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Abstract
Short-term disease forecasting at specific discrete spatial resolutions has become
a high-impact decision-support tool in health planning. However, when the
number of areas is very large obtaining predictions can be computationally inten-
sive or even unfeasible using standard spatiotemporal models. The purpose of
this paper is to provide a method for short-term predictions in high-dimensional
areal data based on a newly proposed “divide-and-conquer” approach.We assess
the predictive performance of this method and other classical spatiotemporal
models in a validation study that uses cancer mortality data for the 7907 munic-
ipalities of continental Spain. The new proposal outperforms traditional models
in terms of mean absolute error, root mean square error, and interval score when
forecasting cancer mortality 1, 2, and 3 years ahead. Models are implemented
in a fully Bayesian framework using the well-known integrated nested Laplace
estimation technique.

KEYWORDS
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1 INTRODUCTION

Bayesian hierarchical models have been developed extensively to model area-level incidence or mortality data and to
estimate their underlying spatial, temporal, and spatiotemporal patterns. Traditionally, generalized linear mixed models
including spatially and temporally structured random effects have been proposed for smoothing disease risks or rates by
borrowing information fromneighboring areas and time periods. In addition, extensions of these hierarchicalmodels have
also been considered for forecasting of rare and noncommunicable diseases in areal data. For example, Assuncao et al.
(2001) provide an extension of the parametric model of Bernardinelli et al. (1995) to predict human visceral Leishmaniasis
incidence rates in 117 health zones of a Brazilian municipality. Etxeberria et al. (2014) extend the nonparametric models
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proposed by Knorr-Held (2000) that include conditional autoregressive (CAR) priors for space and random walk (RW)
priors for time for short-term cancer mortality risk predictions in the 50 provinces of Spain. Similar projections of cancer
mortality risks using spatiotemporal P-spline models were also considered by Ugarte et al. (2012) and Etxeberria et al.
(2015). In Corpas-Burgos andMartinez-Beneito (2021), an enhancement of a previous autoregressive (AR) spatiotemporal
model proposed by Martínez-Beneito et al. (2008) was considered for 5-year ahead forecasting of different cancer site
mortality data in the 540 municipalities of the Valencian autonomous region of Spain. Etxeberria et al. (2023) predict
incidence rates for rare and lethal cancers by borrowing strength from mortality data using spatiotemporal models with
shared spatial and age components. Different extensions of age-period-cohort models including spatial random effects
have also been proposed for the prediction of cancer mortality and incidence data (see Lagazio et al., 2003; Papoila et al.,
2014; Schmid & Held, 2004; or Etxeberria et al., 2017 among others). Very recently, several extensions of different CAR,
AR, and RW models have also been proposed for representing the geographical variation of risk processes that underlay
the dynamic outbreaks of COVID-19 infection and related outcomes (see, e.g., MacNab, 2023, and the references therein).
All these models perform well when the spatial domain has a limited number of areas. If the number of areas is very

large, themodel fitting becomes computationally expensive or even unfeasible (VanNiekerk et al., 2021),mainly due to the
huge dimension of the spatiotemporal covariance/structure matrices and the high number of identifiability constraints
(Goicoa et al., 2018; Schrödle & Held, 2011). However, forecasting short-term disease risks or rates in high-resolution areal
data is very important to take high-impact decisions in health planning and addressing health inequalities (Sartorius
et al., 2021; Utazi et al., 2019). Cancer mortality projections also play an important role in epidemiology, as they support
the decision-making process for population intervention plans and health resource planning. According to the Spanish
Statistical Institute, cancer was the second leading cause of mortality in Spain in 2021 after cardiovascular diseases (24.3%
and 22.8%, respectively), being the first leading cause of death among the male population. The estimated direct cost of
cancer in Spain for the year 2019 was more than 7000 million euros, which represents about 10% of Spanish health costs
(Diaz-Rubio, 2019).
The aim of the current paper is to evaluate if the scalable Bayesian spatiotemporal modeling approach proposed by

Orozco-Acosta et al. (2023) for estimating risks is also appropriate for short-term forecasting in high spatial resolution
areal data. This methodology is based on a “divide-and-conquer” approach and has been shown to provide reliable risk
estimates with a substantial reduction in computational time in comparison with classical spatiotemporal CAR models.
Specifically, Orozco-Acosta et al. (2023) propose to divide the spatial domain into smaller subregions where independent
models can be fitted simultaneously by using parallel or distributed computation strategies. To reduce the border effect
in the risk estimates caused by the spatial partitions, neighboring areas are added to each subdomain when fitting the
models. Finally, the risk estimates from different submodels are properly combined to obtain unique posterior marginal
estimates of the risks for each areal-time unit. This approach has also been extended to high-dimensional multivariate
spatial models to jointly analyze several disease outcomes (Vicente et al., 2023). However, it has not been checked yet in
a forecasting framework.
The rest of the paper is structured as follows. Sections 2 and 3 outline the methodology and briefly describe the dif-

ferent spatiotemporal models considered for short-term forecasting of cancer mortality. A validation study is presented
in Section 4 to assess and compare the predictive performance of the models. In Section 5, the proposed methodology is
applied to project male lung cancer and overall cancer (all sites) mortality data by considering 3-year ahead predictions
in the 7907 municipalities of continental Spain. The paper concludes with a discussion.

2 BAYESIAN SPATIOTEMPORALMODELS

The great variability inherent to classical risk estimationmeasures such as crude rates when analyzing very small domains
or low-populated areas, requires the use of statistical models to smooth risks by borrowing information from spatial and
temporal neighbors (Wakefield, 2007). Let 𝑂𝑖𝑡 and𝑁𝑖𝑡 denote the observed number of cancer deaths and the correspond-
ing number of populations at risk in region 𝑖 = 1, … , 𝑛 and time period (year) 𝑡 = 1, … , 𝑇, respectively. Here, we assume
that all regions are connected and that years are consecutive. We further assume that the observations are conditionally
independent and model them as

𝑂𝑖𝑡|𝜆𝑖𝑡 ∼ Poisson(𝜇𝑖𝑡 = 𝑁𝑖𝑡 ⋅ 𝜆𝑖𝑡) for 𝑖 = 1, … , 𝑛; 𝑡 = 1, … , 𝑇,

log 𝜇𝑖𝑡 ∼ log𝑁𝑖𝑡 + log 𝜆𝑖𝑡,
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where log𝑁𝑖𝑡 is an offset and 𝜆𝑖𝑡 is the mortality rate in region 𝑖 at time 𝑡. Depending on the specification of log 𝜆𝑖𝑡, we
define different models that are all placed in a hierarchical Bayesian inference scheme.

