Browsing by Author "Mendiara, Teresa"
Now showing 1 - 4 of 4
Results Per Page
Sort Options
Publication Open Access Estudio ambiental comparativo entre centrales eléctricas de gas natural con y sin captura de CO2(2017) Goñi Mateos, Victor; Navajas León, Alberto; Mendiara, Teresa; Escuela Técnica Superior de Ingenieros Industriales y de Telecomunicación; Telekomunikazio eta Industria Ingeniarien Goi Mailako Eskola TeknikoaEn el presente trabajo se trata de comparar los impactos medioambientales producidos por un lado por una central de gas natural de ciclo combinado, frente a los impactos producido por una central en la cual se captura el CO2 mediante una técnica de pre combustión. Para ello se evaluaran los efectos que se producen en las dos fases que se realizan en las centrales de C.L.C. (Chemical Looping Combustion) que son la producción del transportador y la parte de la central. También se examinaran las centrales que utilizan la captura de CO2 con distintos porcentajes de recuperación de transportador. Todo esto se realizara mediante la herramienta de análisis de ciclo de vida (A.C.V.) y con la ayuda del software llamado GabiPublication Open Access Evaluación del impacto ambiental mediante análisis del ciclo de vida de centrales eléctricas con transportadores de oxígeno(2019) Marchite Osta, Ana Claudia; Navajas León, Alberto; Mendiara, Teresa; Escuela Técnica Superior de Ingenieros Industriales y de Telecomunicación. Extensión Tudela; Telekomunikazio eta Industria Ingeniarien Goi Mailako Eskola Teknikoa. Tuterako hedapenaLa tecnología CLC realiza la combustión de residuos fósiles con oxígeno puro introducido con óxidos metálicos. La ventaja que ofrece esta tecnología es que los gases resultantes son una mezcla de dióxido de carbono y agua, fácilmente separable. Así, el dióxido de carbono puede ser retirado antes de emitirlo a la atmósfera, disminuyendo el potencial de cambio climático en comparación con una central de residuos fósiles convencional. Sin embargo, para la fabricación y gestión de fin de vida de los óxidos metálicos usados, se generan una serie de impactos ambientales que deben ser cuantificados para realizar una comparación real con las centrales convencionales. La herramienta de Análisis del ciclo de vida permite cuantificar impactos ambientales de productos y procesos industriales mediante la transformación de todas las entradas y salidas de materia y energía en una serie de indicadores ambientales. Así, el objetivo de este trabajo es la comparación mediante análisis del ciclo de vida, del impacto ambiental causado por una central convencional de generación de electricidad a partir de gas natural, frente a otras que utilizan diferentes transportadores de oxígeno en la combustión de gas natural.Publication Open Access Life cycle assessment of power-to-methane systems with CO2 supplied by the chemical looping combustion of biomass(Elsevier, 2022) Navajas León, Alberto; Mendiara, Teresa; Gandía Pascual, Luis; Abad, Alberto; García Labiano, Francisco; Diego, Luis F. de; Zientziak; Institute for Advanced Materials and Mathematics - INAMAT2; CienciasPower-to-methane (PtM) systems may allow fluctuations in the renewable energy supply to be smoothed out by storing surplus energy in the form of methane. These systems work by combining the hydrogen produced by electrolysis with carbon dioxide from different sources to produce methane via the Sabatier reaction. The present work studies PtM systems based on the CO2 supplied by the chemical looping combustion (CLC) of biomass (PtM-bioCLC). Life- cycle- assessment (LCA) was performed on PtM-bioCLC systems to evaluate their environmental impact with respect to a specific reference case. The proposed configurations have the potential to reduce the value of the global warming potential (GWP) climate change indicator to the lowest values reported in the literature to date. Moreover, the possibility of effectively removing CO2 from the atmosphere through the concept of CO2 negative emissions was also assessed. In addition to GWP, as many as 16 LCA indicators were also evaluated and their values for the studied PtM-bioCLC systems were found to be similar to those of the reference case considered or even significantly lower in such categories as resource use-depletion, ozone depletion, human health, acidification potential and eutrophication. The results obtained highlight the potential of these newly proposed PtM schemes.Publication Open Access Life cycle assessment of wheat straw pyrolysis with volatile fractions chemical looping combustion(MDPI, 2024) Mendiara, Teresa; Navajas León, Alberto; Abad, Alberto; Pröll, Tobias; Munárriz, M.; Gandía Pascual, Luis; García-Labiano, Francisco; de Diego, Luis F.; Ciencias; Zientziak; Institute for Advanced Materials and Mathematics - INAMAT2Among the approaches to facilitating negative CO2 emissions is biochar production. Biochar is generated in the pyrolysis of certain biomasses. In the pyrolysis process, carbon in the biomass is turned into a solid, porous, carbon-rich, and stable material that can be captured from the soil after a period of from a few decades to several centuries. In addition to this long-term carbon sequestration role, biochar is also beneficial for soil performance as it helps to restore soil fertility and improves the retention and diffusion of water and nutrients. This work presents a Life Cycle Assessment of different pyrolysis approaches for biochar production. Biomass pyrolysis is performed in a fixed-bed reactor, which operates at a mild temperature (550 °C). Biochar is obtained as solid product of the pyrolysis, but there are also liquid (bio-oil) and gaseous products (syngas). The pyrolysis gas is partly used to fulfil the energy demand of the pyrolysis process, which is highly endothermic. In the conventional approach, CO2 is produced during the combustion of syngas and emitted to the atmosphere. Another approach to facilitate CO2 capture and thus obtain more negative CO2 emissions in the pyrolysis process is burning syngas and bio-oil in a Chemical Looping Combustion unit. Life Cycle Assessment was performed of these approaches toward biomass pyrolysis to evaluate their environmental impact. The Chemical Looping Combustion approach significantly reduced the values of 7 of the 16 environmental impact indicators studied, along with the Global Warming Potential among them, it slightly increased the value of one indicator related to the use of fossil resources, and it maintained the values of the remaining 8 indicators. Environmental impact reduction occurs due to the avoidance of CO2 and NOx emissions with Chemical Looping Combustion. The CO2 balances of the different pyrolysis approaches with Chemical Looping Combustion configurations were compared with a base case, which constituted the direct combustion of wheat straw to obtain thermal energy. Direct biomass combustion for the production of 17.1 MJ of thermal energy had CO2 positive emissions of 0.165 kg. If the gaseous fraction was burned by Chemical Looping Combustion, CO2 was captured and the emissions became increasingly negative, until a value of -3.30 kg/17.1 MJ was generated. If bio-oil was also burned by this technology, the negative trend of CO2 emissions continued, until they reached a value of -3.66 kg.