Artículos de revista IdAB - IdAB Aldizkari artikuluak
Permanent URI for this collection
Browse
Browsing Artículos de revista IdAB - IdAB Aldizkari artikuluak by Department/Institute "Producción Agraria"
Now showing 1 - 20 of 44
Results Per Page
Sort Options
Publication Open Access Analagous population structures for two alphabaculoviruses highlight a functional role for deletion mutants(American Society for Microbiology, 2012) Serrano García, Amaya; Williams, Trevor; Simón de Goñi, Oihane; López Ferber, Miguel; Caballero Murillo, Primitivo; Muñoz Labiano, Delia; Nekazaritza Ekoizpena; Producción Agraria; IdAB. Instituto de Agrobiotecnología / Agrobioteknologiako InstitutuaA natural Spodoptera exigua multiple nucleopolyhedrovirus (SeMNPV) isolate from Florida shares a strikingly similar genotypic composition to that of a natural Spodoptera frugiperda MNPV (SfMNPV) isolate from Nicaragua. Both isolates comprise a high proportion of large-deletion genotypes that lack genes that are essential for viral replication or transmission. To determine the likely origins of such genotypically similar population structures, we performed genomic and functional analyses of these genotypes. The homology of nucleotides in the deleted regions was as high as 79%, similar to those of other colinear genomic regions, although some SfMNPV genes were not present in SeMNPV. In addition, no potential consensus sequences were shared between the deletion flanking sequences. These results indicate an evolutionary mechanism that independently generates and sustains deletion mutants within each virus population. Functional analyses using different proportions of complete and deletion genotypes were performed with the two viruses in mixtures of occlusion bodies (OBs) or co-occluded virions. Ratios greater than 3:1 of complete/deletion genotypes resulted in reduced pathogenicity (expressed as median lethal dose), but there were no significant changes in the speed of kill. In contrast, OB yields increased only in the 1:1 mixture. The three phenotypic traits analyzed provide a broader picture of the functional significance of the most extensively deleted SeMNPV genotype and contribute toward the elucidation of the role of such mutants in baculovirus populations.Publication Open Access Analysis of a naturally-occurring deletion mutant of Spodoptera frugiperda multiple nucleopolyhedrovirus reveals sf58 as a new per os infectivity factor of lepidopteran-infecting baculoviruses(Elsevier, 2012-10-21) Simón de Goñi, Oihane; Palma Dovis, Leopoldo; Williams, Trevor; López Ferber, Miguel; Caballero Murillo, Primitivo; Producción Agraria; Nekazaritza Ekoizpena; IdAB. Instituto de Agrobiotecnología / Agrobioteknologiako Institutua; Gobierno de Navarra / Nafarroako GobernuaThe Nicaraguan population of Spodoptera frugiperda multiple nucleopolyhedrovirus, SfMNPV-NIC, is structured as a mixture of nine genotypes (A–I). Occlusion bodies (OBs) of SfMNPV-C, -D and -G pure genotypes are incapable of oral transmission; a phenotype which in SfMNPV-C and -D is due to the absence of pif1 and pif2 genes. The complete sequence of the SfMNPV-G genome was determined to identify possible factors involved in this phenotype. Deletions of 4860 bp (22,366–27,225) and 60 bp (119,759–119,818) were observed in SfMNPV-G genome compared with that of the predominant complete genotype SfMNPV-B (132,954 bp). However no genes homologous to previously described per os infectivity factors were located within the deleted sequences. Significant differences were detected in the nucleotide sequence in sf58 gene (unknown function) that produced changes in the amino acid sequence and the predicted secondary structure of the corresponding protein. This gene is conserved only in lepidopteran baculoviruses (alpha- and betabaculoviruses). To determine the role of sf58 in peroral infectivity a deletion mutant was constructed using bacmid technology. OBs of the deletion mutant (Sf58null) were not orally infectious for S. frugiperda larvae, whereas Sf58null rescue virus OBs recovered oral infectivity. Sf58null DNA and occlusion derived virions (ODVs) were as infective as SfMNPV bacmid DNA and ODVs in intrahemocelically infected larvae or cell culture, indicating that defects in ODV or OB morphogenesis were not involved in the loss of peroral infectivity. Addition of optical brightener or the presence of the orally infectious SfMNPV-B OBs in mixtures with SfMNPV-G OBs did not recover Sf58null OB infectivity. According to these results sf58 is a new per os infectivity factor present only in lepidopteran baculoviruses.Publication Open Access B regulates IS256-mediated