2.1 Classical Bayesian disease-mapping models

Here, we assume a linear predictor of the form

log 𝜆𝑖𝑡 = 𝛽0 + 𝜉𝑖 + 𝛾𝑡 + 𝛿𝑖𝑡, (1)

where 𝛽0 is an intercept representing the overall log-rate, 𝜉𝑖 is a spatial random effect that follows the so-called BYM2 prior
distribution (Riebler et al., 2016), 𝛾𝑡 is a temporally structured random effect that follows a first-order randomwalk (RW1),
and 𝛿𝑖𝑡 is a spatiotemporal random effect allowing for space-time interactions (Knorr-Held, 2000). All the components of
this model can be formulated as Gaussian Markov random fields (Rue & Held, 2005), and prior densities can be written
according to some structure matrices.
The BYM2 model for the spatial random effect 𝝃 = (𝜉1, … , 𝜉𝑛)

′ is expressed as

𝝃 =
1√
𝜏𝜉

(√
𝜙𝐮∗ +

√
1 − 𝜙𝐯

)
,

where 𝜏𝜉 is a precision parameter, 𝐮∗ ∼  (𝟎,𝐑−
∗ ) is the scaled intrinsic CAR model with 𝐑−

∗ , representing the general-
ized inverse of the standardized neighborhood structure matrix 𝐑∗ (see Sørbye & Rue, 2014), 𝐯 ∼  (𝟎, 𝐈𝑛) is a vector of
unstructured random effects, and 𝜙 ∈ [0, 1] is a parameter that weights the regional variability between the unstructured
and spatially structured component. Therefore, the covariance matrix of 𝝃 is

Var(𝝃 |𝜏𝜉) = 1

𝜏𝜉
(𝜙𝐑−

∗ + (1 − 𝜙)𝐈𝑛),

expressed as a weighted average of the covariance matrices of the spatially structured and unstructured components, 𝐑−
∗

and 𝐈𝑛, respectively. Values of 𝜙 larger than 0.5 indicate that more than 50% of the spatial variation is explained by the
structured component, indicating the benefits of having a jointmodel for all regions. For further details, we refer to Riebler
et al. (2016).
A RW1 prior distribution is assumed for the temporal random effects 𝜸 = (𝛾1, … , 𝛾𝑇)

′ , that is,

𝜸 ∼ 𝑁(𝟎, [𝜏𝛾𝐑𝛾]
−),

where 𝜏𝛾 is a precision parameter and 𝐑𝛾 is the 𝑇 × 𝑇 structure matrix defined as

𝐑𝛾 =

⎛⎜⎜⎜⎜⎜⎝

1 −1 0

−1 2 −1

⋱ ⋱ ⋱

−1 2 −1

0 −1 1

⎞⎟⎟⎟⎟⎟⎠
.

Finally, for the space-time interaction random effect 𝜹 = (𝛿11, … , 𝛿𝑛1, … , 𝛿1𝑇, … , 𝛿𝑛𝑇)
′ , the following prior distribution is

assumed

𝜹 ∼ 𝑁(𝟎, [𝜏𝛿𝐑𝛿]
−),

where𝐑𝛿 is the 𝑛𝑇 × 𝑛𝑇matrix which represents one of the four types of interactionmodels originally proposed by Knorr-
Held (2000). Type I interaction corresponds to a simple adjustment for an overdispersion setting with 𝐑𝛿 = 𝐈𝑇 ⊗ 𝐈𝑛 and
implies the introduction of independent and identically distributed (iid) normally distributed random effects with zero
mean and precision 𝜏𝛿 for each observation. Type II interaction (𝐑𝛿 = 𝐑𝛾 ⊗ 𝐈𝑛) assumes structure in time but not in
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TABLE 1 Specification of the different types of space-time interactions (Knorr-Held, 2000) and the corresponding sum-to-zero
constraints (Goicoa et al., 2018).

Interaction 𝐑𝜹 Constraints

Type I 𝐈𝑇 ⊗ 𝐈𝑛

𝑛∑
𝑖=1

𝜉𝑖 = 0,
𝑇∑
𝑡=1

𝛾𝑡 = 0, and
𝑛∑
𝑖=1

𝑇∑
𝑡=1

𝛿𝑖𝑡 = 0

Type II 𝐑𝛾 ⊗ 𝐈𝑛

𝑛∑
𝑖=1

𝜉𝑖 = 0,
𝑇∑
𝑡=1

𝛾𝑡 = 0, and
𝑇∑
𝑡=1

𝛿𝑖𝑡 = 0, for 𝑖 = 1, … , 𝑛

Type III 𝐈𝑇 ⊗ 𝐑𝜉

𝑛∑
𝑖=1

𝜉𝑖 = 0,
𝑇∑
𝑡=1

𝛾𝑡 = 0, and
𝑛∑
𝑖=1

𝛿𝑖𝑡 = 0, for 𝑡 = 1, … , 𝑇

Type IV 𝐑𝛾 ⊗ 𝐑𝜉

𝑛∑
𝑖=1

𝜉𝑖 = 0,
𝑇∑
𝑡=1

𝛾𝑡 = 0, and

𝑇∑
𝑡=1

𝛿𝑖𝑡 = 0, for 𝑖 = 1, … , 𝑛

𝑛∑
𝑖=1

𝛿𝑖𝑡 = 0, for 𝑡 = 1, … , 𝑇

space, that is, each 𝛿𝑖⋅ = (𝛿𝑖1, … , 𝛿𝑖𝑇)
′ for 𝑖 = 1, … , 𝑛 follows an independent RW1 prior distribution. Similarly, Type III

interaction (𝐑𝛿 = 𝐈𝑇 ⊗ 𝐑𝜉) assumes structure in space but not in time, that is, each 𝛿⋅𝑡 = (𝛿1𝑡, … , 𝛿𝑛𝑡)
′ for 𝑡 = 1, … , 𝑇

follows an intrinsic CAR prior distribution with structure matrix 𝐑𝜉 . Finally, for the Type IV interaction, a completely
structured precision matrix 𝐑𝛿 = 𝐑𝛾 ⊗ 𝐑𝜉 is assumed. As for the spatially structured random effect, scaled structure
matrices have been considered for the temporal and interaction random effects.
Although these models are flexible enough to describe real situations and their interpretation is fairly straightforward,

appropriate sum-to-zero constraints must be imposed on random effects to warrant the identifiability of the intercept, the
main spatial and temporal effects, and the space-time interaction effect (Goicoa et al., 2018; Schrödle &Held, 2011). Table 1
shows the constraints chosen for each interaction type in this work. For further details, see Goicoa et al. (2018).

2.2 Model fitting with the INLAmethod

In this paper, we use the integrated nested Laplace approximation (INLA) method which provides approximate Bayesian
inference in latent Gaussian models (Bakka et al., 2018; Martino & Riebler, 2019; Rue et al., 2009, 2017) due to its faster
computational speed compared to simulation techniques based on Markov chain Monte Carlo methods. INLA relies on
numerical approximations and integrationmethods to estimate the posterior marginal distributions of model parameters.
This technique can be easily used in the free software R through the R-INLA package (http://www.r-inla.org/). In what
follows, we briefly describe the INLA method.
According to the notation used by Rue et al. (2017), the model class abstraction is obtained using a three-stage hierar-

chical model formulation, in which observations 𝐲 = (𝑦1, … , 𝑦𝑁)
T can be assumed to be conditionally independent, given

a latent Gaussian random field 𝐱 and hyperparameters 𝜽1,

𝐲 ∣ 𝐱, 𝜽1 ∼

𝑁∏
𝑖=1

𝜋(𝑦𝑖 ∣ 𝑥𝑖, 𝜽1).

