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Abstract 

 

This project aims to develop image analysis and deep learning 

methods for the analysis of the tumor microenvironment in images of 

biopsies of urothelial carcinoma patients. Tumor biopsies were obtained 

from patients in the Clínica Universidad de Navarra, and 7-plex 

immunofluorescence images were acquired from tissue microarrays using 

the Vectra Polaris multispectral image acquisition device (Akoya 

Biosystems). The images are composed of seven channels corresponding 

to seven fluorochromes labelling tumor cells and different immune cell 

populations. The objectives of the project include the segmentation of cells 

based on nuclear and membrane markers, the classification of different cell 

phenotypes based on the expression of fluorescent markers, and the study 

of interactions between cell populations in relation with the patient clinical 

outcome. The nuclei segmentation deep learning-based method 

implemented and trained with our dataset outperforms other state-of-the-

art methods in terms of segmentation accuracy. Whole-cell segmentation 

and cell phenotype classification have also been optimized to detect two 

cell populations in our patient cohort, due to their clinical interest: CD8+ 

cells and BATF3+ cells. Within the obtained results, it should be 

highlighted that the density of CD8+ cell population within the tumor 

microenvironment serves as an indicator of the response to Atezolizumab 

immunotherapy treatment in patients with urothelial carcinoma. 

Additionally, is has been found that spatial interactions between BATF3+ 

and CD8+ cell populations also have a direct impact on the patient 

outcomes. These conclusions significantly contribute to clinical research by 

identifying new relevant biomarkers within the immune system. 

Key words: Deep learning, tumor microenvironment, urothelial 

carcinoma, multiplex imaging, spatial interactions. 

  



Resumen 

 

Este proyecto tiene como objetivo el desarrollo de métodos de 

análisis de imagen y aprendizaje profundo para el análisis del 

microambiente tumoral en imágenes de biopsias de pacientes con 

carcinoma urotelial. Las biopsias tumorales fueron obtenidas de pacientes 

en la Clínica Universidad de Navarra y las imágenes de 

inmunofluorescencia de siete canales se consiguieron utilizando el 

dispositivo de adquisición de imágenes multiespectrales Vectra Polaris de 

Akoya Biosystems. Las imágenes están compuestas por siete canales que 

corresponden a siete fluorocromos que etiquetan células tumorales y 

diferentes poblaciones de células inmunitarias. Los objetivos del proyecto 

incluyen la segmentación de células basada en marcadores nucleares y de 

membrana, la clasificación de diferentes fenotipos celulares basada en la 

expresión de marcadores fluorescentes, y el estudio de las interacciones 

entre las poblaciones celulares en relación con el resultado clínico del 

paciente. El método basado en Deep Learning utilizado para segmentación 

nuclear implementado y entrenado con nuestro conjunto de datos supera 

a otros métodos del estado del arte en términos de precisión de 

segmentación. La segmentación de célula complete y la clasificación de 

fenotipos celulares han sido también optimizados para detectar dos 

poblaciones celulares en nuestra cohorte de pacientes, dado su interés 

clínico: células CD8+ y células BATF3+.Entre los resultados obtenidos se 

debe destacar que la densidad de poblaciones celulares CD8+ dentro del 

microambiente tumoral sirve como un indicador de la respuesta mejor al 

tratamiento de inmunoterapia Atezolizumab en pacientes con carcinoma 

urotelial. Además, se ha descubierto que las interacciones entre las 

poblaciones celulares BATF3+ y CD8+ también tienen un impacto directo 

en la evolución de los pacientes. Estas conclusiones contribuyen 

significativamente a la investigación clínica al identificar nuevos 

biomarcadores relevantes dentro del sistema inmune. 

 

Palabras clave: Aprendizaje profundo, microambiente tumoral, 

carcinoma urotelial, imágenes multiplexadas, interacciones espaciales. 
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Chapter 1.  Introduction 

This document has been divided into five chapters, starting with the 

Introduction, followed by Objectives, Materials, Methods, Results  and 

concluding with Discussion and Conclusion and Future Work. Except for 

the Methods and Results  chapters, further explained below, all other 

chapters are common to both the Final Master Project and the Complement 

to the Final Master Project courses. 
The Methods chapter is separated into four sections: Nuclei 

Segmentation, Whole Cell Segmentation, Classification of Cell Phenotypes 

and Study of Spatial Interactions Between Cell . Nuclei Segmentation is 

part of the Complement to the Final Master Project, while the rest 

corresponds to the Final Master Project course.  

Indeed, the same applies to the Results  chapter, where only the 

Nuclei Segmentation subsection belongs to the Complement to the Final 

Master Project. 

1. 1. Clinical Context 

Cancer ranks as the second leading cause of death worldwide, 

surpassed only by cardiovascular diseases [1], [2]. Figure 1.1. illustrates the 

mortality trends for all types of cancer, excluding non-melanoma skin 

cancer, in Spain from 1943 to 2018. It can be observed, that the incidence of 

mortality is higher in males than females, but there is a decreasing trend in 

both genders referring to mortality rates. 
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Figure 1.1: Cancer mortality statistics in Spain from 1943 to 2018 excluding 

non-melanoma skin cancer. Extracted from [3]. 

Urothelial carcinoma, which is predominantly seen in men [4], also 

known as transitional cell carcinoma, is a type of cancer that begins in 

urothelial cells. The term "transitional cells" is used for urothelial cells 

because they change shape; these cells present flexibility, stretching when 

the bladder is filled with urine and contracting when it is emptied. 

Urothelial cells cover various structures, including the urethra, bladder, 

ureters, renal pelvis, and certain other organs, see Figure 1.2.  
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Figure 1.2: Anatomy of the male urinary system (left panel) and female urinary 

system (right panel), illustrating the kidneys, ureters, bladder, urethra, prostate, 

and penis (left panel), as well as the uterus (right panel). The internal view of the 

left kidney displays the renal pelvis. Extracted from [5]. 

Almost all bladder cancers fall under the category of urothelial 

carcinomas [6], making them the 10th most commonly diagnosed cancer 

and the 13th leading cause of cancer deaths worldwide [7], [8]. Bladder 

cancer is an aggressive malignancy with a five-year survival rate of about 

5% in the metastatic cases [9]. Urothelial cancer is relatively infrequent in 

the upper urinary tract, specifically in the renal pelvis and ureter, 

constituting only 5-10% of cases. Its occurrence is even more uncommon in 

the urethra, comprising less than 1% [10]. 

 The global cases and mortality of bladder cancer are expected to 

increase annually by 73% and 87%, respectively, by 2040 [11]. Therefore, 

there is an urgent need for investigation to develop treatments and 

facilitate rapid diagnosis due to its relevance on combating the disease [12]. 

Tumoral and immune cells coexist within the tumor 

microenvironment. The interactions between these cells, within the tumor 

itself or in its surrounding stroma, are crucial for patient diagnosis. 

Currently, several studies have been conducted to identify patterns in 

cellular interactions specific to each type of cancer, aiming to enhance the 
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understanding of the disease [13] [14]. Indeed, this approach enables the 

development of more individualized treatments for each type of cancer. 

The tumour immune microenvironment has a direct impact on 

cancer progression, metastasis probability and response to cancer 

treatment, such as  immunotherapy, being a pillar in the hallmarks of 

cancer [15][16][17][18]. The cancer grade is determined by the morphology 

of its cells and the tumour architecture, referred to as histopathology. At 

the same time, cancer biomarkers, which represent the phenotype, are used 

to categorize patients, predict prognosis, and adapt conventional or 

immune-based anticancer treatments [19]. 

The blockade of the PD-1/PD-L1 pathway is currently a standard 

treatment for advanced urothelial cancer [20]. However, reliable predictive 

biomarkers have not yet been defined. Therefore, one of the goals of this 

Final Master project is to identify cell populations, defined by the 

expression of specific biomarkers, that have a direct impact on the clinical 

response to treatment. 

1. 2. Multiplexed Imaging 

Cellular phenotypes and cellular interactions within the tumour 

microenvironment can be characterized thanks to the recent development 

of technologies such as multiplexed imaging technology [21], [22]. The 

analysis of multiple biomarkers present in each cell provide new biological 

insights that previous single-marker methods did not allow [23]. This, for 

instance, allows for establishing correlations between biomarker 

expression and treatment response, an ongoing task that remains both 

challenging and clinically relevant [24]. 

