance matrix of the first stage is 𝜮∗

2 and may be computed as shown above.
The determinant of the kriging covariance matrix after the decremental step then is 𝐷

|𝜮2|
⋅ |𝜮∗

2|. So, not knowing the value of
the GV-criterion during the search for the GV-optimal design is not crucial as it suffices to know the 𝜮2-blocks according to the
increments and decrements to minimize the GV-criterion. Thus in principle we can make the grid as dense as desired, as long as
the number of points is finite. There is reasonable hope that the described method can be generalized to continuous design spaces,
which we defer to future research.

4. Efficiency of GV-optimal designs

As mentioned above it turns out that GV-optimal designs are highly efficient with other design criteria which will be discussed
in Section 4.1.

Additionally Corollary 1 allows a simple, fast and computationally very efficient calculation of incrementally constructed designs
that are close to be GV-optimal. The efficiency of these incremental designs will be discussed in Section 5.1.

4.1. Efficiency with respect to other design criteria

Traditional criteria for optimal designs for prediction are usually concerned with the variance of predictions, i.e. we could also
title this subsection with ‘‘Efficiency with respect to variance-based criteria’’. Here we compare our GV-optimal designs with G- and
V-optimal designs with the help of the relative efficiency, a very common concept in comparing designs, see eg. López-Fidalgo
(2023), p.17.

Let 𝛷𝐺, 𝛷𝑉 and 𝛷𝐺𝑉 be the criterion function for G-, V- and GV-optimality respectively and 𝜉𝐺, 𝜉𝑉 and 𝜉𝐺𝑉 be the G-, V- and
V-optimal designs of the same size for the prediction of the same number of points. The GV-optimal design 𝜉𝐺𝑉 minimizes 𝛷𝐺𝑉 , as

he other optimal designs minimize their corresponding design criteria. Then e.g. the relative G-efficiency of the V-optimal design
s

𝐸𝐺
(

𝜉𝐺 , 𝜉𝑉
)

=
𝛷𝐺

(

𝜉𝐺
)

𝛷𝐺
(

𝜉𝑉
) .

e always have 𝐸 ⋅ (⋅, ⋅) <= 1 and the relative efficiency of a design 𝜉 gives the factor the criterion function of 𝜉 may be decreased
f we switch to the optimal design. These relative efficiencies are scale invariant though the effect of scaling is different for the
V-criterion function on the one and the G- and V-criterion functions on the other hand. The kriging covariance matrix of scaled

esponses 𝑠 ⋅ 𝐘 is 𝑠2𝜮 which affects G- and V-criterion functions the same: maxdiag
(

𝑠2𝜮
)

= 𝑠2 maxdiag (𝜮) and tr
(

𝑠2𝜮
)

= 𝑠2tr (𝜮).
he GV-criterion can be made insensitive to scaling by applying 𝑘

√

|𝜮| instead without changing the designs.
The relative efficiencies are not affected by this scaling. I.e., if 𝜮𝐺𝑉 , 𝜮𝐺 and 𝜮𝑉 are the kriging covariance matrices for the

riginally unscaled data of the GV-, G- and V-optimal designs, then the GV-efficiency of the G- and V-optimal designs respectively
or scaled data are

𝐸𝐺𝑉
(

𝜉𝐺𝑉 , 𝜉𝐺
)

=
𝑠𝑚

√

|𝜮𝐺𝑉 |

𝑠𝑚
√

|𝜮𝐺|
𝐸𝐺𝑉

(

𝜉𝐺𝑉 , 𝜉𝑉
)

=
𝑠𝑚

√

|𝜮𝐺𝑉 |

𝑠𝑚
√

|𝜮𝑉 |
,

i.e. arbitrary scaling does not change the relative GV-efficiencies. The same is true also for relative G- and V-efficiency.
8
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Table 1
Average relative efficiencies for linear trend over 54 different parameter combinations of Matern covariance models.

Linear 6 points 9 points 12 points

trend 𝐸𝐺𝑉 𝐸𝐺 𝐸𝑉 𝐸𝐺𝑉 𝐸𝐺 𝐸𝑉 𝐸𝐺𝑉 𝐸𝐺 𝐸𝑉

𝜉𝐺𝑉 1 0.9050 0.9151 1 0.9707 0.9501 1 0.9385 0.9181
𝜉𝐺 0.9328 1 0.9704 0.9315 1 0.9781 0.9639 1 0.9606
𝜉𝑉 0.9010 0.9025 1 0.8756 0.9370 1 0.9316 0.9362 1

Table 2
Average relative efficiencies for quadratic trend over 54 different parameter combinations of Matern covariance models.

