Artículos de revista IMAB - IMAB aldizkari artikuluak
Permanent URI for this collection
Browse
Browsing Artículos de revista IMAB - IMAB aldizkari artikuluak by Subject "Alphabaculovirus"
Now showing 1 - 3 of 3
Results Per Page
Sort Options
Publication Open Access Bacmid expression of granulovirus enhancin En3 accumulates in cell soluble fraction to potentiate nucleopolyhedrovirus infection(MDPI, 2021) Ricarte Bermejo, Adriana; Simón de Goñi, Oihane; Fernández González, Ana Beatriz; Williams, Trevor; Caballero Murillo, Primitivo; Institute for Multidisciplinary Research in Applied Biology - IMABEnhancins are metalloproteinases that facilitate baculovirus infection in the insect midgut. They are more prevalent in granuloviruses (GVs), constituting up to 5% of the proteins of viral occlusion bodies (OBs). In nucleopolyhedroviruses (NPVs), in contrast, they are present in the envelope of the occlusion-derived virions (ODV). In the present study, we constructed a recombinant Autographa californica NPV (AcMNPV) that expressed the Trichoplusia ni GV (TnGV) enhancin 3 (En3), with the aim of increasing the presence of enhancin in the OBs or ODVs. En3 was successfully produced but did not localize to the OBs or the ODVs and accumulated in the soluble fraction of infected cells. As a result, increased OB pathogenicity was observed when OBs were administered in mixtures with the soluble fraction of infected cells. The mixture of OBs and the soluble fraction of Sf9 cells infected with BacPhEn3 recombinant virus was ~3- and ~4.7-fold more pathogenic than BacPh control OBs in the second and fourth instars of Spodoptera exigua, respectively. In contrast, when purified, recombinant BacPhEn3 OBs were as pathogenic as control BacPh OBs. The expression of En3 in the soluble fraction of insect cells may find applications in the development of virus-based insecticides with increased efficacy.Publication Open Access Effects of several UV-protective substances on the persistence of the insecticidal activity of the Alphabaculovirus of Chrysodeixis chalcites (ChchNPV-TF1) on banana (Musa acuminata, Musaceae, Colla) under laboratory and open-field conditions(Public Library of Science, 2021) Çakmak, Taylan; Simón de Goñi, Oihane; Kaydan, Mehmet Bora; Tange, Denis Achiri; González-Rodríguez, Agueda María; Piedra-Buena Díaz, Ana; Caballero Murillo, Primitivo; Hernández Suárez, Estrella; Institute for Multidisciplinary Research in Applied Biology - IMABAlphabaculovirus of Chrysodeixis chalcites (ChchNPV-TF1) has been investigated as a useful bioinsecticide against C. chalcites (Esper) (Lepidoptera: Noctuidae) in banana crops. This study investigated the effects of several substances on the persistence of ChchNPV-TF1 under field conditions in the Canary Islands. Natural photoprotective substances, such as moringa, cacao, green tea, benzopurpurine, charcoal, iron dioxide, benzimidazole, kaolinite, and bentonite, were first evaluated under laboratory conditions using a Crosslinker as UV light source at 200 J/cm(2). The photoprotective substances were divided into three groups: low protection (0-8%; kaolinite), intermediate protection (48-62%; green tea, moringa, bentonite and cacao) and high protection (87-100%; charcoal, iron ioxide). Benzopurpurine and benzimidazole did not provide any photoprotective effects. Two of the substances that yielded the best results, 1% cacao and 1% charcoal, were selected for the open-field experiment in a banana plantation. The persistence of ChchNPV-TF1 OBs (occlusion bodies) on leaf surfaces with sunlight exposure was analysed by comparing the initial mortality of 2(nd) instar C. chalcites larvae with the mortality observed at various intervals postapplication. The mortality rates decreased over time in all treatments and were always higher in the UV-protective substance-treated parcels. The 1% charcoal treatment exhibited the highest protection in both the laboratory and field experiments. No specific interference of UV-protective substances on the maximum photochemical efficiency of banana plants was observed under field conditions.Publication Open Access A novel use of Nesidiocoris tenuis (Reuter) (Hemiptera: Miridae) as inoculative agent of baculoviruses(Wiley, 2023) Gutiérrez Cárdenas, Oscar Giovanni; Adán, Ángeles; Medina, Pilar; Caballero Murillo, Primitivo; Garzón, Agustín; Muñoz Labiano, Delia; Institute for Multidisciplinary Research in Applied Biology - IMABBackground: Alphabaculoviruses are Lepidoptera-specific virulent pathogens that infect numerous pests, including the Spodoptera complex. Due to their low environmental persistence, the traditional use of Alphabaculoviruses as bioinsecticides consist in high-rate spray applications with repeated treatments. Several abiotic and biotic factors can foster its dispersion, promoting their persistence in the agroecosystem. Amongst biotic factors, predatory arthropods can disperse the viruses by excretion after preying on infected individuals. Therefore, this study focused on promoting predator's ingestion of nucleopolyhedrovirus (NPV)-treated diets, and the later exposition of the insect host to leaf surfaces contaminated with predator excreta. The virus–host–predator system studied was Spodoptera littoralis nucleopolyhedrovirus (SpliNPV), Spodoptera littoralis (Boisduval) and Nesidiocoris tenuis (Reuter). The infective potential of N. tenuis feces and the retention time of SpliNPV were assessed under laboratory conditions after feeding on treated diets (sucrose solution and Ephestia kuehniella eggs). Results: Mortality of S. littoralis larvae was lower via N. tenuis excretion than in positive control (spray application) in the first infection cycle, together with a delay in host death. In the second infection cycle, both SpliNPV-treated diets triggered 100% mortality. Both diets allowed the transmission of SpliNPV, with a faster excretion via sucrose solution compared to E. kuehniella eggs. SpliNPV remained in N. tenuis digestive tract and was viable after excretion at least for 9 days for both diets. Conclusions: This study demonstrated the potential of the predator N. tenuis as inoculative agent of baculoviruses, representing a new alternative that, along with inundative applications, might contribute to improve pest management strategies.