Browsing by Author "Militino, Ana F."
Now showing 1 - 20 of 22
Results Per Page
Sort Options
Publication Open Access Age- and sex-specific spatio-temporal patterns of colorectal cancer mortality in Spain (1975-2008)(BioMed Central, 2014) Etxeberria Andueza, Jaione; Ugarte Martínez, María Dolores; Goicoa Mangado, Tomás; Militino, Ana F.; Estadística e Investigación Operativa; Estatistika eta Ikerketa OperatiboaIn this paper, space-time patterns of colorectal cancer (CRC) mortality risks are studied by sex and age group (50-69, ≥70) in Spanish provinces during the period 1975-2008. Space-time conditional autoregressive models are used to perform the statistical analyses. A pronounced increase in mortality risk has been observed in males for both age-groups. For males between 50 and 69 years of age, trends seem to stabilize from 2001 onward. In females, trends reflect a more stable pattern during the period in both age groups. However, for the 50-69 years group, risks take an upward trend in the period 2006-2008 after the slight decline observed in the second half of the period. This study offers interesting information regarding CRC mortality distribution among different Spanish provinces that could be used to improve prevention policies and resource allocation in different regions.Publication Metadata only Búsqueda de submercados inmobiliarios mediante modelos de mixturas(Gobierno de Navarra, Departamento de Economía y Hacienda, 2003) Militino, Ana F.; Ugarte Martínez, María Dolores; Goicoa Mangado, Tomás; Estadística e Investigación Operativa; Estatistika eta Ikerketa OperatiboaLa heterogeneidad presente en el mercado inmobiliario dificulta enormemente su análisis y puede conllevar la presencia de submercados. En este caso, el modelo clásico de regresión lineal múltiple, ampliamente utilizado con este tipo de datos, puede no ser adecuado y, por tanto, es necesaria la utilización de técnicas estadísticas más específicas que resuelvan el problema de la heterogeneidad y de la búsqueda de submercados. En este trabajo se propone un modelo de mixturas de modelos lineales que proporciona un buen ajuste a los datos, a la vez que una clasificación de las observaciones en diferentes grupos o submercados potenciales. El modelo se ilustra mediante el análisis de un conjunto de 293 viviendas usadas de Pamplona.Publication Open Access Checking unimodality using isotonic regression: an application to breast cancer mortality rates(Springer, 2016) Rueda, C.; Ugarte Martínez, María Dolores; Militino, Ana F.; Estatistika eta Ikerketa Operatiboa; Institute for Advanced Materials and Mathematics - INAMAT2; Estadística e Investigación OperativaIn some diseases it is well-known that a unimodal mortality pattern exists. A clear example in developed countries is breast cancer, where mortality increased sharply until the nineties and then decreased. This clear unimodal pattern is not necessarily applicable to all regions within a country. In this paper, we develop statistical tools to check if the unimodality pattern persists within regions using order restricted inference. Break points as well as confidence intervals are also provided. In addition, a new test for checking monotonicity against unimodality is derived allowing to discriminate between a simple increasing pattern and an up-then-down response pattern. A comparison with the widely used joinpoint regression technique under unimodality is provided. We show that the joinpoint technique could fail when the underlying function is not piecewise linear. Results will be illustrated using age-specific breast cancer mortality data from Spain in the period 1975-2005.Publication Open Access Detecting change-points in the time series of surfaces occupied by pre-defined NDVI categories in continental Spain from 1981 to 2015(Springer, 2018) Militino, Ana F.; Ugarte Martínez, María Dolores; Pérez Goya, Unai; Estadística, Informática y Matemáticas; Estatistika, Informatika eta Matematika; Institute for Advanced Materials and Mathematics - INAMAT2The free access to satellite images since more than 40 years ago has provoked a rapid increase of multitemporal derived information of remote sensing data that should be summarized and analyzed for future inferences. In particular, the study of trends and trend changes is of crucial interest in many studies of phenology, climatology, agriculture, hydrology, geology or many other environmental disciplines. Overall, the normalized dierence vegetation index (NDVI), as a satellite derived variable, plays a crucial role because of its usefulness for vegetation and landscape characterization, land use and land cover mapping, environmental monitoring, climate change or crop prediction models. Since the eighties, it can be retrieved all over the world from dierent satellites. In this work we propose to analyze its temporal evolution, looking for breakpoints or change-points in trends of the surfaces occupied by four NDVI classications made in Spain from 1981 to 2015. The results show a decrease of bare soils and semi-bare soils starting in the middle nineties or before, and a slight increase of middle-vegetation and high-vegetation soils starting in 1990 and 2000 respectively.Publication Open Access Diseño de metodología y desarrollo de recursos para la modelización de especies exóticas invasoras; análisis de su aplicabilidad en el caso de Vespa velutina(2017) Ruiz de Larramendi Fortún, Miriam; Militino, Ana F.; Escuela Técnica Superior de Ingenieros Agrónomos; Nekazaritza Ingeniarien Goi Mailako Eskola TeknikoaEl presente trabajo fin de master propone profundizar en el conocimiento de los procesos de modelización de la distribución potencial de especies en un territorio. Su principal objetivo es diseñar una metodología que permita al Departamento de Desarrollo Rural, Medio Ambiente y Administración Local (DRMAyAL) del Gobierno de Navarra la futura utilización de estas herramientas de manera efectiva como estrategia de prevención frente al creciente y grave problema ambiental que está suponiendo la aparición de especies exóticas invasoras (EEIs). Para ello, además de revisar algunos parámetros del funcionamiento de estos programas que faciliten su uso, se desarrollan algunos recursos informáticos, como una biblioteca de capas, necesarios para la modelización de un amplio rango de especies animales y vegetales. Como caso práctico en el que contrastar el desarrollo de este estudio, el trabajo se centrará en el seguimiento de Vespa velutina, una de las especies de reciente aparición más preocupantes en España tras la aprobación del Reglamento sobre EEIsPublication Open Access Estimación del desempleo por comarcas en Navarra(Gobierno de Navarra, Departamento de Economía y Hacienda, 2005) Ugarte Martínez, María Dolores; Militino, Ana F.; González Ramajo, Begoña; Goicoa Mangado, Tomás; Sagaseta López, M.; Estadística e Investigación Operativa; Estatistika eta Ikerketa OperatiboaEl conocimiento del desempleo en una región es un indicador potente del ritmo de crecimiento de una economía, ya que de forma indirecta mide su capacidad para generar empleo. El Instituto de Estadística de Navarra está apostando por proporcionar en un futuro cercano estimaciones del desempleo a un nivel cada vez más desagregado. La heterogeneidad de las comarcas navarras y el interés mostrado por administraciones locales y sindicatos, hace necesario tener un conocimiento de la situación de desempleo a nivel comarcal, evitando así descansar únicamente en el resultado global para toda Navarra tal y como lo proporciona la Encuesta de Población Activa (EPA). La tarea es compleja, pero está incardinada además en uno de los objetivos prioritarios del proyecto europeo EURAREA, del cual ha formado parte el Instituto Nacional de Estadística (INE), y por ende, el Instituto de Estadística de Navarra. Es decir, hay un interés real en Europa por proporcionar estimaciones a nivel comarcal. En Navarra esta tarea ya ha comenzado y en este congreso presentamos algunos de los resultados obtenidos. En particular se ilustran las estimaciones preliminares derivadas de la aplicación de diversos estimadores basados en el diseño para obtener la proporción de parados por sexo en las siete comarcas de Navarra. Se compara además el comportamiento de diversos estimadores en términos del sesgo relativo y del error cuadrático medio relativo. Los estimadores ofrecidos permiten calcular además la estimación del número de ocupados e inactivos, así como de sus correspondientes tasas.Publication Open Access Estimating unemployment in very small areas(Institut d'Estadística de Catalunya-IDESCAT, 2009) Ugarte Martínez, María Dolores; Goicoa Mangado, Tomás; Militino, Ana F.; Sagaseta López, M.; Estadística e Investigación Operativa; Estatistika eta Ikerketa OperatiboaIn the last few years, European countries have shown a deep interest in applying small area techniques to produce reliable estimates at county level. However, the specificity of every