Multiplexed imaging currently allows the distinction of more than 

twenty of biomarkers, that reference cell phenotypes, within the tumor 

microenvironment. Analysing the interactions between these biomarkers 

enables a better characterization of the immunosuppressive mechanisms 

in the tumor microenvironment. Thus providing new insights into the 

prognosis of the disease [25]. 
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Determining the expression and the spatial relations between the 

biomarkers remains a highly challenging task to humans due to the huge 

quantity of data that must be processed. For this reason, the development 

of machine learning-based methods to group cells with similar phenotypes 

into neighbourhoods where different cell phenotypes coexist, results in 

important advancements in clinical predictive tasks [19]. 

Lymphocytes, or T cells, are cells within the immune system that act 

as cell mediators with specific functions depending on their type. The most 

common types include CD8+ T cells, CD4+ T cells and T regulatory cells. 

In this project, the focus will be on CD8+ T cells, which are pathogens 

killers, because they play a vital role in anticancer treatment as key 

immune cells for killing cancer cells [26][27][28][29].  

On the other hand, the expression of BATF3, basic leucine zipper 

transcription factor ATF-like 3, in conventional type-1 dendritic cells 

(cDC1) immediately before treatment is known to positively influence the 

response against tumors, despite the lack of studies on this topic. For a 

proper immune response by CD8 T lymphocytes, they need to encounter 

antigens presented by antigen-presenting cells such as type 1 dendritic 

cells detected by the presence of BATF3 expression. After interacting with 

antigen-presenting cells, CD8 T lymphocytes acquire cytotoxic functions. 

Subsequently, they migrate to the tumor site to generate an effector 

response. The BATF3 gene accomplishes this by regulating memory of the 

CD8+ T cells, while simultaneously enhancing their survival rates [30]. The 

presence of cDC1 cells is linked to the response to cancer treatments, as 

they present antigens to T cells within the tumor microenvironment [31].   

1. 3. Deep Learning for Multiplexed Image 

Analysis  

Histology images contain a wealth of valuable information due to 

the visualization of millions of different cells simultaneously. However, 

there is a significant challenge in optimizing the interpretation of these 

images, given the time-consuming nature of the process and its heavy 
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reliance on highly skilled professionals [32]. Recognizing the urgent need 

for more efficient, precise and cost-effective diagnostic methods for the 

analysis of histology images, the integration of Deep Learning techniques 

emerges as a crucial avenue. 

Deep Learning, inspired by the function of the human brain, 

develops computational models capable of learning and performing 

complex tasks, mainly involving large datasets. It operates by the usage of 

artificial neural networks composed of interconnected layers of nodes. 

During the training process, the neural networks receive input data and 

adjust their internal parameters to learn patterns within the data to make 

predictions or classifications based on the input data. The complex features 

are extracted from the raw data as it passes through the layers of nodes. 

The success of the proposed biological image analysis task in this 

project heavily relies on the accurate detection and segmentation of cells 

and nuclei from the microscopy images [33]. Innovative algorithms based 

on Deep Learning have made it possible to eliminate the laborious manual 

work involved. This is achieved by leveraging the algorithm's capacity to 

learn repetitive patterns within the cells of the tumor microenvironment, 

simplifying the analysis process and enhancing overall efficiency. 

Multiplex fluorescence imaging assays have great potential for 

translational research and clinical practice, especially when combined with 

new computational methods based on Deep Learning. These methods can 

identify patterns of cellular interaction in raw data, promising 

improvements in patient diagnosis. The union of advanced imaging 

techniques and state-of-the-art Deep Learning algorithms opens new 

horizons for a more efficient and insightful analysis of histology images, 

ultimately contributing to improved medical diagnostics and treatment 

development. 

Deep Learning plays a crucial role in every step of highly 

multiplexed imaging analysis, covering from cell segmentation and 

classification to deriving biological insights from the resulting images. It 

enables the establishment of correlations between the high-level visual 

understanding of pathology and deeper levels of biological mechanisms. 

By exploiting Deep Learning techniques, researchers can effectively 

navigate through the complexity of vast image datasets, extracting 
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meaningful information that facilitates a deeper understanding of the 

cellular and disease behaviour. This integration of Deep Learning 

methodologies throughout the analysis pipeline not only enhances the 

accuracy and efficiency of image processing tasks but also empowers 

researchers to uncover previously unseen relationships and patterns 

within the data, ultimately advancing the comprehension of biological 

systems [32].  
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Chapter 2.  Objectives 

The main goal of this project is to conduct a comprehensive analysis 

of the complex tumour microenvironment within images obtained from 

biopsies of urothelial carcinoma patients who were treated with 

Atezolizumab [34]. All images were obtained before patients received the 

treatment, allowing for the identification of correlations between the 

response to immunotherapy and the image patterns present in the tumor 

microenvironment at the time of the treatment. This analysis employs 

cutting edge image analysis techniques and Deep Learning methodologies. 

Briefly, the goals of this study cover the following key aspects: 

 

1. Cell segmentation: A prior aspect of the research involves precise 

nuclear segmentation and whole cell segmentation, achieved, 

respectively, through the utilization of nuclear and membrane and 

cytoplasmic markers. The aim of this process is the identification and 

delineation of individual cells and its nuclei within the tissue. 

 

2. Phenotypic classification: Another crucial point of the study is the 

classification of diverse cell phenotypes. This classification will be 

based on the expression patterns of fluorescent markers, providing 

valuable insights into the heterogeneity of the cellular composition 

within the urothelial carcinoma microenvironment. 

 

3. Population interactions: Beyond cellular characterization, this 

project aims to evaluate the presence of specific cell phenotypes and 

the spatial interactions among distinct cell phenotypes. Specifically, 

the presence of CD8+ and BATF3+ cells and the distances between 

them will be studied due to the existing of evidence of their impact 

on urothelial anticancer immunotherapy treatments. By correlating 

them with clinical outcomes, the study seeks to discover potential 

associations between the tumour microenvironment and patient 

response to the immunotherapy treatment. 
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Chapter 3.  Materials  

3. 1. Images 

For the realization of this Final Master Project, two tissue 

microarrays (TMAs) were utilized. Tissue microarray technique organizes 

several diminutive biological samples of tissue in a single recipient, called 

microarray. This method introduced significant advantages, such as 

allowing to generate more data from a single sample, analysing a large 

number of data simultaneously, presenting experimental uniformity by 

treating each core in an identical manner or decreasing the volume, cost 

and time of the assay [35]. In this Final Master project, each TMA contains 

small circular pieces of tissue taken from 65 and 60 biopsy samples of 

urothelial carcinoma patients, respectively.  

In Figure 3.1, the location of TMA1 images on the microarray is 

represented. This image offers an insight into the heterogeneity presented 

among the images of the TMA. 
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Figure 3.1: Distribution of TMA1 images on the slide.  

Multiplexed immunofluorescence TMA slides were scanned using 

the Vectra-Polaris Automated Quantitative Pathology Imaging System 

(Akoya Biosciences). In brief, a spectral library was created, capturing the 
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spectral peaks emitted by each fluorophore from individually stained 

slides. This spectral library facilitated the spectral unmixing of the images, 

enabling color-based identification of the markers of interest. Each TMA 

core image was spectrally unmixed and exported as a TIF image (2656 × 

2659 × 8 pixels) using Akoya Biosciences’ Inform software.  

Each image is composed of seven channels corresponding to seven 

fluorochromes labelling tumor cells and different immune cell 

populations. In this manner, the simultaneous detection of the relevant 

biomarkers for this study, DAPI, CD3 (T cells), CD8(CTLs), BATF3 and 

GranB (granzyme B), has been achieved. 

Despite the original channel being composed of seven markers, 

during the spectral unmixing process, an estimation of the 

autofluorescence channel of the tissue is conducted. This channel is 

utilized to subtract the autofluorescence component from the rest of the 

channels, enabling a later work with a purer signal. 

The eight channels are arranged as follows: DAPI, MelanA, CD3, 

CD8, BATF3, GranB, NK, and Autofluorescence. Each captured channel 

corresponds to a specific band in the visible spectrum, adjusted to the 

emission range of each fluorochrome. To visualize these multispectral 

images, an arbitrary colour is assigned to each channel for visualization 

purposes: blue, cyan, orange, red, green, yellow, magenta, and black, 

respectively, creating pseudo-colour image. An illustration of one of the 

images presenting all the channels is represented in Figure 3.2. 
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Figure 3.2: TMA2_1_5_C image visualization with the eight channels. 

However, the MelanA (second channel), GranB (fifth channel) and 

NK (seventh channel) were excluded from the analysis due to their lack of 

relevance in the current study. Their presence is a result of previous studies 

which incorporated these biomarkers. The laborious process of staining 

and preparing the images obligates the reuse of the same images for 

multiple purposes, requiring the omission of channels with no significance 

in the current research work carried out. 