Staphylococcus aureus biofilm phenotypic variation(American Society for Microbiology, 2007) Valle Turrillas, Jaione; Vergara Irigaray, Marta; Merino Barberá, Nekane; Penadés, José R.; Lasa Uzcudun, Íñigo; Nekazaritza Ekoizpena; Producción Agraria; IdAB. Instituto de Agrobiotecnología / Agrobioteknologiako InstitutuaBiofilm formation in Staphylococcus aureus is subject to phase variation, and biofilm-negative derivatives emerge sporadically from a biofilm-positive bacterial population. To date, the only known mechanism for generating biofilm phenotypic variation in staphylococci is the reversible insertion/excision of IS256 in biofilm-essential genes. In this study, we present evidence suggesting that the absence of the σB transcription factor dramatically increases the rate of switching to the biofilm-negative phenotype in the clinical isolate S. aureus 15981, under both steady-state and flow conditions. The phenotypic switching correlates with a dramatic increase in the number of IS256 copies in the chromosomes of biofilm-negative variants, as well as with an augmented IS256 insertion frequency into the icaC and the sarA genes. IS256-mediated biofilm switching is reversible, and biofilm-positive variants could emerge from biofilm-negative σB mutants. Analysis of the chromosomal insertion frequency using a recombinant IS256 element tagged with an erythromycin marker showed an almost three-times-higher transposition frequency in a ΔσB strain. However, regulation of IS256 activity by σB appears to be indirect, since transposase transcription is not affected in the absence of σB and IS256 activity is inhibited to wild-type levels in a ΔσB strain under NaCl stress. Overall, our results identify a new role for σB as a negative regulator of insertion sequence transposition and support the idea that deregulation of IS256 activity abrogates biofilm formation capacity in S. aureus.Publication Unknown Bacillus thuringiensis toxins: an overview of their biocidal activity(MDPI, 2014) Palma Dovis, Leopoldo; Muñoz Labiano, Delia; Berry, Colin; Murillo Martínez, Jesús; Caballero Murillo, Primitivo; Nekazaritza Ekoizpena; Producción Agraria; IdAB. Instituto de Agrobiotecnología / Agrobioteknologiako InstitutuaBacillus thuringiensis (Bt) is a Gram positive, spore-forming bacterium that synthesizes parasporal crystalline inclusions containing Cry and Cyt proteins, some of which are toxic against a wide range of insect orders, nematodes and human-cancer cells. These toxins have been successfully used as bioinsecticides against caterpillars, beetles, and flies, including mosquitoes and blackflies. Bt also synthesizes insecticidal proteins during the vegetative growth phase, which are subsequently secreted into the growth medium. These proteins are commonly known as vegetative insecticidal proteins (Vips) and hold insecticidal activity against lepidopteran, coleopteran and some homopteran pests. A less well characterized secretory protein with no amino acid similarity to Vip proteins has shown insecticidal activity against coleopteran pests and is termed Sip (secreted insecticidal protein). Bin-like and ETX_MTX2-family proteins (Pfam PF03318), which share amino acid similarities with mosquitocidal binary (Bin) and Mtx2 toxins, respectively, from Lysinibacillus sphaericus, are also produced by some Bt strains. In addition, vast numbers of Bt isolates naturally present in the soil and the phylloplane also synthesize crystal proteins whose biological activity is still unknown. In this review, we provide an updated overview of the known active Bt toxins to date and discuss their activities.Publication Open Access Bap, a Staphylococcus aureus surface protein involved in biofilm formation(American Society for Microbiology, 2001) Cucarella, Carme; Solano Goñi, Cristina; Valle Turrillas, Jaione; Amorena Zabalza, Beatriz; Lasa Uzcudun, Íñigo; Penadés, José R.; Nekazaritza Ekoizpena; Producción Agraria; IdAB. Instituto de Agrobiotecnología / Agrobioteknologiako Institutua; Gobierno de Navarra / Nafarroako GobernuaIdentification of new genes involved in biofilm formation is needed to understand the molecular basis of strain variation and the pathogenic mechanisms implicated in chronic staphylococcal infections. A biofilm-producing Staphylococcus aureus isolate was used to generate biofilm-negative transposon (Tn917) insertion mutants. Two mutants were found with a significant decrease in attachment to inert surfaces (early adherence), intercellular adhesion, and biofilm formation. The transposon was inserted at the same locus in both mutants. This locus (bap [for biofilm associated protein]) encodes a novel cell