Departamentos y Centros - Sailak eta Ikastegiak
Permanent URI for this community
Browse
Browsing Departamentos y Centros - Sailak eta Ikastegiak by Author "Abad, Alberto"
Now showing 1 - 3 of 3
Results Per Page
Sort Options
Publication Open Access Life cycle assessment of natural gas fuelled power plants based on chemical looping combustion technology(Elsevier, 2019-07-30) Navajas León, Alberto; Mendiara, Teresa; Goñi, Víctor; Jiménez, Adrián; Gandía Pascual, Luis; Abad, Alberto; García Labiano, Francisco; Diego, Luis F. de; Ciencias; Zientziak; Institute for Advanced Materials and Mathematics - INAMAT2Among the different Carbon Capture and Storage (CCS) technologies being developed in the last decades, Chemical Looping Combustion (CLC) stands out since it allows inherent CO2 capture. In the CLC process, there is a solid oxygen carrier circulating between two reactors in a cycle that allows providing the oxygen needed for combustion. In one of the reactors, named as fuel reactor, the fuel is introduced and combusted while the oxygen carrier reduction takes place. In the second reactor, named air reactor, the oxygen carrier is reoxidized in air. Different materials based on copper, nickel and iron oxides have been proposed as oxygen carriers for the CLC process. This work presents an environmental evaluation of the CLC process for natural gas based on Life Cycle Assessment (LCA). Five different oxygen carrier materials already tested in pilot plants were considered and the results compared to the conventional natural gas combustion in a gas turbine in a combined cycle without and with CO2 capture using postcombustion capture with amines. In view of the results, lower impact of the CLC process compared to the base case is expected without and with CO2 capture. The influence of several variables on the results was considered, such as temperature in the air reactor, lifetime of the oxygen carrier and possibility of recuperation of the depleted oxygen carrier. The nickel-based oxygen carriers were identified as the most adequate to be used in natural gas combustion. However, due to their toxicity, several analyses were also performed in order to identify improvements in the known oxygen carriers that can qualify them to replace nickel-based materials.Publication Open Access Life cycle assessment of power-to-methane systems with CO2 supplied by the chemical looping combustion of biomass(Elsevier, 2022) Navajas León, Alberto; Mendiara, Teresa; Gandía Pascual, Luis; Abad, Alberto; García Labiano, Francisco; Diego, Luis F. de; Ciencias; Zientziak; Institute for Advanced Materials and Mathematics - INAMAT2Power-to-methane (PtM) systems may allow fluctuations in the renewable energy supply to be smoothed out by storing surplus energy in the form of methane. These systems work by combining the hydrogen produced by electrolysis with carbon dioxide from different sources to produce methane via the Sabatier reaction. The present work studies PtM systems based on the CO2 supplied by the chemical looping combustion (CLC) of biomass (PtM-bioCLC). Life- cycle- assessment (LCA) was performed on PtM-bioCLC systems to evaluate their environmental impact with respect to a specific reference case. The proposed configurations have the potential to reduce the value of the global warming potential (GWP) climate change indicator to the lowest values reported in the literature to date. Moreover, the possibility of effectively removing CO2 from the atmosphere through the concept of CO2 negative emissions was also assessed. In addition to GWP, as many as 16 LCA indicators were also evaluated and their values for the studied PtM-bioCLC systems were found to be similar to those of the reference case considered or even significantly lower in such categories as resource use-depletion, ozone depletion, human health, acidification potential and eutrophication. The results obtained highlight the potential of these newly proposed PtM schemes.Publication Open Access Life cycle assessment of wheat straw pyrolysis with volatile fractions chemical looping combustion(MDPI, 2024) Mendiara, Teresa; Navajas León, Alberto; Abad, Alberto; Pröll, Tobias; Munárriz Tabuenca, Mikel; Gandía Pascual, Luis; García-Labiano, Francisco; Diego, Luis F. de; Ciencias; Zientziak; Institute for Advanced Materials and Mathematics - INAMAT2Among the approaches to facilitating negative CO2 emissions is biochar production. Biochar is generated in the pyrolysis of certain biomasses. In the pyrolysis process, carbon in the biomass is turned into a solid, porous, carbon-rich, and stable material that can be captured from the soil after a period of from a few decades to several centuries. In addition to this long-term carbon sequestration role, biochar is also beneficial for soil performance as it helps to restore soil fertility and improves the retention and diffusion of water and nutrients. This work presents a Life Cycle Assessment of different pyrolysis approaches for biochar production. Biomass pyrolysis is performed in a fixed-bed reactor, which operates at a mild temperature (550 °C). Biochar is obtained as solid product of the pyrolysis, but there are also liquid (bio-oil) and gaseous products (syngas). The pyrolysis gas is partly used to fulfil the energy demand of the pyrolysis process, which is highly endothermic. In the conventional approach, CO2 is produced during the combustion of syngas and emitted to the atmosphere. Another approach to facilitate CO2 capture and thus obtain more negative CO2 emissions in the pyrolysis process is burning syngas and bio-oil in a Chemical Looping Combustion unit. Life Cycle Assessment was performed of these approaches toward biomass pyrolysis to evaluate their environmental impact. The Chemical Looping Combustion approach significantly reduced the values of 7 of the 16 environmental impact indicators studied, along with the Global Warming Potential among them, it slightly increased the value of one indicator related to the use of fossil resources, and it maintained the values of the remaining 8 indicators. Environmental impact reduction occurs due to the avoidance of CO2 and NOx emissions with Chemical Looping Combustion. The CO2 balances of the different pyrolysis approaches with Chemical Looping Combustion configurations were compared with a base case, which constituted the direct combustion of wheat straw to obtain thermal energy. Direct biomass combustion for the production of 17.1 MJ of thermal energy had CO2 positive emissions of 0.165 kg. If the gaseous fraction was burned by Chemical Looping Combustion, CO2 was captured and the emissions became increasingly negative, until a value of -3.30 kg/17.1 MJ was generated. If bio-oil was also burned by this technology, the negative trend of CO2 emissions continued, until they reached a value of -3.66 kg.