Quadratic 7 points 9 points 12 points

trend 𝐸𝐺𝑉 𝐸𝐺 𝐸𝑉 𝐸𝐺𝑉 𝐸𝐺 𝐸𝑉 𝐸𝐺𝑉 𝐸𝐺 𝐸𝑉

𝜉𝐺𝑉 1 0.7951 0.8997 1 0.9928 0.9606 1 0.9100 0.9059
𝜉𝐺 0.9173 1 0.9330 0.9712 1 0.9702 0.9360 1 0.9614
𝜉𝑉 0.8175 0.7303 1 0.8739 0.8875 1 0.8966 0.9038 1

5. A representative example

Let us demonstrate the typical relative efficiencies on the basis of the following settings, computations of many other differently
djusted models and designs yield similar results.

The design space was chosen 2-dimensional on a regular grid, 𝒳 = {1, 2,… , 17}2, optimal designs were computed for the
Matern covariance model with all combinations of range parameters 𝜙 ∈ {0.1, 0.5, 0.75, 1, 1.5, 2, 3, 4, 5} and smoothness parameter
𝜅 ∈ {0.25, 0.5, 1, 1.5, 2, 2.5}. The variance as scaling parameter 𝑠 was chosen such that for each of the 54 combinations of 𝜙 and 𝜅 the
design criterion |𝜮| of the GV-optimal 12-point design is one. Designs of size 6 (with quadratic trend 7), 9 and 12 were computed
for linear and quadratic trend functions.

As can be seen in Tables 1 and 2, GV-optimal designs are reasonably efficient with respect to the G- and V-criterion. Here for
every covariance parameter combination the GV-, G- and V-optimal designs were determined and then for each optimal design the
relative efficiencies with respect to the other design criteria were computed. This was here done for a linear trend function and for
designs of size 6, 9 and 12 respectively. Finally, the relative efficiencies of the optimal designs were averaged over all 54 covariance
parameter combinations. The lines of the tables correspond to GV-, G- and V-optimal designs, and e.g. the mean relative efficiency of
9-point GV-optimal designs with respect to the G-criterion is 0.9707 which means that the maximum kriging variance of G-optimal
designs is on average only 97% of the maximum kriging variance of GV-optimal designs.

5.1. Efficiency of incrementally assembled designs

As already mentioned incrementally assembled designs are very efficient with respect to the GV-criterion. In the following
discussion we will always start with some 𝑘-point design 𝜉𝑘 adding a single increment of size 𝑙. The result will only be the GV-
optimal design of size (𝑘+ 𝑙) if we start in the first stage with a 𝑘-point design 𝜉𝑘 ⊂ 𝜉𝑘+𝑙 which is very improbable if we do not utilize
additional knowledge. Usually we also will not end up in the GV-optimal (𝑘+ 𝑙)-point design if we start with the GV-optimal 𝑘-point
design, but the result will be very close to GV-optimality. How close the incrementally constructed design is to GV-optimality depends
on the choice of the 𝑘-point starting design. Of course we may take advantage of prior knowledge about properties of GV-optimal
designs, e.g. if the design region is the unit square as in our simulation examples, we know that the GV-optimal design for a linear or
quadratic trend will always have design points in the corners and the edges of the design region. Choosing such plausible points for
the 𝑘-point starting design will almost always yield GV-optimal (𝑘 + 𝑙)-point designs that are constructed with a single incremental
tep.

Here we followed two ideas:

• start with a GV-optimal design of (small) size 𝑘;
• start with a plausible design of (small) size 𝑘, i.e. with design points that most likely are elements of GV-optimal designs of

arbitrary size.

It turns out that both ideas yield very efficient designs especially if the increment (the number of additional design points) is not
too small.

To exemplify this efficiency we again used Matern covariance models with 54 different parameter combinations and a quadratic
trend. In the first simulation series we started with a plausible 6-point design, i.e. 4 design points at the corners and 2 points on
opposite margins of the unit square. Then we added the optimal increment of 6 design points as described above. The mean GV
efficiency of these incremental designs was 0.9911, the median efficiency was even 100%.

In the second series of simulations we started with the 7-point GV-optimal designs for each parameter combination respectively
and added the optimal 5-point increment. Here the mean GV efficiency was 0.9862 and the median efficiency again 100% indicating
a satisfactory performance of this simple incremental method.
9
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Fig. 3. Distribution of number of computations of the criterion function till convergence to the GV-optimal design including (black line) and excluding (gray
line) distributions for ‘‘adverse’’ parameter combinations (colored lines) - mind the log-scale.