wall associated protein of 2,276 amino acids (Bap), which shows global organizational similarities to surface proteins of gram-negative (Pseudomonas aeruginosa andSalmonella enterica serovar Typhi) and gram-positive (Enteroccocus faecalis) microorganisms. Bap's core region represents 52% of the protein and consists of 13 successive nearly identical repeats, each containing 86 amino acids. bap was present in a small fraction of bovine mastitis isolates (5% of the 350S. aureus isolates tested), but it was absent from the 75 clinical human S. aureus isolates analyzed. All staphylococcal isolates harboring bap were highly adherent and strong biofilm producers. In a mouse infection modelbap was involved in pathogenesis, causing a persistent infection.Publication Open Access Chrysodeixis chalcites nucleopolyhedrovirus (ChchNPV): natural occurrence and efficacy as a biological insecticide on young banana plants in greenhouse and open-field conditions on the Canary Islands(Public Library of Science, 2017) Fuentes Barrera, Ernesto Gabriel; Hernández Suárez, Estrella; Simón de Goñi, Oihane; Williams, Trevor; Caballero Murillo, Primitivo; Nekazaritza Ekoizpena; Producción Agraria; IdAB. Instituto de Agrobiotecnología / Agrobioteknologiako InstitutuaChrysodeixis chalcites, an important pest of banana crops on the Canary Islands, is usually controlled by chemical insecticides. The present study aimed to evaluate the efficacy of the most prevalent isolate of the Chrysodeixis chalcites nucleopolyhedrovirus (ChchNPV, Baculoviridae) as a biological insecticide. Overall the prevalence of ChchNPV infection in C. chalcites populations was 2.3% (103 infected larvae out of 4,438 sampled), but varied from 0±4.8% on Tenerife and was usually low (0±2%) on the other islands. On Tenerife, infected larvae were present at 11 out of 17 plantations sampled. The prevalence of infection in larvae on bananas grown under greenhouse structures was significantly higher (3%) than in open-field sites (1.4%). The ChchNPV-TF1 isolate was the most abundant and widespread of four genetic variants of the virus. Application of 1.0x109 viral occlusion bodies (OBs)/l of ChchNPV-TF1 significantly reduced C. chalcites foliar damage in young banana plants as did commonly used pesticides, both in greenhouse and open-field sites. The insecticidal efficacy of ChchNPV-TF1 was similar to that of indoxacarb and a Bacillus thuringiensis (Bt)- based insecticide in one year of trials and similar to Bt in the following year of trails in greenhouse and field crops. However, larvae collected at different time intervals following virus treatments and reared in the laboratory experienced 2±7 fold more mortality than insects from conventional insecticide treatments. This suggests that the acquisition of lethal dose occurred over an extended period (up to 7 days) compared to a brief peak in larvae on plants treated with conventional insecticides. These results should prove useful for the registration of a ChchNPV-based insecticide for integrated management of this pest in banana crops on the Canary Islands.Publication Open Access Chrysodeixis chalcites, a pest of banana crops on the Canary Islands: incidence, economic losses and current control measures(Elsevier, 2018-03-05) Fuentes Barrera, Ernesto Gabriel; Hernández Suárez, Estrella; Simón de Goñi, Oihane; Williams, Trevor; Caballero Murillo, Primitivo; Producción Agraria; Nekazaritza Ekoizpena; IdAB. Instituto de Agrobiotecnología / Agrobioteknologiako InstitutuaChrysodeixis chalcites is an emergent pest in bananas (Musa acuminata Colla) grown on the Canary Islands. Feeding damage to leaves and fruit and the control measures targeted at this pest were evaluated over a two-year period (2013–2014). The prevalence of infestations (42–100%) on the islands was similar during the two years of the study. Mean foliar damage (1.5–7.3% depending on island) and fruit damage (1.0–5.7%) detected in field surveys varied significantly across islands, plantation aspect (north- or south-facing) and season. Fruit damage was not correlated with foliar damage (P > 0.05). The weight of C. chalcites damaged bananas varied significantly (0.2–4.2% of harvested fruit) across islands, particularly in the spring. Overall, 3155 tonnes of bananas/yr are likely discarded due to C. chalcites damage, representing 1.5% of annual production or 2.68 million €/yr. The most frequently used pesticide was indoxacarb, usually applied on three occasions per crop cycle, for which the cost of control measures would average 240 €/ha per crop cycle. The direct damage that C. chalcites causes to banana fruit results in significant economic