Artículos de revista DIEC - IEKS Aldizkari artikuluak
Permanent URI for this collection
Browse
Browsing Artículos de revista DIEC - IEKS Aldizkari artikuluak by Department/Institute "Estatistika, Informatika eta Matematika"
Now showing 1 - 20 of 22
Results Per Page
Sort Options
Publication Open Access An acceleration approach for channel deterministic approaches based on quasi-stationary regions in V2X communications(Institute of Electrical and Electronics Engineers, 2024) Rodríguez Corbo, Fidel Alejandro; Celaya Echarri, Mikel; Shubair, Raed M.; Falcone Lanas, Francisco; Azpilicueta Fernández de las Heras, Leyre; Ingeniería Eléctrica, Electrónica y de Comunicación; Ingeniaritza Elektrikoa, Elektronikoa eta Telekomunikazio Ingeniaritza; Estadística, Informática y Matemáticas; Estatistika, Informatika eta Matematika; Institute of Smart Cities - ISCVehicular environments are characterized by a high mobility, which alongside with the presence of abundant dynamic scatterers, lead to vehicular communication channels to be intrinsically non-stationary. In this sense, the quasi-stationary regions (QSRs) can assess the degree of non-stationarity within a determined scenario, and ultimately assist geometrical models to increase channel sampling intervals or to develop more efficient hybrid stochastic-geometric channel models. In this work, the channel QSRs in a vehicular communication (V2X) generic highdense urban environment at millimeter wave (mmWave) frequencies (28 GHz) have been analyzed using different approaches, such as the extended channel response into a Doppler-delay domain or the shadow fading spatial auto-correlation function (SF ACF) methodology. Then, the QSRs have been used as sampling distance in an in-house developed three-dimensional ray-launching (3D-RL) algorithm as an acceleration approach. The time variant channel features have been extracted and compared with the full resolution approach, obtaining consistent results when considering the QSR sampling distances, while decreasing by 83.30% the simulation computational time for the Doppler-delay approach, and 92.86% for the SF ACF method.Publication Open Access Aggregator to electric vehicle LoRaWAN based communication analysis in vehicle-to-grid systems in smart cities(IEEE, 2020) Klaina, Hicham; Picallo Guembe, Imanol; López Iturri, Peio; Astrain Escola, José Javier; Azpilicueta Fernández de las Heras, Leyre; Falcone Lanas, Francisco; Ingeniaritza Elektrikoa, Elektronikoaren eta Telekomunikazio Ingeniaritzaren; Estatistika, Informatika eta Matematika; Institute of Smart Cities - ISC; Ingeniería Eléctrica, Electrónica y de Comunicación; Estadística, Informática y MatemáticasRecently, there has been growing attention to the power grid management due to the increasing concerns on global warming. With the advancement in electric vehicles (EV) industry and the evolution in batteries, EVs become an important contributor to the grid with capability of bidirectional power exchange with the grid. In this context, Vehicle-to-Grid (V2G) systems enable multiple functionalities between EVs and the corresponding aggregator. Thus, reliable, long-range communication capabilities between aggregator and EVs is compulsory. In this paper, wireless channel analysis for aggregator and electrical vehicle communication using Long-Range Wide Area Network (LoRaWAN) technology in V2G is presented, in order to test a low-cost solution with large coverage and reduced power consumption profile. Wireless channel and system-level measurements have been performed in a real urban scenario between EV's charging station in Pamplona (Spain) and a vehicle in motion using LoRaWAN 868 MHz devices. Wireless channel characterization is performed by implementing a full 3D urban scenario model, including elements such as buildings, vehicles, users and urban infrastructure such as lamp posts and benches. By means of in-house developed 3D Ray Launching algorithm with hybrid simulation capabilities, estimations of received power levels, signal to noise ratio and time domain parameters have been obtained, for the complete volume of the scenario under test in dense urban conditions. V2G end to end communication has been validated by implementing an intra-vehicle Controller Area Network-BUS (CAN BUS) data gathering system connected to the vehicle LoRaWAN transceiver and subsequently, to a cloud-based web service. The results show that the accurate deterministic based radio channel analysis enables to optimize the network design of LoRaWAN networks in a vehicular environment, considering inter-vehicular and infrastructure links, enabling scalable, low cost end to end data exchange for the deployment of ancillary