To mitigate noise and artifacts of all images, a normalization process 

was implemented. This involved the application of various techniques, 

including a light Gaussian blur to reduce the noise level smoothing the 

image, gamma correction to adapt the saturation of each pixel, rolling ball 

to subtract background and brightness adjustment by saturating a 

percentage of pixels. Specific parameter values were adjusted for each 

channel of the images, see Table 3.1 
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Channel 

Gaussian 

blur 

(sigma) 

Gamma 

correction 

Rollling 

ball 

Pixels to 

saturate 

(%) 

DAPI 
0 1 0 0.1 

MelanA 

 
0 1 0 0.1 

CD3 
0.8 1.5 50 5 

CD8 
0.8 1.5 50 10 

BATF3 
1.5 3 50 50 

GranB 
0.8 1.5 50 5 

NK 
1.5 3 50 5 

Autofluorescence 
0 1 0 0.1 

Table 3.1: Channel normalization parameters. 

Figure 3.3 offers a visual representation of the advantages gained 

from the normalization procedure, particularly evident in the BATF3 

(green colour) and CD8 (red colour) channels. 

  
Figure 3.3: Comparison of images for TMA1_1_3_F without 

normalization (left) and with normalization (right). 
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3. 2. Datasets 

Tumor samples were assessed from 61 urothelial carcinoma patients 

treated with Atezolizumab, from which 17 (27,87%) presented partial or 

complete response. The patient outcome is briefly represented in Table 3.2, 

specifying the response to immune-based treatment based on the gender 

and age of the patient at the time of biopsy.  

 
Complete 

Response 

Partial 

Response 

Not 

Evaluable 

Progression 

Disease 

Stable 

Disease 

Sex 

(male/female) 
7/3 6/1 4/0 15/6 17/2 

Median age 

at time of 

biopsy 

(range) 

 

66 (51-74) 76 (62-81) 75 (67-80) 65 (54-80) 69 (58-80) 

Table 3.2: Patient summary demographics. 

 Based on the five types of responses to the immunotherapy 

treatment presented below, two main groups are defined: responders and 

non-responders. Complete and partial responses fall under the category of 

responders, while the group of non-responders is exclusively constituted 

by the progression disease response. The not evaluable group, as the name 

indicates, cannot be categorized as a positive or negative response. The 

same holds true for the stable disease response, given the uncertainty about 

the disease’s future progression, as it may either improve or worsen over 

time after the biopsy acquisition.   

Clínica Universidad de Navarra believes that there may be a 

correlation between the distance that separates BATF3+ and CD8+ cells and 

the response to Atezolizumab immunotherapy treatment in urothelial 

cancer patients. Due to the potential improvements in anticancer 

treatments that could be achieved and its clinical relevance, this Final 

Master Project will attempt to provide an answer to this hypothesis. 
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Chapter 4.  Methods 

4. 1. Nuclei Segmentation 

Despite decades of progress, cell and nuclei segmentation for 

microscopic image analysis remains challenging [33]. Assigning a cell to 

every no-background object in the image is necessary for numerous 

biological tasks, including one of the project's objectives: the classification 

of cell phenotypes.  

The aim of this section is to provide a detailed explanation of the 

nuclei segmentation conducted in this project. The chosen method for 

nuclei detection was StarDist, an algorithm based on machine learning 

approaches, particularly the U-Net model. StarDist identifies cell nuclei 

through star-convex polygons [36]. This method was selected because its 

precise accuracy in detecting nuclei within images featuring crowded cells 

or irregular morphologies [32].  

Additionally, the procedure for evaluating the segmentation 

performed will be explained. To begin, ground truth masks were 

necessary. These masks were generated through the manual annotation of 

every cell nucleus in the image.  

4.1.1. Ground Truth Images Generation 

Due to the laborious nature of this task, only eight images were 

annotated, as shown in Figure 4.1, each containing an average of over eight 

thousand nuclei. For instance, the annotation process for the image 

TMA2_1_1_E took nine and a half hours.  
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Figure 4.1: Images chosen for annotation. 

All the annotation process has been supervised by a pathologist of 

Clínica Universidad de Navarra with a wide experience in multiplex 

imaging. He has provided histological indications and resolved specific 

doubts in complex annotation areas. 

 The ground truth images were generated using the bioimage 

analysis software QuPath [37] and the image processing package Fiji [38]. 

Briefly, the initial step involved the preliminary detection of nuclei 

contours in a selected image using the Cell Detection tool in QuPath. Each 

of these detections was then converted into an annotation using the QuPath 

scripting tool, facilitating the subsequent export to Fiji. Afterwards, each 

annotation generated by the Cell Detection tool underwent careful 

correction to ensure that the detected boundary of each nucleus accurately 

corresponded to its real shape, while also verifying that all nuclei were 

annotated, see Figure 4.2. Once all the annotations were ready, they could 

be exported to Fiji included in a .zip folder.  
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Figure 4.2: Nuclei annotations showed from QuPath. The DAPI signal is 

represented in red, with its boundaries outlined in the same colour. The 

background has been inverted to improve visualization. 

In Fiji, all the annotations were treated as regions of interest, and 

each of them was filled with a unique grey level, thus creating an image 

with distinct nuclei; the ground truth image, as illustrated in Figure 4.3. 
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Figure 4.3: Ground truth image: TMA1_1_8_F. In the upper right corner, all 

regions of interest (ROIs) opened in the Fiji’s ROI Manager. 

4.1.2. Nuclear Segmentation Evaluation Methodology  

As mentioned earlier, eight ground truth images are available to 

evaluate the trained model. Due to the limited dataset, the Leave One Out 

strategy was employed to estimate the accuracy of the model. In this 

procedure, the dataset is split into two subsets: training and test images. In 

each of the eight iterations, one image serves as the test set, while the 

remaining images constitute the training set, with 15% of them used as 

validation images. A new model is created in each iteration to prevent the 

algorithm from learning from previous training. The model is trained eight 
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times in total, allowing for evaluation on each image separately and 

providing an indication of the precision of the model. 

During the leave one out strategy, input parameters such as the 

number of epochs, patch sizes and number of rays of the model must be 

set with the aim of achieving an optimal nuclear segmentation.  

The number of epochs significantly affects the time required for the 

training process. Increasing the number of epochs leads to a longer 

computational time, but it also typically results in lower losses for both the 

validation and training sets. In the results chapter, it can be observed from 

the loss graphs a point at which the losses stabilize despite further 

increases in the number of epochs. At this point, a suitable fixed number 

of epochs can be selected for optimal training. 

The selection of patch size between the values of (64,64), (128,128), 

and (256,256) will also be addressed. A larger patch size may provide more 

contextual information but can also increase computational load and 

memory consumption. Conversely, a smaller patch size may be more 

efficient but could sacrifice small details.  

The effect of the number of rays on the precision of the model in 

segmenting nuclei will also be investigated. StarDist allows adjusting the 

number of rays to create the polygons that define the cellular nuclei. The 

number of rays determines the quantity of rays emanating from the 

centroid of each nucleus and extending to the nucleus's edge. 

Subsequently, these rays are connected to delineate the contour. Therefore, 

the analysis will explore all powers of two up to 128 to determine the 

optimal segmentation accuracy considering the computational efficiency. 

Additionally, the nuclear segmentation model will be compared to 

different state of the art models, including DeepCell [39] and CellPose [40]. 

On the one hand, DeepCell offers two models for nuclei segmentation: the 

nuclear model and the Mesmer model. While Mesmer model enables an 

entire cell segmentation simultaneously, specifically its nuclear tool will be 

utilized for comparison in this context. On the other hand, CellPose 

exclusively provides one method with nuclear segmentation capabilities. 

  



Methods 

Image Analysis and Deep Learning for Urothelial Carcinoma Tumor 20 

 

4. 2. Whole Cell Segmentation 

Entire cell segmentation is one of the most challenging procedures 

in biomedical images analysis [41]. However, the lack of public datasets 

with annotations of entire cells and the difficulty in developing pre-trained 

models make progress in whole-cell segmentation challenging [42].  

The deep learning library selected for whole cell segmentation was 

DeepCell, specifically its deep learning algorithm Mesmer, which was 

trained with the TissueNet dataset that contains more than one million 

annotated cells. This method has been chosen because of its robustness in 

outlining the cytoplasm of single cells [32]. 