losses in addition to the direct costs of pesticide based control measures. Effective and sustainable control strategies are required against this pest.Publication Open Access Co-infection with iflaviruses influences the insecticidal properties of Spodoptera exigua multiple nucleopolyhedrovirus occlusion bodies: implications for the production and biosecurity of baculovirus insecticides(Public Library of Science, 2017) Carballo Palos, Arkaitz; Murillo Pérez, Rosa; Jakubowska, Agata; Herrero, Salvador; Williams, Trevor; Caballero Murillo, Primitivo; Nekazaritza Ekoizpena; Producción Agraria; IdAB. Instituto de Agrobiotecnología / Agrobioteknologiako InstitutuaBiological insecticides based on Spodoptera exigua multiple nucleopolyhedrovirus (SeMNPV) can efficiently control S. exigua larvae on field and greenhouse crops in many parts of the world. Spanish wild populations and laboratory colonies of S. exigua are infected by two iflaviruses (SeIV-1 and SeIV-2). Here we evaluated the effect of iflavirus co-infection on the insecticidal characteristics of SeMNPV occlusion bodies (OBs). Overall, iflavirus coinoculation consistently reduced median lethal concentrations (LC50) for SeMNPV OBs compared to larvae infected with SeMNPV alone. However, the speed of kill of SeMNPV was similar in the presence or absence of the iflaviruses. A reduction of the weight gain (27%) associated with iflavirus infection resulted in a 30% reduction in total OB production per larva. Adult survivors of SeMNPV OB inoculation were examined for covert infection. SeMNPV DNA was found to be present at a high prevalence in all SeIV-1 and SeIV-2 coinfection treatments. Interestingly, co-inoculation of SeMNPV with SeIV-2 alone or in mixtures with SeIV-1 resulted in a significant increase in the SeMNPV load of sublethally infected adults, suggesting a role for SeIV-2 in vertical transmission or reactivation of sublethal SeMNPV infections. In conclusion, iflaviruses are not desirable in insect colonies used for large scale baculovirus production, as they may result in diminished larval growth, reduced OB production and, depending on their host-range, potential risks to non-target Lepidoptera.Publication Open Access Complete genome sequence of five Chrysodeixis chalcites nucleopolyhedrovirus genotypes from a Canary Islands isolate(American Society for Microbiology, 2013-10-24) Bernal Rodríguez, Alexandra; Williams, Trevor; Muñoz Labiano, Delia; Caballero Murillo, Primitivo; Simón de Goñi, Oihane; Producción Agraria; Nekazaritza Ekoizpena; IdAB. Instituto de Agrobiotecnología / Agrobioteknologiako Institutua; Gobierno de Navarra / Nafarroako GobernuaThe Chrysodeixis chalcites single nucleopolyhedrovirus (ChchSNPV) infects and kills C. chalcites larvae, an important pest of banana crops in the Canary Islands. Five genotypes present in the most prevalent and widespread isolate in the Canary Islands were sequenced, providing genetic data relevant to the genotypic and phenotypic diversity of this virus.Publication Open Access Deletion genotypes reduce occlusion body potency but increase occlusion body production in a Colombian Spodoptera frugiperda nucleopolyhedrovirus population(Public Library of Science, 2013) Barrera Cubillos, Gloria Patricia; Williams, Trevor; Villamizar, Laura; Caballero Murillo, Primitivo; Simón de Goñi, Oihane; Nekazaritza Ekoizpena; Producción Agraria; IdAB. Instituto de Agrobiotecnología / Agrobioteknologiako InstitutuaA Colombian field isolate (SfCOL-wt) of Spodoptera frugiperda multiple nucleopolyhedrovirus (SfMNPV) is a mixture of different genotypes. To evaluate the insecticidal properties of the different genotypic variants, 83 plaque purified virus were characterized. Ten distinct genotypes were identified (named A through J). SfCOL-A was the most prevalent (71±2%; mean ± SE) showing a PstI restriction profile indistinguishable to that of SfCOL-wt. The remaining nine genotypes presented genomic deletions of 3.8 - 21.8 Kb located mainly between nucleotides 11,436 and 33,883 in the reference genome SfMNPV-B, affecting the region between open reading frames (ORFs) sf20 and sf33. The insecticidal activity of each genotype from SfCOL-wt and several mixtures of genotypes was compared to that of SfCOL-wt. The potency of SfCOL-A occlusion bodies (OBs) was 4.4-fold higher than SfCOL-wt OBs, whereas the speed of kill of SfCOL-A was similar to that of SfCOL-wt. Deletion genotype OBs were similarly or less potent than SfCOL-wt but six deletion genotypes were faster killing than SfCOL-wt. The potency of genotype mixtures cooccluded within OBs were consistently reduced in two-genotype mixtures involving