V2G services.Publication Open Access Applying d-XChoquet integrals in classification problems(IEEE, 2022) Wieczynski, Jonata; Lucca, Giancarlo; Borges, Eduardo N.; Emmendorfer, Leonardo R.; Ferrero Jaurrieta, Mikel; Pereira Dimuro, Graçaliz; Bustince Sola, Humberto; Estadística, Informática y Matemáticas; Estatistika, Informatika eta MatematikaSeveral generalizations of the Choquet integral have been applied in the Fuzzy Reasoning Method (FRM) of Fuzzy Rule-Based Classification Systems (FRBCS's) to improve its performance. Additionally, to achieve that goal, researchers have searched for new ways to provide more flexibility to those generalizations, by restricting the requirements of the functions being used in their constructions and relaxing the monotonicity of the integral. This is the case of CT-integrals, CC-integrals, CF-integrals, CF1F2-integrals and dCF-integrals, which obtained good performance in classification algorithms, more specifically, in the fuzzy association rule-based classification method for high-dimensional problems (FARC-HD). Thereafter, with the introduction of Choquet integrals based on restricted dissimilarity functions (RDFs) in place of the standard difference, a new generalization was made possible: the d-XChoquet (d-XC) integrals, which are ordered directional increasing functions and, depending on the adopted RDF, may also be a pre-aggregation function. Those integrals were applied in multi-criteria decision making problems and also in a motor-imagery brain computer interface framework. In the present paper, we introduce a new FRM based on the d-XC integral family, analyzing its performance by applying it to 33 different datasets from the literature.Publication Open Access Association of intrinsic capacity with incidence and mortality of cardiovascular disease: prospective study in UK Biobank(Wiley, 2023) Ramírez Vélez, Robinson; Iriarte-Fernández, María; Santafé Rodrigo, Guzmán; Malanda Trigueros, Armando; Beard, John R.; García Hermoso, Antonio; Izquierdo Redín, Mikel; Ciencias de la Salud; Estadística, Informática y Matemáticas; Ingeniería Eléctrica, Electrónica y de Comunicación; Institute for Advanced Materials and Mathematics - INAMAT2; Osasun Zientziak; Estatistika, Informatika eta Matematika; Ingeniaritza Elektrikoa, Elektronikoaren eta Telekomunikazio Ingeniaritzaren; Universidad Pública de Navarra / Nafarroako Unibertsitate PublikoaBackground: The World Health Organization proposed the concept of intrinsic capacity (IC; the composite of all the physical and mental capacities of the individual) as central for healthy ageing. However, little research has investigated the interaction and joint associations of IC with cardiovascular disease (CVD) incidence and CVD mortality in middle- and older-aged adults. Methods: Using data from 443 130 UK Biobank participants, we analysed seven biomarkers capturing the level of functioning of five domains of IC to calculate a total IC score (ranging from 0 [better IC] to +4 points [poor IC]). Associations between IC score and incidence of six long-term CVD conditions (hypertension, stroke/transient ischaemic attack stroke, peripheral vascular disease, atrial fibrillation/flutter, coronary artery disease and heart failure), and grouped mortality from these conditions were estimated using Cox proportional models, with a 1-year landmark analysis to triangulate the findings. Results: Over 10.6 years of follow-up, CVD morbidity grouped (n = 384 380 participants for the final analytic sample) was associated with IC scores (0 to +4): mean hazard ratio (HR) [95% confidence interval, CI] 1.11 [1.08–1.14], 1.20 [1.16–1.24], 1.29 [1.23–1.36] and 1.56 [1.45–1.59] in men (C-index = 0.68), and 1.17 [1.13–1.20], 1.30 [1.26–1.36], 1.52 [1.45–1.59] and 1.78 [1.67–1.89] in women (C-index = 0.70). In regard to mortality, our results indicated that the higher IC score (+4 points) was associated with a significant increase in subsequent CVD mortality (mean HR [95% CI]: 2.10 [1.81–2.43] in men [C-index = 0.75] and 2.29 [1.85–2.84] in women [C-index = 0.78]). Results of all sensitivity analyses by full sample, sex and age categories were largely consistent independent of major confounding factors (P < 0.001). Conclusions: IC deficit score is a powerful predictor of functional trajectories and vulnerabilities of the individual in relation to CVD incidence and premature death. Monitoring an individual's IC score may provide an early-warning system to initiate preventive efforts.Publication Open Access Association of intrinsic capacity with respiratory disease mortality(Elsevier, 2023) Ramírez Vélez, Robinson; Iriarte-Fernández, María; Santafé Rodrigo, Guzmán; Malanda