Table 3
Median number of computations of the criterion function until convergence to the GV-optimal design.
𝜅 𝜙 = 0.1 𝜙 = 0.5 𝜙 = 0.75 𝜙 = 1 𝜙 = 1.5 𝜙 = 2 𝜙 = 3 𝜙 = 4 𝜙 = 5

0.25 8614.5 36 704.0 15 789.0 16 425.0 18 160.0 20 516.0 22 970.5 25 423.5 27 438.0
0.5 8821.0 29 894.0 12 355.0 16 146.0 20 333.0 24 225.0 36 111.5 53 231.5 21 380.0
1 8895.0 25 630.0 11 937.5 15 876.0 21 115.0 29 033.5 33 065.0 36 066.0 14 808.5
1.5 9052.0 27 106.0 13 237.5 17 169.5 19 459.5 33 542.0 21 889.0 14 687.0 15 538.0
2 8943.0 27 852.0 15 681.0 15 581.5 20 344.0 34 206.0 21 146.5 14 710.5 179 657.0
2.5 8702.0 27 995.5 22 359.0 17 660.0 19 273.0 33 752.5 50 351.5 15 931.0 37 856.5

We applied the same concept to linear trends as well. The 4 corners of the design region were chosen as plausible starting
design, and the increment of size 8 always yielded the GV-optimal 12-point design. Starting with 6-point GV-optimal designs for
each parameter combination respectively and adding the optimal 6-point increment resulted in a mean GV-efficiency of 0.9881,
again the median efficiency was 100%.

Note that the above mean and median efficiencies are just for a design built with a single incremental step. Of course we may
always append a few decremental–incremental steps to guaranty GV-optimality. This approach is analyzed in the next section.

5.2. Efficiency of incrementally–decrementally assembled designs

The above described method of systematically discarding design-points after each incremental step has an efficiency of 100%.
For each of the 54 combinations of the 𝜅 and 𝜙 parameters of the Matern covariance model (see above) we started 1000 times
with a random design and ended with the GV-optimal design every time just with 26 exceptions (where a design with efficiency
99.9% was found instead of the optimal design). It turned out that these exceptions were all for designs with three special parameter
combinations of 𝜅 and 𝜙 which seem to be adverse for finding the GV-optimal design on the chosen grid. For these three parameter
combinations also the average number of required computations of the criterion function was incomparably higher then for other
parameter values (see Table 3). The reason was obviously that the design points were limited to the unfavorable (17 × 17) grid.
Changing to a (33×33) grid solved this problem. With the finer grid we started 200 times for each of the 54 parameter combinations
of 𝜅 and 𝜙 with a random design and found the optimal designs without exception. Also the number of computations of the criterion
function till convergence was distributed more uniform than with the (17×17) grid. Though there were some parameter combinations
which needed clearly more function calls, for all these cases the second best design always was very efficient and the search algorithm
now and then got stuck at these designs before finding the optimum.

5.2.1. Speed of convergence to GV-, G- and V-optimal designs
The speed of convergence was measured in absolute time and in the number of required computations of the criterion function.
In Table 3 we can see the median number of computations of the criterion function (in this case the determinant of the (6 × 6)-

matrix 𝜮2) needed to find the GV-optimal design. The overall median number of calls of the criterion function was 17,222, the
computation time for finding 54.000 times the GV-optimal designs was 50.14 h; i.e. 3.34 s per optimal design.

The distributions of the number of criterion function evaluations turned out to be positively skewed, the cdf of such distributions
for selected parameter combinations of 𝜅 and 𝜙 is depicted in Fig. 3. There were 3 parameter combinations where the corresponding
distributions of function calls were striking. Discarding these extreme distributions reduced the average computation time for one
GV-optimal design to 2.18 s Changing to a grid twice as fine as the original (17 × 17) points to which the design was limited solved
the problem (see above). The overall median number of calls of the criterion function increased to 24,877 with the (33 × 33) grid
which was caused by the halved step size in the neighborhood search at the finer grid. Here continuous optimization algorithms
with variable step size promise an improvement (see Section 3.3).
10
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Table 4
Median number of computations of the criterion function until convergence to the G-optimal design.
𝜅 𝜙 = 0.1 𝜙 = 0.5 𝜙 = 0.75 𝜙 = 1 𝜙 = 1.5 𝜙 = 2 𝜙 = 3 𝜙 = 4 𝜙 = 5

0.25 5 257 485 5 656 141 5 054 189 1 283 471 5 187 172 5 251 948 5 164 463 4 815 720 5856377
0.5 5 371 069 6 300 232 4 827 949 3 486 381 3 627 394 4 942 996 5 708 568 5 169 052 1830513
1 4 293 287 5 535 166 5 426 545 4 163 447 5 408 354 5 452 206 3 041 665 5 309 562 7470061
1.5 4 465 675 4 167 031 5 375 233 4 891 069 5 037 755 5 178 237 5 707 364 4 545 278 6490938
2 5 457 978 5 412 340 4 255 818 2 904 401 5 235 663 5 193 218 6 097 624 6 819 590 6976215
2.5 4 748 402 5 251 379 2 365 235 5 010 149 6 236 549 3 721 464 6 237 881 5 627 650 6549851