The versatility of the model class relates to the specification of the latent Gaussian field (second stage):

𝐱 ∣ 𝜽2 ∼ 𝑁(𝟎,𝐐−1(𝜽2)),

which includes all random terms in a statistical model, describing the underlying dependence structure of the data. The
hyperparameters 𝜽 = (𝜽1, 𝜽2) control the latent Gaussian field and/or the likelihood for the data (third stage). The joint
posterior distribution of 𝐱 and 𝜽 given 𝐲 is

𝜋(𝐱, 𝜽 ∣ 𝐲) ∝ 𝜋(𝜽) × 𝜋(𝐱 ∣ 𝜽) × 𝜋(𝐲 ∣ 𝐱, 𝜽)

∝ 𝜋(𝜽)|𝐐(𝜽)|1∕2 exp(−1

2
𝐱𝑇𝐐(𝜽)𝐱 +

𝑁∑
𝑖=1

log (𝜋(𝑦𝑖 ∣ 𝑥𝑖, 𝜽))

)
.
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The components of the latent Gaussian field 𝐱 are supposed to be conditionally independent with the consequence that
𝐐(𝜽) is a sparse precision matrix (Blangiardo & Cameletti, 2015, Chapter 4, p. 109). Note that if the components 𝑥𝑖 and
𝑥𝑗 are conditionally independent given all the other components 𝐱−𝑖𝑗 , that is, if the joint conditional distribution can
be factorized as 𝜋(𝑥𝑖, 𝑥𝑗 ∣ 𝐱−𝑖𝑗) = 𝜋(𝑥𝑖 ∣ 𝐱−𝑖𝑗)𝜋(𝑥𝑗 ∣ 𝐱−𝑖𝑗), then 𝐐𝑖𝑗(𝜽) = 0 and vice versa (Rue & Held, 2005, Chapter 2,
Theorem2.2). This specification is known as latentGaussianMarkov random field (GMRF). Therefore, numericalmethods
for sparse matrices can be used when making inferences with GMRFs, which are much quicker than general algorithms
for dense matrices.
The posterior distribution is usually a high-dimensional density that is hard to interpret. However, the interest often lies

in the univariate posteriormarginals𝜋(𝐱𝑖|𝐲) and𝜋(𝜽𝑗|𝐲) and INLA provides an approximation to such posteriormarginal
densities. For details, we refer to Rue et al. (2009) and Martino and Riebler (2019).

2.3 Prediction with INLA

Our main objective is to obtain short-term predictions of mortality rates, which allows us to compute the predictive dis-
tribution of mortality cases in nonobserved time point. Suppose that 𝑂∗

𝑖𝑡
represents the number of cancer deaths in region

𝑖 at a future time point. According to Blangiardo and Cameletti (2015, Chapter 5, p. 162) and Gómez-Rubio (2020, Chapter
12, p. 260), its predictive distribution can be derived as

𝜋
(
𝑂∗
𝑖𝑡
∣ 𝐨−𝑖𝑡

)
=
𝜋
(
𝑂∗
𝑖𝑡
, 𝐨−𝑖𝑡

)
𝜋(𝐨−𝑖𝑡)

=
∫ 𝜋

(
𝑂∗
𝑖𝑡
∣ 𝜽

)
𝜋(𝐨−𝑖𝑡 ∣ 𝜽)𝜋(𝜽)d𝜽

𝜋(𝐨−𝑖𝑡)

=
∫ 𝜋

(
𝑂∗
𝑖𝑡
∣ 𝜽

)
𝜋(𝜽 ∣ 𝐨−𝑖𝑡)𝜋(𝐨−𝑖𝑡)d𝜽

𝜋(𝐨−𝑖𝑡)

= ∫ 𝜋
(
𝑂∗
𝑖𝑡
∣ 𝜽

)
𝜋(𝜽 ∣ 𝐨−𝑖𝑡)d𝜽,

where 𝐨−𝑖𝑡 is the vector of responses without the observation 𝑂∗
𝑖𝑡
. INLA allows for missing values in the response variable

and computes posterior marginals for the corresponding linear predictor. If 𝑂𝑖𝑡 is set as NA, this means that 𝑂∗
𝑖𝑡
is not

observed and hence gives no contribution to the likelihood (see Appendix A.1 for details about how to compute this
predictive distribution).

3 SCALABLE APPROACH FORHANDLING LARGE SPATIAL DOMAINS

When using Model (1) with Type II or IV interaction effects, a total of 𝑛 − 1 and 𝑛 + 𝑇 − 1 sum-to-zero restrictions on
interaction effects are required to avoid identifiability problems, respectively (see Table 1). Consequently, if the number
of areas 𝑛 is very large, the model fitting in INLA becomes computationally challenging since inference is affected by the
number of constraints added to the random effects. Specifically, INLA uses the kriging technique to correct for constraints
(Rue & Held, 2005) with a computational complexity of 𝒪(𝑛𝑘2) that grows quadratically with the number of constraints
𝑘. For a high number of constraints, the cost of this technique dominates the overall cost for approximate inference using
sparse matrices.
Recently, Fattah and Rue (2022) have proposed a new implementation for fitting this type of the spatiotemporal model

using INLAbased on a densematrix formulation that automatically imposes the necessary set of identifiability constraints.
However, this new approach depends on the accessibility to a high-performance computing architecture to speed up
inference. In addition, a data set with almost 8000 regions still seems challenging.
Our interest relies on evaluating the scalable Bayesian modeling approach proposed by Orozco-Acosta et al. (2021,

2023) for high-dimensional areal count data and extends it for short-term forecasting in time. Under this approach, two
different partitionmodels are defined: the disjointmodel and k-order neighborhoodmodels. In the disjointmodel, we divide
the spatial domain of interest𝒟 into 𝐷 subdomains, so that𝒟 =

⋃𝐷

𝑑=1 𝒟𝑑, where𝒟𝑖 ∩ 𝒟𝑗 = ∅ for all 𝑖 ≠ 𝑗. The partition
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F IGURE 1 Validation setup: Each row corresponds to one of the eight validation configurations. Green cells represent years with data
that are used in the model. Orange, yellow, and blue cells indicate years for which 1, 2, and 3-year ahead predictions are computed,
respectively.

can be chosen based on administrative boundaries, such as states, provinces, autonomous communities, or local health
zones, or randomly defined based on a regular grid that is placed over the reference cartography. For our data analyses,
partitions are made according to Spanish province boundaries leading to 𝐷 = 47 subdomains. Then, separate Bayesian
spatiotemporal models are fitted for each subdomain and the results are just the union of the posterior marginal estimates
of the log-rates obtained from each submodel.
To reduce border effects caused by the partition of the spatial domain, Orozco-Acosta et al. (2021) propose to include 𝑘-

order neighbors for the regions that lie at the boundary of the spatial subdomains. This causes an overlapping of the spatial
subdomains, and, consequently, multiple posterior estimates are obtained for regions lying at the subdomain boundaries.
Two differentmerging strategies were compared in Orozco-Acosta et al. (2023) to properly combine the posteriormarginal
estimates obtained from different submodels: (i) to weight the estimated posterior probability density functions using
mixture distributions and (ii) to use the posterior marginal distribution given by the model for which the areal unit of
interest originally belongs to. Based on the results obtained from a simulation study, they show that the latter strategy
gives better results in terms of risk estimation accuracy and true positive/negative rates.We denote thesemodels as k-order
neighborhood models. Previous simulation studies on spatial (Orozco-Acosta et al., 2021) and spatiotemporal (Orozco-
Acosta et al., 2023) areal data have shown that using first-order neighborhood models (k = 1) is often deemed suitable.
One of the main advantages of this scalable approach is that submodels can be simultaneously fitted using both parallel

or distributed computation strategies. The R package bigDM (Adin et al., 2023) implements this methodology and allows
it to fit several scalable univariate and multivariate disease mapping models for high-dimensional data in a fully Bayesian
setting using INLA.