Trigueros, Armando; Beard, John R.; García Hermoso, Antonio; Izquierdo Redín, Mikel; Ciencias de la Salud; Estadística, Informática y Matemáticas; Ingeniería Eléctrica, Electrónica y de Comunicación; Institute for Advanced Materials and Mathematics - INAMAT2; Osasun Zientziak; Estatistika, Informatika eta Matematika; Ingeniaritza Elektrikoa, Elektronikoaren eta Telekomunikazio IngeniaritzarenThe World Health Organization (WHO) introduced a framework for healthy aging in 2015 that emphasizes functional ability instead of absence of disease. Healthy ageing is defined as “the process of building and maintaining the functional ability that enables well-being”. This framework considers an individual’s intrinsic capacity (IC), environment, and the interaction between them to determine functional ability. In this prospective cohort study, we investigated the link between mortality and various respiratory diseases in almost half a million adults who are part of the UK Biobank. We derived an IC score using measures from 4 of the 5 domains: two for psychological capacity, two for sensory capacity, two for vitality and one for locomotor capacity. The exposure variable in the study was the number of reported factors, which was summed and categorized into IC scores of zero, one, two, three, or at least four. The outcome was respiratory disease-related mortality, which was linked to national mortality records. The follow-up period started from participants’ inclusion in the UK Biobank study (2006–2010) and ended on December 31, 2021, or the participant’s death was censored. The average follow-up was 10.6 years (IQR 10.0; 11.3). During a median follow-up period of 10.6 years, 27,251 deaths were recorded. Out of these, 7.5% (2059) were primarily attributed to respiratory disease. The results showed that a higher IC score (+4 points) was associated with a significantly increased risk of respiratory disease mortality, with HRs of 3.34 [2.64 to 4.23] for men (C-index = 0.83) and 3.87 [2.86 to 5.23] for women (C-index = 0.84), independent of major confounding factors (P < 0.001). Our study provides evidence that lower levels of the WHO’s IC construct are associated with increased risk of mortality and various adverse health outcomes. The IC construct, which is easily and inexpensively measured, holds great promise for transforming geriatric care worldwide, including in regions without established geriatric medicine.Publication Open Access Constructing interval-valued fuzzy material implication functions derived from general interval-valued grouping functions(IEEE, 2022) Pereira Dimuro, Graçaliz; Santos, Helida; Da Cruz Asmus, Tiago; Wieczynski, Jonata; Pinheiro, Jocivania; Callejas Bedregal, Benjamin; Bustince Sola, Humberto; Estadística, Informática y Matemáticas; Estatistika, Informatika eta Matematika; Institute of Smart Cities - ISCGrouping functions and their dual counterpart, overlap functions, have drawn the attention of many authors, mainly because they constitute a richer class of operators compared to other types of aggregation functions. Grouping functions are a useful theoretical tool to be applied in various problems, like decision making based on fuzzy preference relations. In pairwise comparisons, for instance, those functions allow one to convey the measure of the amount of evidence in favor of either of two given alternatives. Recently, some generalizations of grouping functions were proposed, such as (i) the n-dimensional grouping functions and the more flexible general grouping functions, which allowed their application in n-dimensional problems, and (ii) n-dimensional and general interval-valued grouping functions, in order to handle uncertainty on the definition of the membership functions in real-life problems. Taking into account the importance of interval-valued fuzzy implication functions in several application problems under uncertainty, such as fuzzy inference mechanisms, this paper aims at introducing a new class of interval-valued fuzzy material implication functions. We study their properties, characterizations, construction methods and provide examples.Publication Open Access Deterministic propagation modeling for intelligent vehicle communication in smart cities(MDPI, 2018) Granda, Fausto; López Iturri, Peio; Aguirre Gallego, Erik; Astrain Escola, José Javier; Medrano Fernández, Pablo; Villadangos Alonso, Jesús; Falcone Lanas, Francisco; Ingeniería Eléctrica, Electrónica y de Comunicación; Estadística, Informática y Matemáticas; Ingeniaritza Elektrikoa, Elektronikoaren eta Telekomunikazio Ingeniaritzaren; Estatistika, Informatika eta Matematika; Gobierno de Navarra / Nafarroako Gobernua, 0011-1411-2017-000020 BOL