Table 5
Median number of computations of the criterion function until convergence to the V-optimal design.
𝜅 𝜙 = 0.1 𝜙 = 0.5 𝜙 = 0.75 𝜙 = 1 𝜙 = 1.5 𝜙 = 2 𝜙 = 3 𝜙 = 4 𝜙 = 5

0.25 37 326.0 47 700.5 71 195.0 73 747.5 148 730.5 343 129.0 157 580.5 312 331.5 224 414.0
0.5 32 191.5 42 299.5 59 498.5 90 473.0 1662530.5 386 891.0 104 161.5 101 856.5 98 935.5
1 31 478.5 49 869.0 61 041.5 415 871.5 200 776.5 154 566.5 119 494.5 124 363.0 120 898.0
1.5 30 625.0 48 430.5 84 230.0 82 082.5 186 643.5 297 843.0 265 400.5 143 954.0 143 626.5
2 30 864.0 62 543.0 69 631.0 144 874.0 364 671.0 187 267.5 257 116.5 325 020.0 157 888.0
2.5 30 746.5 78 648.5 87 787.0 102 481.5 259 893.0 137 820.5 276 008.5 7259052.5 7333013.0

Fig. 4. Empirical cdf of the number of computations of the criterion function till convergence to the V-optimal design (black line) and for parameter combinations
where the optimal design was not always found within a maximal number of tries (colored lines) - mind the log-scale. (For interpretation of the references to
color in this figure legend, the reader is referred to the web version of this article.)

The GV-optimal designs are found incomparably faster than corresponding G- and V-optimal designs even if the allowable choice
of designs is from a moderate number of points.

Searching for G-optimal designs could only be tried 10 times for each of the 54 combinations of the 𝜅 and 𝜙 parameters and 368
of these 540 tries failed, because we had to stop the search algorithm (a combination of neighboring point exchanges and simulated
annealing, same algorithm was used to find the GV-optimal designs) after 500 iterations because of the huge expenditure of time.
The reason for that was partly the much larger computational effort but also a much slower convergence to the optimum, i.e. the
criterion function (maxdiag

(

𝜮0 −𝜮𝑇
20𝜮

−1
2 𝜮20

)

) had to be called much more frequently than in the search for GV-optimal designs.
The mean G-efficiencies of the 540 found designs was 0.991, for 𝜅 and 𝜙 parameter combinations corresponding to high correlated
data the mean G-efficiencies of the found designs were considerably smaller (with a minimum of 0.927 for 𝜅 = 2.5 and 𝜙 = 5).

In Table 4 the median number of calls of the criterion function for each of the 54 combinations of the 𝜅 and 𝜙 parameters
is reported. The overall median number of calls of the criterion function was 5.101.156 (296.2 times as often as for GV-optimal
designs), the computation time for finding 540 times the G-optimal designs was 761.5 h, i.e. 1.41 h per optimal design which is
1520 times as long as for one GV-optimal design.

V-optimal designs are somehow found easier than G-optimal designs (because we may apply Corollary 2). We managed to search
the V-optimal design 250 times for each of the 54 combinations of the 𝜅 and 𝜙 parameters. In Table 5 we can see the median number
of computations of the criterion function (in this case tr

(

𝜮2
)

+ tr
(

𝜮−1
2 𝜮20𝜮𝑇

20
)

) needed to find the V-optimal design. Also here the
average number of calls of the criterion function was clearly larger than for the GV-optimal design. The overall median number of
calls of the criterion function was 108928.5 (6.3 times as often as for GV-optimal designs), the computation time for finding 13.500
times the V-optimal designs was 240.7 h, i.e. 64.2 s per optimal design which is 20 times as long as for one GV-optimal design.

Of the 13.500 tries to find the V-optimal design 577 failed, that is 4.3% (almost exactly 100 times more than for GV-optimal
designs). This has also an impact on the cdf of the positively skewed distribution of the number of calls of the criterion functions
until the optimal designs were found (Fig. 4). As with G-optimal designs we stopped the search algorithm after 500 iterations, the
cdf’s for parameter combinations where the optimal designs were not found within this maximal number of iterations are depicted
as colored lines.
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Fig. 5. Map of the 438 municipalities (dots), the current 36 meteorological stations (crosses), the locations of the 32-point GV-optimal design (red circles) for
a meteorological network for simultaneous prediction of temperatures in the 438 municipalities of Upper Austria.

6. Real illustrative example: temperature prediction in upper Austrian municipalities

The province of Upper Austria is partitioned in 438 rural and urban municipalities with considerable topographical differences
ranging from lowlands in the center and hill country in the north to high-altitude mountains in the south. As temperature and its
spatial variation is strongly influenced by the topography the simultaneous prediction of temperatures at all principle locations of
the 438 municipalities is challenging.

