Artículos de revista DAC - AKS Aldizkari artikuluak
Permanent URI for this collection
Browse
Browsing Artículos de revista DAC - AKS Aldizkari artikuluak by Author "Barrenechea Tartas, Edurne"
Now showing 1 - 11 of 11
Results Per Page
Sort Options
Publication Open Access Enhancing multi-class classification in FARC-HD fuzzy classifier: on the synergy between n-dimensional overlap functions and decomposition strategies(IEEE, 2014) Elkano Ilintxeta, Mikel; Galar Idoate, Mikel; Sanz Delgado, José Antonio; Fernández, Alberto; Barrenechea Tartas, Edurne; Herrera, Francisco; Bustince Sola, Humberto; Automática y Computación; Automatika eta KonputazioaThere are many real-world classification problems involving multiple classes, e.g., in bioinformatics, computer vision or medicine. These problems are generally more difficult than their binary counterparts. In this scenario, decomposition strategies usually improve the performance of classifiers. Hence, in this paper we aim to improve the behaviour of FARC-HD fuzzy classifier in multi-class classification problems using decomposition strategies, and more specifically One-vs-One (OVO) and One-vs-All (OVA) strategies. However, when these strategies are applied on FARC-HD a problem emerges due to the low confidence values provided by the fuzzy reasoning method. This undesirable condition comes from the application of the product t-norm when computing the matching and association degrees, obtaining low values, which are also dependent on the number of antecedents of the fuzzy rules. As a result, robust aggregation strategies in OVO such as the weighted voting obtain poor results with this fuzzy classifier. In order to solve these problems, we propose to adapt the inference system of FARC-HD replacing the product t-norm with overlap functions. To do so, we define n-dimensional overlap functions. The usage of these new functions allows one to obtain more adequate outputs from the base classifiers for the subsequent aggregation in OVO and OVA schemes. Furthermore, we propose a new aggregation strategy for OVO to deal with the problem of the weighted voting derived from the inappropriate confidences provided by FARC-HD for this aggregation method. The quality of our new approach is analyzed using twenty datasets and the conclusions are supported by a proper statistical analysis. In order to check the usefulness of our proposal, we carry out a comparison against some of the state-of-the-art fuzzy classifiers. Experimental results show the competitiveness of our method.Publication Open Access Extensions of fuzzy sets in image processing: an overview(EUSFLAT, 2011) Pagola Barrio, Miguel; Barrenechea Tartas, Edurne; Bustince Sola, Humberto; Fernández Fernández, Francisco Javier; Galar Idoate, Mikel; Jurío Munárriz, Aránzazu; López Molina, Carlos; Paternain Dallo, Daniel; Sanz Delgado, José Antonio; Couto, Pedro; Melo-Pinto, Pedro; Automática y Computación; Automatika eta KonputazioaThis work presents a valuable review for the interested reader of the recent Works using extensions of fuzzy sets in image processing. The chapter is divided as follows: first we recall the basics of the extensions of fuzzy sets, i.e. Type 2 fuzzy sets, interval-valued fuzzy sets and Atanassov’s intuitionistic fuzzy sets. In sequent sections we review the methods proposed for noise removal (sections 3), image enhancement (section 4), edge detection (section 5) and segmentation (section 6). There exist other image segmentation tasks such as video de-interlacing, stereo matching or object representation that are not described in this work.Publication Open Access A historical account of types of fuzzy sets and their relationships(IEEE, 2016) Bustince Sola, Humberto; Barrenechea Tartas, Edurne; Pagola Barrio, Miguel; Fernández Fernández, Francisco Javier; Xu, Zeshui; Bedregal, Benjamin; Montero, Javier; Hagras, Hani; Herrera, Francisco; Baets, Bernard de; Automatika eta Konputazioa; Institute of Smart Cities - ISC; Automática y ComputaciónIn this work we review the definition and basic properties of the different types of fuzzy sets that have appeared up to now in the literature. We also analyze the relationships between them and enumerate some of the applications in which they have been used.Publication Open Access Interval type-2 fuzzy sets are generalization of interval-valued fuzzy sets: towards a wider view on their relationship(IEEE, 2015) Bustince Sola, Humberto; Fernández Fernández, Francisco Javier; Hagras, Hani; Herrera, Francisco; Pagola Barrio, Miguel; Barrenechea Tartas, Edurne; Automática y Computación; Automatika eta KonputazioaIn this paper, we will present a wider view on the relationship between interval-valued fuzzy sets and interval type- 2 fuzzy sets where we will show that interval-valued fuzzy sets are a particular case of the interval type-2 fuzzy sets. For this reason, both concepts should be treated in a different way. In addition, the view presented in this paper will allow a more general perspective of interval type-2 fuzzy sets which will allow representing concepts