Artículos de revista DCIE - ZIES Aldizkari artikuluak
Permanent URI for this collection
Browse
Browsing Artículos de revista DCIE - ZIES Aldizkari artikuluak by Author "Abad Zamora, Francisco Javier"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
Publication Open Access Cubierta vegetal bajo las cepas: una alternativa al control de las malas hierbas en los viñedos(INTIA (Tecnologías e Infraestructuras Agroalimentarias), 2023) Abad Zamora, Francisco Javier; Cibriain Sabalza, Félix; Sagüés Sarasa, Ana; Santesteban García, Gonzaga; Lezáun San Martín, Juan Antonio; Fabo Boneta, Jesús María; Virto Quecedo, Íñigo; Imbert Rodríguez, Bosco; Marín Arroyo, Remedios; Garbisu Crespo, Carlos; Ciencias; Zientziak; Agronomía, Biotecnología y Alimentación; Agronomia, Bioteknologia eta Elikadura; Institute for Multidisciplinary Research in Applied Biology - IMAB; Institute on Innovation and Sustainable Development in Food Chain - ISFOODEn este artículo se presentan los resultados obtenidos con una cubierta vegetal de trébol sembrada bajo las cepas para competir con las malas hierbas, de manera que no sea necesario recurrir al empleo de herbicidas o laboreos intercepas.Publication Open Access Under-vine cover crops: Impact on physical and biological soil proprieties in an irrigated Mediterranean vineyard(Elsevier, 2023) Abad Zamora, Francisco Javier; Marín Ederra, Diana; Imbert Rodríguez, Bosco; Virto Quecedo, Íñigo; Garbisu Crespo, Carlos; Santesteban García, Gonzaga; Agronomía, Biotecnología y Alimentación; Agronomia, Bioteknologia eta Elikadura; Ciencias; Zientziak; Gobierno de Navarra / Nafarroako Gobernua, 0011-1383-2022-000000We present a novel approach to harmonic disturbance removal in single-channel wind turbine acceleration data by means of time-variant signal modeling. Harmonics are conceived as a set of quasi-stationary sinusoids whose instantaneous amplitude and phase vary slowly and continuously in a short-time analysis frame. These non-stationarities in the harmonics are modeled by low-degree time polynomials whose coefficients capture the instantaneous dynamics of the corresponding waveforms. The model is linear-in-parameters and is straightforwardly estimated by the linear least-squares algorithm. Estimates from contiguous analysis frames are further combined in the overlap-add fashion in order to yield overall harmonic disturbance waveform and its removal from the data. The algorithm performance analysis, in terms of input parameter sensitivity and comparison against three state-of-the-art methods, has been carried out with synthetic signals. Further model validation has been accomplished through real-world signals and stabilization diagrams, which are a standard tool for determining modal parameters in many timedomain modal identification algorithms. The results show that the proposed method exhibits a robust performance particularly when only the average rotational speed is known, as is often the case for stand-alone sensors which typically carry out data pre-processing for structural health monitoring. Moreover, for real-world analysis scenarios, we show that the proposed method delivers consistent vibration mode parameter estimates, which can straightforwardly be used for structural health monitoring.