BOLETUSVehicular Ad Hoc Networks (VANETs) are envisaged to be a critical building block of Smart Cities and Intelligent Transportation System (ITS) where applications for pollution, congestion reduction, vehicle mobility improvement, accident prevention and safer roads are some of the VANETs expected benefits towards Intelligent Vehicle Communications. Although there is a significant research effort in Vehicle-to-Infrastructure (V2I) and Vehicle-to-Vehicle (V2V) communication radio channel characterization, the use of a deterministic approach as a complement of theoretical and empirical models is required to understand more accurately the propagation phenomena in urban environments. In this work, a deterministic computational tool based on an in-house 3D Ray-Launching algorithm is used to represent and analyze large-scale and small-scale urban radio propagation phenomena, including vehicle movement effects on each of the multipath components. In addition, network parameters such as throughput, packet loss and jitter, have been obtained by means of a set of experimental measurements for different V2I and V2V links. Results show the impact of factors such as distance, frequency, location of antenna transmitters (TX), obstacles and vehicle speed. These results are useful for radio-planning Wireless Sensor Networks (WSNs) designers and deployment of urban Road Side Units (RSUs).Publication Open Access Diffuse-scattering-informed geometric channel modeling for THz wireless communications systems(IEEE, 2023) Azpilicueta Fernández de las Heras, Leyre; Schultze, Alper; Celaya Echarri, Mikel; Rodríguez Corbo, Fidel Alejandro; Constantinou, Costas; Shubair, Raed M.; Falcone Lanas, Francisco; Navarro Cía, Miguel; Estadística, Informática y Matemáticas; Ingeniería Eléctrica, Electrónica y de Comunicación; Institute of Smart Cities - ISC; Estatistika, Informatika eta Matematika; Ingeniaritza Elektrikoa, Elektronikoaren eta Telekomunikazio IngeniaritzarenSurpassing 100 Gbps data throughput is a key objective and an active area of research for sixth-generation (6G) wireless networks that can only be met by exploiting the TeraHertz (THz) frequency band (0.3 - 10 THz). THz channel modeling faces new challenges given the emerging relevance of scattering and molecular absorption in this frequency range as well as the lack of a reliable library of material properties. In this work, we address these challenges by measuring systematically the dielectric properties of 27 common building and office materials and reporting an in-house three-dimensional ray-launching (3D-RL) algorithm that uses the created material library and accounts for rough surface scattering and atmospheric attenuation. In order to validate the proposed algorithm, a channel sounder measurement campaign has been performed in a typical indoor environment at 300 GHz. Simulations and measurements show good agreement, demonstrating the need for modelling scattering and atmospheric absorption in the THz band. The proposed channel model approach enables scenarios at THz frequencies to be investigated by simulation, providing a relevant knowledge for the development of ultra-high-speed wireless communication systems.Publication Open Access Digital twin modelling of open category UAV radio communications: a case study(Elsevier, 2024) Aláez Gómez, Daniel; López Iturri, Peio; Celaya Echarri, Mikel; Azpilicueta Fernández de las Heras, Leyre; Falcone Lanas, Francisco; Villadangos Alonso, Jesús; Astrain Escola, José Javier; Estadística, Informática y Matemáticas; Estatistika, Informatika eta Matematika; Ingeniería Eléctrica, Electrónica y de Comunicación; Ingeniaritza Elektrikoa, Elektronikoa eta Telekomunikazio Ingeniaritza; Institute of Smart Cities - ISC; Universidad Pública de Navarra / Nafarroako Unibertsitate PublikoaThe modeling of radio links plays a crucial role in achieving mission success of unmanned aerial vehicles (UAVs). By simulating and analyzing communication performance, operators can anticipate and address potential challenges. In this paper, we propose a full-featured UAV software-in-the-loop digital twin (SITL-DT) for a heavy-lifting hexacopter that integrates a radio link module based on an experimental path loss model for ‘Open’ category Visual Line of Sight (VLOS) conditions and drone-antenna radiation diagrams obtained via electromagnetic simulation. The main purpose of integrating and simulating a radio link is to characterize when the communication link can be conflicting due to distance, the attitude of the aircraft relative to the pilot, and other phenomena. The system architecture, including the communications module, is implemented and validated based upon experimental