Currently there exist 36 meteorological stations in Upper Austria that may be taken as data source for temperature prediction
in the 438 municipalities. A natural question is whether the current network can be improved by relocation of the station and/or
we can even reduce the size of the network without loss of accuracy.

We model the expected monthly mean temperatures 𝑡𝑖𝑗 with the elevation of the measurement location 𝑒𝑙𝑖 as external drift which
is in line with Hudson and Wackernagel (1994):

𝜇(𝑡𝑖𝑗 ) = 𝛽0𝑗 + 𝛽1𝑗 ⋅ 𝑒𝑙𝑖,

where 𝑗 indicates the month and 𝑖 the location of the measurements. We further use an anisotropic Matérn covariance model to
describe the spatial interdependencies of temperatures measured in the same time period. The covariance parameters have been
estimated with the likfit function of the R package GeoR (Ribeiro and Diggle, 2001).

The learning data for parameter estimation were the daily mean temperatures of all meteorological stations in Upper Austria
in the period from 2000-01-01 until 2023-10-25. The data are publicly available at the GeoSphere Austria Data Hub (2023). The
coordinates and elevations of the 438 municipalities are also publicly available at the DORIS webOffice (https://www.doris.at/)

The parameter estimates confirm the environmental temperature lapse rate of ∼ 6.5 ◦C/km (International Civil Aviation
Organization, 1993; Thompson, 1998) and are similar for all months except the winter period when the phenomenon of temperature
inversion (National Oceanic and Atmospheric Administration’s, 2023) may be observed frequently.

Here the showcase results for the month June are presented, other months are comparable. The design region is the set of 438
locations corresponding to the principle localities of the 438 Upper Austrian administrative municipalities, actually 36 of these
locations are the base of meteorological stations (https://bitly.ws/ZFpC). We want to evaluate the prediction quality of this actual
meteorological network by means of the GV-criterion and compare it with a virtual network positioned at the locations of the
GV-optimal design of the same or a reduced size. I.e., initially we have 𝑘 = 36 and 𝑚 = 438 − 36 = 402 locations for simultaneous
prediction.
12
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We then further reduced the size step by step down to 𝑘 = 32 until which we yielded the same accuracy according to the
V-criterion as from the initial network. This resulting GV-optimal design as well as the actual meteorological network and all 438

ocations are displayed in Fig. 5. Remarkably 7 locations of the optimal design are already base of a meteorological station and
ther 7 locations of the optimal design are within a range of 5 km from an actual station although to our knowledge no statistical
nalysis was involved in determining the current network. While the reduction of just 4 stations from 36 down to 32 may seem as a
isappointment one must not forget that the number of prediction locations had to increase from 402 to 406 making the task more
ifficult.

. Conclusions

With 𝐺𝑉 -optimality we have introduced a novel design criterion for simultaneous kriging prediction, which considers the whole
rediction covariance matrix. As was shown by the real-world example there are indeed practical problems requiring simultaneous
ather than individual prediction. In such situations, the presented new criterion is a natural answer and more adequate and useful.

In terms of robustness, it has been demonstrated that GV-optimal designs exhibit considerable efficiency compared to designs
ptimized based on other criteria. The criterion function is notably smoother compared to other criteria, meaning that slight
odifications to the design do not lead to significant alterations in the criterion function. Interestingly, this might also be the
ain reason that GV-optimal designs are found much faster than designs optimal with respect to other criteria (which is subject to

ctual and future research).
Furthermore we have shown that efficient incremental construction methods are available, which makes the criterion particularly

ttractive for big data and higher dimensional contexts. For instance it lends itself naturally combinable with local kriging techniques
uch as Gramacy and Haaland (2016). These and other extensions will be subject of future research.
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ppendix. Proofs

.1. Proof of the formula for the kriging weights of the second stage 𝐖2

Proof for simple kriging. We first compute kriging weights and the kriging covariance matrix for the first stage and apply the
update formulae (11) and then compare the results to the kriging weights directly computed for the second stage which are the
same what completes the proof.