4 PREDICTIVE VALIDATION STUDY

To evaluate the predictive ability of all the models, predictions of lung cancer mortality counts in all 7907 continental
municipalities of Spain have been made for three consecutive periods (years). We note that mortality registries often
provide data with a delay of up to 3 years. A total of𝐾 = 8 configurations have been considered, where each configuration
uses 𝑇 = 15 years of data to fit the model and predict at time points 𝑇 + 1, 𝑇 + 2, and 𝑇 + 3. The first configuration uses
data from 1991 to 2005, the second configuration data from 1992 to 2006, and so on. This results in predictions for the years
2006–2015,whereby years 2006 and 2015 are only predicted in one configuration, years 2007 and 2014 in two configurations,
and all the other years in three configurations. Figure 1 illustrates the validation setup, which is similar to the one used
by Ghosh and Tiwari (2007) and Etxeberria et al. (2014).

4.1 Assessment criteria

To assess the predictive performance of themodels, we compute themean absolute error (MAE) and the rootmean square
error (RMSE) of predicted mortality counts for each municipality 𝑖 = 1, … , 7907 differing between 𝑘 = 1, 2, 3 year ahead
predictions as

MAE(𝑘)
𝑖

=
1

8

2012+𝑘∑
𝑡=2005+𝑘

|||𝑂𝑖𝑡 − 𝑂𝑖𝑡
|||, and RMSE(𝑘)

𝑖
=

√√√√√√1

8

2012+𝑘∑
𝑡=2005+𝑘

(
𝑂𝑖𝑡 − 𝑂𝑖𝑡

)2
,
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OROZCO-ACOSTA et al. 7 of 18

where 𝑂𝑖𝑡 is the number of observed cases and 𝑂𝑖𝑡 is the expected value for the posterior predictive counts for areal unit
𝑖 and time period 𝑡, respectively (see Appendix A.1 for details about its computation with INLA). Looking at Figure 1 this
means that average scores over the orange, yellow, and blue cells are built.
To assess not only point predictions but the entire predictive distribution, we compute the 95% interval score (IS), which

is a proper scoring rule that combines calibration and sharpness of predictions (Gneiting & Raftery, 2007). This measure
transforms interval width and empirical coverage into a single score and has recently become popular (see, for instance,
Hofer & Held, 2022; Paige et al., 2022). Let 𝑂it be the number of cases and [𝑙, 𝑢] be the respective (1 − 𝛼) ⋅ 100% posterior
predictive credible interval at credible level 𝛼 ∈ (0, 1), then

𝐼𝑆𝛼 ( 𝑂it) = ( 𝑢 − 𝑙) +
2

𝛼
( 𝑙 − 𝑂it)𝐼 [ 𝑂it < 𝑙] +

2

𝛼
( 𝑂it − 𝑢)𝐼 [ 𝑂it > 𝑢].

Here, 𝐼[⋅] denotes an indicator function that penalizes the length of the credible interval if the number of observed cases
is not contained within that interval.

4.2 Implementation details

To fit the classical disease mapping models described in Model (1), calculations are made on a computer with Intel Xeon
E5-2620 v4 processors and 256 GB RAM (CentOS Linux release 7.3.1611 operative system), using the simplified Laplace
approximation strategy in R-INLA (stable version INLA 22.05.07) of R-4.2.0. Partition models, disjoint, and first-order
neighborhood models based on 47 provinces, are distributed over five machines (with the same specifications described
above) simultaneously running eight models in parallel on each machine using the bigDM package.

4.3 Hyperprior distributions

In a Bayesian framework, prior distributions need to be assigned to all parameters. Here, we use a uniform improper prior
on the positive real line for all standard deviations (square root inverse of precision parameters) in the model (Gelman,
2006; Gómez-Rubio, 2020, Chapter 5.3) and a Uniform [0,1] distribution for the mixing parameter 𝜙 of the BYM2 prior.
We also use Penalized Complexity (PC) priors (Simpson et al., 2017) for the same parameters using the default PC prior
values given in R-INLA, that is,𝑃(𝜎 > 1) = 0.01 and𝑃(𝜙 > 0.5) = 0.5 and the results obtained remain very similar. Finally,
a vague zero mean normal distribution with a precision close to zero (0.001) is assigned to the intercept 𝛽0. Additional
details on the implementation of these hyperprior distributions in INLA can be found in Ugarte et al. (2016).

4.4 Results

Table 2 compares average values of 95% IS,MAE, andRMSEover all themunicipalities for 1, 2, and 3-year ahead predictions
when using the different models described in the previous section. For all these criteria, lower values are preferred. As
expected, higher scores are obtained as we increase the time of prediction in future years. Note that we were not able
to fit with INLA the classical disease mapping models using Types II and IV interactions due to the high-number of
identifiability constraints. However, we were able to fit the partition models proposed by Orozco-Acosta et al. (2023) with
all types of space-time interactions. In addition, a substantial reduction in computational time for fitting Types I and III
models was obtained. We observe that partition models outperform the classical models when these latter models can be
fitted (only Types I and III interactions). The best predictive measures are obtained using the Type IV interaction model.
Compared to a disjoint model that estimates all 47 provinces separately, we find that the first-order neighborhood models
obtain slightly better IS values when predicting 2- and 3-year ahead. The running time is slightly more than twice as long.
Figure 2 investigates predictions in more detail for three selected provincial capitals: the municipalities of Madrid,

Palencia, and Ávila. Here, expected values for the posterior predictive counts (deaths per 100,000 inhabitants) together
with 95% predictive intervals are plotted using the disjoint and first-order neighborhood models with Type IV interaction.
Different colors are used for 1, 2, and 3-year ahead predictions. Very similar forecasts are obtained for the municipality
of Madrid (a region with a large number of population at risk) under the different models. As expected, wider predictive
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8 of 18 OROZCO-ACOSTA et al.

TABLE 2 Validation study: average values of evaluation scores (interval score [IS], mean absolute error [MAE], and root mean square
error [RMSE]) and computational time (in min) for classical, disjoint, and first-order neighborhood models fitted using the simplified Laplace
approximation strategy of INLA.

Model
Space-time
interaction

1-year ahead 2-year ahead 3-year ahead

TimeIS𝟎.𝟎𝟓 MAE RMSE IS𝟎.𝟎𝟓 MAE RMSE IS𝟎.𝟎𝟓 MAE RMSE
Classical Type I 3.91 0.68 0.84 3.97 0.69 0.85 3.97 0.70 0.85 343

Type II − − − − − − − − − −

Type III 3.94 0.68 0.84 3.96 0.69 0.85 4.03 0.70 0.86 1767
Type IV − − − − − − − − − −

Disjoint Type I 3.91 0.68 0.83 3.95 0.69 0.84 3.97 0.70 0.85 14
by provinces Type II 3.87 0.67 0.82 3.92 0.68 0.83 3.98 0.69 0.84 152

Type III 3.88 0.68 0.83 3.92 0.69 0.84 3.95 0.69 0.85 22
Type IV 3.84 0.67 0.82 3.90 0.68 0.83 3.96 0.69 0.84 179

First-order Type I 3.90 0.68 0.83 3.94 0.69 0.84 3.96 0.69 0.85 18
neighborhood Type II 3.86 0.67 0.82 3.91 0.68 0.83 3.97 0.69 0.84 405
by provinces Type III 3.88 0.68 0.83 3.91 0.69 0.84 3.93 0.69 0.85 40

Type IV 3.84 0.67 0.82 3.88 0.68 0.83 3.93 0.69 0.84 433

intervals are obtained for those areas with lower values of observed cases and population at risk, as is the case of the
municipalities of Palencia and Ávila. For these municipalities, slightly wider predictive intervals are observed when using
the disjoint model.
To perform a more in-depth analysis of the predictive performance of the partition models, we compute average values

of prediction evaluation scores for two subsets of the data: (i) municipalities for which the proportion of zero observed
cases during the study period is less or equal to 0.2 and (ii) municipalities lying at the boundary between two or more
provinces with at least two observed cases per 100,000 inhabitants during the whole study period. The results are shown
in Tables A1 and A2 (in the Appendix), respectively. In both scenarios, the first-order neighborhood model outperforms
the disjoint model in terms of prediction accuracy and interval score.