European country and the heterogeneity of the available auxiliary information, make the use of a common methodology a very difficult task. In this study, the performance of several design-based, model-assisted, and model-based estimators using different auxiliary information for estimating unemployment at small area level is analyzed. The results are illustrated with data from Navarre, an autonomous region located at the north of Spain and divided into seven small areas. After discussing pros and cons of the different alternatives, a composite estimator is chosen, because of its good trade-off between bias and variance. Several methods for estimating the prediction error of the proposed estimator are also provided.Publication Restricted Estimation of the measurement error model when applying GNSS techniques which are based on the positioning in real time services provided by RGAN(2009) Lizarraga García, Enrique; Militino, Ana F.; Ugarte Martínez, María Dolores; Escuela Técnica Superior de Ingenieros Industriales y de Telecomunicación; Telekomunikazio eta Industria Ingeniarien Goi Mailako Eskola Teknikoa; Estadística e Investigación Operativa; Estatistika eta Ikerketa OperatiboaThe main objective of this work is to obtain a measurement error model when applying GNSS (Global Navigation Satellite Systems) techniques which are based on the positioning in real time services provided by RGAN (Red de Geodesia Activa de Navarra) in Navarra, a Spanish region located in the north of Spain, on the western edge of the Pyrenees. The Department of Civil Engineering, Transport and Communication of the Navarra Government has facilitated data of 25 locations from which different statistical models are going to be analyzed.Publication Open Access Filling missing data and smoothing altered data in satellite imagery with a spatial functional procedure(Springer, 2019) Militino, Ana F.; Ugarte Martínez, María Dolores; Montesino San Martín, Manuel; Estatistika, Informatika eta Matematika; Institute for Advanced Materials and Mathematics - INAMAT2; Estadística, Informática y MatemáticasOutliers and missing data are commonly found in satellite imagery. These are usually caused by atmospheric or electronic failures, hampering the correct monitoring of remote-sensing data. To avoid distorted data, we propose a procedure called 'spatial functional prediction' (SFP). The SFP procedure consists of the following: (1) aggregating remote-sensing data for reducing the number of missing data and/or outliers; (2) additively decomposing the time series of images into a trend, a seasonal, and an error component; (3) defining the spatial functional data and predicting the trend component using an ordinary kriging; and (4) adding back the seasonal and error components to the predicted trend. The benefits of the SFP procedure are illustrated in the following scenarios: introducing random outliers, random missing data, mixtures of both, and artificial clouds in an extensive simulation study of composite images, and using daily images with real clouds. The following two derived variables are considered: land surface temperature (LST day) and normalized vegetation index (NDVI), which are obtained as remote-sensing data in a region in northern Spain during 2003–2016. The performance of SFP was checked using the root mean squared error (RMSE). A comparison with a procedure based on predicting with thin-plate splines (TpsP) is also made. We conclude that SFP is simpler and faster than TpsP, and provides smaller values of RMSE.Publication Open Access Flexible Bayesian P-splines for smoothing age-specific spatio-temporal mortality patterns(SAGE, 2019) Goicoa Mangado, Tomás; Adin Urtasun, Aritz; Etxeberria Andueza, Jaione; Militino, Ana F.; Ugarte Martínez, María Dolores; Estadística, Informática y Matemáticas; Estatistika, Informatika eta Matematika; Institute for Advanced Materials and Mathematics - INAMAT2In this paper age-space-time models based on one and two-dimensional P-splines with B-spline bases are proposed for smoothing mortality rates, where both xed relative scale and scale invariant two-dimensional penalties are examined. Model tting and inference are carried out using integrated nested Laplace approximations (INLA), a recent Bayesian technique that speeds up computations compared to McMC methods. The models will be illustrated with Spanish breast cancer mortality data during the period 1985-2010, where a general decline in breast cancer mortality has been