The kriging weights for the first stage are 𝐖12 = 𝐂𝑇
12𝐂

−1
1 and 𝐖10 = 𝐂𝑇

10𝐂
−1
1 . Plugging this weights into (5) gives the kriging

covariance matrix for the first stage:
(

𝜮2 𝜮20

𝜮𝑇
20 𝜮0

)

=

(

𝐂2 − 𝐂𝑇
12𝐂

−1
1 𝐂12 𝐂20 − 𝐂𝑇

12𝐂
−1
1 𝐂10

𝐂𝑇
20 − 𝐂𝑇

10𝐂
−1
1 𝐂12 𝐂0 − 𝐂𝑇

10𝐂
−1
1 𝐂10

)

(A.1)

This is plugged into the update formula (11) to get 𝐖2 =
(

𝐂𝑇
20 − 𝐂𝑇

10𝐂
−1
1 𝐂12

) (

𝐂2 − 𝐂𝑇
12𝐂

−1
1 𝐂12

)−1 and 𝐖1 = 𝐂𝑇
10
(

𝐂−1
1 + 𝐂−1

1 𝐂12
(

𝐂2 − 𝐂𝑇
12𝐂

−1
1 𝐂12

)−1 𝐂𝑇
12𝐂

−1
1

)

− 𝐂𝑇
20
(

𝐂2 − 𝐂𝑇
12𝐂

−1
1 𝐂12

)−1 𝐂𝑇
12𝐂

−1
1 which should be the kriging weights for the second stage.

Now we compute the weights for the second stage directly:

𝐖 =
(

𝐂𝑇
10 𝐂𝑇

20
)

(

𝐂1 𝐂12

𝐂𝑇
12 𝐂2

)−1

Using the identity
(

𝐂1 𝐂12

𝐂𝑇
12 𝐂2

)−1

=

=
⎛

⎜

⎜

⎝

𝐂−1
1 + 𝐂−1

1 𝐂12
(

𝐂2 − 𝐂𝑇
12𝐂

−1
1 𝐂12

)−1 𝐂𝑇
12𝐂

−1
1 −𝐂−1

1 𝐂12
(

𝐂2 − 𝐂𝑇
12𝐂

−1
1 𝐂12

)−1

−
(

𝐂2 − 𝐂𝑇
12𝐂

−1
1 𝐂12

)−1 𝐂𝑇
12𝐂

−1
1

(

𝐂2 − 𝐂𝑇
12𝐂

−1
1 𝐂12

)−1

⎞

⎟

⎟

⎠

(A.2)

( )
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confirms 𝐖 = 𝐖1 𝐖2 which completes the proof. ■
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Proof for universal kriging. We first compute the kriging weights for the second stage 𝐖2 directly and again use the identity
(A.2):

𝐖2 =

⎡

⎢

⎢

⎢

⎣

⎛

⎜

⎜

⎝

𝐅0 −

(

𝐂10

𝐂20

)𝑇 (

𝐂1 𝐂12

𝐂𝑇
12 𝐂2

)−1 ( 𝐅1

𝐅2

)

⎞

⎟
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⎛

⎜
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(

𝐅1
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)𝑇 (

𝐂1 𝐂12
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𝐅2

)
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⎟
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⋅

⋅

(
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𝐅2

)𝑇

+
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𝐂10
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⎤
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(
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(
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⎞
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after some matrix manipulations we get
𝐖2 =

(
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(A.3)

Now we compute kriging weights and the kriging covariance matrix for the first stage: Using the notation of (6) the kriging
weights of the first stage are

𝐖12 =
(

(

𝐅2 − 𝐂𝑇
12𝐂

−1
1 𝐅1

) (

𝐅𝑇
1 𝐂

−1
1 𝐅1

)−1 𝐅𝑇
1 + 𝐂𝑇

12

)

𝐂−1
1

𝐖10 =
(

(

𝐅0 − 𝐂𝑇
10𝐂

−1
1 𝐅1

) (

𝐅𝑇
1 𝐂

−1
1 𝐅1

)−1 𝐅𝑇
1 + 𝐂𝑇

10

)

𝐂−1
1

hich gives the blocks of the kriging covariance matrix of the first stage (10)

𝜮2 =
(

𝐅2 − 𝐂𝑇
12𝐂

−1
1 𝐅1

) (

𝐅𝑇
1 𝐂

−1
1 𝐅1

)−1 (𝐅𝑇
2 − 𝐅𝑇

1 𝐂
−1
1 𝐂12

)

+ 𝐂2 − 𝐂𝑇
12𝐂

−1
1 𝐂12

𝜮𝑇
20 =

(

𝐅0 − 𝐂𝑇
10𝐂

−1
1 𝐅1

) (

𝐅𝑇
1 𝐂

−1
1 𝐅1

)−1 (𝐅𝑇
2 − 𝐅𝑇

1 𝐂
−1
1 𝐂12

)

+ 𝐂20 − 𝐂𝑇
10𝐂

−1
1 𝐂12

ow we apply the update formulae (11) to get

𝐖2 =
(

𝐂20 − 𝐂𝑇
10𝐂

−1
1 𝐂12 +

(

𝐅0 − 𝐂𝑇
10𝐂

−1
1 𝐅1

) (

𝐅𝑇
1 𝐂

−1
1 𝐅1

)−1 (𝐅𝑇
2 − 𝐅𝑇

1 𝐂
−1
1 𝐂12

)