which could not be presented by intervalvalued fuzzy sets.Publication Open Access Optical images-based edge detection in Synthetic Aperture Radar images(Elsevier, 2015) Silva Junior, Gilberto P.; Frery, Alejandro C.; Bustince Sola, Humberto; Barrenechea Tartas, Edurne; Marco Detchart, Cedric; Automática y Computación; Automatika eta KonputazioaWe address the issue of adapting optical images-based edge detection techniques for use in Polarimetric Synthetic Aperture Radar (PolSAR) imagery. We modify the gravitational edge detection technique (inspired by the Law of Universal Gravity) proposed by Lopez-Molina et al., using the non-standard neighbourhood configuration proposed by Fu et al., to reduce the speckle noise in polarimetric SAR imagery. We compare the modified and unmodified versions of the gravitational edge detection technique with the well-established one proposed by Canny, as well as with a recent multiscale fuzzy-based technique proposed by Lopez-Molina et al. We also address the issues of aggregation of gray level images before and after edge detection and of filtering. All techniques addressed here are applied to a mosaic built using class distributions obtained from a real scene, as well as to the true PolSAR image; the mosaic results are assessed using Baddeley’s Delta Metric. Our experiments show that modifying the gravitational edge detection technique with a non-standard neighbourhood configuration produces better results than the original technique, as well as the other techniques used for comparison. The experiments show that adapting edge detection methods from Computational Intelligence for use in PolSAR imagery is a new field worthy of exploration.Publication Open Access Paired structures in knowledge representation(Elsevier, 2016) Montero, Javier; Bustince Sola, Humberto; Pagola Barrio, Miguel; Fernández Fernández, Francisco Javier; Barrenechea Tartas, Edurne; Automática y Computación; Automatika eta KonputazioaIn this position paper we propose a consistent and unifying view to all those basic knowledge representation models that are based on the existence of two somehow opposite fuzzy concepts. A number of these basic models can be found in fuzzy logic and multi-valued logic literature. Here it is claimed that it is the semantic relationship between two paired concepts what determines the emergence of different types of neutrality, namely indeterminacy, ambivalence and conflict, widely used under different frameworks (possibly under different names). It will be shown the potential relevance of paired structures, generated from two paired concepts together with their associated neutrality, all of them to be modeled as fuzzy sets. In this way, paired structures can be viewed as a standard basic model from which different models arise. This unifying view should therefore allow a deeper analysis of the relationships between several existing knowledge representation formalisms, providing a basis from which more expressive models can be later developed.Publication Open Access A survey of fingerprint classification Part I: taxonomies on feature extraction methods and learning models(Elsevier, 2015) Galar Idoate, Mikel; Derrac, Joaquín; Peralta, Daniel; Triguero, Isaac; Paternain Dallo, Daniel; López Molina, Carlos; García, Salvador; Benítez, José Manuel; Pagola Barrio, Miguel; Barrenechea Tartas, Edurne; Bustince Sola, Humberto; Herrera, Francisco; Automática y Computación; Automatika eta KonputazioaThis paper reviews the fingerprint classification literature looking at the problem from a double perspective. We first deal with feature extraction methods, including the different models considered for singular point detection and for orientation map extraction. Then, we focus on the different learning models considered to build the classifiers used to label new fingerprints. Taxonomies and classifications for the feature extraction, singular point detection, orientation extraction and learning methods are presented. A critical view of the existing literature have led us to present a discussion on the existing methods and their drawbacks such as difficulty in their reimplementation, lack of details or major differences in their evaluations procedures. On this account, an experimental analysis of the most relevant methods is carried out in the second part of this paper, and a new method based on their combination is presented.Publication Open Access A survey of fingerprint classification Part II: experimental analysis and ensemble proposal(Elsevier, 2015) Galar Idoate, Mikel; Derrac, Joaquín; Peralta, Daniel; Triguero, Isaac; Paternain Dallo, Daniel; López Molina, Carlos; García, Salvador; Benítez, José Manuel; Pagola Barrio, Miguel; Barrenechea Tartas, Edurne; Bustince Sola, Humberto; Herrera, Francisco; Automática y Computación; Automatika eta KonputazioaIn the first part of this paper we reviewed the fingerprint classification literature from two different perspectives: the feature extraction and the classifier learning. Aiming at answering the question of which among the reviewed methods