equal proportions of SfCOL-A and one of three deletion genotypes (SfCOL-C, -D or -F). Speed of kill and OB production were improved only when the certain genotype mixtures were co-occluded, although OB production was higher in the SfCOL-wt isolate than in any of the component genotypes, or mixtures thereof. Deleted genotypes reduced OB potency but increased OB production of the SfCOL-wt population, which is structured to maximize the production of OBs in each infected host.Publication Open Access Determinant factors in the production of a co-occluded binary mixture of Helicoverpa armigera alphabaculovirus (HearNPV) genotypes with desirable insecticidal characteristics(Public Library of Science, 2016) Arrizubieta Celaya, Maite; Simón de Goñi, Oihane; Williams, Trevor; Caballero Murillo, Primitivo; Nekazaritza Ekoizpena; Producción Agraria; IdAB. Instituto de Agrobiotecnología / Agrobioteknologiako Institutua; Gobierno de Navarra / Nafarroako Gobernua, IIQ14065:RI1A co-occluded binary mixture of Helicoverpa armigera nucleopolyhedrovirus genotypes HearSP1B and HearLB6 at a 1:1 ratio (HearSP1B+HearLB6) was selected for the development of a virus-based biological insecticide, which requires an efficient large-scale production system. In vivo production systems require optimization studies in each host-virus pathosystem. In the present study, the effects of larval instar, rearing density, timing of inoculation, inoculum concentration and temperature on the production of HearSP1B+HearLB6 in its homologous host were evaluated. The high prevalence of cannibalism in infected larvae (40–87%) indicated that insects require individual rearing to avoid major losses in OB production. The OB production of recently molted fifth instars (7.0 x 109 OBs/larva), combined with a high prevalence of mortality (85.7%), resulted in the highest overall OB yield (6.0 x 1011 OBs/100 inoculated larvae), compared to those of third or fourth instars. However, as inoculum concentration did not influence final OB yield, the lowest concentration, LC80 (5.5 x 106 OBs/ml), was selected. Incubation temperature did not significantly influence OB yield, although larvae maintained at 30°C died 13 and 34 hours earlier than those incubated at 26°C and 23°C, respectively. We conclude that the efficient production of HearSP1B+HearLB6 OBs involves inoculation of recently molted fifth instars with a LC80 concentration of OBs followed by individual rearing at 30°C.Publication Open Access Draft genome sequence of Bacillus thuringiensis serovar tolworthi strain Na205-3, an isolate toxic for Helicoverpa armigera(American Society for Microbiology, 2014) Palma Dovis, Leopoldo; Muñoz Labiano, Delia; Murillo Martínez, Jesús; Caballero Murillo, Primitivo; Nekazaritza Ekoizpena; Producción Agraria; IdAB. Instituto de Agrobiotecnología / Agrobioteknologiako InstitutuaWe report here the complete annotated 6,510,053-bp draft genome sequence of Bacillus thuringiensis serovar tolworthi strain Na205-3, which is toxic for Helicoverpa armigera. This strain potentially contains nine insecticidal toxin genes homologous to cry1Aa12, cry1Ab1, cry1Ab8, cry1Ba1, cry1Af1, cry1Ia10, vip1Bb1, vip2Ba2, and vip3Aa6.Publication Unknown Draft genome sequence of Photorhabdus luminescens strain DSPV002N isolated from Santa Fe, Argentina(American Society for Microbiology, 2016) Palma Dovis, Leopoldo; Valle, Eleodoro E. del; Frizzo, Laureano; Berry, Colin; Caballero Murillo, Primitivo; Nekazaritza Ekoizpena; Producción Agraria; IdAB. Instituto de Agrobiotecnología / Agrobioteknologiako InstitutuaHere, we report the draft genome sequence of Photorhabdus luminescens strain DSPV002N, which consists of 177 contig sequences accounting for 5,518,143 bp, with a G+C content of 42.3% and 4,701 predicted protein-coding genes (CDSs). From these, 27 CDSs exhibited significant similarity with insecticidal toxin proteins from Photorhabdus luminescens subsp. laumondii TT01.Publication Open Access Draft genome sequences of two bacillus thuringiensis strains and characterization of a putative 41.9-kDa insecticidal toxin(MDPI, 2014) Palma Dovis, Leopoldo; Muñoz Labiano, Delia; Berry, Colin; Murillo Martínez, Jesús; Caballero Murillo, Primitivo; Nekazaritza Ekoizpena; Producción Agraria; IdAB. Instituto de Agrobiotecnología / Agrobioteknologiako Institutua; Universidad Pública de Navarra / Nafarroako Unibertsitate PublikoaIn this work, we report the genome sequencing of two Bacillus thuringiensis strains using Illumina next-generation sequencing technology (NGS). Strain Hu4-2, toxic to many lepidopteran pest species and to some mosquitoes, encoded genes for two insecticidal