flight data.Publication Open Access Discrete IV dG-Choquet integrals with respect to admissible orders(Elsevier, 2021) Takáč, Zdenko; Uriz Martín, Mikel Xabier; Galar Idoate, Mikel; Paternain Dallo, Daniel; Bustince Sola, Humberto; Estatistika, Informatika eta Matematika; Ingeniaritza Elektrikoa, Elektronikoaren eta Telekomunikazio Ingeniaritzaren; Institute of Smart Cities - ISC; Estadística, Informática y Matemáticas; Ingeniería Eléctrica, Electrónica y de Comunicación; Universidad Pública de Navarra / Nafarroako Unibertsitate PublikoaIn this work, we introduce the notion of dG-Choquet integral, which generalizes the discrete Choquet integral replacing, in the first place, the difference between inputs represented by closed subintervals of the unit interval [0,1] by a dissimilarity function; and we also replace the sum by more general appropriate functions. We show that particular cases of dG-Choquet integral are both the discrete Choquet integral and the d-Choquet integral. We define interval-valued fuzzy measures and we show how they can be used with dG-Choquet integrals to define an interval-valued discrete Choquet integral which is monotone with respect to admissible orders. We finally study the validity of this interval-valued Choquet integral by means of an illustrative example in a classification problem. © 2021Publication Open Access Enabling customizable services for multimodal smart mobility with city-platforms(IEEE, 2021) Al-Rahamneh, Anas; Astrain Escola, José Javier; Villadangos Alonso, Jesús; Klaina, Hicham; Picallo Guembe, Imanol; López Iturri, Peio; Falcone Lanas, Francisco; Estatistika, Informatika eta Matematika; Ingeniaritza Elektrikoa, Elektronikoaren eta Telekomunikazio Ingeniaritzaren; Institute of Smart Cities - ISC; Estadística, Informática y Matemáticas; Ingeniería Eléctrica, Electrónica y de Comunicación; Gobierno de Navarra / Nafarroako GobernuaIn the last decades, the cities' capacity for generating digital information has grown exponentially. In this context, the successful implementation of smart cities' concept depends on the current possibility of handling the significant volumes of sensed data. This is particularly notorious in the case of urban mobility. Researchers in the field of urban planning have shown a great interest in urban mobility problems, proposing different route recommendation services towards making it easier and safer to move around the city. This paper addresses the development of an urban data platform and how to obtain and integrate information from sensors and other data sources to provide aggregated and intelligent views of raw data to support urban mobility. With the aim of evaluating the efficiency of the developed platform, we present an intelligent urban mobility solution, where the context-awareness, user preferences, and environmental factors play a significant role in the process of route planning. Finally, our work provides an experiment to assess different long-range wireless communication technologies to enable its implementation within an urban environment.Publication Open Access An enhanced approach to virtually increase quasi-stationarity regions within geometric channel models for vehicular communications(IEEE, 2023) Rodríguez Corbo, Fidel Alejandro; Celaya Echarri, Mikel; Shubair, Raed M.; Falcone Lanas, Francisco; Azpilicueta Fernández de las Heras, Leyre; Estadística, Informática y Matemáticas; Estatistika, Informatika eta Matematika; Institute of Smart Cities - ISC; Ingeniería Eléctrica, Electrónica y de Comunicación; Ingeniaritza Elektrikoa, Elektronikoaren eta Telekomunikazio IngeniaritzarenVehicular communication channels are intrinsically non-stationary, as they present high mobility and abundant dynamic scatterers. Quasi-stationary regions can assess the degree of non-stationarity within a determined scenario and time variant observation of the channel can be extracted. These regions can aid geometrical models as to increase channel sampling intervals or to develop hybrid stochastic-geometric channel models. In this work, a new methodology for the use of virtual quasi-stationary regions within geometric channel models is proposed, in order to leverage the inherent location information to virtually increase their size. Overall, the use of delay-shifted channel responses improves the mean correlation coefficient between consecutive locations, ultimately reducing computation time for time-variant geometric channel models.Publication Open Access Implementation of an interactive environment with multilevel wireless links for distributed botanical garden in university campus(IEEE, 2020) Klaina, Hicham; Picallo Guembe, Imanol; López Iturri, Peio; Astrain