would perform better in a real implementation we end up in a discussion which showed the difficulty in answering this question. No previous comparison exists in the literature and comparisons among papers are done with different experimental frameworks. Moreover, the difficulty in implementing published methods was stated due to the lack of details in their description, parameters and the fact that no source code is shared. For this reason, in this paper we will go through a deep experimental study following the proposed double perspective. In order to do so, we have carefully implemented some of the most relevant feature extraction methods according to the explanations found in the corresponding papers and we have tested their performance with different classifiers, including those specific proposals made by the authors. Our aim is to develop an objective experimental study in a common framework, which has not been done before and which can serve as a baseline for future works on the topic. This way, we will not only test their quality, but their reusability by other researchers and will be able to indicate which proposals could be considered for future developments. Furthermore, we will show that combining different feature extraction models in an ensemble can lead to a superior performance, significantly increasing the results obtained by individual models.Publication Open Access A survey on fingerprint minutiae-based local matching for verification and identification: taxonomy and experimental evaluation(Elsevier, 2015) Peralta, Daniel; Galar Idoate, Mikel; Triguero, Isaac; Paternain Dallo, Daniel; García, Salvador; Barrenechea Tartas, Edurne; Benítez, José Manuel; Bustince Sola, Humberto; Herrera, Francisco; Automática y Computación; Automatika eta KonputazioaFingerprint recognition has found a reliable application for verification or identification of people in biometrics. Globally, fingerprints can be viewed as valuable traits due to several perceptions observed by the experts; such as the distinctiveness and the permanence on humans and the performance in real applications. Among the main stages of fingerprint recognition, the automated matching phase has received much attention from the early years up to nowadays. This paper is devoted to review and categorize the vast number of fingerprint matching methods proposed in the specialized literature. In particular, we focus on local minutiae-based matching algorithms, which provide good performance with an excellent trade-off between efficacy and efficiency. We identify the main properties and differences of existing methods. Then, we include an experimental evaluation involving the most representative local minutiae-based matching models in both verification and evaluation tasks. The results obtained will be discussed in detail, supporting the description of future directions.Publication Open Access Unbalanced interval-valued OWA operators(Springer Berlin Heidelberg, 2016) Miguel Turullols, Laura de; Bustince Sola, Humberto; Barrenechea Tartas, Edurne; Pagola Barrio, Miguel; Fernández Fernández, Francisco Javier; Automatika eta Konputazioa; Institute of Smart Cities - ISC; Automática y ComputaciónIn this work, we introduce a new class of functions defned on the interval-valued setting. These functions extend classical OWA operators but allow for diferent weighting vectors to handle the lower bounds and the upper bounds of the considered intervals. As a consequence, the resulting functions need not be an interval-valued aggregation function, so we study, in the case of the lexicographical order, when these operators give an interval as output and are monotone. We also discuss an illustrative example on a decision making problem in order to show the usefulness of our developments.Publication Open Access Using the Choquet integral in the fuzzy reasoning method of fuzzy rule-based classification systems(MDPI, 2013) Barrenechea Tartas, Edurne; Bustince Sola, Humberto; Fernández Fernández, Francisco Javier; Paternain Dallo, Daniel; Sanz Delgado, José Antonio; Automática y Computación; Automatika eta KonputazioaIn this paper we present a new fuzzy reasoning method in which the Choquet integral is used as aggregation function. In this manner, we can take into account the interaction among the rules of the system. For this reason, we consider several fuzzy measures, since it is a key point on the subsequent success of the Choquet integral, and we apply the new method with the same fuzzy measure for all the classes. However, the relationship among the set of rules of each class can be different and therefore the best fuzzy measure can change depending on the class. Consequently, we propose a learning method by means of a genetic algorithm in which the most suitable fuzzy measure for each class is computed. From the obtained results it is shown that our new proposal allows the performance of the classical fuzzy reasoning methods of the winning rule and additive combination to be enhanced whenever the fuzzy measure is appropriate for the tackled problem.