5 ILLUSTRATION: PROJECTIONS OF CANCERMORTALITY IN SPAIN

The aim of this section is to illustrate our proposal for forecasting cancer burden for up to 3 years, as cancer registries often
suffer from this delay in data provision. Here, we use both male lung cancer and overall cancer (all sites) mortality data in
the 7907 municipalities of continental Spain in the period 1991–2012 to forecast cancer data for the years 2013, 2014, and
2015. This allows us to checkwhether actual rates are close to predicted rates. The samemodels described in the validation
study of Section 4 have been considered here.
To compare the predictive performance of the different models, we use cross-validation techniques to compute scoring

rules based on the estimated predictive distribution of the mortality counts. Typically, cross-validation techniques are
based on the idea of splitting the observed data into a training set (sample data used for model’s parameter estimation)
and a testing set (set of points used to compute the prediction error based on the trainingmodel)multiple times to estimate
the predictive accuracy of the model (Gelman et al., 1995; Hastie et al., 2009). A particular interesting feature of INLA is
that it provides leave-one-out cross-validatory (LOOCV) model checks without rerunning the model for each observation
in turn (Held et al., 2010; Rue et al., 2009), something that would be computationally unfeasible when fitting complex
models on large data sets. Specifically, INLA provides approximations of the conditional predictive ordinates (CPO; Pettit,
1990), CPO𝑖𝑡 = 𝜋(𝑂𝑖𝑡 = 𝑜𝑖𝑡|𝐨−𝑖𝑡), which is defined as the cross-validates predictive probability mass at the observed count
𝑜𝑖𝑡. However, it is well-known that LOOCV techniques may not be appropriate to measure the predictive performance
of a model that includes spatially and/or temporally structured random effects to deal with correlated data (Rabinowicz
& Rosset, 2022; Roberts et al., 2017). To solve this problem, Liu and Rue (2022) propose an automatic group construction
procedure for leave-group-out cross-validation (LGOCV) to estimate the predictive performance of structured models for
latent Gaussian models with INLA.
Table 3 shows the sum of the log-predictive densities computed over each area-time point using both the LOOCV (usu-

ally named as logarithmic score; Gneiting & Raftery, 2007) and the LGOCV techniques, as well as model selection criteria
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OROZCO-ACOSTA et al. 9 of 18

F IGURE 2 One, 2, and 3-year ahead predictions for the municipalities of Madrid (top), Palencia (middle), and Ávila (bottom) using the
disjoint model (left column) and first-order neighborhood model (right column) with Type IV interactions. Expected values of posterior
predictive counts per 100,000 inhabitants (dots) and 95% predictive intervals (color lines) are plotted. The number of the real observed
number of cases is also included as black stars.

such as the deviance information criterion (DIC; Spiegelhalter et al., 2002) and the Watanabe–Akaike information cri-
terion (WAIC; Watanabe, 2010). For comparison purposes, the reference value has been set to zero by subtracting the
minimum value for each column when computing the cross-validation measures and DIC/WAIC values. As in the valida-
tion study, we were not able to fit the classical spatiotemporal models with Types II and IV interactions. For both lung and
overall cancer mortality data analyses, partition models show better predictive performance and better values for model
selection criteria (see Table 3). In particular, the first-order neighborhood models with Type IV interactions. As expected,
the differences are more pronounced when comparing the predictive performance of the models for overall cancer data,
as a higher number of deaths are observed for each areal time unit compared to lung cancer data.
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10 of 18 OROZCO-ACOSTA et al.

TABLE 3 Logarithmic score using both LOOCV and LGOCV techniques, model selection criteria, and computational time (in min) for
lung cancer mortality and overall cancer mortality data with models fitted using the simplified Laplace approximation strategy of INLA
(stable version INLA_22.12.16).

Lung cancer Overall cancer
LOOCVa LGOCVa DICa WAICa Time LOOCVa LGOCVa DICa WAICa Time

Classical Type I 440 1925 698 703 622 1542 5763 2591 2662 598
Type II − − − − − − − − − −

Type III 365 2048 557 596 3914 1110 5072 1780 1905 4674
Type IV − − − − − − − − − −

Disjoint Type I 244 363 437 373 20 925 1743 1516 1442 20
by provinces Type II 52 78 150 130 296 46 101 123 67 275

Type III 209 330 392 369 36 836 1533 1385 1411 36
Type IV 0 0 48 47 379 18 8 76 74 323

First-order Type I 234 373 376 333 28 912 2078 1451 1387 28
neighborhood Type II 47 73 93 78 661 57 100 114 61 633
by provinces Type III 209 376 351 351 55 799 1716 1301 1342 55

Type IV 0 18 0 0 800 0 0 0 0 754

Abbreviations: DIC, deviance information criterion; LGOCV, leave-group-out cross-validation; LOOCV, leave-one-out cross-validation; WAIC, Watanabe–Akaike
information criterion.
aReference value has been set to zero by subtracting the minimum value for each column.

5.1 Lung cancer mortality

In this section, we provide lung cancer mortality projections in the municipalities of Spain for the period 2013–2015 using
the first-order neighborhoodmodel with Type IV space-time interactions. Table 4 shows posteriormedian estimates of the
predicted mortality rates per 100,000 males, and its corresponding 95% credible intervals for years 2013 and 2015 for the
47 municipalities that are provincial capitals. As expected, wider credible intervals are obtained when computing 3-year
ahead predictions (year 2015).
Figure 3a shows the maps with the temporal evolution of posterior median estimates of lung cancer mortality rates for

some selected years between 1991 and 2015. An increasing trend is observed in the northwest and central-west regions
of Spain, in particular during the period 1991–2001. The average mortality rate for Spain is about 71.7 deaths per 100,000
males in the year 1991, rising to 78.3 and 83.2 deaths per 100,000 males in the years 1996 and 2001, respectively. For the
second half of the period, the estimated rates are fairly constant without major spatial changes (average mortality rates
close to 83.5 deaths per 100,000 males during the years 2005–2010, with a slight increase to 84.5 deaths per 100,000 males
in 2012), something that is also observed for the predicted years 2013–2015.
In Figure 4a, we show the temporal evolution of mortality rate forecasts for the provincial capitals of Girona, Madrid,

and Bilbao (selected to show areas with different estimated temporal trends). In general, the 95% credible intervals contain
the crude rates over all the study period. As expected, wider credible intervals are obtained for those areas with lower
populations at risk.

