Smart cities: future trends and challenges 2021
Permanent URI for this collection
Browse
Browsing Smart cities: future trends and challenges 2021 by Department/Institute "Ingeniaritza"
Now showing 1 - 5 of 5
Results Per Page
Sort Options
Publication Open Access Coupling in multilayer devices(2021) Jarauta Ayensa, Eduardo; Falcone Lanas, Francisco; Ingeniería; Institute of Smart Cities - ISC; IngeniaritzaNovel design for devices in multilayer stacked is proposed. Split Ring resonators and Complementary Split Ring resonators are used, in microstrip or dual stripline-microstrip configuration to build different devices. A double frequency resonator and a multilayer triplexer are presented among the paper.Publication Open Access Experimental development of a novel thermoelectric generator without moving parts to harness shallow hot dry rock fields(2021) Alegría Cía, Patricia; Rodríguez García, Antonio; Catalán Ros, Leyre; Astrain Ulibarrena, David; Araiz Vega, Miguel; Ingeniería; Institute of Smart Cities - ISC; IngeniaritzaNowadays, geothermal energy in shallow hot dry rocks is not exploited enough due to the high economic and environmental impact as well as the lack of scalability of the existing technologies. Here, thermoelectricity has a great future potential due to its robustness, absence of moving parts and modularity. With this research, the feasibility of a novel and robust geothermal thermoelectric generator whose working principle is phase change has been experimentally demonstrated, as well as the importance of compactness to maximize its efficiency and thus, power generation.Publication Open Access Experimental study of a multistage thermoelectric heat pump using different internal heat exchangers(2021) Erro Iturralde, Irantzu; Aranguren Garacochea, Patricia; Astrain Ulibarrena, David; Ingeniería; Institute of Smart Cities - ISC; IngeniaritzaThe current need to carry out an energy transition towards a 100 % renewable horizon places the energy storage as the key. Thermal energy storage has the potential to be an optimal technology. Nowadays electrical resistors are used to convert electrical energy to termal energy by heating an air flux which is stored afterwards. In this work, it is proposed to use a multistage thermoelectric heat pump (MS-TEHP) to do this energy conversion. It has been experimentally analyzed and compared the performance of two MS-TEHP with different internal heat exchangers. With this preliminary research, it has been demonstrated the feasibility of this novel thermoelectric technology which aim is to improve the energy conversión process for thermal energy storage.Publication Open Access Smart cities: future trends and challenges 2021(2021) Universidad Pública de Navarra / Nafarroako Unibertsitate Publikoa. ISC - Institute of Smart Cities; Ingeniería; Institute of Smart Cities - ISC; IngeniaritzaThe session 'Smart Cities: future trends and challenges - 2021' was held the 17 of December of 2021 in the Public University of Navarre. Its main objective was to convey to the future researchers of the ISC the importance of conducting international research. This was done by inviting renowned experts with international experience as well as holding a poster presentation in English.Publication Open Access Smarterial – Smart matter optomagnetic(2021) Irisarri Erviti, Josu; Marzo Pérez, Asier; Galarreta Rodríguez, Itziar; Estatistika, Informatika eta Matematika; Ingeniaritza; Zientziak; Institute of Smart Cities - ISC; Institute for Advanced Materials and Mathematics - INAMAT2; Estadística, Informática y Matemáticas; Ingeniería; CienciasSmart materials, also known as programmable materials, are a combination of different components that have the capability to change shape, move around and adapt to numerous situations by applying an external controllable field. Previous works have used optically guided matter or magnetically actuated materials, but similarly to soft robots, they are limited in spatial resolution or strength. Here we propose combining a low temperature thermoplastic polymer Polycaprolactone (PCL) with ferromagnetic powder particles (Fe). Focused light can heat this compound at specific locations and make it malleable. These heated spots can be actuated by external magnetic fields. Once the material cools down, this process can be repeated, or reversed. The compound can be actuated contact-less in the form of 3D slabs, 2D sheets, and 1D filaments. We show applications for reversible tactile displays and manipulation of objects. The laboratory team has characterised the density, weight, magnetic attraction, magnetic force, phase change, thermal and electrical conductivity and heat difusión (spread point test) for smart ferromagnetic compounds of different mixture proportions. The main advantages of this smart matter optomagnetic are the high spatial resolution of light and the strong force of magnetic attraction whilst mechanical properties of polymers are practically conserved. Due to the low temperature required and the possibility to use infrared or electromagnetic induction to heat the compound, the smart material can be used in air, water, or inside biological tissue. Eventually, Smart materials will enrich collaborative movements, such as grab and hold, and more complex ones, as reshaping and reassembling.