crystal (Cry) proteins, cry1Ia and cry9Ea, and a vegetative insecticidal protein (Vip) gene, vip3Ca2. Strain Leapi01 contained genes coding for seven Cry proteins (cry1Aa, cry1Ca, cry1Da, cry2Ab, cry9Ea and two cry1Ia gene variants) and a vip3 gene (vip3Aa10). A putative novel insecticidal protein gene 1143 bp long was found in both strains, whose sequences exhibited 100% nucleotide identity. The predicted protein showed 57 and 100% pairwise identity to protein sequence 72 from a patented Bt strain (US8318900) and to a putative 41.9-kDa insecticidal toxin from Bacillus cereus, respectively. The 41.9-kDa protein, containing a C-terminal 6× HisTag fusion, was expressed in Escherichia coli and tested for the first time against four lepidopteran species (Mamestra brassicae, Ostrinia nubilalis, Spodoptera frugiperda and S. littoralis) and the green-peach aphid Myzus persicae at doses as high as 4.8 μg/cm2 and 1.5 mg/mL, respectively. At these protein concentrations, the recombinant 41.9-kDa protein caused no mortality or symptoms of impaired growth against any of the insects tested, suggesting that these species are outside the protein’s target range or that the protein may not, in fact, be toxic. While the use of the polymerase chain reaction has allowed a significant increase in the number of Bt insecticidal genes characterized to date, novel NGS technologies promise a much faster, cheaper and efficient screening of Bt pesticidal proteins.Publication Open Access Effect of feeding regime on composting in bins(Taylor & Francis, 2017) Storino, Francesco; Menéndez Villanueva, Sergio; Muro Erreguerena, Julio; Aparicio Tejo, Pedro María; Irigoyen Iriarte, Ignacio; Natura Ingurunearen Zientziak; Nekazaritza Ekoizpena; Ciencias del Medio Natural; Producción Agraria; IdAB. Instituto de Agrobiotecnología / Agrobioteknologiako InstitutuaComposting in bins is one of the most practical home composting methods. There is currently a need for greater information to improve the management of the composting process and to create home composting programs, which ensure sustainable production of high quality compost. This study investigates how two aspects of the bin feeding regime—the feeding frequency and the amount of waste applied at each feed—influence the process's evolution and the quality of the compost. Compost bins were assayed after introducing the same amount of kitchen and garden waste according to three different frequencies: in a single batch, weekly, or every 3 weeks. A fourth treatment was applied to calculate the potential waste reduction achieved by the composting process, filling the bins to the brim on a weekly basis. Temperature, mass, and volume changes; the microbial diversity (by Biolog); and gas emissions (CO2, CH4, N2O, and NH3) were all determined during the process. At the end of the experiment, all of the composts were weighed and characterized. Results show that the main differences were very dependent on the quantity of waste provided. Large amounts of waste were added increasing the compost's temperature and maturity during the process, while slightly affecting the salinity and phytotoxicity of the final compost but without any clear effects on microbial diversity and gas emission. Therefore, from a technical point of view, the shared use of compost bins among several households (community composting) is preferable to individual usPublication Open Access Effect of N-(n-butyl) thiophosphoric triamide on urea metabolism and the assimilation of ammonium by Triticum aestivum L.(Springer, 2010-08-25) Artola Rezola, Ekhiñe; Cruchaga Moso, Saioa; Ariz Arnedo, Idoia; Morán Juez, José Fernando; Garnica, María; Houdusse, Fabrice; García Mina, José M.; Irigoyen Iriarte, Ignacio; Lasa Larrea, Berta; Aparicio Tejo, Pedro María; IdAB. Instituto de Agrobiotecnología / Agrobioteknologiako Institutua; Producción Agraria; Nekazaritza EkoizpenaThe use of urea as an N fertilizer has increased to such an extent that it is now the most widely used fertilizer in the world. However, N losses as a result of ammonia volatilization lead to a decrease in its efficiency, therefore different methods have been developed over the years to reduce these losses. One of the most recent involves the use of urea combined with urease inhibitors, such as N-(n-butyl) thiophosphoric triamide (NBPT), in an attempt to delay the hydrolysis of urea in the soil. The aim of this study is to perform an in-depth analysis of the effects that NBPT use has on plant growth and N metabolism. Wheat plants were cultivated in a greenhouse experiment lasting four weeks and fertilized with urea and NBPT at different concentrations (0, 0.012, 0.062, 0.125%). Each treatment was replicated six times. A non-fertilized control was also cultivated. Several parameters related with N metabolism were analysed at harvest. NBPT use was found to have visible effects, such as a transitory yellowing of the leaf tips, at the end of the first week of treatment. At a metabolic level, plants treated with the inhibitor were found to have more urea in their tissues and a lower amino acid content, lower glutamine synthetase activity, and lower urease and glutamine synthetase content at the end of the study period, whereas their urease activity seemed to have recovered by this stage.Publication Open Access The enterococcal surface protein, Esp, is involved in Enterococcus faecalis biofilm formation(American Society for Microbiology, 2001) Toledo Arana, Alejandro; Valle Turrillas, Jaione; Solano Goñi, Cristina; Arrizubieta Balerdi, María Jesús; Cucarella, Carme; Lamata, Marta; Amorena Zabalza, Beatriz; Leiva, José; Penadés, José R.; Lasa Uzcudun, Íñigo; Nekazaritza Ekoizpena; Producción Agraria; IdAB. Instituto de Agrobiotecnología / Agrobioteknologiako Institutua; Gobierno de Navarra / Nafarroako GobernuaThe enterococcal surface protein, Esp, is a high-molecular-weight surface protein of unknown function whose frequency is significantly increased among infection-derived Enterococcus faecalis isolates. In this work, a global structural similarity was found between Bap, a biofilm-associated protein of Staphylococcus aureus, and Esp. Analysis of the relationship between the presence of the Esp-encoding gene (esp) and the biofilm formation capacity in E. faecalis demonstrated that the presence of the esp gene is highly associated (P < 0.0001) with the capacity of E. faecalis to form a biofilm on a polystyrene surface, since 93.5% of the E. faecalis esp-positive isolates were capable of forming a biofilm. Moreover, none of the E. faecalis esp-deficient isolates were biofilm producers. Depending on the E. faecalis isolate, insertional mutagenesis of esp caused either a complete loss of the biofilm formation phenotype or no apparent phenotypic defect. Complementation studies revealed that Esp expression in an E. faecalis esp-deficient strain promoted primary attachment and biofilm formation on polystyrene and polyvinyl chloride plastic from urine collection bags. Together, these results demonstrate that (i) biofilm formation capacity is widespread among clinical E. faecalis isolates, (ii) the biofilm formation capacity is restricted to the E. faecalis strains harboring esp, and (iii) Esp promotes primary attachment and biofilm formation of E. faecalis on abiotic surfaces.Publication Unknown Expression of a peroral infection factor determines pathogenicity and population structure in an insect virus(Public Library of Science, 2013) Simón de Goñi, Oihane; Williams, Trevor; Cerutti, Martine; Caballero Murillo, Primitivo; López Ferber, Miguel; Nekazaritza Ekoizpena; Producción Agraria; IdAB. Instituto de Agrobiotecnología / Agrobioteknologiako InstitutuaA Nicaraguan isolate of Spodoptera frugiperda multiple nucleopolyhedrovirus is being studied as a possible biological insecticide. This virus exists as a mixture of complete and deletion genotypes; the latter depend on the former for the production of an essential per os transmission factor (pif1) in coinfected cells. We hypothesized that the virus population was structured to account for the prevalence of pif1 defector genotypes, so that increasing the abundance of pif1 produced by a cooperator genotype in infected cells would favor an increased prevalence of the defector genotype. We tested this hypothesis using recombinant viruses with pif1 expression reprogrammed at its native locus using two exogenous promoters (egt, p10) in the pif2/pif1 intergenic region. Reprogrammed viruses killed their hosts markedly faster than the wild-type and rescue viruses, possibly due to an earlier onset of systemic infection. Group success (transmission) depended on expression of pif1, but overexpression was prejudicial to group-specific transmissibility, both in terms of reduced pathogenicity and reduced production of virus progeny from each infected insect. The presence of pif1-overproducing genotypes in the population was predicted to favor a shift in the prevalence of defector genotypes lacking pif1-expressing capabilities, to compensate for the modification in pif1 availability at the population level. As a result, defectors increased the overall pathogenicity of the virus population by diluting pif1 produced by overexpressing genotypes. These results offer a new and unexpected perspective on cooperative