5.2 Overall cancer mortality

Similar to the previous section, here we provide overall cancer mortality projections in the municipalities of Spain for
the period 2013–2015 using the first-order neighborhood model with Type IV space-time interactions. Table 5 provides
posterior median estimates of predicted mortality rates per 100,000 males and its corresponding 95% credible intervals for
the provincial capitals. The municipalities of Santander, Bilbao, and Salamanca have the highest overall cancer mortality
rates, while Murcia, Toledo, and Guadalajara show the lowest values. In general, the temporal trend in forecasts is quite
stable with slight variation in some areas, as is the case of Soria with an increase of five cases per 100,000 males.
The maps with the temporal evolution of the overall cancer mortality rates for the 7907 municipalities of continental

Spain are shown in Figure 3b. We observed a remarkable increase in the estimated cancer rates in the regions located
in the west (Extremadura) and northwest (Castilla y León, Galicia, Asturias, and part of Cantabria) during the period
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OROZCO-ACOSTA et al. 11 of 18

TABLE 4 Posterior median estimates of predicted lung cancer mortality rates (𝜆̂𝑖𝑡) per 100,000 males, its corresponding 95% credible
intervals (CI), and width of the CIs for years 2013 and 2015 for the 47 municipalities that form the provincial capitals (sorted by increasing
order).

2013 2015
Municipality 𝝀̂𝒊𝒕⋆ × 𝟏𝟎𝟓 95% CI Width 𝝀̂𝒊𝒕⋆ × 𝟏𝟎𝟓 95% CI Width
Guadalajara 56.1 (33.6,85.2) 51.6 57.2 (34.3,87.0) 52.7
Jaén 58.8 (37.4,82.0) 59.4 59.4 (36.0,84.6) 48.6
Girona 59.9 (38.5,85.6) 47.1 59.9 (36.4,89.8) 53.4
Albacete 60.4 (42.9,80.1) 37.2 59.6 (40.9,81.7) 40.8
Segovia 61.6 (30.8,100.1) 69.3 64.0 (32.0,108.0) 76.0
Ávila 63.2 (35.1,101.8) 66.7 64.5 (32.3,107.5) 75.2
Murcia 63.3 (51.2,75.8) 24.6 63.2 (50.2,78.1) 27.9
Soria 63.6 (26.5,106.0) 79.5 59.3 (21.6,113.2) 91.6
Granada 64.2 (47.0,85.0) 38.0 64.0 (44.8,87.8) 43.0
Tarragona 65.9 (46.9,89.3) 42.4 65.9 (44.9,91.3) 46.4
Burgos 66.5 (46.6,87.5) 40.9 66.3 (45.0,90.0) 45.0
Toledo 67.5 (42.5,100.0) 57.5 67.7 (40.1,102.9) 62.8
Castellón 67.9 (48.6,89.4) 40.8 67.1 (48.0,91.1) 43.1
Vitoria 69.2 (52.3,88.6) 36.3 68.7 (50.3,92.2) 41.9
Almería 69.3 (49.1,91.8) 42.7 68.8 (47.6,95.3) 47.7
Logroño 69.5 (49.1,95.4) 46.3 69.4 (47.2,98.5) 51.3
Lérida 72.2 (50.5,98.1) 47.6 71.6 (48.2,102.3) 54.1
Córdoba 74.7 (60.1,91.2) 31.1 75.0 (59.8,92.2) 32.4
Nadrid 74.8 (65.4,85.6) 20.2 75.0 (61.3,91.6) 30.3
Teruel 74.9 (40.3,126.7) 86.4 76.2 (35.2,129.0) 93.8
Málaga 75.0 (62.5,88.1) 25.6 74.9 (61.0,91.3) 30.3
Cuenca 77.9 (40.8,118.7) 77.9 75.5 (41.5,120.7) 79.2
Sevilla 78.4 (67.3,90.8) 23.5 78.6 (65.5,93.1) 27.6
Alicante 78.6 (65.1,94.6) 29.5 79.0 (64.0,94.7) 30.7
Pontevedra 78.8 (50.8,111.8) 61.0 76.8 (46.1,115.2) 69.1
Ciudad Real 79.0 (48.0,115.6) 67.6 79.5 (48.3,116.5) 68.2
Huesca 83.2 (47.6,126.8) 79.2 84.1 (44.0,132.1) 88.1
Valladolid 84.0 (66.2,105.2) 39.0 84.5 (63.5,109.6) 46.1
Huelva 84.0 (60.2,110.6) 50.4 83.9 (59.8,115.2) 55.4
Badajoz 84.3 (62.3,109.0) 46.7 83.7 (61.4,112.4) 51.0
Pamplona 85.1 (64.9,107.5) 42.6 84.8 (64.4,109.5) 45.1
San Sebastián 86.8 (64.0,113.1) 49.1 86.8 (59.4,117.7) 58.3
Valencia 87.4 (75.3,100.9) 25.6 87.4 (73.0,103.4) 30.4
Barcelona 88.0 (77.8,99.0) 21.2 88.3 (74.9,103.2) 28.3
Zamoraona 88.4 (52.4,130.9) 78.5 86.9 (46.8,140.4) 93.6
Cáceres 88.9 (58.5,121.4) 62.9 89.2 (58.8,126.2) 67.4
Palencia 89.3 (55.1,133.9) 78.8 89.3 (50.6,146.6) 96.0
Ourense 91.2 (60.8,127.6) 66.8 90.5 (57.6,135.8) 78.2
Zaragoza 91.2 (76.1,107.8) 31.7 91.2 (71.9,114.3) 42.4
Lugo 93.3 (62.9,128.0) 65.1 94.2 (61.4,133.7) 72.3
Bilbao 95.8 (75.8,117.6) 41.8 95.3 (72.0,123.7) 51.7
Santander 97.6 (72.0,128.1) 56.1 98.4 (69.7,135.7) 66.0
Salamanca 99.0 (69.9,135.4) 65.5 98.7 (62.8,145.1) 82.3

(Continues)
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12 of 18 OROZCO-ACOSTA et al.

TABLE 4 (Continued)

2013 2015
Municipality 𝝀̂𝒊𝒕⋆ × 𝟏𝟎𝟓 95% CI Width 𝝀̂𝒊𝒕⋆ × 𝟏𝟎𝟓 95% CI Width
A Coruña 99.8 (76.1,125.2) 49.1 98.9 (72.4,133.4) 61.0
León 102.2 (72.0,139.0) 67.0 103.3 (68.8,144.6) 75.8
Oviedo 104.9 (81.0,131.6) 50.6 104.8 (76.7,138.8) 62.1
Cádiz 115.1 (80.7,156.3) 75.6 112.3 (73.7,168.4) 94.7

F IGURE 3 Posterior median estimates of mortality rates per 100,000 males for the 7907 municipalities of continental during the period
1991–2015. Years 2013–2015 were predicted.
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OROZCO-ACOSTA et al. 13 of 18

TABLE 5 Posterior median estimates of predicted overall cancer mortality rates (𝜆̂𝑖𝑡) per 100,000 males, its corresponding 95% credible
intervals (CI) and width of the CIs for years 2013 and 2015 for the 47 municipalities that form the provincial capitals (sorted by increasing
order).

