Comunicaciones y ponencias de congresos DIEC - IEKS Biltzarretako komunikazioak eta txostenak
Permanent URI for this collection
Browse
Browsing Comunicaciones y ponencias de congresos DIEC - IEKS Biltzarretako komunikazioak eta txostenak by Author "Abd-Alhameed, Raed"
Now showing 1 - 10 of 10
Results Per Page
Sort Options
Publication Open Access Automated reconfigurable antenna impedance for optimum power transfer(IEEE, 2020) Alibakhshikenari, Mohammad; Virdee, Bal S.; See, Chan H.; Abd-Alhameed, Raed; Falcone Lanas, Francisco Javier; Limiti, Ernesto; Ingeniería Eléctrica, Electrónica y de Comunicación; Ingeniaritza Elektrikoa, Elektronikoaren eta Telekomunikazio IngeniaritzarenThis paper presents an approach to implement an automatically tuning antenna for optimising power transfer suitable for software defined radio (SDR). Automatic tuning is accomplished using a closed loop impedance tuning network comprising of an impedance sensor and control unit. The sensor provides the control unit with data on the transmit or receive power, and the algorithm is used to impedance of a T-network of LC components to optimize the antenna impedance to maximise power transmission or reception. The effectiveness of the proposed tuning algorithm in relation to impedance matching and convergence on the optimum matching network goal is shown to be superior compared with the conventional tuning algorithm.Publication Open Access High-performance 50μm silicon-based on-chip antenna with high port-to-port isolation implemented by metamaterial and SIW concepts for THz integrated systems(IEEE, 2019) Alibakhshikenari, Mohammad; Virdee, Bal S.; See, Chan H.; Abd-Alhameed, Raed; Falcone Lanas, Francisco Javier; Limiti, Ernesto; Ingeniería Eléctrica, Electrónica y de Comunicación; Ingeniaritza Elektrikoa, Elektronikoaren eta Telekomunikazio IngeniaritzarenA novel 50μm Silicon-based on-chip antenna is presented that combines metamaterial (MTM) and substrate integrated waveguide (SIW) technologies for integration in THz circuits operating from 0.28 to 0.30 THz. The antenna structure comprises a square patch antenna implemented on a Silicon substrate with a ground-plane. Embedded diagonally in the patch are two T-shaped slots and the edges of the patch is short-circuited to the ground-plane with metal vias, which convert the structure into a substrate integrated waveguide. This structure reduces loss resulting from surface waves and Silicon dielectric substrate. The modes in the structure can be excited through two coaxial ports connected to the patch from the underside of the Silicon substrate. The proposed antenna structure is essentially transformed to exhibit metamaterial properties by realizing two T-shaped slots, which enlarges the effective aperture area of the miniature antenna and significantly enhances its impedance bandwidth and radiation characteristics between 0.28 THz to 0.3 THz. It has an average gain and efficiency of 4.5dBi and 65%, respectively. In addition, it is a self-isolated structure with high isolation of better than 30dB between the two ports. The on-chip antenna has dimensions of 800x800x60μm3Publication Open Access Mutual-coupling reduction in metamaterial substrate integrated waveguide slotted antenna arrays using metal fence isolators for SAR and MIMO applications(IEEE, 2018) Alibakhshikenari, Mohammad; Virdee, Bal S.; See, Chan H.; Abd-Alhameed, Raed; Falcone Lanas, Francisco Javier; Limiti, Ernesto; Ingeniería Eléctrica, Electrónica y de Comunicación; Ingeniaritza Elektrikoa, Elektronikoaren eta Telekomunikazio IngeniaritzarenA new type of mutual coupling reduction technique is applied to metamaterial substrate integrated waveguide (SIW) slotted antenna array. The circular shaped reference SIW antenna array is constructed from Alumina substrate with dimensions of 40×5×1.5 mm3. Embedded in the reference antenna are 38 slots with dimensions of 2×1×1.5mm3. The reference SIW antenna operates over X-to Ku-bands with average isolation between the radiation slots of approximately-10Db. Isolation was increased by inserting metal fence isolators (MFIs) between the radiation slots, which increased the isolation by an average of 13dB. In addition, the antenna's impedance matching bandwidth is improved with no degradation in the radiation patterns. With MFIs the maximum gain achieved improves by ~10%. The technique is simple to implement and proposed for synthetic aperture radar (SAR) and multiple input multiple output (MIMO) applications.Publication Open Access New approach to suppress mutual coupling between longitudinal-slotted arrays based on SIW antenna loaded with metal-fences working on VHF/UHF frequency-bands: study, investigation, and principle(IEEE, 2019) Alibakhshikenari, Mohammad; Virdee, Bal S.; Khalily, Mohsen; See, Chan H.; Abd-Alhameed, Raed; Falcone Lanas, Francisco