Tesis doctorales DEIM - EIMS Doktoretza tesiak
Permanent URI for this collection
Browse
Browsing Tesis doctorales DEIM - EIMS Doktoretza tesiak by Author "Astrain Escola, José Javier"
Now showing 1 - 3 of 3
Results Per Page
Sort Options
Publication Embargo Digital twin development for VTOL UAVs(2024) Aláez Gómez, Daniel; Villadangos Alonso, Jesús; Astrain Escola, José Javier; Estadística, Informática y Matemáticas; Estatistika, Informatika eta MatematikaThe use of vertical take-off and landing (VTOL) drones in various industries is becoming increasingly popular. However, the democratization of drones also raíces significant concerns about safety during their operations. Their relatively new technology and growing interest often lead to the use of undertested vehicles in missions where safety is critical. To address these risks and reduce the costs associated with experimental flights of new aircraft, the implementation of high-fidelity emulators is proposed. These advanced emulators, known as digital twins, have seen exponential growth in popularity in recent years. This thesis addresses the complete process of developing digital twins for VTOL unmanned aerial vehicles (UAVs). Initially, we propose a digital twin development model based on a variation of the double diamond design process. After identifying critical systems in two types of VTOL UAVs, a hexacopter and a commercial tiltrotor aircraft, we have developed a mathematical model to characterize aerodynamic, gravitational, and propulsive actions. Propulsive actions are measured through experimental tests on a motor test bench. Gravitational actions are determined using precise computeraided design/computer-aided manufacturing (CAD/CAM) models and experi mental measurements. Finally, aerodynamic actions are obtained through a novel aerodynamic model, which calculates the complete aircraft aerodynamics based on the incident wind direction, relying on numerous computational fluid dynamics (CFD) simulations. To mitigate the costs associated with CFD simulations, we employ surrogate models, developing and validating a surrogate model capable of potentially reducing the number of simulations by up to 50%. Another critical subsystem is the communication system. Based on experimental measurements, we fit and validate a path loss model for Received Signal Strength Indicator (RSSI) to estimate signal losses as a function of the aircraft’s position and attitude. This model allows us to predict and quantify the impact of the UAV’s attitude and position relative to the communication source. Ultimately, the digital twin is successfully implemented and validated using both hardware-in-the-loop and X-Plane for a commercial flight controller, as well as software-in-the-loop and Gazebo for an open-source controller (Ardupilot). This comprehensive validation approach ensures that the digital twin accurately replicates the behavior and performance of the actual UAV systems, regardless of the emulation engine and architecture chosen.Publication Open Access Enabling intelligent and interactive immersion in smart environments(2022) Al-Rahamneh, Anas; Falcone Lanas, Francisco; Astrain Escola, José Javier; Estadística, Informática y Matemáticas; Estatistika, Informatika eta Matematika; Gobierno de Navarra / Nafarroako GobernuaIn recent years, the Smart City concept has grown in popularity, and a significant number of cities around the world have adopted smart city strategies. Smart and sustainable cities are an emerging urban development approach due to their immense potential to improve environmental sustainability. The Smart City concept is based on collecting, analyzing, and displaying a large amount of data and information concerning urban systems and subsystems. As time goes by, the capacity of smart cities for generating digital information has grown exponentially. However, this digital information is heterogeneous, massive, collected from different sources, generated in different formats, and in most cases not structured, which exacerbates the situation of extracting valuable knowledge from data. Therefore, it is fundamental to handle the significant volumes of heterogeneous sensed data and to integrate such data along with information and analysis tools into a comprehensive platform. This can ensure the security, efficiency, and performance of the different Smart City tasks. A comprehensive software platform could provide services such as facilities for application development, integration of heterogeneous data sources, deployment, and management to ease the construction of sophisticated Smart Cities’ applications. In this context, the work begins with a concise description of the concept of smart city and the technologies involved in it. It addresses the development of an urban data platform along with how to obtain and integrate information from sensors and other data sources, in order to provide aggregated and intelligent views of raw data to support various domains within the city; in our case, smart mobility. The platform architecture is implemented following a five-layer model that considers elements from perception, sensing to data management, processing, and visualization. With the aim of evaluating the efficiency of the developed platform, three different use cases are described and analyzed, which have been implemented in the city of Pamplona, Spain, as vertical services linked to the platform: intelligent urban mobility-bike handling, bike-2-bike communication, and restricted vehicle access zone control system. Ultimately, this work provides an experiment to assess different long-range wireless communication technologies to enable their implementation within an urban environment.Publication Open Access Sistemas y tecnologías para dotar de autonomía a vehículos aéreos no tripulados (UAV) basadas en ontologías(2023) Martín Lammerding, David; Astrain Escola, José Javier; Córdoba Izaguirre, Alberto; Estadística, Informática y Matemáticas; Estatistika, Informatika eta MatematikaEn esta tesis se propone dotar de autonomía a los vehículos aéreos sin tripulación (UAV) empleando sistemas y tecnologías basadas en ontologías. Los sistemas autónomos están teniendo una gran importancia gracias a las ventajas que aportan en cuanto a coste y seguridad, pero, por otro lado, se están planteando retos en cuanto a transparencia y confiabilidad que limitan su desarrollo. Previo al diseño del sistema autónomo se presenta el Estado del Arte sobre los sistemas y tecnologías que se han aplicado a los sistemas autónomos, describiendo sus características y las limitaciones encontradas en la bibliografía. La ontología propuesta, denominada Dronetology, tiene como objetivo definir el conocimiento necesario para que un UAV pueda operar con autonomía e inferir nuevo conocimiento que mejore la eficiencia y la seguridad de la misión. Para que la ontología pueda tomar decisiones y ejecute maniobras requiere de varios componentes software auxiliares que forman el sistema Dronetology KIT. Éste realiza labores de interface con los sistemas de la aeronave, integrando información y enviando órdenes al sistema de control de vuelo y de inferencia, ejecutando sentencias SPARQL. Dronetology KIT se implementa usando estándares abiertos basados en la web semántica, código abierto o libre, y el paradigma de programación declarativa, con el fin de facilitar su adaptación a diferentes escenarios y asegurar un funcionamiento transparente. Adicionalmente, su diseño permite que se ejecute en los equipos embarcados en el UAV para tomar decisiones y dar respuesta con un retardo mínimo. Dronetology KIT se implementa en dos aplicaciones con el fin de comprobar su adaptabilidad y su capacidad de tomar decisiones de forma autónoma empleando conocimiento. El primer caso de aplicación es un sistema de recopilación de datos de una red de sensores donde la aeronave no tripulada actúa como un recolector de datos. El conocimiento que adquiere durante el vuelo le permite variar el vuelo pasando al siguiente waypoint cuando no quedan cerca datos pendientes de recoger. El segundo caso de aplicación es un sistema anti-colisión que permite colaborar con otras aeronaves no tripuladas para coordinar velocidades y reducir colisiones, incluso en situaciones con tráfico denso. En algunos escenarios concretos se realizan vuelos reales de UAS para verificar el funcionamiento de Dronetology KIT. Sin embargo, por cuestiones de seguridad y de coste se emplean simuladores Hardware in the Loop. Estos simuladores integran software con hardware con el fin de conocer el comportamiento del sistema autónomo ejecutándose en una plataforma hardware real en la que las entradas son simuladas.