The pipeline followed by Mesmer involves defining nuclei using a 

nuclear input image and outlining the whole cell using a cytoplasm or 

membrane input image. Once the boundaries and centroids of the entire 

cells and nuclei are defined, a watershed algorithm is applied to expand 

the objects detected and create the final labels.  

Indeed, the parameters input and maxima threshold have been 

adjusted to achieve better results in this cohort of patients, visually 

observing how they modify the entire cell segmentation. The input 

threshold determines how conservative the model is in distinguishing 

between cells and background, while the maxima threshold parameter 

determines what the model defines as a distinct cell. 

As the input nuclear image for the algorithm, the DAPI channel has 

been used due to its direct correspondence with the nuclei shape. 

However, despite advancements, there is currently no optimal biomarker 

to determine the cellular membrane or cytoplasm of every cell [43]. The 

variation in cytoplasmic or membrane fluorescent marker expression, 

which are GranB and CD8 in our cohort of patients, and the fact that many 

cells do not express either of these markers, make it challenging to define 

a complete cytoplasmic image. For this reason, it has been decided to create 

a cytoplasmic DeepCell input image as the sum of the CD8 and GranB 

channels, as shown in Figure 4.4. CD8 functions as both a membrane and 

cytoplasmic marker, whereas GranB acts as a membrane marker. This 

approach allows for a more comprehensive understanding of the shape of 
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each cell. Both input channels and its overlay, with nuclei and cytoplasm 

signals in green and blue respectively, can be seen in Figure 4.5. 

 

Figure 4.4: Combined visualization of GranB, CD8 and the sum of both 

channels. 

 

Figure 4.5: DeepCell Mesmer input images. In the overlay image the nuclei 

signal is represented in blue, while the cytoplasm signal is represented in red. 

  



Methods 

Image Analysis and Deep Learning for Urothelial Carcinoma Tumor 22 

 

4. 3. Classification of Cell Phenotypes  

Once all the cells and their nuclei are properly segmented, it is 

possible to characterize each cell individually. The aim of this study is to 

study the correlation of the patient’s response to treatment with the 

abundance of CD8+ and Batf3+ cells, as well as with the spatial interactions 

between both cell phenotypes. To achieve it, we first need to classify cells 

into three groups: CD8+ cells, BATF3+ cells, and other cells.  The code 

developed for this task has been entirely written in Fiji’s macro language.  

4.3.1.Areas to Exclude from the Analysis 

 Neither whole-cell segmentation nor nuclear segmentation consider 

areas of the images that should be excluded from the analysis, such as 

regions with broken tissue or image artifacts. Therefore, regions to be 

eliminated from the analysis have been manually annotated, after a visual 

inspection of all the images. This process has been supervised by a 

pathologist with a vast experience in the field. An example of annotations 

for the excluded areas within the TMA1_1_2_A can be seen in Figure 4.6. 

In the image on the right, a zoomed snapshot of one of the regions to be 

excluded reveals nuclei in blue, whose shapes are distorted possibly due 

to a scratch in the tissue sample. Besides, areas with presence of CD8 

marker, colorized in red, which do not correspond to positive cells for that 

marker are also observed. These are erythrocytes, highly auto-fluorescent 

cells that are present when bleeding has occurred in part of the tissue. This 

approach prevents the classifier from detecting false positives due to 

undesired artifacts in the images under analysis.  
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Figure 4.6: Annotations of zones to be excluded in image TMA1_1_2_A. The left 

image displays the original fluorescence image, while the right image presents the 

same image with its background inverted, enhancing visualization of details. 

4.3.2. Tissue Area Localization 

 For a later assessment of the classification results, it will be essential 

to determine the total area of the analysed tissue due to its variability in 

each image. This way, realistic comparisons can be carried out by 

normalizing the quantified cell populations by the total tissue area.  

Tissue areas have been calculated excluding from the analysis the 

regions detailed previously. The segmentation procedure followed to 

obtain a total tissue mask has been as follows. First, a Gaussian Blur filter 

with a sigma of 4 to reduce the noise level was applied to all the images, 

which were previously transformed from 32 bits to 8 bits for ease of the 

analysis. Then, a threshold value was selected, thus eliminating pixels with 

intensities below 15. Despite automatic thresholding was considered, there 

were several cases of failure. For this reason, a fixed value has been 

experimentally chosen, by observing instances when the algorithm failed 

to detect tissue due to the use of excessively high thresholds. Given the 

prior normalization of the images, this approach has been shown to 

function effectively. Finally, particles with an area below 5000 pixels were 

removed. It has been determined that tissue zones with an area less than 

5000 pixels, equivalent to 1250 µm² of tissue area, are categorized as non-

analysable because they could correspond to disregarded tissue and may 

result in artifacts. This value was also experimentally set to ensure that 
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tissue areas are not left undetected while also avoiding the detection of 

non-tissue area. Following this image processing workflow, the remaining 

available tissue area was measured. Examples of the whole tissue 

segmentation are illustrated in Figure 4.7. 

 

Figure 4.7: Detected tissue of TMA1_1_11_F image. A. Original image: 

background has been inverted to improve visualization. B. Detected tissue 

boundaries outlined in red. C. Whole tissue mask. 

4.3.3.Cell Classification Strategy  

 Once the tissue area is identified, the nuclei and cytoplasm of 

each cell, segmented as explained in Nuclei Segmentation and Whole Cell 

Segmentation, are analysed within it to detect BATF3+ and CD8+ cells, 

respectively. One region of interest (ROI) is created for each nucleus during 

the BATF classification, and for each cytoplasm in the case of CD8, due to 

the specific locations of these proteins within the cells. The method for 
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designing these ROIs involves analysing the intensity of pixels in the 

image. Both segmentations assign a different level of intensity to each label. 

Therefore, pixels with a same intensity level correspond to a single ROI, 

where all the measurements are conducted.  

To evaluate the cell phenotype classification, eleven ground truth 

images were generated by annotating CD8+ cells to evaluate CD8+ 

classification, as CD8 is a cytoplasmatic marker. Additionally, fifteen 

ground truth images were created by annotating nuclei with positive 

BATF3 expression to assess BATF3 classification, since BATF3 corresponds 

to a nuclei marker. All assesments of the classifier have been acquired 

using an IoU threshold of 30%, as it evaluates the precision of the classifier 

to detect positive cells for each population, rather than precisely outlining 

their boundaries. 

The criteria selected to consider a cell positive for CD8 or BATF3 

biomarkers consist of pixels in the corresponding channel presenting an 

intensity above a threshold and a minimum positive area percentage 

within the nucleus, in the case of BATF3, or the membrane and cytoplasm, 

in the case of CD8.Thus, an intensity threshold has been applied to the CD8 

and BATF3 channels, considering that pixels with an intensity value below 

the chosen threshold do not correspond to actual CD8 or BATF3 

expressions but to background noise. Due to the significant differences 

between the expression of both fluorochromes, two different threshold 

values have been determined, one for each marker.  

When masks for the channels of interest were created, the area of 

non-zero pixels within each of ROI, representing either the nuclei or 

cytoplasm shapes, was calculated. If the ratio of pixels to CD8 and BATF3, 

relative to the cytoplasm and nucleus areas, respectively, exceeds the 

specified minimum percentage, the cell will be categorized as positive for 

the respective marker. As in the threshold case, due to the differences 

between both cell phenotypes, two different minimum area percentage 

values have been determined, one for each marker.  

Optimal parameters have been calculated separately, and the 

methods used will be detailed in the following sections: Optimal Threshold 

Selection for Cell Phenotype Classification,  Optimal Minimum Area 

Percentage Selection for Cell Phenotype Classification. 
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It must be considered that the DeepCell Mesmer model occasionally 

encounters challenges in detecting cells without nuclei due to the presence 

of signal in the cytoplasmic input image where DAPI does not show any 

nuclear signal. This failure can be seen in Figure 4.8, which illustrates how 

the model detects a cell despite the absence of any nuclear signal. To 

address this issue, an image post-processing step has been implemented; if 

the CD8+ cells detected by the classifiers lack a nucleus, the cell will be 

excluded from the analysis.  

 

Figure 4.8: DeepCell failure in detecting cells without a nucleus. Cytoplasmic 

signal is represented in red, while the entire cell boundary is outlined in white. 

The nuclear signal would be presented in blue color. 

4.3.4. Optimal Threshold Selection for Cell Phenotype 

Classification 

Firstly, the optimal threshold value for phenotype classification has 

been sought. Given the variations in intensity levels observed in the CD8+ 

and BATF3+ cell phenotypes, the methods detailed in this section will be 

applied separately to both phenotypes. 