observed in Spanish provinces in the last decades. The results reveal that mortality rates for the oldest age groups do not decrease in all provinces.Publication Open Access Improving the quality of satellite imagery based on ground-truth data from rain gauge stations(MDPI, 2018) Militino, Ana F.; Ugarte Martínez, María Dolores; Pérez Goya, Unai; Estatistika eta Ikerketa Operatiboa; Institute for Advanced Materials and Mathematics - INAMAT2; Estadística e Investigación Operativa; Gobierno de Navarra / Nafarroako GobernuaMultitemporal imagery is by and large geometrically and radiometrically accurate, but the residual noise arising from removal clouds and other atmospheric and electronic effects can produce outliers that must be mitigated to properly exploit the remote sensing information. In this study, we show how ground-truth data from rain gauge stations can improve the quality of satellite imagery. To this end, a simulation study is conducted wherein different sizes of outlier outbreaks are spread and randomly introduced in the normalized difference vegetation index (NDVI) and the day and night land surface temperature (LST) of composite images from Navarre (Spain) between 2011 and 2015. To remove outliers, a new method called thin-plate splines with covariates (TpsWc) is proposed. This method consists of smoothing the median anomalies with a thin-plate spline model, whereby transformed ground-truth data are the external covariates of the model. The performance of the proposed method is measured with the square root of the mean square error (RMSE), calculated as the root of the pixel-by-pixel mean square differences between the original data and the predicted data with the TpsWc model and with a state-space model with and without covariates. The study shows that the use of ground-truth data reduces the RMSE in both the TpsWc model and the state-space model used for comparison purposes. The new method successfully removes the abnormal data while preserving the phenology of the raw data. The RMSE reduction percentage varies according to the derived variables (NDVI or LST), but reductions of up to 20% are achieved with the new proposal.Publication Open Access Interpolation of the mean anomalies for cloud filling in land surface temperature and normalized difference vegetation index(IEEE, 2019) Militino, Ana F.; Ugarte Martínez, María Dolores; Pérez Goya, Unai; Genton, Marc G.; Estatistika, Informatika eta Matematika; Institute for Advanced Materials and Mathematics - INAMAT2; Estadística, Informática y MatemáticasWhen monitoring time series of remote sensing data, it is advisable to fill gaps, i.e., missing or distorted data, caused by atmospheric effects or technical failures. In this paper, a new method for filling these gaps called interpolation of the mean anomalies (IMA) is proposed and compared with some competitors. The method consists of: 1) defining a neighborhood for the target image from previous and subsequent images across previous and subsequent years; 2) computing the mean target image of the neighborhood; 3) estimating the anomalies in the target image by subtracting the mean image from the target image; 4) filtering the anomalies; 5) averaging the anomalies over a predefined window; 6) interpolating the averaged anomalies; and 7) adding the interpolated anomalies to the mean image. To assess the performance of the IMA method, both a real example and a simulation study are conducted with a time series of Moderate Resolution Imaging Spectroradiometer (MODIS) TERRA and MODIS AQUA images captured over the region of Navarre (Spain) from 2011 to 2013. We analyze the land surface temperature (LST) day and night, and the normalized difference vegetation index (NDVI). In the simulation study, seven sizes of artificial clouds are randomly introduced to each image in the studied time series. The square root of the mean-squared prediction error (RMSE) between the original and the filled data is chosen as an indicator of the goodness of fit. The results show that the IMA method outperforms Timesat, Hants, and Gapfill (GF) in filling small, moderate, and big cloud gaps in both the day and night LST and NDVI data, reaching RMSE reductions of up to 23%.Publication Open Access An introduction to the spatio-temporal analysis of satellite remote sensing data for geostatisticians(Springer International Publishing, 2018) Militino, Ana F.; Ugarte Martínez, María Dolores; Pérez Goya, Unai; Estatistika, Informatika eta