behavior between viral genomes in response to the abundance of an essential public good that is detrimental in excess.Publication Open Access Foliar application of urea to "Sauvignon Blanc" and "Merlot" vines: doses and time of application(Springer Nature, 2012-02-19) Lasa Larrea, Berta; Menéndez Villanueva, Sergio; Sagastizabal, Kepa; Calleja Cervantes, María Eréndira; Irigoyen Iriarte, Ignacio; Muro Erreguerena, Julio; Aparicio Tejo, Pedro María; Ariz Arnedo, Idoia; IdAB. Instituto de Agrobiotecnología / Agrobioteknologiako Institutua; Producción Agraria; Nekazaritza EkoizpenaA careful control of the N nutritional status of grapevines can have a determining effect on wine characteristics; therefore a suitable management of N fertilization might allow some wine parameters to be modified, thereby improving product quality. The aim of this study was to determine the effect of foliar application of urea at different doses and different times of the growing season on the parameters of Sauvignon Blanc and Merlot grape juice. The research described herein involved Sauvignon Blanc and Merlot grapevines (V. vinifera L.) at a commercial vineyard and was conducted over 2 years. In the first year, N treatment involved a foliar application at a dose of 10 kg N ha−1 during veraison, whereas in the second year it involved a foliar urea application at two doses (10 and 50 kg N ha−1) and at three different times—3 weeks before veraison, during veraison and 3 weeks after veraison. In this second year, the urea applied at a dose of 10 kg N ha−1 was isotopically labelled with 1% 15N. Chemical parameters, yeast assimilable N, amino acid content, amino acid profile and N isotopic composition were determined for all treatments. Grape and grape-juice parameters for Merlot were found to be more affected by N fertilization than for Sauvignon Blanc and were also more affected during the second year than during the first year, thus indicating that the climatic characteristics of each campaign could affect these parameters. The yeast assimilable N in grape juice was found to be higher for late applications of foliar urea, with application of the higher dose of urea during veraison increasing the amino acid and proline contents in both varieties. The isotopic analysis data showed that the urea applied to leaves was transferred to the berries, with the maximum translocation in Sauvignon Blanc occurring for the post-veraison treatment and in Merlot for the veraison treatment. We can therefore conclude that foliar application of urea could modify grape juice quality and could therefore be used as a tool for obtaining quality wines.Publication Unknown Gender-mediated differences in vertical transmission of a nucleopolyhedrovirus(Public Library of Science, 2013) Virto Garayoa, Cristina; Zárate Chaves, Carlos Andrés; López Ferber, Miguel; Murillo Pérez, Rosa; Caballero Murillo, Primitivo; Williams, Trevor; Nekazaritza Ekoizpena; Producción Agraria; IdAB. Instituto de Agrobiotecnología / Agrobioteknologiako InstitutuaWith the development of sensitive molecular techniques for detection of low levels of asymptomatic pathogens, it becoming clear that vertical transmission is a common feature of some insect pathogenic viruses, and likely to be essential to virus survival when opportunities for horizontal transmission are unfavorable. Vertical transmission of Spodoptera exigua multiple nucleopolyhedrovirus (SeMNPV) is common in natural populations of S. exigua. To assess whether gender affected transgenerational virus transmission, four mating group treatments were performed using healthy and sublethally infected insects: i) healthy males (H=)6healthy females (HR); ii) infected males (I=)6healthy females (HR); iii) healthy males (H=)6infected females (IR) and iv) infected males (I=)6infected females (IR). Experimental adults and their offspring were analyzed by qPCR to determine the prevalence of infection. Both males and females were able to transmit the infection to the next generation, although female-mediated transmission resulted in a higher prevalence of infected offspring. Malemediated venereal transmission was half as efficient as maternally-mediated transmission. Egg surface decontamination studies indicated that the main route of transmission is likely transovarial rather than transovum. Both male and female offspring were infected by their parents in similar proportions. Incorporating vertically-transmitted genotypes into virusbased insecticides could provide moderate levels of transgenerational pest control, thereby extending the periods between bioinsecticide applications.
- «
- 1 (current)
- 2
- 3
- »