)

⋅

⋅
(

𝐂2 − 𝐂𝑇
12𝐂

−1
1 𝐂12 +

(

𝐅2 − 𝐂𝑇
12𝐂

−1
1 𝐅1

) (

𝐅𝑇
1 𝐂

−1
1 𝐅1

)−1 (𝐅𝑇
2 − 𝐅𝑇

1 𝐂
−1
1 𝐂12

)

)−1 (A.4)

The inverse in the above equation
(

𝐂2 − 𝐂𝑇
12𝐂

−1
1 𝐂12 +

(

𝐅2 − 𝐂𝑇
12𝐂

−1
1 𝐅1

) (

𝐅𝑇
1 𝐂

−1
1 𝐅1

)−1 (𝐅𝑇
2 − 𝐅𝑇

1 𝐂
−1
1 𝐂12

)

)−1
(A.5)

is the lower right column block of
(

−𝐅𝑇
1 𝐂

−1
1 𝐅1 𝐅𝑇

2 − 𝐅𝑇
1 𝐂

−1
1 𝐂12

𝐅2 − 𝐂𝑇
12𝐂

−1
1 𝐅1 𝐂2 − 𝐂𝑇

12𝐂
−1
1 𝐂12

)−1

hich may also be computed as
(

𝐂2 − 𝐂𝑇
12𝐂

−1
1 𝐂12

)−1 −
(

𝐂2 − 𝐂𝑇
12𝐂

−1
1 𝐂12

)−1 (𝐅2 − 𝐂𝑇
12𝐂

−1
1 𝐅1

)

⋅

⋅
(

𝐅𝑇
1 𝐂

−1
1 𝐅1 +

(

𝐅𝑇
2 − 𝐅𝑇

1 𝐂
−1
1 𝐂12

) (

𝐂2 − 𝐂𝑇
12𝐂

−1
1 𝐂12

)−1 (𝐅2 − 𝐂𝑇
12𝐂

−1
1 𝐅1

)

)−1
⋅

⋅
(

𝐅𝑇
2 − 𝐅𝑇

1 𝐂
−1
1 𝐂12

) (

𝐂2 − 𝐂𝑇
12𝐂

−1
1 𝐂12

)−1

(A.6)

In (A.4) we now substitute (A.6) for (A.5) to get
𝐖2 =

(

𝐂𝑇
20 − 𝐂𝑇

10𝐂
−1
1 𝐂12

) (

𝐂2 − 𝐂𝑇
12𝐂

−1
1 𝐂12

)−1 +

+
(

𝐅0 − 𝐂𝑇
10𝐂

−1
1 𝐅1

) (

𝐅𝑇
1 𝐂

−1
1 𝐅1

)−1
♣
(

𝐅𝑇
2 − 𝐅𝑇

1 𝐂
−1
1 𝐂12

) (

𝐂2 − 𝐂𝑇
12𝐂

−1
1 𝐂12

)−1 −

−
(

𝐅0 − 𝐂𝑇
10𝐂

−1
1 𝐅1

) (

𝐅𝑇
1 𝐂

−1
1 𝐅1

)−1 (𝐅𝑇
2 − 𝐅𝑇

1 𝐂
−1
1 𝐂12

) (

𝐂2 − 𝐂𝑇
12𝐂

−1
1 𝐂12

)−1 (𝐅2 − 𝐂𝑇
12𝐂

−1
1 𝐅1

)

⋅

⋅
(

𝐅𝑇
1 𝐂

−1
1 𝐅1 +

(

𝐅𝑇
2 − 𝐅𝑇

1 𝐂
−1
1 𝐂12

) (

𝐂2 − 𝐂𝑇
12𝐂

−1
1 𝐂12

)−1 (𝐅2 − 𝐂𝑇
12𝐂

−1
1 𝐅1

)

)−1
⋅

⋅
(

𝐅𝑇
2 − 𝐅𝑇

1 𝐂
−1
1 𝐂12

) (

𝐂2 − 𝐂𝑇
12𝐂

−1
1 𝐂12

)−1 −

−
(

𝐂𝑇
20 − 𝐂𝑇

10𝐂
−1
1 𝐂12

) (

𝐂2 − 𝐂𝑇
12𝐂

−1
1 𝐂12

)−1 (𝐅2 − 𝐂𝑇
12𝐂

−1
1 𝐅1

)

⋅

⋅
(

𝐅𝑇
1 𝐂

−1
1 𝐅1 +

(

𝐅𝑇
2 − 𝐅𝑇

1 𝐂
−1
1 𝐂12

) (

𝐂2 − 𝐂𝑇
12𝐂

−1
1 𝐂12

)−1 (𝐅2 − 𝐂𝑇
12𝐂

−1
1 𝐅1

)

