Person:
Pérez Goya, Unai

Loading...
Profile Picture

Email Address

Birth Date

Research Projects

Organizational Units

Job Title

Last Name

Pérez Goya

First Name

Unai

person.page.departamento

Estadística, Informática y Matemáticas

person.page.instituteName

InaMat2. Instituto de Investigación en Materiales Avanzados y Matemáticas

ORCID

0000-0002-2796-9079

person.page.upna

811058

Name

Search Results

Now showing 1 - 2 of 2
  • PublicationOpen Access
    Hierarchical spatio-temporal change-point detection
    (Taylor and Francis Group, 2023) Moradi, Mohammad Mehdi; Cronie, Ottmar; Pérez Goya, Unai; Mateu, Jorge; Estadística, Informática y Matemáticas; Estatistika, Informatika eta Matematika
    Detecting change-points in multivariate settings is usually carried out by analyzing all marginals either independently, via univariate methods, or jointly, through multivariate approaches. The former discards any inherent dependencies between different marginals and the latter may suffer from domination/masking among different change-points of distinct marginals. As a remedy, we propose an approach which groups marginals with similar temporal behaviors, and then performs group-wise multivariate change-point detection. Our approach groups marginals based on hierarchical clustering using distances which adjust for inherent dependencies. Through a simulation study we show that our approach, by preventing domination/masking, significantly enhances the general performance of the employed multivariate change-point detection method. Finally, we apply our approach to two datasets: (i) Land Surface Temperature in Spain, during the years 2000–2021, and (ii) The WikiLeaks Afghan War Diary data.
  • PublicationOpen Access
    Large-scale unsupervised spatio-temporal semantic analysis of vast regions from satellite images sequences
    (Springer, 2024) Echegoyen Arruti, Carlos; Pérez, Aritz; Santafé Rodrigo, Guzmán; Pérez Goya, Unai; Ugarte Martínez, María Dolores; Estadística, Informática y Matemáticas; Estatistika, Informatika eta Matematika; Institute for Advanced Materials and Mathematics - INAMAT2; Universidad Pública de Navarra / Nafarroako Unibertsitate Publikoa
    Temporal sequences of satellite images constitute a highly valuable and abundant resource for analyzing regions of interest. However, the automatic acquisition of knowledge on a large scale is a challenging task due to different factors such as the lack of precise labeled data, the definition and variability of the terrain entities, or the inherent complexity of the images and their fusion. In this context, we present a fully unsupervised and general methodology to conduct spatio-temporal taxonomies of large regions from sequences of satellite images. Our approach relies on a combination of deep embeddings and time series clustering to capture the semantic properties of the ground and its evolution over time, providing a comprehensive understanding of the region of interest. The proposed method is enhanced by a novel procedure specifically devised to refine the embedding and exploit the underlying spatio-temporal patterns. We use this methodology to conduct an in-depth analysis of a 220 km region in northern Spain in different settings. The results provide a broad and intuitive perspective of the land where large areas are connected in a compact and well-structured manner, mainly based on climatic, phytological, and hydrological factors.