Escola, José Javier; Falcone Lanas, Francisco; Ingeniaritza Elektrikoa, Elektronikoaren eta Telekomunikazio Ingeniaritzaren; Estatistika, Informatika eta Matematika; Institute of Smart Cities - ISC; Ingeniería Eléctrica, Electrónica y de Comunicación; Estadística, Informática y MatemáticasIn this contribution, an end to end system to enable user interaction with a distributed botanical university campus garden is designed, implemented and tested. The proposed system employs different wireless links to collect data related to different bio physiological parameters of both the vegetation mass and the surrounding environment. Detailed analysis of these multilevel communication links is performed by using deterministic volumetric wireless channel estimation and considering underground, near ground and over ground radio propagation conditions. An in-house developed technique enables accurate wireless channel characterization for complete campus scenario considering the multiple link types and all its composing elements. Node definition and network topology is thus obtained by wireless channel analysis of over ground, near ground and underground communication for both 868 MHz and 2.4 GHz Wireless Sensor Networks in an inhomogeneous vegetation environment. Connectivity to enable user interaction as well as for telemetry and tele-control purposes within the campus is achieved by combining ZigBee and LoRaWAN transceivers with the corresponding sensor/actuator platforms. Coverage studies have been performed in order to assess communication capabilities in the set of multiple underground/near ground/over ground links, by means of deterministic channel analysis for the complete university campus location. Measurement results in lab environment as well as full system deployment are presented, showing good agreement with deterministic simulations. Moreover, system level tests have been performed over a physical campus cloud, providing adequate quality of experience metrics. The proposed solution is a scalable system that provides real time trees status monitoring by a cloud-based platform, enabling user interaction within a distributed botanical garden environment in the university campus.Publication Open Access MmWave channel stationarity analysis of V2X communications in an urban environment(IEEE, 2023) Rodríguez Corbo, Fidel Alejandro; Azpilicueta Fernández de las Heras, Leyre; Celaya Echarri, Mikel; Shubair, Raed M.; Falcone Lanas, Francisco; Estadística, Informática y Matemáticas; Ingeniería Eléctrica, Electrónica y de Comunicación; Institute of Smart Cities - ISC; Estatistika, Informatika eta Matematika; Ingeniaritza Elektrikoa, Elektronikoaren eta Telekomunikazio IngeniaritzarenVehicular communication channels are subject to high nonstationarity mainly characterized by the scatterers’ and/or transceivers’ high mobility. In this sense, this letter presents a characterization of the channel quasi-stationarity regions (QSR) in a V2X generic high-dense urban environment at millimeter wave frequencies (28 GHz). Results are extracted from multiple snapshot simulations by means of a three-dimensional ray-launching algorithm inducing the continuous mobility of the vehicles on the scene and validated with an experimental campaign of measurements in the real scenario. The average power delay profile correlation matrix is used as a descriptor of the channel nonstationarity and the mean correlation is outlined for several thresholds. The obtained QSR results are consistent with the related works reported in the literature. Finally, the effects of these QSR in small- and large-scale parameters are assessed as per threshold considerations.Publication Open Access Modeling of noisy acceleration signals from quasi-periodic movements for drift-free position estimation(IEEE, 2019) Zivanovic, M; Millor, N; Gomez, M; Gómez Fernández, Marisol; Millor Muruzábal, Nora; Zivanovic Jeremic, Miroslav; Estadística, Informática y Matemáticas; Ingeniería Eléctrica, Electrónica y de Comunicación; Estatistika, Informatika eta Matematika; Ingeniaritza Elektrikoa, Elektronikoaren eta Telekomunikazio IngeniaritzarenWe present a novel approach to drift-free position estimation from noisy acceleration signals which often arise from quasi-periodic small-amplitude body movements. In contrast to the existing methods, this data-driven strategy is designed to properly describe time-variant harmonic structures in single-channel acceleration signals for low signal-to-noise ratios. Methods: It comprises three processing steps: (1) shorttime modeling of acceleration dynamics (instantaneous harmonic amplitudes and phases) in the analysis frame, (2) analytical integration which