)−1
⋅

⋅
(

𝐅𝑇
2 − 𝐅𝑇

1 𝐂
−1
1 𝐂12

) (

𝐂2 − 𝐂𝑇
12𝐂

−1
1 𝐂12

)−1

At the position ♣ we now multiply with the identity

𝐈 =
(

𝐅𝑇
1 𝐂

−1
1 𝐅1 +

(

𝐅𝑇
2 − 𝐅𝑇

1 𝐂
−1
1 𝐂12

) (

𝐂2 − 𝐂𝑇
12𝐂

−1
1 𝐂12

)−1 (𝐅2 − 𝐂𝑇
12𝐂

−1
1 𝐅1

)

)

⋅

⋅
(

𝐅𝑇
1 𝐂

−1
1 𝐅1 +

(

𝐅𝑇
2 − 𝐅𝑇

1 𝐂
−1
1 𝐂12

) (

𝐂2 − 𝐂𝑇
12𝐂

−1
1 𝐂12

)−1 (𝐅2 − 𝐂𝑇
12𝐂

−1
1 𝐅1

)

)−1 (A.7)
14

o get the same 𝑊2 as with direct computation (A.3). ■
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A.2. Proof of the update formula for the kriging covariance matrix of the second stage 𝜮+
0

Proof. We compute the kriging covariance matrix for the second stage and plug in the update formulae for the kriging weights (11)
to get the update formula for the kriging covariance matrix (12). The proof is given for the most general setup of universal kriging.

The kriging covariance matrix for the second stage is:

𝜮+
0 =

(

𝐖1 𝐖2
)

(

𝐂1 𝐂12

𝐂𝑇
12 𝐂2

)(

𝐖𝑇
1

𝐖𝑇
2

)

−
(

𝐖1 𝐖2
)

(

𝐂10

𝐂20

)

−

−
(

𝐂𝑇
10 𝐂𝑇

20
)

(

𝐖𝑇
1

𝐖𝑇
2

)

+ 𝐂0 =

= 𝐖1𝐂1𝐖𝑇
1 +𝐖1𝐂12𝐖𝑇

2 +𝐖2𝐂𝑇
12𝐖

𝑇
1 +𝐖2𝐂2𝐖𝑇

2 −

−𝐖1𝐂10 −𝐖2𝐂20 − 𝐂𝑇
10𝐖

𝑇
1 − 𝐂𝑇

20𝐖
𝑇
2 + 𝐂0

Now we plug in the update formula for the kriging weight (9) to get:

𝜮+
0 = 𝐖10𝐂1𝐖𝑇

10 −𝐖10𝐂10 − 𝐂𝑇
10𝐖

𝑇
10 + 𝐂0 −

−𝐖2
(

𝐖12𝐂1𝐖𝑇
10 −𝐖12𝐂10 − 𝐂𝑇

12𝐖
𝑇
10 + 𝐂20

)

+

+𝐖2
(

𝐖12𝐂1𝐖𝑇
12 −𝐖12𝐂12 − 𝐂𝑇

12𝐖
𝑇
12 + 𝐂2

)

𝐖𝑇
2 −

−
(

𝐖10𝐂1𝐖𝑇
12 −𝐖10𝐂12 − 𝐂𝑇

10𝐖
𝑇
12 + 𝐂𝑇

20
)

𝐖𝑇
2

Using the kriging covariance matrix for the first stage in the universal kriging setup as in (A.1)
(

𝜮2 𝜮20

𝜮𝑇
20 𝜮0

)

=

=

(

𝐖12𝐂1𝐖𝑇
12 −𝐖12𝐂12 − 𝐂𝑇

12𝐖
𝑇
12 + 𝐂2 𝐖12𝐂1𝐖𝑇

10 −𝐖12𝐂10 − 𝐂𝑇
12𝐖

𝑇
10 + 𝐂20

𝐖10𝐂1𝐖𝑇
12 −𝐖10𝐂12 − 𝐂𝑇

10𝐖
𝑇
12 + 𝐂𝑇

20 𝐖10𝐂1𝐖𝑇
10 −𝐖10𝐂10 − 𝐂𝑇

10𝐖
𝑇
10 + 𝐂0

)

and 𝐖2 = 𝜮𝑇
20𝜮

−1
2 from (11) we get

𝜮+
0 = 𝜮0 −𝜮𝑇

20𝜮
−1
2 𝜮20 +𝜮𝑇

20𝜮
−1
2 𝜮2𝜮−1

2 𝜮20 −𝜮𝑇
20𝜮

−1
2 𝜮20 =

= 𝜮0 −𝜮𝑇
20𝜮

−1
2 𝜮20

which completes the proof. ■
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