Javier; Limiti, Ernesto; Ingeniería Eléctrica, Electrónica y de Comunicación; Ingeniaritza Elektrikoa, Elektronikoaren eta Telekomunikazio IngeniaritzarenIn this work it is demonstrated that substrate integrated waveguide longitudinal slotted array antenna (SIWLSAA) which is loaded with metal fences exhibits high-isolation across VHF/UHF bands. A reference SIWLSAA used for comparison purpose comprises of 3×6 slotted arrays constructed on the top and bottom sides of the FR-4 lossy substrate has maximum isolation of -63 dB between its radiation slots. Improvement in isolation is demonstrated using a simple new technique based on inserting a metal fence between each row of slot arrays. The resulting isolation is shown to be is better than -83 dB across 200 MHz to 1.0 GHz with gain greater than 1.5 dBi, and side-lobe level less than - 40 dB. The proposed SIWLSAA is compact and has dimensions of 40×10×5 mm 3 (0.026?×0.006?×0.0020) where ? is 200 MHz. The proposed structure should find application in multiple-input multiple-output (MIMO) and radar systems.Publication Open Access A new study to suppress mutual-coupling between waveguide slot array antennas based on metasurface bulkhead for MIMO systems(IEEE, 2018) Alibakhshikenari, Mohammad; Virdee, Bal S.; Khalily, Mohsen; See, Chan H.; Abd-Alhameed, Raed; Falcone Lanas, Francisco Javier; Limiti, Ernesto; Ingeniería Eléctrica, Electrónica y de Comunicación; Ingeniaritza Elektrikoa, Elektronikoaren eta Telekomunikazio IngeniaritzarenIn this paper, a new method is proposed to reduce mutual coupling between waveguide slot array (WSA) antennas based on metasurface technology. This is achieved by placing a metasurface bulkhead between the two WSA antennas. Performance of the dual-waveguide antenna structure is shown to substantially enhance when compared against an identical reference WSA antenna with no metasurface. WSA antennas used in the study has dimensions 40×20×5mm 3 and operates over 1.7-3.66 GHz, which corresponds to a fractional bandwidth of 73.13%. The average isolation of the reference WSA antennas is -20 dB; however, with a metasurface bulkhead the isolation is shown to increase to -36.5 dB. In addition, the bandwidth extends by ~10%, and the gain improves by 14.66%. The proposed method is should find application in MIMO systems where high isolation between neighbouring radiation elements is required to improve the antenna characteristics, and mimimise array phase errors, which is necessary to enhance the system performance.Publication Embargo A new waveguide slot array antenna with high isolation and high antenna bandwidth operation on Ku- and K- Bands for radar and MIMO systems(IEEE, 2018) Alibakhshikenari, Mohammad; Virdee, Bal S.; See, Chan H.; Abd-Alhameed, Raed; Limiti, Ernesto; Falcone Lanas, Francisco Javier; Ingeniería Eléctrica, Electrónica y de Comunicación; Ingeniaritza Elektrikoa, Elektronikoaren eta Telekomunikazio IngeniaritzarenIn this paper a novel technique is proposed to reduce the mutual coupling between the radiating elements of a waveguide slot array antenna. This is achieved by inserting slots between the waveguide oval shaped slots. The reference waveguide array antenna used in the study was implemented with an arrangement of 3×5 oval shaped slots. By incorporating linear slots between the radiating oval shaped slots in both horizontal and vertical directions significant reduction in mutual coupling is achieved of 24 dB, 20 dB, and 32 dB in the frequency bands of 12.95-13.75 GHz (Ku-band), 15.45-16.85 GHz (Ku-band), and 18.85-23.0 GHz (K-band), respectively. Edge-to-edge distance between the slot radiators is 0.2λ, which is at least twofold smaller than conventional array antennas. With the slot isolators the antenna's minimum and maximum gains improve by 53.5% and 25.5%, respectively. In addition, the radiation patterns are unaffected. The proposed method is simple to implement, low cost solution mass production. © 2018 European Microwave Association.Publication Open Access A novel 0.3-0.31 THz GaAs-based transceiver with on-chip slotted metamaterial antenna based on SIW technology(IEEE, 2020) Alibakhshikenari, Mohammad; Virdee, Bal S.; See, Chan H.; Abd-Alhameed, Raed; Falcone Lanas, Francisco Javier; Limiti, Ernesto; Ingeniería Eléctrica, Electrónica y de Comunicación; Ingeniaritza Elektrikoa, Elektronikoaren eta Telekomunikazio IngeniaritzarenThis paper presents a novel on-chip antenna with fully integrated 0.3-0.31 THz transceiver is implemented on 0.5μm GaAs substrate, and comprises a voltage-controlled oscillator (VCO), a buffer amplifier, a modulator stage, a power-amplifier, a frequency-tripler, and an on-chip antenna. The proposed on-chip antenna design is based on metamaterial (MTM) slots and substrate integrated waveguide (SIW) technologies. The SIW antenna operates as a