First Generation of Antioxidant Precursors for Bioisosteric Se-NSAIDs: Design, Synthesis and In Vitro and In Vivo Anticancer Evaluation

Sandra Ramos-Inza ^{1,2}, Cesar Aliaga ³, Ignacio Encío ⁴, Asif Raza ³, Arun K. Sharma ^{3,*}, Carlos Aydillo ^{1,2}, Nuria Martínez ¹, Carmen Sanmartín ^{1,2,*} and Daniel Plano ^{1,2,*}

- ¹ Department of Pharmaceutical Technology and Chemistry, University of Navarra, Irunlarrea 1, 31008 Pamplona, Spain
- ² Instituto de Investigación Sanitaria de Navarra (IdiSNA), Irunlarrea 3, 31008 Pamplona, Spain
- ³ Department of Pharmacology, Penn State Cancer Institute, CH72, Penn State College of Medicine, 500 University Drive, Hershey, PA 17033, USA
- ⁴ Department of Health Sciences, Public University of Navarra, Avda. Barañain s/n, 31008 Pamplona, Spain
- * Correspondence: asharma1@pennstatehealth.psu.edu (A.K.S.); sanmartin@unav.es (C.S.); dplano@unav.es (D.P.)

Table of Contents									
Biological evaluation									
GI_{50} , TGI and LD_{50} values		Table S1							
Chemical characterization									
¹ H, ¹³ C and ⁷⁷ Se NMR spectra, qNMR spectra									
1		Figures S1-S4							
2		Figures S5-S8							
3		Figures S9-S12							
4		Figures S13-S16							
5		Figures S17-S20							
Mass spectrum of compound 5	Figure S21								

Table of Contents

෬ Biological evaluation

ମ୍ଦ GI50, TGI and LD50 values

Table S1. GI₅₀, TGI and LD₅₀ values (in μ M)^a for the Se-NSAID analogs in colon (HT-29, HCT-116), prostate (DU-145, PC-3), breast (MDA-MB-231, T-47D, 184B5) and lung (H1299, A549, BEAS-2B) cell lines.

Compounds		Colon cell lines		Prostate cell lines		Breast cell lines			Lung cell lines		
		HT-29	HCT-116	DU-145	PC-3	MDA-MB-231	T-47D	184B5	H1299	A549	BEAS-2B
1	GI₅₀	3.9 ± 0.4	21.0 ± 4.0	4.4 ± 0.5	2.8 ± 0.2	6.6 ± 2.2	1.6 ± 0.3	7.0 ± 1.1	7.7 ± 1.2	>100	3.9 ± 1.3
	TGI	6.2 ± 1.9	44.5 ± 7.1	5.1 ± 0.2	3.0 ± 0.3	15.3 ± 4.6	2.9 ± 0.6	11.3 ± 1.4	9.4 ± 0.8	26.2 ± 5.8	8.4 ± 2.4
	LD ₅₀	>100	88.0 ± 3.5	6.1 ± 0.7	3.3 ± 0.4	>100	6.0 ± 1.9	21.1 ± 3.9	>100	74.6 ± 5.9	17.0 ± 5.7
2	GI ₅₀	>100	44.5 ± 3.4	58.4 ± 8.4	>100	23.1 ± 14.3	25.5 ± 10.2	>100	53.2 ± 1.2	>100	>100
	TGI	>100	81.5 ± 2.3	>100	>100	>100	39.0 ± 8.5	>100	>100	>100	>100
	LD ₅₀	>100	>100	>100	>100	>100	>100	>100	>100	>100	>100
3	GI₅o	6.8 ± 1.4	9.3 ± 4.7	5.0 ± 0.2	4.4 ± 0.3	5.2 ± 0.2	1.8 ± 0.2	7.1 ± 0.5	6.7 ± 1.1	3.3 ± 0.4	7.0 ± 2.5
	TGI	>100	30.9 ± 16.7	6.1 ± 0.6	5.0 ± 0.1	5.6 ± 0.8	3.1 ± 0.3	9.4 ± 0.2	>100	>100	9.0 ± 1.2
	LD ₅₀	>100	>100	10.4 ± 2.4	5.9 ± 0.9	>100	6.3 ± 0.7	>100	>100	>100	12.3 ± 2.1
4	GI ₅₀	24.4 ± 2.6	4.3 ± 0.6	19.5 ± 3.5	4.8 ± 0.4	2.4 ± 0.5	>100	4.8 ± 0.3	24.6 ± 1.8	8.1 ± 0.4	4.2 ± 0.6
	TGI	36.2 ± 3.0	6.7 ± 1.9	28.5 ± 2.9	5.5 ± 0.5	4.2 ± 1.7	9.5 ± 2.3	5.4 ± 0.4	33.6 ± 1.6	19.9 ± 3.4	4.7 ± 0.3
	LD ₅₀	62.5 ± 14.3	>100	39.6 ± 2.4	6.7 ± 1.2	>100	27.2 ± 2.3	>100	43.5 ± 1.8	>100	5.4 ± 0.4
5	GI₅o	4.8 ± 1.0	4.6 ± 1.5	6.0 ± 1.3	4.7 ± 0.2	4.8 ± 1.1	1.8 ± 0.4	6.6 ± 1.5	8.1 ± 1.0	2.3 ± 0.2	7.8 ± 2.3
	TGI	7.2 ± 1.8	10.3 ± 3.8	7.3 ± 0.9	6.1 ± 0.5	7.9 ± 3.8	2.7 ± 0.3	11.1 ± 1.4	10.2 ± 1.0	>100	9.8 ± 1.6
	LD ₅₀	>100	>100	9.0 ± 0.4	8.9 ± 1.9	>100	4.2 ± 0.3	>100	16.5 ± 5.1	>100	14.8 ± 4.7

 a Gl₅₀, TGI and LD₅₀ values are presented as the mean \pm SD of at least three independent experiments determined by the MTT assay.

CR Chemical characterization − NMR spectra

Figure S1. ¹H-NMR spectrum of compound 1.

Figure S2. ¹³C-NMR spectrum of compound 1.

Figure S3. ⁷⁷Se-NMR spectrum of compound 1.

--2.44

Figure S5. ¹H-NMR spectrum of compound **2**.

Figure S6. ¹³C-NMR spectrum of compound **2**.

Figure S10. ¹³C-NMR spectrum of compound **3**.

Figure S11. ⁷⁷Se-NMR spectrum of compound 3.

Figure S12. qNMR spectrum of compound 3.

5.0 4.5 f1 (ppm) 4.0

3.5

3.0

2.5

2.0

1.5

1.0

0.5

Figure S13. ¹H-NMR spectrum of compound 4.

7.0

6.5

6.0

5.5

7.5

8.0

9.5

9.0 8.5

Figure S14. ¹³C-NMR spectrum of compound 4.

Figure S15. ⁷⁷Se-NMR spectrum of compound 4.

Figure S16. qNMR spectrum of compound 4.

1600 1500 1400 1300 1200 1100 1000 900 800 700 600 500 400 300 200 100 0 -100 -200 -300 f1 (ppm) **Figure S19**. ⁷⁷Se-NMR spectrum of compound **5**.

Figure S20. qNMR spectrum of compound 5.

Figure S21. Mass spectrum of compound 5 obtained with a negative ionization mode.