2013 2015
Municipality 𝝀̂𝒊𝒕⋆ × 𝟏𝟎𝟓 95% CI Width 𝝀̂𝒊𝒕⋆ × 𝟏𝟎𝟓 95% CI Width
Murcia 229.4 (203.3,255.9) 52.6 229.6 (199.8,262.1) 62.3
Toledo 239.9 (184.9,304.9) 120.0 243.4 (183.1,316.1) 133.0
Guadalajara 239.9 (186.1,298.2) 112.1 240.3 (180.8,309.0) 128.2
Albacete 242.6 (204.3,284.4) 80.1 242.9 (198.5,293.1) 94.6
Girona 243.9 (194.7,297.3) 102.6 243.8 (192.5,305.8) 113.3
Castellón 248.9 (204.7,297.5) 92.8 249.4 (196.6,310.5) 113.9
Jaén 253.1 (203.2,310.1) 106.9 253.8 (192.6,325.8) 133.2
Almería 253.9 (215.5,296.6) 81.1 254.0 (206.4,307.0) 100.6
Tarragona 256.2 (212.3,303.1) 90.8 255.9 (208.0,308.3) 100.3
Málaga 266.2 (237.7,297.3) 59.6 267.0 (229.4,310.1) 80.7
Lérida 277.1 (228.0,330.5) 102.5 277.7 (220.7,343.5) 122.8
Córdoba 277.3 (245.0,314.0) 69.0 277.8 (238.4,323.6) 85.2
Alicante 280.3 (243.7,321.1) 77.4 281.1 (232.1,335.6) 103.5
Granada 281.1 (237.7,328.1) 90.4 281.6 (229.5,344.7) 115.2
Ciudad Real 284.9 (220.0,352.6) 132.6 284.1 (215.9,363.7) 147.8
Badajoz 288.0 (241.3,336.0) 94.7 286.3 (234.0,346.4) 112.4
Cuenca 289.4 (218.9,371.1) 152.2 290.5 (211.3,388.6) 177.3
Sevilla 291.8 (264.8,319.5) 54.7 291.0 (257.0,329.5) 72.5
Cáceres 294.9 (236.4,355.6) 119.2 293.8 (230.7,367.9) 137.2
Ávila 294.9 (221.2,379.2) 158.0 293.9 (211.5,397.8) 186.3
Madrid 296.1 (264.8,329.9) 65.1 296.3 (247.1,352.9) 105.8
Segovia 300.4 (223.4,392.8) 169.4 304.0 (208.0,411.9) 203.9
Huelva 302.5 (247.9,362.7) 114.8 303.1 (237.6,379.9) 142.3
Logroño 306.6 (256.2,365.2) 109.0 306.6 (247.0,381.5) 134.5
Vitoria 311.5 (269.3,356.2) 86.9 310.8 (261.4,367.8) 106.4
Valencia 316.9 (288.1,346.4) 58.3 317.6 (280.8,359.5) 78.7
Pamplona 323.4 (279.8,370.2) 90.4 323.2 (273.8,375.8) 102.0
Zaragoza 323.4 (289.3,358.5) 69.2 324.1 (278.3,374.5) 96.2
Soria 328.6 (249.1,424.0) 174.9 328.7 (242.5,431.1) 188.6
Pontevedra 330.4 (269.4,396.5) 127.1 330.1 (261.0,404.4) 143.4
Barcelona 335.9 (304.4,368.9) 64.5 336.0 (288.2,385.8) 97.6
Teruel 357.2 (259.2,472.4) 213.2 357.7 (252.1,492.6) 240.5
San Sebastián 368.3 (319.8,421.5) 101.7 367.9 (308.5,435.3) 126.8
A Coruña 368.4 (313.3,432.3) 119.0 370.2 (295.1,461.2) 166.1
Burgos 368.5 (314.9,425.7) 110.8 369.3 (306.6,442.7) 136.1
Valladolid 370.8 (320.9,426.1) 105.2 370.8 (306.6,451.1) 144.5
Huesca 372.6 (285.4,471.7) 186.3 372.3 (276.2,488.3) 212.1
Zamora 376.4 (288.1,477.9) 189.8 377.8 (270.8,511.6) 240.8
Lugo 384.0 (314.6,459.9) 145.3 385.7 (302.4,477.8) 175.4
Palencia 396.5 (315.1,483.1) 168.0 394.5 (303.9,498.5) 194.6
Cádiz 398.4 (309.1,499.7) 190.6 396.5 (280.7,543.9) 263.2
Oviedo 403.2 (353.7,457.6) 103.9 403.6 (342.5,471.6) 129.1
León 405.3 (329.9,492.4) 162.5 406.2 (315.0,523.2) 208.2

(Continues)
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TABLE 5 (Continued)

2013 2015
Municipality 𝝀̂𝒊𝒕⋆ × 𝟏𝟎𝟓 95% CI Width 𝝀̂𝒊𝒕⋆ × 𝟏𝟎𝟓 95% CI Width
Ourense 407.2 (336.3,484.2) 147.9 407.5 (325.1,506.3) 181.2
Salamanca 413.5 (345.0,490.6) 145.6 412.8 (327.5,520.5) 193.0
Bilbao 415.3 (368.0,466.8) 98.8 414.6 (356.2,484.1) 127.9
Santander 419.8 (339.3,517.4) 178.1 420.8 (303.8,574.0) 270.2

1991–2015. The overallmortality rate for thewhole of Spain shows a steady rise during the study period, with average values
of 325.5, 355.5, 373.4, 381.6, and 386.3 deaths per 100,000 males in the years 1991, 1996, 2001, 2010, and 2015, respectively.
In Figure 4b,we show the temporal evolution of estimated overall cancermortality rates for themunicipalities ofGirona,

Madrid, and Bilbao. Wider credibility intervals are observed in Bilbao and Girona compared to Madrid, as expected due
to the number of inhabitants. Crude rates are always included in the credible intervals.

6 DISCUSSION

Short-term disease forecasting is of great interest in epidemiology and public health as it supports health decision-making
processes. However, this might be a very complex task when predicting counts for high-dimensional areal data. As far
as we know, our paper is the first attempt to extend classical spatiotemporal disease mapping models for predicting
short-term cancer burden when the number of areas is very large. Under this high-resolution spatial setting, the main
limitation of classical models is their computational complexity due to the huge dimension of the spatiotemporal covari-
ance matrices and the high number of constraints to make the models identifiable. The “divide-and-conquer” approach
for high-dimensional count data proposed by Orozco-Acosta et al. (2023) is a strategy that involves partitioning the spatial

F IGURE 4 Posterior predictive median estimates of mortality rates and its corresponding 95% credible interval per 100,000 males during
the period 1991-2015 for the municipalities of Girona, Madrid, and Bilbao. Crude rates are shown as a filled circle. The vertical dotted line
indicates where the prediction starts.
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domain into smaller regions and then fitting a separate model for each partition. This approach has been shown to be
effective for estimating disease risks as it can provide better accuracy and computational efficiency compared to classical
spatiotemporal disease mapping models. In this paper, we extend this approach to a forecasting setting, where the goal is
to forecast short-term mortality rates.
To evaluate the predictive performance of both classical and scalable modeling approaches, we perform a validation