The Otsu automatic thresholding method performance will be firstly 

analyzed for this purpose [44]. Furthermore, various correction factors will 

be applied to the Otsu value to assess the results. This approach allows to 

explore how adjustments to the automatic threshold impact the quality of 
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phenotype classification results, facilitating a more refined optimization of 

the segmentation and classification process. 

Since the histograms of both studied cell phenotypes are unimodal, 

the automatic threshold method Triangle has been implemented, which is 

reported to perform better in these scenarios [45].  

Both automatic approaches and their respective correction factors 

will be compared in terms of cell phenotype classification ability. 

4.3.5. Optimal Minimum Area Percentage Selection for 

Cell Phenotype Classification 

 The minimum area percentage to classify CD8 T cells and BATF3 as 

positive has been optimized. To achieve this, evaluation metrics have been 

analysed for a range of minimum area percentage values. As previously 

mentioned, these metrics are obtained by assessing the matching between 

the ground truth images created with only CD8+ cells and BATF3+ cells 

and the predictions made by the classifier.  

F1 score will be examined to select the optimal parameters because 

it represents the harmonic mean of the recall and precision metrics. This 

approach is considered a good compromise, since it allows to establish a 

balance between not leaving positives unidentified, as indicated by 

precision metric, while also avoiding the detection of more positives than 

the actual number present, as indicated by recall metric. 
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4. 4. Study of Spatial Interactions Between Cell 

Phenotypes  

Based on the cellular classification detailed in the previous section, 

the CD8+ and BATF3+ cell populations have been detected in each image 

of the dataset. Their abundance, normalized per square micron of tissue 

area, as well as their spatial localization, have been identified. For the 

evaluation of their spatial interactions, the distance between each CD8+ cell 

and its nearest BATF3+ cell within the tumor microenvironment of each 

patient have been measured. To calculate these variables, a simple code 

written in Python programming language has been used. 

With the classification information and the knowledge of the clinical 

response of 61 urothelial carcinoma patients to Atezolizumab 

immunotherapy, correlations between these quantified image parameters 

and the clinical response to treatment can be examined for this patient 

cohort. 

On the one hand, the average density of CD8 and BATF3 cell 

populations for the two types of clinical response have been calculated. On 

the other hand, it has been explored whether the measured distances 

between CD8 and BATF3 cell populations have an effect in the clinical 

response to Atezolizumab immunotherapy. In both studies, a t-test has 

been used to assess the statistical significance of differences between the 

two groups. 
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Chapter 5.  Results  

5. 1. Analysis of TMA heterogeneity 

Firstly, the mean intensity values of the images for each TMA have 

been compared in Figure 5.1. This analysis aids in determining the 

possibility of using the same segmentation tools for both TMAs. As 

illustrated, the variations in grey levels between the TMAs are negligible 

for every marker. Therefore, there is no need to treat them differently 

during image processing.  

 

Figure 5.1: Comparison of mean grey values between the two normalized Tissue 
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5. 2. Nuclear Segmentation  

The Leave One Out procedure enables the evaluation of nuclear 

segmentation in the most robust possible manner, given the limited 

availability of ground truth images. Using this method, the input 

parameters number of epochs, patch size and number of rays of the 

StarDist model are adjusted to this cohort. 

In this section, the performance of the trained model will be 

compared to that of the pretrained StarDist model, the pretrained DeepCell 

Mesmer model, and the pretrained CellPose model, using various IoU 

thresholds and evaluation metrics. 

 

5.2.1. Selection of Number of Epochs for the StarDist 

Model 

To mitigate the risk of overfitting [46] and to reduce the 

computational time, the number of training epochs have been limited to 

200. This choice has been made after observing the behaviour of each test 

image, whereby the number of epochs has been selected when the losses 

stabilized. 

An example illustrating the behaviour of the losses for both the 

validation and training datasets out of the number of epochs, represented 

for the test image TMA1_1_1_A, noting that the remaining images are 

similar, is represented in Figure 5.2. As mentioned earlier, the effect of this 

parameter has been analysed during the leave one out procedure. 
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Figure 5.2: Losses vs number of training epochs for training and validation sets 

for the test image TMA1_1_1_A. 

5.2.2. Selection of the patch size for the StarDist model 

The adjustment of the training model’s patch size was also 

considered. Patch size refers to the smaller sections in which an image is 

divided during the training process. To assess the impact, training and 

validation losses were compared across different patch sizes: (64,64), 

(128,128) and (256,256) for the image TMA1_1_1_A. The results are 

illustrated in Figure 5.3. A noticeable difference was observed between the 

losses for the first two patch sizes. However, no significant disparities in 

losses were found between (128,128) and (256,256). Nevertheless, there was 

a considerable increase in computational time.  
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Figure 5.3: Losses out of number of epochs for a fixed patch size of: A. (64,64) B. 

(128,128) C. (256,256) 

For the same image, the computational times for the various patch 

sizes are represented in Table 5.1. Balancing time efficiency and precision, 

the (128,128) patch size was chosen for training the model. 

Patch size Comptutational time  

(64,64) 4h 10min 

(128,128) 6h 20min 

(256,256) 9h 30 min 

Table 5.1: Computational times represented for each patch size. 

5.2.3.Selection of the number of rays for the StarDist model 

 StarDist outlines the nuclei boundary using a star-convex polygon 

with a number of rays selected by the programmer. To determine this 

parameter, its impact on prediction accuracy was measured, as shown in 

Figure 5.4. The visual effect is further represented in Figure 5.5. A total of 

32 rays were selected as there were no significant precision differences 

with the next power of two, 64. Moreover, increasing the number of rays 

to 64 led to a noticeable computational time increment. The accuracy of the 

ground truth reconstruction, based on the number of rays for star-convex 

polygons in StarDist's trained model, is obtained through the evaluation of 

the eight images with ground truth. The Matching_dataset function of 

StarDist allows for the simultaneous evaluation of the segmentation of a 

group of images, returning the mean value of various evaluation metrics. 
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Figure 5.4: Accuracy of ground truth reconstruction based on number of rays for 

star-convex polygon in StarDist’s trained model. Obtained from the evaluation 

of the eight images with ground truth. 
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Figure 5.5: Nuclear segmentation performance based on the number of rays for 

star-convex polygon in StarDist model, showing predicted labels for the image 

TMA1_1_1_A. 

5.2.4. Nuclei Segmentation Evaluation 

The IoU threshold is used to assess the nuclei detection by evaluating 

the overlap between the detected object and the real object. An Intersection 

over Union of 50% indicates that the detected object corresponds to the real 

one at a 50% overlap. All the segmentation metrics between ground truth 

label masks and predictions were computed by using the stardist.matching 

submodule, a tool that works not exclusively with StarDist predictions.   

The results obtained for Intersection over Union (IoU) evaluation 

metrics of 50% and 75% for both pretrained and trained by us models are 

respectively shown in Table 5.2. 

Model IoU Th Precision Recall Accuracy F1 

Pretrained 

StarDist 
50% 0.80±0.06 0.84±0.08 0.70±0.08 0.81±0.07 

Pretrained 

StarDist 
75% 0.41±0.10 0.42±0.12 0.25±0.09 0.41±0.11 

Trained 

StarDist 
50% 0.90±0.04 0.89±0.07 0.81±0.08 0.89±0.04 

Trained 

StarDist 
75% 0.75±0.09 0.75±0.13 0.61±0.12 0.75±0.10 

Table 5.2: Evaluation results for pretrained and trained by us StarDist models at 

IoU threshold of 50% and 75%. The scores for each evaluation metrics represent 

the mean value, with the standard deviation indicated as ±. 

 Visually, the comparison between the trained and the pretrained 

model is represented in the Figure 5.6, where different IoU thresholds are 

compared for the two models, showcasing the accuracy, precision, F1 and 

recall metrics.  
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Figure 5.6: Comparison of mean values between the pretrained and trained 

models for StarDist at IoU thresholds of 50% and 75%. 

 The improvement achieved after training StarDist is notably 

superior, especially when comparing the models with an IoU of 75%, as 

quantitively illustrated in Table 5.3.  

 IoU 50% IoU 75% 

Accuracy 13.79% 91.96% 

Precision 17.17% 148.98% 

F1 score 5.59% 77.45% 

Recall 9.57% 84.48% 

Table 5.3: Improvement in % of the trained StarDist model compared to the 

pretrained model, for evaluation metrics: accuracy, precision, F1, and recall, and 

IoU thresholds of 50% and 75%. 