yields short-time position, and (3) overlap-add recombination for full length position synthesis. Results: The comparative results, obtained from the medio-lateral Xacceleration components from 30s Chair Stand Test recordings, suggest that the proposed method outperforms two state-of-theart reference methods in terms of Euclidean error, root mean square error, correlation coefficient and harmonic-to-noise ratio. Conclusion: A major benefit of the method is that acceleration signal components unrelated to movement are suppressed in the whole analysis bandwidth, which allows for position estimation completely free of low-frequency artifacts. Significance: We believe that the method can be useful in frailty assessment in elderly population, as well as in clinical applications related to gait analysis in aging and rehabilitation.Publication Open Access Moisture content estimation models of flour matrices in the 67-110 GHz frequency range using a nondestructive and contactless monitoring system(IEEE, 2023) Quemada Mayoral, Carlos; Ederra Urzainqui, Íñigo; Beruete Díaz, Miguel; Gonzalo García, Ramón; Iriarte Galarregui, Juan Carlos; Estadística, Informática y Matemáticas; Ingeniería Eléctrica, Electrónica y de Comunicación; Institute of Smart Cities - ISC; Estatistika, Informatika eta Matematika; Ingeniaritza Elektrikoa, Elektronikoaren eta Telekomunikazio IngeniaritzarenThis work addresses the lack of moisture content estimation models for food products in the millimeter-wave frequency range and showcases the potential of this range for designing compact, cost-effective, and in-line food moisture sensors. The moisture content estimation models developed in this study are intended for flour-based mixtures in the 67-110 GHz frequency range and are derived by means of a nondestructive and contactless monitoring system. To this aim, data obtained by continuous-wave (CW) vector network analyzer (VNA) spectroscopy is used to create two different models, both with a coefficient of determination ( R2 ) of 0.97. One model is based on the theoretical response obtained by means of the Looyenga effective medium theory (EMT) model, while the other is based on measured data. Both models have been experimentally validated with root mean square error (RMSE) values of 0.4% and 0.35%, respectively. These small estimation errors show the potential of this frequency range to design compact, cost-effective, and in-line food moisture sensors. This research contributes to improving quality control and monitoring of moisture levels in flour-based mixtures.Publication Open Access Optical fiber sensors based on microstructured optical fibers to detect gases and volatile organic compounds: a review(MDPI, 2020) López Torres, Diego; Elosúa Aguado, César; Arregui San Martín, Francisco Javier; Ingeniaritza Elektrikoa, Elektronikoaren eta Telekomunikazio Ingeniaritzaren; Estatistika, Informatika eta Matematika; Institute of Smart Cities - ISC; Ingeniería Eléctrica, Electrónica y de Comunicación; Estadística, Informática y MatemáticasSince the first publications related to microstructured optical fibers (MOFs), the development of optical fiber sensors (OFS) based on them has attracted the interest of many research groups because of the market niches that can take advantage of their specific features. Due to their unique structure based on a certain distribution of air holes, MOFs are especially useful for sensing applications: on one hand, the increased coupling of guided modes into the cladding or the holes enhances significantly the interaction with sensing films deposited there; on the other hand, MOF air holes enhance the direct interaction between the light and the analytes that get into in these cavities. Consequently, the sensitivity when detecting liquids, gasses or volatile organic compounds (VOCs) is significantly improved. This paper is focused on the reported sensors that have been developed with MOFs which are applied to detection of gases and VOCs, highlighting the advantages that this type of fiber offers.Publication Open Access Optical system based on multiplexed FBGs to monitor hand movements(IEEE, 2021) Socorro Leránoz, Abián Bentor; Díaz Lucas, Silvia; Castillo, Silvia; Dreyer, Uilian José; Martelli, Cicero; Cardozo da Silva, Jean Carlos; Uzqueda Esteban, Itziar; Gómez Fernández, Marisol; Ruiz Zamarreño, Carlos; Ingeniaritza Elektrikoa, Elektronikoaren eta Telekomunikazio Ingeniaritzaren; Estatistika, Informatika eta Matematika; Institute of Smart Cities - ISC; Institute for Advanced Materials and Mathematics - INAMAT2; Ingeniería Eléctrica, Electrónica y de Comunicación; Estadística, Informática y Matemáticas; Gobierno de Navarra / Nafarroako