high-pass filter and an on-chip radiator to suppress the unwanted harmonics and radiate the desired signal, respectively. Dimensions of the on-chip antenna are 2×1×0.0006 mm3. The proposed on-chip antenna has an average radiation gain and efficiency of >1.0 dBi and 55%, respectively. The transceiver provides an average output power of-15 dBm over 0.3-0.31 THz, which is suitable for near-field active imaging applications at terahertz region.Publication Open Access Overcome the limitations of performance parameters of on-chip antennas based on metasurface and coupled feeding approaches for applications in system-on-chip for THz integrated-circuits(IEEE, 2020) Alibakhshikenari, Mohammad; Virdee, Bal S.; See, Chan H.; Abd-Alhameed, Raed; Falcone Lanas, Francisco Javier; Limiti, Ernesto; Ingeniería Eléctrica, Electrónica y de Comunicación; Ingeniaritza Elektrikoa, Elektronikoaren eta Telekomunikazio IngeniaritzarenThis paper proposes a new solution to improve the performance parameters of on-chip antenna designs on standard CMOS silicon (Si.) technology. The proposed method is based on applying the metasurface technique and exciting the radiating elements through coupled feed mechanism. The on-chip antenna is constructed from three layers comprising Si.-GND-Si. layers, so that the ground (GND) plane is sandwiched between two Si. layers. The silicon and ground-plane layers have thicknesses of 20mu m and 5mu m, respectively. The 3×3 array consisting of the asterisk-shaped radiating elements has implemented on the top silicon layer by applying the metasurface approach. Three slot lines in the ground-plane are modelled and located directly under the radiating elements. The radiating elements are excited through the slot-lines using an open-circuited microstrip-line constructed on the bottom silicon layer. The proposed method to excite the structure is based on the coupled feeding mechanism. In addition, by the proposed feeding method the on-chip antenna configuration supresses the substrate losses and surface-waves. The antenna exhibits a large impedance bandwidth of 60GHz from 0.5THz to 0.56THz with an average radiation gain and efficiency of 4.58dBi and 25.37%, respectively. The proposed structure has compact dimensions of 200×200×45μm3. The results shows that, the proposed technique is therefore suitable for on-chip antennas for applications in system-on-chip for terahertz (THz) integrated circuits.Publication Open Access Silicon-based 0.450-0.475 THz series-fed double dielectric resonator on-chip antenna array based on metamaterial properties for integrated-circuits(IEEE, 2019) Alibakhshikenari, Mohammad; Virdee, Bal S.; See, Chan H.; Abd-Alhameed, Raed; Falcone Lanas, Francisco Javier; Limiti, Ernesto; Ingeniería Eléctrica, Electrónica y de Comunicación; Ingeniaritza Elektrikoa, Elektronikoaren eta Telekomunikazio IngeniaritzarenThe antenna array designed to operate over 0.450-0.475 Terahertz comprises two dielectric resonators (DRs) that are stacked vertically on top of each other and placed on the surface of the slot antenna fabricated on a silicon substrate using standard CMOS technology. The slot created in the silicon substrate is meandering and is surrounded by metallic via-wall to prevent energy dissipation. The antenna has a maximum gain of 4.5dBi and radiation efficiency of 45.7% at 0.4625 THz. The combination of slot and vias transform the antenna to a metamaterial structure that provides a relatively small antenna footprint. The proposed series-fed double DRs on-chip antenna array is useful for applications in THz integrated circuits.Publication Open Access Study on antenna mutual coupling suppression using integrated metasurface isolator for SAR and MIMO applications(IEEE, 2018) Alibakhshikenari, Mohammad; Virdee, Bal S.; See, Chan H.; Abd-Alhameed, Raed; Falcone Lanas, Francisco Javier; Andujar, A.; Anguera, J.; Limiti, Ernesto; Ingeniería Eléctrica, Electrónica y de Comunicación; Ingeniaritza Elektrikoa, Elektronikoaren eta Telekomunikazio IngeniaritzarenA metasurface based decoupling structure that is composed of a square-wave slot pattern with exaggerated corners that is implemented on a rectangular microstrip provides high-isolation between adjacent patch antennas for Synthetic Aperture Radar (SAR) and Multi-Input-Multi-Output (MIMO) systems. The proposed 1-2 symmetric array antenna integrated with the proposed decoupling isolation structure is designed to operate at ISM bands of X, Ku, K, and Ka. With the proposed mutual coupling suppression technique (i) the average isolation in the respective ISM bands listed above is 7 dB, 10 dB, 5 dB, and 10 dB; and (ii) edge-to-edge gap between adjacent radiation elements is reduced to 10 mm (0.28λ). The average antenna gain improvement with the metasurface isolator is 2 dBi. © 2018 European Microwave Association.