Matematika; Institute for Advanced Materials and Mathematics - INAMAT2; Estadística, Informática y Matemáticas; Gobierno de Navarra / Nafarroako GobernuaSatellite remote sensing data have become available in meteorology, agriculture, forestry, geology, regional planning, hydrology or natural environment sciences since several decades ago, because satellites provide routinely high quality images with different temporal and spatial resolutions. Joining, combining or smoothing these images for a better quality of information is a challenge not always properly solved. In this regard, geostatistics, as the spatiotemporal stochastic techniques of georeferenced data, is a very helpful and powerful tool not enough explored in this area yet. Here, we analyze the current use of some of the geostatistical tools in satellite image analysis, and provide an introduction to this subject for potential researchers.Publication Open Access Locally adaptive change-point detection (LACPD) with applications to environmental changes(Springer, 2021) Moradi, Mohammad Mehdi; Montesino San Martín, Manuel; Ugarte Martínez, María Dolores; Militino, Ana F.; Estatistika, Informatika eta Matematika; Institute for Advanced Materials and Mathematics - INAMAT2; Estadística, Informática y MatemáticasWe propose an adaptive-sliding-window approach (LACPD) for the problem of change-point detection in a set of time-ordered observations. The proposed method is combined with sub-sampling techniques to compensate for the lack of enough data near the time series’ tails. Through a simulation study, we analyse its behaviour in the presence of an early/middle/late change-point in the mean, and compare its performance with some of the frequently used and recently developed change-point detection methods in terms of power, type I error probability, area under the ROC curves (AUC), absolute bias, variance, and root-mean-square error (RMSE). We conclude that LACPD outperforms other methods by maintaining a low type I error probability. Unlike some other methods, the performance of LACPD does not depend on the time index of change-points, and it generally has lower bias than other alternative methods. Moreover, in terms of variance and RMSE, it outperforms other methods when change-points are close to the time series’ tails, whereas it shows a similar (sometimes slightly poorer) performance as other methods when change-points are close to the middle of time series. Finally, we apply our proposal to two sets of real data: the well-known example of annual flow of the Nile river in Awsan, Egypt, from 1871 to 1970, and a novel remote sensing data application consisting of a 34-year time-series of satellite images of the Normalised Difference Vegetation Index in Wadi As-Sirham valley, Saudi Arabia, from 1986 to 2019. We conclude that LACPD shows a good performance in detecting the presence of a change as well as the time and magnitude of change in real conditions.Publication Open Access Logistic regression versus XGBoost for detecting burned areas using satellite images(Springer, 2024) Militino, Ana F.; Goyena Baroja, Harkaitz; Pérez Goya, Unai; Ugarte Martínez, María Dolores; Estadística, Informática y Matemáticas; Estatistika, Informatika eta Matematika; Institute for Advanced Materials and Mathematics - INAMAT2; Universidad Pública de Navarra / Nafarroako Unibertsitate PublikoaClassical statistical methods prove advantageous for small datasets, whereas machine learning algorithms can excel with larger datasets. Our paper challenges this conventional wisdom by addressing a highly significant problem: the identification of burned areas through satellite imagery, that is a clear example of imbalanced data. The methods are illustrated in the North-Central Portugal and the North-West of Spain in October 2017 within a multi-temporal setting of satellite imagery. Daily satellite images are taken from Moderate Resolution Imaging Spectroradiometer (MODIS) products. Our analysis shows that a classical Logistic regression (LR) model competes on par, if not surpasses, a widely employed machine learning algorithm called the extreme gradient boosting algorithm (XGBoost) within this particular domain.Publication Open Access Machine learning procedures for daily interpolation of rainfall in Navarre (Spain)(Springer, 2023) Militino, Ana F.; Ugarte Martínez, María Dolores; Pérez Goya, Unai; Estadística, Informática y Matemáticas; Estatistika, Informatika eta Matematika; Institute for Advanced