GobernuaThis contribution reports the development and characterization of an optical system based on parallel Fiber Bragg Gratings (FBGs) to monitor the movements of the wrist and fingers of a hand. The system consisted of a reflective configuration made of FBGs detecting the movements of the fingers and one more located on the wrist as a reference. All FBGs were multiplexed in order to collect the basic movements of the hand. Fibers were embedded in polydimethylsiloxane for protection and to give flexibility to the optical detection setup. Measurements of strain, angle and torsion were performed during the experiments, obtaining sensitivities up to 1.29 pm/ \mu \varepsilon in strain and 64.23 pm/° in angle. Also, a study on the influence of a single sensor on the performance of the whole system was analyzed for a complete study of this proof of concept. The obtained results present a simple system that can be used to monitor the positions of the hand or for the rehabilitation of patients suffering from neuromotor or post-stroke diseases.Publication Open Access Relevance of sex, age and gait kinematics when predicting fall-risk and mortality in older adults(Elsevier, 2020) Porta Cuéllar, Sonia; Martínez Ramírez, Alicia; Millor Muruzábal, Nora; Gómez Fernández, Marisol; Izquierdo Redín, Mikel; Ingeniería Eléctrica, Electrónica y de Comunicación; Estadística, Informática y Matemáticas; Ciencias de la Salud; Ingeniaritza Elektrikoa, Elektronikoaren eta Telekomunikazio Ingeniaritzaren; Estatistika, Informatika eta Matematika; Osasun Zientziak; Gobierno de Navarra / Nafarroako Gobernua, 87/10Approximately one-third of elderly people fall each year with severe consequences, including death. The aim of this study was to identify the most relevant features to be considered to maximize the accuracy of a logistic regression model designed for prediction of fall/mortality risk among older people. This study included 261 adults, aged over 65 years. Men and women were analyzed separately because sex stratification was revealed as being essential for our purposes of feature ranking and selection. Participants completed a 3-m walk test at their own gait velocity. An inertial sensor attached to their lumbar spine was used to record acceleration data in the three spatial directions. Signal processing techniques allowed the extraction of 21 features representative of gait kinematics, to be used as predictors to train and test the model. Age and gait speed data were also considered as predictors. A set of 23 features was considered. These features demonstrate to be more or less relevant depending on the sex of the cohort under analysis and the classification label (risk of falls and mortality). In each case, the minimum size subset of relevant features is provided to show the maximum accuracy prediction capability. Gait speed has been largely used as the single feature for the prediction fall risk among older adults. Nevertheless, prediction accuracy can be substantially improved, reaching 70% in some cases, if the task of training and testing the model takes into account some other features, namely, sex, age and gait kinematic parameters. Therefore we recommend considering sex, age and step regularity to predict fall-risk.Publication Open Access Spatial MIMO channel characterization under different vehicular distributions(Institute of Electrical and Electronics Engineers, 2024) Rodríguez Corbo, Fidel Alejandro; Celaya Echarri, Mikel; Shubair, Raed M.; Falcone Lanas, Francisco; Azpilicueta Fernández de las Heras, Leyre; Estadística, Informática y Matemáticas; Estatistika, Informatika eta Matematika; Ingeniería Eléctrica, Electrónica y de Comunicación; Ingeniaritza Elektrikoa, Elektronikoa eta Telekomunikazio Ingeniaritza; Institute of Smart Cities - ISCConsidering the large benefits brought by multipleinput- multiple-output (MIMO) technologies in vehicular communications, the analysis of MIMO channel characteristics using accurate and efficient channel models for these scenarios has become crucial. In this work, an intensive analysis of the MIMO channel characteristics in a mmWave vehicle-to-infrastructure (V2I) communication link with different vehicular distributions is performed. For that purpose, an in-house deterministic simulation channel model with an embedded MIMO channel approach has been developed. Experimental measurements in the same vehicular scenario have been performed to validate the proposed channel simulation technique. Variations in the capacity of the MIMO system have been analyzed in relation to different channel metrics, obtaining that the main contributors are the Signal-to- Noise Ratio (SNR) and the Angular Spread (AS).