Moreover, Figure 5.7 visually represents this substantial 

enhancement. Based on this information, it can be concluded that training 

StarDist on our images improves the performance of the pre-trained model 

in terms of nucleus detection and segmentation. The significant 

enhancement, particularly notable at an IoU of 75%, signifies that the 

trained model not only detects nuclei more effectively, but, above all, 

exhibits an improvement in outlining the contours of the nuclei. 
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Figure 5.7: StarDist evaluation: comparison between precision, accuracy, F1 and 

recall for the trained and pretrained models at an IoU of 50% (left panel) and 

75% (right panel). 

 Figure 5.8 illustrates an example of the enhanced predictive 

capabilities of the model trained by us in contrast to the pretrained one. 

The comparison has been made across the original image, the ground truth 

image and the predictions from both the pretrained and trained StarDist 

models. This comparison demonstrates how the pretrained model 

encounters challenges, such as erroneously splitting a nucleus into two 

distinct entities, marked with the blue circle. Additionally, the pretrained 

model fails by incorrectly joining two different nuclei, misidentifying them 

as a singular label, as can be seen within the grey circle. 

 

Figure 5.8: Visual comparison example of StarDist’s predictions and the ground 

truth labels. 

 Figure 5.9 represents how the evaluation of the StarDist trained 

model performance depends on the IoU threshold for each of the test 

images used during training. The figures illustrate the model's decline in 

precision with an increase in the Intersection over Union value.  
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Figure 5.9: F1 value with respect to the IoU threshold for various test images. 

5.2.5. Nuclear Segmentation Models Comparison 

 The Stardist nuclei segmentation model has been compared to other 

state-of-the-art cell segmentation models such as CellPose and DeepCell. 

As mentioned in the methods chapter, CellPose, like StarDist, offers a 
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single model for nuclear segmentation, while DeepCell provides two 

alternatives: its nuclear model and the Mesmer model, both represented in 

Figure 5.10. As evident from the results, the DeepCell’s nuclear model 

tends to predict nuclei bigger than their actual size. 

 

Figure 5.10: Comparison of DeepCell’s Mesmer and Nuclear models. The nuclear 

signal is represented in blue, while the cytoplasmic image, required for the 

Mesmer model, is displayed in red. Entire cell boundaries are delineated by a thin 

white line. 

The comparison between the models has been carried out in terms 

of evaluation metrics, as shown in Figure 5.12 (all calculated for an IoU of 

50%). In the studied image dataset, the nuclei model of CellPose 

demonstrates good performance. However, the behaviour of the nuclei 

model of DeepCell is noticeably inferior. Despite the Mesmer model 

providing better results than DeepCell's nuclear model, its performance is 

still worse than that of StarDist. Nevertheless, the StarDist model trained 

on our images exhibits the best performance among the four models for 

this dataset. 
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Figure 5.11: Comparison of mean values for different model metrics for IoU of 

50%. 

 Indeed, for a more restrictive IoU threshold of 75%, the trained 

model of StarDist on our images continues to exhibit the best performance 

for all the evaluated metrics, as represented in Figure 5.12. In this case, the 

differences between the five compared models are more pronounced, 

highlighting the clear benefits of our training process. 
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Figure 5.12: Comparison of mean values for different model metrics for IoU of 

75%. 
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5. 3. Whole Cell Segmentation 

Mesmer, the DeepCell model selected for whole-cell segmentation, 

has two adjustable input parameters to determine the membrane of each 

cell. These parameters are the interior threshold and the maxima threshold. 

The interior threshold defines how conservative the model is when 

estimating if a pixel corresponds to background or cell. Low values result 

in larger cells, while high values result in smaller cells. Its effect on whole 

cell segmentation has been demonstrated for two different images with 

different cell densities in Figure 5.13. The default interior threshold, 0.2, 

has been selected for entire cell segmentation as it can been seen that it 

provides better results. When increasing the parameter, the cells are 

detected with a smaller size, potentially excluding parts of their nuclei 

from the segmentation. 

 

Figure 5.13: Comparison of various interior threshold values for the Mesmer 

model comparison in two different images. The nuclear images are represented in 



Results 

Image Analysis and Deep Learning for Urothelial Carcinoma Tumor 43 

 

blue, while the cytoplasmic images are displayed in red. Entire cell boundaries 

are delineated by a thin white line. 

 On the other hand, the repercussion of the maxima threshold on 

Mesmer’s precision has been analysed. This parameter controls what the 

model considers as a single cell. Low values result in more separate cells, 

while high values result in fewer cells, as can be seen in Figure 5.14. In the 

figure, the zones where the effect of the maxima threshold is observed are 

marked with a red circle. Again, the default value has been selected 

because it provides the best performance in separating cells. As there are 

several zones of aggregated cells in this cohort of patients, it is required to 

properly separate the cells. 

 

Figure 5.14: Comparison of various maxima threshold values for the Mesmer 

model in two different images. Nuclear images are represented in blue, while 

cytoplasmatic images are displayed in green. Entire cell boundaries are 

delineated by a thin white line. Green circles indicate the zones where the effects 

of the maxima threshold are evident. 

As mentioned in the Methods chapter, the input cytoplasmic image 

that has been chosen for Mesmer model segmentation resulted from the 

sum of both CD8 and GranB channels. An illustration of how the model 
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predicts depending on the input cytoplasmic image can be seen in Figure 

5.15. The comparison includes the CD8 channel, GranB channel, and the 

sum of both as input images. The predictions made by DeepCell for each 

input demonstrate how the model fails, for example, detecting a unique 

cell as two when using the GranB single channel, as observed within the 

green circle.  

 

Figure 5.15: Whole Cell outline prediction with DeepCell using different 

cytoplasmic input images. The nuclear image is represented in blue, while the 

various cytoplasmatic images are displayed in red. 

 DeepCell, in its cell segmentation process, assigns a distinct grey 

value to each cell, producing 16-bit images. Consequently, all pixels within 

a cell share the same intensity value. Figure 5.16 illustrates a colorized 

example of this unique grey value assignment. This approach ensures a 

clear differentiation of individual cells in the analysis.  
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Figure 5.16: Colorized Mesmer predictions for the image TMA1_1_1_A. 

In contrast to validating nuclei segmentation, generating ground 

truth images for whole cell evaluation is not trivial due to the difficulty in 

delineating cell boundaries without a universal cell membrane fluorescent 

marker. If the analysed cell lacks positive signals for any of the cytoplasm 

or membrane biomarkers, annotating the entire cell boundary becomes 

unfeasible. Unlike nuclei segmentation, where StarDist, using the DAPI 

expression, outlines the nuclei directly, the Mesmer model’s outlining of 

the entire cells does not exactly correspond to the signal in the images.  

In this case, images are obtained from the expression of the DAPI 

biomarker as the nuclear image and the sum of CD8 and GranB 

expressions as the cytoplasmatic image. However, Mesmer achieves this 
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by using the results of applying a marker-controlled watershed algorithm, 

with the two images as inputs. Consequently, the cells expand by a few 

pixels based on the signal level in the image, considering the proximity to 

other cells. 

This complexity makes evaluating the model’s performance in this 

patient cohort challenging. As mentioned earlier, ground truth images 

would be essential for a comprehensive evaluation. As will be described 

later, we have chosen to directly evaluate cell classification using the CD8 

biomarker because this marker is expressed in the cellular cytoplasm. 
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5. 4. Classification of Cell Phenotypes 

In this section the obtained results for the CD8+ and BATF3+ cell 

phenotypes will be detailed. Starting with the optimal parameters selected 

to consider a cell positive for one of the phenotypes and concluding with 

the results presentation. Noting that the evaluation in each analysis has 

been conducted using the ground truth of CD8+ and BATF3+ cells 

described in the corresponding section of the methods. 

5.4.1. Optimal Threshold Selection for Cell Phenotype 

Classification 

The initial intention was to use the Otsu automatic threshold. 

However, despite the precision metric indicating the classifier was not 

detecting many false positives, the results obtained for the recall metric 

suggested that there were numerous positve cells that the classifier was not 

detecting. This occurred in CD8+ and BATF3+ cellular phenotypes as can 

be seen respectively in Figure 5.17 and Figure 5.18.  

 

Figure 5.17: Evaluation metrics scores for different intensity thresholds for 

CD8+ phenotype classification. 
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Figure 5.18: Evaluation metrics scores for different intensity thresholds for the 

BATF3+ phenotype classification. 