Materials and Mathematics - INAMAT2Kriging is by far the most well known and widely used statistical method for interpolating data in spatial random fields. The main reason is that it provides the best linear unbiased predictor and it is an exact interpolator when normality is assumed. The robustness of this method allows small departures from normality, however, many meteorological, pollutant and environmental variables have extremely asymmetrical distributions and Kriging cannot be used. Machine learning techniques such as neural networks, random forest, and k-nearest neighbor can be used instead, because they do not require specific distributional assumptions. The drawback is that they do not take account of the spatial dependence, and for an optimal performance in spatial random fields more complex machine learning techniques could be considered. These techniques also require a relatively large amount of training data and they are computationally challenging to implement. For a reduced number of observations, we illustrate the performance of the aforementioned procedures using daily rainfall data of manual meteorological gauge stations in Navarre, where the only auxiliary variables available are the spatial coordinates and the altitude. The quality of the predictions is carefully checked through three versions of the relative root mean squared error (RRMSE). The conclusion is that when we cannot use Kriging, random forest and neural networks outperform k-nearest neighbor technique, and provide reliable predictions of rainfall daily data with scarce auxiliary information.Publication Open Access On the performances of trend and change-point detection methods for remote sensing data(MDPI, 2020) Militino, Ana F.; Moradi, Mohammad Mehdi; Ugarte Martínez, María Dolores; Estatistika, Informatika eta Matematika; Institute for Advanced Materials and Mathematics - INAMAT2; Estadística, Informática y MatemáticasDetecting change-points and trends are common tasks in the analysis of remote sensing data. Over the years, many different methods have been proposed for those purposes, including (modified) Mann-Kendall and Cox-Stuart tests for detecting trends; and Pettitt, Buishand range, Buishand U, standard normal homogeneity (Snh), Meanvar, structure change (Strucchange), breaks for additive season and trend (BFAST), and hierarchical divisive (E. divisive) for detecting change-points. In this paper, we describe a simulation study based on including different artificial, abrupt changes at different time-periods of image time series to assess the performances of such methods. The power of the test, type I error probability, and mean absolute error (MAE) were used as performance criteria, although MAE was only calculated for change-point detection methods. The study reveals that if the magnitude of change (or trend slope) is high, and/or the change does not occur in the first or last time-periods, the methods generally have a high power and a low MAE. However, in the presence of temporal autocorrelation, MAE raises, and the probability of introducing false positives increases noticeably. The modified versions of the Mann-Kendall method for autocorrelated data reduce/moderate its type I error probability, but this reduction comes with an important power diminution. In conclusion, taking a trade-off between the power of the test and type I error probability, we conclude that the original Mann-Kendall test is generally the preferable choice. Although Mann-Kendall is not able to identify the time-period of abrupt changes, it is more reliable than other methods when detecting the existence of such changes. Finally, we look for trend/change-points in land surface temperature (LST), day and night, via monthly MODIS images in Navarre, Spain, from January 2001 to December 2018.Publication Open Access Software tools and statistical methods for downloading, processing, and analysing satellite images(2019) Pérez Goya, Unai; Militino, Ana F.; Ugarte Martínez, María Dolores; Estadística, Informática y Matemáticas; Estatistika, Informatika eta Matematika; Gobierno de Navarra / Nafarroako GobernuaEl principal objetivo de esta tesis es la introducción y desarrollo de métodos estadísticos en imágenes satelitales para mejorar el procesamiento, suavizado, predicción, e inferencia de los datos de teledetección. Este objetivo principal se puede dividir en los siguientes sub-objetivos. El primero contempla la adquisición, gestión, y automatización los procesos