study imitating the real scenario of forecasting short-term cancer mortality rates in almost 8000 municipalities in Spain.
For the partition models, we use the 47 provinces of Spain (NUTS3 level from the European nomenclature of territorial
units for statistics) although other partitions can be used depending on the researcher’s interest. Then, we compute mean
absolute errors, root mean square errors, and interval scores when making 1, 2, and 3-year ahead predictions. In general,
partitionmodels outperform the classicalmodels in terms of predicted counts, being the Type IV interactionmodel the one
showing better results. When computing these measures by stratifying the data based on the proportion of areas with zero
observed cases during the study period or selecting only municipalities lying at the boundary of two or more provinces,
we observe that the first-order neighborhood model outperforms the disjoint model in terms of prediction accuracy and
interval score. Of note, including second-order neighborhood models in our validation study does not improve the results
further (results are available upon request).
We also illustrate our proposed methodology by forecasting 3 years ahead of lung cancer and overall cancer mortality

data in the municipalities of continental Spain using data from the period 1991–2012. To compare the different models in
terms of their predictive performance, we compute the logarithmic score based on both LOOCV and LGOCV techniques.
For the latter, we use the automatic group construction for latent Gaussianmodels proposed by Liu and Rue (2022), which
computes the set of testing points for each data point based on posterior correlations of the linear predictor. Under this
cross-validation setting, two alternatives exist for comparing the predictive performance of the models: (i) calculating the
set of testing points for eachmodel or (ii) utilizing the groups derived froma specificmodel as a reference for the remaining
models. To simplify the practical calculation of these measures when analyzing real data, we adopt the first strategy.
According to the results, a first-order neighborhoodmodel with the Type IV interactionmodel is chosen as the best model
in terms of predictive performance. The conclusions align with those obtained when computing the logarithmic score
under the second strategy. The differences between the models are more pronounced when analyzing the data for overall
cancer mortality because the number of observed cases is higher. Well-known model selection criteria such as the DIC
and WAIC provide similar conclusions.
In summary, the results of this paper show that the “divide-and-conquer” approach performs well in terms of accuracy

and computational time and outperforms classical methods in all the scenarios. These findings suggest that this approach
is a promising strategy for forecasting high-dimensional count data and can provide valuable insights for decision-making
in various fields, such as public health and environmentalmonitoring.We remark that the scalablemethodology presented
in this paper could also be used to forecast rates using other hierarchical Bayesian disease mapping models including, for
example, AR terms or second-order random walks for time. Moreover, the fact that the proposed methodology is general
and can be applied to other health indicators such as cancer incidence or other health indicators is also valuable. This
suggests that the methodology can be used for a broader range of applications beyond the scope of the paper.
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APPENDIX
A.1 Predictive distribution of the counts
R-INLA provides posterior marginal estimates for the mortality rates 𝜆𝑖𝑡, for 𝑖 = 1, … , 𝑛 and 𝑡 = 1, …𝑇, after setting
the arguments control.predictor=list(compute=TRUE, link=1) and control.inla=list(return.marginals.
predictor=TRUE) of the main inla()-function call. It also provides predicted distribution estimates of mortality rates
𝜆𝑖𝑡∗ by setting the observed counts at time point 𝑡∗ as NA and giving the corresponding offset𝑁𝑖𝑡∗ (in our case, the number
of population at risk at municipality 𝑖 and predicted year 𝑡∗).
Using the law of iterated expectation, the expected value for the posterior predictive counts is given by 𝜇𝑖𝑡∗ =

𝐸[𝐸[𝑂𝑖𝑡∗ |𝜆𝑖𝑡∗ ]] = 𝐸[𝑁𝑖𝑡∗ ⋅ 𝜆𝑖𝑡∗ ] = 𝑁𝑖𝑡∗ ⋅ 𝐸[𝜆𝑖𝑡∗ ]. We can also compute the posterior quantiles for the predicted counts by
sampling from the marginal posterior of 𝜆𝑖𝑡∗ (Martino & Riebler, 2019). Our sampling scheme proceeds in two steps. First,
we generate 𝑆 = 5000 samples from the posterior marginal distribution of 𝜆𝑖𝑡⋆ using the function inla.rmarginal()
function. Then, we generate values of the mortality counts 𝑂𝑠

𝑖𝑡⋆
from a Poisson distribution with mean 𝑁𝑖𝑡⋆ ⋅ 𝜆

𝑠
𝑖𝑡⋆
, for

𝑠 = 1,… , 𝑆, in order to compute its empirical quantiles.

A.2 Additional tables

TABLE A1 Average values of prediction evaluation scores for models fitted with INLA (simplified Laplace approximation strategy) in
the municipalities with the proportion of zero observed cases during the study period less or equal than 0.2.

Model
Space-time
interaction

1-year ahead 2-year ahead 3-year ahead
IS𝟎.𝟎𝟓 MAE RMSE IS𝟎.𝟎𝟓 MAE RMSE IS𝟎.𝟎𝟓 MAE RMSE

Classical Type I 12.96 2.20 2.67 13.22 2.25 2.72 13.18 2.30 2.76
Type II − − − − − − − − −

Type III 13.10 2.21 2.68 13.14 2.26 2.73 13.50 2.31 2.78
Type IV − − − − − − − − −

Disjoint Type I 12.93 2.18 2.65 13.09 2.23 2.70 13.21 2.27 2.74
by provinces Type II 12.65 2.13 2.59 12.93 2.16 2.63 13.25 2.21 2.67

Type III 12.76 2.17 2.64 12.92 2.22 2.69 13.08 2.26 2.72
Type IV 12.51 2.12 2.59 12.79 2.17 2.64 13.09 2.21 2.68

First-order Type I 12.88 2.17 2.64 13.02 2.21 2.69 13.14 2.26 2.73
neighborhood Type II 12.57 2.13 2.58 12.88 2.16 2.63 13.18 2.21 2.67
by provinces Type III 12.73 2.16 2.63 12.92 2.21 2.68 12.96 2.25 2.71

Type IV 12.48 2.12 2.58 12.72 2.16 2.63 12.96 2.21 2.68

Abbreviations: IS, score; MAE, mean absolute error; RMSE, root mean square error.

TABLE A2 Average values of prediction evaluation scores for models fitted with INLA (simplified Laplace approximation strategy) in
the municipalities lying at the boundary between two or more provinces with at least two observed cases per 100,000 inhabitants during the
whole study period.

Model
Space-time
interaction

1 year ahead 2-year ahead 3-year ahead
IS𝟎.𝟎𝟓 MAE RMSE IS𝟎.𝟎𝟓 MAE RMSE IS𝟎.𝟎𝟓 MAE RMSE

Classical Type I 16.14 2.62 3.20 16.40 2.66 3.25 15.97 2.65 3.23
Type II − − − − − − − − −

Type III 16.36 2.62 3.20 16.01 2.67 3.26 16.01 2.66 3.23
Type IV − − − − − − − − −

Disjoint Type I 15.82 2.61 3.15 15.92 2.65 3.20 15.79 2.64 3.18
by provinces Type II 15.87 2.63 3.18 16.07 2.64 3.21 16.19 2.64 3.19

Type III 15.58 2.61 3.15 15.79 2.65 3.20 15.77 2.64 3.19
Type IV 15.71 2.62 3.17 15.98 2.65 3.20 15.99 2.64 3.19

First-order Type I 15.70 2.60 3.15 15.67 2.64 3.21 15.54 2.64 3.19
neighborhood Type II 15.70 2.62 3.17 15.69 2.64 3.21 15.83 2.63 3.18
by provinces Type III 15.50 2.60 3.15 15.50 2.65 3.22 15.36 2.65 3.20

Type IV 15.60 2.60 3.15 15.63 2.64 3.20 15.62 2.63 3.18

Abbreviations: IS, score; MAE, mean absolute error; RMSE, root mean square error.
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