Observing both previous figures, as the threshold value decreases, 

achieved by reducing the multiplying factor for Otsu, there is an 

observable improvement in the F1 score, which represents the harmonic 

mean of precision and recall metrics. This improvement suggests that a 

lower threshold should be used to detect the majority of positive 

expressions of CD8+ and BATF3+ phenotypes. 

 We conclude that the Otsu’s method is not a suitable approach for 

the analysed images as it establishes excessively high thresholds and 

therefore too many false negatives, which can be inferred from the low 

recall values. Both the CD8 and BATF3 channel images present a unimodal 

histogram with a dominant peak corresponding to background pixels. The 

histogram of both channels for the image TMA1_1_1_A has been 

represented as an example in  Figure 5.19. 
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Figure 5.19: Histograms of the CD8 (left image) and BATF3 (right image) 

channels for the TMA1_1_1_A image. 

Due to the unimodal histogram, the Triangle method approximation 

results in better recall metric compared to the one previously obtained with 

Otsu, as illustrated in Figure 5.20 and Figure 5.21. The observed results 

demonstrate a clear enhancement in recall metric, signifying that over 80% 

of positive cells are detected.  

 

Figure 5.20: Triangle and Otsu thresholding methods comparison for the CD8+ 

phenotype classification. 
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Figure 5.21: Triangle and Otsu thresholding methods comparison for the 

BATF3+ phenotype classification. 

However, there is a decline in precision results, as seen in the 

previous figure, indicating that some cells are identified as positive when 

they are, in fact, negative. This issue may arise from considering all cells 

with more than one-pixel intensity higher than the threshold as positives. 

To address this, a minimum area percentage will be later established. 

Figure 5.22 provides a visual comparison between the Otsu and 

Triangle thresholding methods, highlighting how Otsu's model neglects a 

significant number of pixels. The corresponding histograms for these 

channels confirm a highly concentrated distribution of pixels around the 

zero value, with only a few having values near zero. The thresholds 

established by both methods are visually represented by vertical lines.  
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Figure 5.22: Triangle (left image) and Otsu (right image) thresholding methods 

applied in CD8 and BATF3 channels of TMA1_1_3_G image. 
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5.4.2. Optimal Minimum Area Percentage Selection for 

Cell Phenotype Classification 

This analysis has been carried out using the threshold provided by 

the Triangle method, based on the results from the previous section. 

Firstly, the minimum area percentage to classify CD8 T cells as 

positive has been determined. The results are illustrated in Figure 5.23, 

which shows that a minimum occupied percentage area of 10% provides 

the best CD8+ cell classification results, as evidenced by the F1 scores.   

 

Figure 5.23: Minimum area percentage comparison for CD8+ phenotype 

classification. 

For BATF3 population identification, similar comparisons have been 

conducted to establish the optimal minimum area percentage represented 

in Figure 5.24. The chosen minimum percentage of area is 20%, as it 

presents the best results in terms of F1 score.  
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Figure 5.24: Minimum area percentage comparison for BATF3+ phenotype 

classification. 

5.4.3. Optimal Correction Factor for Triangle Thresholding 

for Cell Phenotype Classification 

Considering the optimal minimum area occupied results from the 

previous section and the Triangle thresholding method approach, a 

multiplier factor for this thresholding approach has been analyzed. 

In the case of CD8+ phenotype classification, as observed in Figure 

5.25, the best results are achieved when using the unaltered threshold 

obtained from the Triangle method observing the F1 evaluation metric. 
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Figure 5.25: Automatic Triangle thresholding correction for CD8+ phenotype 

classification. 

For BATF3 population identification the optimal threshold 

multiplying factor has been determined following the same method. The 

results are represented in Figure 5.26. In this case, BATF positive cells 

identification achieves its best performance when using the threshold 

provided by the Triangle thresholding procedure multiplied by a 1.5 

correction factor. 
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Figure 5.26: Automatic Triangle thresholding correction for BATF3+ phenotype 

classification. 

5.4.4. Classification Results 

The classification results are visually represented in each image by 

outlining the boundaries of CD8+ cells in red colour and BATF3+ cells in 

green, as shown in Figure 5.27.  
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Figure 5.27: Classification results for the image TMA1_1_7_E. A. CD8+ cells 

outlined in red, while BATF3+ cells are outlined in green. B. Full view of the 

image. C. Zoom-in showing BATF3+ cell detected. D. Zoom-in showcasing 

CD8+ cells detected 
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 The number of CD8 and BATF3 positive cells within the tissue area 

for each image have been exported to an Excel sheet. This enables a 

posterior analysis of the abundance of these cell types within the tumor 

microenvironment in this cohort of patients. As an example, a portion of 

the results table is displayed in Table 5.4, where each row corresponds to 

an image and each column represents the analysed tissue and the number 

of positive cells for CD8 and BATF3 found.  

 

Image 
Tissue area 

(um2) 

#CD8+ 

cells 

#BATF3+ 

cells 

TMA1_1_1_A 3175574 606 11 

TMA1_1_1_B 2092138 4 5 

TMA1_1_1_C 2343634 93 5 

Table 5.4: Sample of the Excel sheet indicating the presence of CD8+ and 

BATF3+ cells. 

Similarly, for a later study of the spatial interactions between cells 

classified as CD8+ and BATF3+, an Excel sheet has been created for each 

image, registering the coordinates of all cells classified as positive for one 

of these biomarkers. The format of the sheets is represented in Table 5.5, 

where the columns indicate the horizontal and vertical positions of the 

centroids of positive cells for BATF3 or CD8. The number of rows varies 

depending on the quantity of positive cells encountered of each type.  

X_BATF

3 
Y_BATF3  X_CD8 Y_CD8 

2375,83 1893,616  534,844 565,75 

2398,69 1890,632  91,006 1218,823 

1937,523 1857,863  1963,614 563,95 
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Table 5.5: Sample of the Excel table containing coordinates for the centroids of 

CD8+ and BATF3+ cells in the image TMA1_1_3_A. 
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5. 5. Study of Spatial Interactions Between Cell 

Phenotypes 

The clinical response to the Atezolizumab immunotherapy is known 

for 61 patients in the studied cohort. However, four of them are excluded 

from the analysis due to presenting a not evaluable response.  

Clinical responses have been divided into two groups: responders 

and non-responders. The responder group is composed of patients 

presenting partial (7) or complete (10) response to the therapy, while the 

non-responder group includes patients with stable (19) and progression 

(21) disease responses to treatment. In this study, stable disease cases, 

which are typically excluded from both responder and non-responder 

groups, have been included in the non-responder group. This decision was 

made due to the small sample size. Specifically, 19 patients present stable 

disease response to treatment, constituting a 33.33% of the clinical 

outcomes under investigation. Additionally, the predictive power of the 

biomarkers in this study increased when the patients presenting stable 

disease were categorized as non-responders. 

 Firstly, the correlation between clinical outcomes and the number of 

CD8+ cells per square micron has been assessed. There were 17 responder 

patients, while 40 belong to the non-responder group. The p-value 

probabilistic significance indicator has been calculated to measure the 

differences between the responders and non-responders groups throuth a 

statistical T-test [47]. Significant differences have been identified between 

patients responding to the treatment and those with progressing or stable 

disease in terms of the presence of CD8+ T cells in the tumor 

microenvironment (𝑝 = 4.3342 × 10−6), see Figure 5.28.  
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Figure 5.28: Correlation of the number of CD8+ T cells with the treatment 

response. 

A visual representation of the correlation between treatment 

response and the presence of CD8+ T cells is depicted in Figure 5.29. It 

highlights the abundance of this cellular phenotype in responder patients 

and its absence in non-responder patients. 
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Figure 5.29: Visual comparison of CD8 presence in a responder versus non-

responder patient. CD8+ T cells are outlined in red. 

 Secondly, differences in the number of BATF3+ cells per square 

micron of tissue in both groups of patients have been analysed. In this case, 

there were no significant differences between the positive or negative 

response to treatment, although a trend to significance can be appreciated 

(p=0.1401). The results are illustrated in Figure 5.30. This suggests that the 

number of BATF3+ cells in this patient cohort is not such a relevant factor 

in treatment response.  
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Figure 5.30: Correlation of the number of BATF3+ cells with the treatment 

response.  

 Finally, spatial interactions between the two cell populations have 

been studied. The analysis conducted was based on mean distances 

between CD8+ cells and their nearest BATF3+ cells, visually represented in 

Figure 5.31. It must be noted that the number of samples is lower than in 

the previous analysis due to the exclusion of those images that do not 

present either CD8+ or BATF3+ cells, resulting in 15 responder samples and 

37 non-responder samples.  