de descarga de datos de teledetección desde múltiples plataformas de manera estandarizada. El segundo es proporcionar una breve descripción de las principales herramientas geostadísticas utilizadas en teledetección, enfatizando la importancia de los métodos estocásticos espacio-temporales. El tercer sub-objetivo consiste en explorar algunas técnicas para detectar cambios de tendencia, analizando la evolución natural de algunos índices. El cuarto subobjetivo es el desarrollo de nuevos métodos para la predicción de datos perdidos y suavización de errores en imágenes satelitales utilizando la dependencia espacial y temporal. El objetivo final es el desarrollo de un nuevo paquete de R llamado ‘RGISTools’. Permite la descarga, pre-procesamiento, y gestión de imágenes satelitales de Landsat, MODIS, y Sentinel-2. También contiene los nuevos métodos de predicción de datos perdidos y suavización derivados de esta tesis.Publication Open Access Stochastic spatio-temporal models for analysing NDVI distribution of GIMMS NDVI3g images(MDPI, 2017) Militino, Ana F.; Ugarte Martínez, María Dolores; Pérez Goya, Unai; Estatistika eta Ikerketa Operatiboa; Institute for Advanced Materials and Mathematics - INAMAT2; Estadística e Investigación Operativa; Gobierno de Navarra / Nafarroako Gobernua: Project PI015, 2016The normalized difference vegetation index (NDVI) is an important indicator for evaluating vegetation change, monitoring land surface fluxes or predicting crop models. Due to the great availability of images provided by different satellites in recent years, much attention has been devoted to testing trend changes with a time series of NDVI individual pixels. However, the spatial dependence inherent in these data is usually lost unless global scales are analyzed. In this paper, we propose incorporating both the spatial and the temporal dependence among pixels using a stochastic spatio-temporal model for estimating the NDVI distribution thoroughly. The stochastic model is a state-space model that uses meteorological data of the Climatic Research Unit (CRU TS3.10) as auxiliary information. The model will be estimated with the Expectation-Maximization (EM) algorithm. The result is a set of smoothed images providing an overall analysis of the NDVI distribution across space and time, where fluctuations generated by atmospheric disturbances, fire events, land-use/cover changes or engineering problems from image capture are treated as random fluctuations. The illustration is carried out with the third generation of NDVI images, termed NDVI3g, of the Global Inventory Modeling and Mapping Studies (GIMMS) in continental Spain. This data are taken in bymonthly periods from January 2011 to December 2013, but the model can be applied to many other variables, countries or regions with different resolutions.Publication Open Access Tendencias en las tasas de incidencia de cáncer colorrectal en Navarra en el periodo 1990-2005(Gobierno de Navarra, 2012) Etxeberria Andueza, Jaione; Ugarte Martínez, María Dolores; Barricarte Gurrea, Aurelio; Goicoa Mangado, Tomás; Moreno Iribas, Conchi; Azagra, M. J.; San Roman, E.; Burgui, R.; Militino, Ana F.; Ardanaz, Eva; Estadística e Investigación Operativa; Estatistika eta Ikerketa OperatiboaFundamento. En España, se ha observado un aumento de la incidencia de cáncer colorrectal (CCR) en ambos sexos en los últimos años, posiblemente debido a las mejoras diagnósticas, a la occidentalización de la dieta y al empeoramiento de los niveles de obesidad entre otros. En este trabajo se han estudiado las tendencias de la incidencia de CCR en las diferentes áreas de salud de Navarra (norte de España) durante el período 1990-2005. Métodos. Para cada sexo y área, se obtuvieron las tendencias de las tasas de incidencia y los correspondientes intervalos de confianza mediante modelos de P-splines. Resultados. Se observa una tendencia creciente de la incidencia de CCR en la mayoría de las áreas para ambos sexos, siendo menos pronunciada en las mujeres que en los hombres. En la zona centro de Pamplona (la capital) se observa una tendencia decreciente para los hombres durante el período estudiado. Conclusiones. Para cambiar las tendencias crecientes observadas en la mayoría de las áreas de la provincia, la prevención primaria es la mejor estrategia. Sin embargo, adquirir estilos de vida saludables tiene resultados a largo plazo por lo que un programa de detección temprana serviría como estrategia de prevención a más corto plazo.