 

Figure 5.31: Correlation of the distances between CD8+ and BATF3+ cells with 

the treatment response. 

In this case, it has been found differences that approach significance 

(p=0.0624). Furthermore, considering the reduced sample size due to the 

exclusion of the mentioned patients, there might be a potential relationship 

between the distances separating the CD8+ and BATF+ cells and the 

treatment response.  
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Chapter 6.  Discussion and 

Conclusion  

The implementation of Deep Learning and image analysis 

techniques in this Final Master project has permitted the quantification of 

CD8+ and BATF3+ cell populations and the examination of spatial 

interactions between them, thus, allowing to study their effect on the 

urothelial carcinoma patient outcomes to the Atezolizumab 

immunotherapy. 

 The nuclei segmentation has been carried out by training StarDist on 

our image dataset. Training the model significantly improved its 

performance with respect to the pre-trained version, especially evident 

when evaluating with a restrictive IoU of 75%, resulting in a 92%, 149%, 

77%, and 84% improvement in accuracy, precision, F1 and recall metrics, 

respectively. This indicates that the trained model not only detects nuclei 

more effectively, but also exhibits an improvement in the accuracy of the 

nuclear segmentation. Furthermore, the evaluation highlighted that the 

trained StarDist model outperformed other state-of-the-art Deep Learning 

based nuclear segmentation models. This superiority suggests promising 

implications in biological tasks where accurate nucleus detection is crucial 

for understanding cellular and pathology behaviour. 

Whole cell has been conducted using the DeepCell Mesmer Deep 

Learning model, which utilized nuclear and cytoplasmic input images to 

outline entire cell boundaries. The nuclear image corresponded to the 

DAPI channel, reflecting nuclei shape expression. Conversely, due to the 

absence of a biomarker matching the entire cell shape, a combination of the 

GranB membrane marker and CD8 cytoplasmic marker was used as the 

cytoplasm input image. However, generating ground truth images for 

whole cell evaluation is challenging due to the difficulties in delineating 

cell boundaries, for this reason it could not be possible to evaluate the 

whole-cell segmentation model performance.  
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Once cells and their nuclei have been segmented, the next step 

involved classifying cells into CD8+ or BATF+ populations based on 

optimal intensity and area percentage parameters. The evaluation of the 

classification results, measured through F1 scores, highlighted the 

superiority of categorizing CD8+ cells based on positive pixels occupying 

over 10% of the entire cell, and BATF3+ cells when positive pixels exceeded 

20%. Accurately determining the minimum area percentage occupied by 

positive pixels of each marker is crucial for ensuring precise cell 

classification, as it directly influences the reliability of the classification 

process. 

Attempts to refine the obtained thresholds through Triangle 

thresholding confirmed that unaltered thresholds provided the best 

performance for CD8 cell classification. However, better results for BATF3 

cell identification were achieved when the threshold provided by the 

Triangle method was increased by a correctional factor of 1.5. By increasing 

the threshold, the classifier becomes more selective, resulting in a 

reduction of false positives and a higher precision in identifying BATF3+ 

cells. Moreover, it's worth noting the superior performance of the Triangle 

method compared to Otsu, possibly due to its effectiveness in handling 

unimodal histograms.  

In summary, the results of the optimal classifier for our patient 

cohort are achieved using an automatic Triangle threshold and a minimum 

area of 10% for CD8+ cell classification, along with a Triangle threshold 

factorized by 1.5 and a 20% area for BATF3+ cells. This configuration 

results in F1 scores of 0.72 and 0.80, respectively, for these parameters. 

The results, including cell counts within tissue areas and coordinates 

for spatial analysis, were exported to Excel sheets for further investigation 

and visually represented. The visual representation of classification offers 

useful information regarding the spatial distributions of CD8+ and BATF3+ 

cells within the tumor microenvironment. In conclusion, this classification 

process provided valuable insights for studying treatment response and 

spatial interactions among cell populations in the patient cohort. 

Correlations between the presence of CD8+ and BATF+ cell 

populations, their interactions, and clinical outcomes in response to 

Atezolizumab immunotherapy for this cohort of patients have been 
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measured based on classification results and available clinical data. The 

correlation between the response to the immunotherapy treatment and 

CD8+ cell density per square micron revealed significant differences 

between responders and non-responders, as indicated by a p-value of 

4.3342 × 10−6, demonstrating an important impact of CD8+ T cells on 

treatment response. Consistent with the current state of the art literature, 

which recognizes CD8+ T cells as potent pathogen killers, our findings 

perfectly align with prior research, highlighting the crucial role of CD8+ T 

cells in treatment response. 

However, the analysis of BATF3+ cell density presented a p-value of 

0.1401, which, despite being low, suggests that no significant differences 

were observed between positive and negative treatment responses. This 

finding contradicts the existing state-of-the-art literature, which suggests a 

correlation between the presence of BATF3+ cells and patient outcomes. 

Further analysis is required to determine whether this discrepancy is due 

to a classification issue with BATF3+ cells or if it truly reflects the 

unexpected behaviour in this specific patient cohort. 

While BATF3+ cells alone may not directly impact on Atezolizumab 

treatment response in this cohort of urothelial carcinoma patients, their 

interaction with CD8+ cells appear to positively influence clinical response. 

Regarding the spatial interactions between both populations, nearly-

significant differences (p-value of 0.0624) were observed between the non-

responder and responder group. Despite not being below the significance 

threshold, the spatial interactions between CD8+ and BATF3+ cells are 

expected to have a direct impact on the patient’s response to treatment, 

with those patients whose CD8+ cells are closer to BATF3+ cells presenting 

a better response to treatment. However, the limited number of samples 

may be the reason why the results found in this study are at the edge of 

significance. All in all, these findings provide valuable information to 

predict the disease behaviour after Atezolizumab treatment, contributing 

to a deeper understanding of how the immune system combats the tumor. 

 In conclusion, a comprehensive image analysis pipeline has been 

constructed, incorporating and retraining deep learning-based methods, 

enabling a thorough analysis of the tumor microenvironment in multiplex 

fluorescence images. This analysis has revealed associations between 
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image parameters and clinical variables that align with previous findings 

reported in the literature, thereby validating its utility for the scientific 

community. 
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Chapter 7.  Future Work

Due to the limited time available for the development of this Final 

Master project, it was not possible to address all the ambitious ideas that 

could have enhanced the results and facilitated the procedure. These ideas 

will be detailed in this chapter. 

Improving the normalization process represents an interesting 

avenue for future research. In the context of this Final Master project, the 

normalization method employed for all images was received from prior 

analyses conducted on the same patient cohort. Consequently, enhancing 

the normalization technique to adapt it specifically to our objectives, i.e, 

BATF3 and CD8 detection, would be of considerable interest. 

Regarding nuclei segmentation, it would be interesting to train the 

CellPose model with our image dataset, due to the good performance 

demonstrated by its pretrained model for this cohort of patients. The 

laborious process of annotating nuclei has already been completed, 

making the training of the model a feasible task. It would only require the 

preparation of the data in the input format demanded by the model and an 

understanding of the training process. 

State of the art methods utilize neural networks to classify cell 

phenotypes in multiplexed images as it enhances phenotyping 

performance [48]. Training a machine learning-based classifier for this 

purpose would avoid using parameters such as intensity thresholds or 

minimum percentage of positive pixels for cell classification. These 

parameters have been well adjusted to this dataset, but may need to be 

tuned if this image analysis pipeline is to be applied to another patient 

cohort.  A machine learning-based cell phenotype classification approach 

would be expected to enhance the results obtained, but it requires having 

annotated data. As mentioned earlier, the annotation process is time-

consuming and would require the assistance of experts in image labelling. 

Furthermore, it is highly recommended that more than one expert 

annotated the images.  
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In addition, examining the expression of GranB and its correlation 

with the response to immunotherapy treatment in urothelial carcinoma 

patients would offer new insights into this biomarker’s relevance within 

the tumor microenvironment. Literature suggests, despite the limited 

number of studies, that GranB correlates with tumor progression, 

potentially promoting cancer cell invasion [49]. 

 Finally, the pipeline implemented during the Final Master project 

encloses four principal sections: nuclei segmentation, whole-cell 

segmentation, phenotype classification and the study of the relevance of 

CD8 and BATF3 biomarkers within the tumor microenvironment. 

Therefore, the development of a Fiji plugin, written in Java programming 

language to accelerate the processing, and encapsulating all the methods, 

would significantly enhance the efficiency of the entire procedure. 

Furthermore, it would offer the scientific community a valuable tool for the 

complete analysis of a multiplexed image dataset. 
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